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a b s t r a c t

The active inference framework, and in particular its recent formulation as a partially observable
Markov decision process (POMDP), has gained increasing popularity in recent years as a useful
approach for modeling neurocognitive processes. This framework is highly general and flexible in
its ability to be customized to model any cognitive process, as well as simulate predicted neuronal
responses based on its accompanying neural process theory. It also affords both simulation experiments
for proof of principle and behavioral modeling for empirical studies. However, there are limited
resources that explain how to build and run these models in practice, which limits their widespread
use. Most introductions assume a technical background in programming, mathematics, and machine
learning. In this paper we offer a step-by-step tutorial on how to build POMDPs, run simulations using
standard MATLAB routines, and fit these models to empirical data. We assume a minimal background
in programming and mathematics, thoroughly explain all equations, and provide exemplar scripts that
can be customized for both theoretical and empirical studies. Our goal is to provide the reader with the
requisite background knowledge and practical tools to apply active inference to their own research.
We also provide optional technical sections and multiple appendices, which offer the interested reader
additional technical details. This tutorial should provide the reader with all the tools necessary to use
these models and to follow emerging advances in active inference research.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Active inference, and in particular its recent application to
artially observable Markov decision processes (POMDPs; de-
ined below), offers a unified mathematical framework for mod-
ling perception, learning, and decision making (Da Costa, Parr
t al., 2020; Friston, Parr, & de Vries, 2017c; Friston, Rosch, Parr,
rice, & Bowman, 2018; Parr & Friston, 2018b). This framework
reats each of these psychological processes, and their interac-
ions, as interdependent forms of inference. Namely, decision-
aking agents are assumed to infer the probability of different
xternal states and events in the environment – including their
wn actions – by combining prior beliefs with sensory input.
nlike ‘passive’, perceptual inference processes (e.g., inferring
he presence of an external object based on patterns of light
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impinging on the retina), the inferences underlying decision-
making are ‘active’, in the sense that the agent infers the ac-
tions most likely to generate preferred sensory input (e.g., in-
ferring that eating some food will reduce a feeling of hunger).
Agents also infer the actions most likely to reduce uncertainty
and facilitate learning (e.g., inferring that opening the fridge
will reveal available food options). This leads decision-making
to favor actions that optimize a trade-off between maximiz-
ing reward and information gain. The resulting patterns of per-
ception and behavior predicted by active inference match well
with those observed empirically (e.g., see Smith et al., 2021d,
2021c, 2020b; Smith, Kuplicki, Teed, Upshaw, & Khalsa, 2020c;
Smith et al., 2021e, 2020e). The neural process theory associated
with active inference has also successfully reproduced empiri-
cally observed neural responses in multiple research paradigms
and generated novel, testable predictions (Friston, FitzGerald,
Rigoli, Schwartenbeck, & Pezzulo, 2017a; Schwartenbeck, FitzGer-
ald, Mathys, Dolan, & Friston, 2015; Whyte & Smith, 2020). Due
to these and other considerations, this framework has become
increasingly influential in recent years within psychology, neu-
roscience, and machine learning.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Over the last decade there have been many articles that
offer either (1) broad intuitions about the workings and po-
tential implications of active inference (e.g., (Badcock, Friston,
Ramstead, Ploeger, & Hohwy, 2019; Clark, 2013, 2015; Clark,
Watson, & Friston, 2018; Hohwy, 2014; Pezzulo, Rigoli, & Friston,
2015, 2018; Smith, Badcock, & Friston, 2020a)), or (2), tech-
nical presentations of the mathematical formalism and how it
continues to evolve (e.g., Da Costa, Parr et al., 2020; Friston
et al., 2016a, 2017a, 2017c; Hesp, Smith, Allen, Friston, & Ram-
stead, 2020; Parr & Friston, 2018b). However, for those first
becoming acquainted with this field, the former class of ar-
ticles does not provide sufficient detail to instill a thorough
understanding of the framework, leading to potential misun-
derstanding and potentially inaccurate empirical predictions. At
the other extreme, the latter class of articles is highly technical
and requires considerable mathematical expertise, familiarity
with notational conventions, and the broader ability to translate
the mathematical formalism into empirical predictions relevant
to a given field of study. This has made the active inference
literature less accessible to a broader audience who might oth-
erwise benefit from engaging with it. To date, there are also
relatively few materials available for students seeking to gain
the practical skills necessary to build active inference models
and apply them to their own research aims (although some
very helpful material has been prepared by others; e.g., Philipp
Schwartenbeck [https://github.com/schwartenbeckph] and Oleg
Solopchuk [https://medium.com/@solopchuk/tutorial-on-active-
inference-30edcf50f5dc]).

The goal of this paper is to provide an accessible tutorial
on the POMDP formulation of active inference that is easy to
follow for readers without upper-level undergraduate/graduate-
level training in mathematics and machine learning, while si-
multaneously offering basic mathematical understanding — as
well as the practical tools necessary to build and use active
inference models for their own purposes. We review the con-
ceptual and formal foundations and provide a step-by-step guide
on how to use code in MATLAB (provided in the appendices
and supplementary code) to build active inference (POMDP)
models, run simulations, fit models to empirical data, perform
model comparison, and perform further steps necessary to test
hypotheses using both simulated and fitted empirical data (all
supplementary code can also be found at: https://github.com/
rssmith33/Active-Inference-Tutorial-Scripts; we note here that
there is also a recently developed python implementation of
active inference that can be found at: https://github.com/infer-
actively/pymdp). We have tried to assume as little as possible
about the reader’s background knowledge in hopes of making
these methods accessible to researchers (e.g., psychologists and
neuroscientists) without a strong background in mathematics or
machine learning. However, we have also included sections that
provide additional technical detail, which the pragmatic reader
can safely skip over and still follow the practical tutorial as-
pects of the paper. We have also provided additional material in
appendices and supplementary code with:

(1) Definitional material to help the non-expert reader who
would like to attempt the technical sections.

(2) Additional mathematical detail for interested readers with
a stronger technical background.

(3) Pencil-and-paper exercises that help build an intuition for
the behavior of these models.

(4) A stripped down but well commented version of the most
commonly used model inversion script (described below)
for running simulations, which can serve as a springboard
for readers seeking a deeper understanding of the code that

implements these models.

2

Throughout the article, we will refer to the associated MATLAB
code, assuming the reader is working through the paper and the
code in parallel.

While we assume as little mathematical background as pos-
sible, some limited knowledge of probability theory, calculus,
and linear algebra will be necessary to fully appreciate some
sections of the tutorial. Building models in practice also re-
quires some basic familiarity with the MATLAB programming
environment. We realize that this background knowledge is non-
trivial. However, to minimize these potential hurdles, we (1)
provide thorough explanations when presenting the mathemat-
ics and programming (with further expansion within optional
technical sections and in Appendix A), (2) include hands-on
examples/exercises in the companion MATLAB code, and (3)
provide pencil-and-paper exercises (see Appendix B and
Pencil_and_paper_exercise_solutions.m code) that readers can
ork through themselves. In total, this tutorial should offer the
eader the necessary resources to:

(1) Acquire a basic understanding of the mathematical formal-
ism.

(2) Build generative models of behavioral tasks and run simu-
lations of both behavioral and neural responses.

(3) Fit models to behavioral data and recover model param-
eters on an individual basis, which can then be used for
subsequent (e.g., between-subjects) analyses.

Our hope is that this will increase the accessibility and use of
this framework to a broader audience. Note, however, that our
focus is specifically on the POMDP formulation, which models
time in discrete steps and treats beliefs and actions as discrete
categories (referred to as ‘discrete state–space’ models with ‘dis-
crete time’). This means that we do not cover a number of
other topics associated with active inference and the broader free
energy principle from which it is derived. For example, we do
not cover ‘continuous state–space’ models, which can be used to
model perception of continuous variables (e.g., brightness; for a
tutorial, see Bogacz (2017) as well as motor control processes
(e.g., controlling continuous levels of muscle contraction; see
(Adams, Shipp, & Friston, 2013) and Buckley, Sub Kim, McGregor,
and Seth (2017)). Nor do we cover ‘mixed’ models, in which
discrete and continuous state–space models can be linked — al-
lowing decisions to be translated into motor commands (e.g., see
Friston et al. (2017c), Millidge (2019) and Tschantz et al. (2021).
We also do not cover work on free energy minimization in self-
organizing systems or the basis of the free energy principle in
physics. The most thorough technical introduction to the physics
perspective can be found in Friston (2019); a less technical (but
still rigorous) introduction is presented in Andrews (2020).2 Thus,
the focus of this tutorial is somewhat narrow and practical. Our
aim is to equip the reader with the understanding and tools
necessary to build models in practice and apply them in their own
research.

2 This other work appeals to a number of common constructs discussed in
he free energy principle literature that are also not covered here, but which
he reader may have come across previously. One such construct is a ‘Markov
lanket’, which is a mathematical way of describing the boundary that separates
he internal states of an organism from the external environment (although note
hat this term is sometimes used in different ways; see Bruineberg, Dolega,
ewhurst, and Baltieri (2021). Another related construct is a ‘non-equilibrium
teady state (NESS) density’, which describes the states an organism must have a
igh probability of occupying if it is to maintain its existence — where this can
e understood as maintaining the integrity of its Markov blanket (i.e., keeping
he boundary intact that separates an organism from its environment). The
OMDP scheme described in this tutorial does not explicitly appeal to these
onstructs; however, one can think of an agent’s preferred observations in
OMDPs as those that keep it within the high-probability states consistent with
ts continued existence (i.e., those that would keep its Markov blanket intact).
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The paper is organized as follows. In Part 1, we introduce
the reader to the terms, concepts, and mathematical notation
used within the active inference literature, and present the min-
imum mathematics necessary for a basic understanding of the
formalism (as applied in a practical experimental setting). In
Part 2, we introduce the reader to the concrete structure and
elements of POMDPs and how they are solved. In Part 3, we
provide a step-by-step description of how to build a generative
model of a behavioral task (a variant on commonly used explore–
exploit tasks), run simulations using this model, and interpret the
outputs of those simulations. In Part 4, we introduce the reader
to learning processes in active inference. In Part 5, we introduce
the reader to the neural process theory associated with active
inference and walk the reader through generating and interpret-
ing the outputs of neural simulations that can be used to derive
empirical predictions. In Part 6, we introduce hierarchical models
and illustrate how, based on the neural process theory, they can
be used to simulate established electrophysiological responses in
a commonly used auditory mismatch paradigm. Finally, in Part
7 we describe how to fit behavioral data to a model and derive
individual-level parameter estimates and how they can be used
for further group-level analyses.

1. Basic terminology, concepts, and mathematics

1.1. Mathematical foundations: Bayes’ theorem and active inference

The active inference framework is based on the premise that
perception and learning can be understood as minimizing a quan-
tity known as variational free energy (VFE), and that action
selection, planning, and decision-making can be understood as
minimizing expected free energy (EFE), which quantifies the
VFE of various actions based on expected future outcomes. To
motivate the use and derivation of these quantities, we need to
first introduce the reader to Bayesian inference and explore its
relation to the notion of active inference. We will cover these
foundational principles here. By the end of this subsection, the
reader should have a working knowledge of the basic building
blocks of active inference. This includes understanding what a
model is, how rules within probability theory can be used to
perform inference within a model, and how this inference process
can be extended to perform action selection.

As an initial note to readers with less mathematical back-
ground, a full understanding of the equations presented below
will not be necessary to begin building models and applying them
to behavioral data. Often, building and working with models in
practice is a great way to get an intuitive grasp of the underlying
mathematics. So, if some of the equations below have unfamiliar
notation and become hard to follow, do not get discouraged.
An intuitive grasp of the concepts described in this section will
be enough to learn the practical applications in the subsequent
sections. That said, we also explain the equations and notation in
this section assuming minimal mathematical background.

We start by highlighting that the term ‘active inference’ is
based on two concepts. The first is the idea that organisms ac-
tively engage with (e.g., move around in) their environments to
gather information, seek out ‘preferred’ observations (e.g., food,
water, shelter, social support, etc.), and avoid non-preferred ob-
servations (e.g., tissue damage, hunger, thirst, social rejection,
etc.). The second concept is Bayesian inference, a statistical
procedure that describes the optimal way to update one’s beliefs
(understood as probability distributions) when making new ob-
servations (i.e., receiving new sensory input) based on the rules
of probability (for a brief introduction to the rules of probability,
see Appendix A). Specifically, beliefs are updated in light of new
3

observations using Bayes’ theorem, which can be written as
follows:

p (s|o,m) =
p (o|s,m) p (s|m)

p (o|m)
(1)

Starting on the right-hand side of the equation, the term p(s|m)
indicates the probability (p) of different possible states (s) under
a model of the world (m). This ‘prior belief’ (the ‘prior’) encodes a
probability distribution (‘Bayesian belief’) with respect to s before
making a new observation (o). In general, the concept of a ‘state’ is
abstract and can refer to anything one might have a belief about.
For example, s might refer to the different possible shapes of an
bject, such as a square vs. a circle vs. a triangle, and so forth. The
erm p (o|s,m) is the ‘likelihood’ term and encodes the probabil-
ty within a model that one would make a particular observation
if some state were the true state (e.g., observing a straight line
is consistent with a square shape but not with a circular shape).
The symbol (|) means ‘conditional on’ and is also often read as
‘given’ (e.g., the probability of o given s). The term p (o|m) is
the ‘model evidence’ (also called the ‘marginal likelihood’) and
indicates how consistent an observation is with a model of the
world in general (i.e., across all possible states). Finally, the term
p (s|o,m) is the ‘posterior’ belief, which encodes what one’s new
belief (i.e., adjusted probability distribution over possible states)
optimally should be after making a new observation.

In essence, Bayes rule describes how to optimally update one’s
beliefs in light of new data. Specifically, to arrive at a new belief
(your posterior), you must: (1) take what you previously believed
(your prior), (2) combine it with what you believe about how
consistent a new observation is with different possible states
(your likelihood), and (3) consider the overall consistency of that
observation with your model (i.e., how likely that observation
is under any set of possible states included in your model; the
model evidence, p (o|m)). The last step (i.e., dividing by p (o|m))
ensures that your posterior belief remains a proper probability
distribution that sums to 1 (i.e., it accomplishes ‘normalization’).
For a simple numerical example of Bayesian inference in the
context of perception, see Fig. 1.

In this tutorial, the concept of a model is key. As briefly
introduced above, we here focus specifically on generative mod-
els, which are models of how observations (sensory inputs) are
generated by objects and events outside of the brain that cannot
be known directly (typically termed ‘hidden states’ or ‘hidden
auses’; e.g., a baseball generating a specific pattern of activa-
ion on the retina). In simple generative models (i.e., not yet
ncorporating action), the necessary variables correspond to those
resented within Bayes’ theorem above (although note that con-
itioning on the model variable m is often left implicit, as we
ill also do going forward). That is, each model includes a set
f possible hidden states (s), priors over those states p(s), a set of
ossible observations (o; also called ‘outcomes’), and a likelihood
hat specifies how states generate observations p(o|s). The notion
f hidden or unobservable states causing observable outcomes il-
ustrates how inference can be seen as a type of model inversion.
amely, updating one’s beliefs from prior to posterior beliefs is
ike inverting the likelihood mapping — that is, moving from
(o|s) to p(s|o). In other words, starting with a mapping from
auses to consequences and then using it to infer the causes from
onsequences.
Importantly, models can also include multiple types/sets of

tates (i.e., different state-spaces). For example, one set of states
ould encode possible shapes, while another set of states could
ncode possible object locations. When different sets of states are
ndependent in this way, each set is called a different ‘hidden
tate factor’. Similarly, models can include multiple types/sets
f observable outcomes. For example, one set of possible obser-
ations could come from vision, while another set of possible
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Fig. 1. Simple example of perception as Bayesian inference (based on Ramachandran, 1988). Please note that, while we have not explicitly conditioned on a model (m)
in the expression of Bayes’ rule shown in the left panel (as in the text), this should be understood as implicit (i.e., priors and likelihoods are always model-dependent).
In this example, we take a ‘brain’s eye view’ and imagine that we are presented with the shaded gray disk (the ‘observation’) in the left panel of the figure. Due
to the shading pattern, the central portion of the disk is typically perceived as concave (as shown in the bottom-left), but it can also be perceived as convex (and
typically is perceived as convex if rotated 180o). This is because the brain is equipped with a strong (unconscious) belief that light sources typically come from above.
Given this assumption, the apparent shadow in the upper portion of the disk is much more likely to arise from a concave surface. To capture this mathematically,
on the right we consider ‘concave’ and ‘convex’ as the two possible hidden states or ‘causes’ of sensory input (i.e., the shadow on the gray disk). We want to know
whether the shadow pattern on the disk (observation) is caused by a concave or convex surface. The optimal way to infer the hidden state (concave or convex) is
to use Bayes’ theorem. For the sake of this example, assume we believe the chances of observing a concave vs. convex surface in general are almost equal, with a
slight bias toward expecting a convex surface (e.g., perhaps we have come across convex surfaces slightly more often in the past; encoded in the prior distribution
shown above). The likelihood is a different story. The apparent shadow is much more consistent with a concave surface if light is coming from above (i.e., encoded
in the likelihood distribution). To infer the posterior probability, we multiply the likelihood and prior probabilities, giving us the joint distribution. We then sum
the probabilities in the joint distribution, yielding the total probability of the observation across the possible hidden states (i.e., the marginal likelihood). Finally,
we divide the joint distribution by the marginal likelihood to reach the posterior. The posterior tells us that the most probable hidden state is a concave surface
(i.e., corresponding to what is most often perceived). Thus, even though the two-dimensional gray disk alone is equally consistent with a convex or concave surface,
the assumption that light is coming from above (encoded in the likelihood) most often leads us to perceive a concave 3-dimensional shape.
observations could come from audition. When sets of observ-
able outcomes are independent in this way, each set is called
a different ‘outcome modality’. Once all sets of possible states
and observations are specified, the generative model is defined
in terms of the joint distribution p(o, s) — that is, the prob-
ability distribution over all possible combinations of states and
observations. Based on the product rule in probability theory (see
Appendix A), this can be decomposed into the separate terms just
mentioned:

p(o, s) = p(o|s)p(s) (2)

If there is only one set of states and observations, this joint
distribution is a 2-dimensional distribution. If there are more
sets, it becomes a higher-dimensional distribution that, while
harder to visualize (and more time consuming to compute), can
be treated in the same way.

A crucial point to keep in mind at this point is the distinction
between a generative model and the generative process (see
Fig. 2). A generative model, as discussed above, is constituted
by beliefs about the world and can be inaccurate (sometimes re-
ferred to as ‘fictive’). In other words, explanations for (i.e., beliefs
about) how observations are generated do not have to represent
a veridical account of how they are actually generated. Indeed,
explanations for sensory data within models are often simpler
than the true processes generating those data. In contrast, the
generative process refers to what is actually going on out in the
world — that is, it describes the veridical ‘ground truth’ about
the causes of sensory input. For example, a model might hold the
prior belief that the probability of seeing a pigeon vs. a hawk
while at a city park is [.9 .1], whereas the true probability in
the generative process may instead be [.7 .3]. This distinction is
important in practical uses of modeling when one wants to sim-
ulate behavior under false beliefs and unexpected observations

(e.g., when modeling delusions or hallucinations).

4

While Bayesian inference represents the optimal way to infer
posterior beliefs within a generative model, Bayes theorem is
computationally intractable for anything but the simplest distri-
butions. This is because evaluating p(o|m) – the marginal like-
lihood (denominator) in Bayes’ theorem – requires us to sum
the probabilities of observations under all possible states in the
generative model (i.e., based on the sum rule of probability; see
Appendix A and Fig. 1). For discrete distributions, as the number
of dimensions (and possible values) increases, the number of
terms that must be summed increases exponentially. In the case
of continuous distributions, it requires the evaluation of integrals
that do not always have closed-form (analytic) solutions. As such,
approximation techniques are required to solve this problem. This
is where VFE is crucial, as it provides a computationally tractable
quantity that allows for approximate inference. One common way
this is explained requires the introduction of an information-
theoretic quantity known as self-information or surprisal (often
also just called ‘surprise’, but we avoid this term here to minimize
confusion with the distinct concept of psychological surprise).
Surprisal reflects a deviation between observed outcomes and
those predicted by a model. It is typically written as the neg-
ative log-probability of that observation, − ln p (o|m), where ln
is the natural logarithm. Consistent with the intuitive notion
of surprise, lower probability events generate higher surprisal
values (e.g., − ln (.5) = 0.69,while − ln(.9) = 0.1). It therefore
follows that minimizing surprisal is equivalent to maximizing the
evidence an observation provides for a model; i.e., p(o|m). As will
be demonstrated in the next section, VFE is always greater than
or equal to surprisal, which means that minimizing VFE is also a
way to maximize model evidence. This gets around the problem
of computational intractability mentioned above and allows for
inference of posterior beliefs over states. Fig. 3 provides an ex-

ample of inference using Bayes’ theorem and using minimization
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Fig. 2. Visual depiction of the distinction between the generative process and the generative model, as well as their implicit coupling in the perception–action cycle.
he generative process describes the true causes of the observations that are received by the generative model, which inform posterior beliefs about those causes
i.e., perception). In active inference, a generative model also includes policies (π ), where each policy is a possible sequence of actions (u) that could be selected.
he policy with the highest posterior probability (given preferred outcomes) is typically chosen, which couples the agent back to the generative process by changing
he true state of world through action.
Fig. 3. Simple example of exact versus approximate Bayesian inference. As with the example in Fig. 1, we are given a prior belief over states p (s) and the likelihood
f a new observation p (o|s), and we wish to infer the posterior probability over states given that new observation p (s|o). Exact inference requires the evaluation
f the marginal likelihood p (o), which, for anything but the simplest distributions, is either computationally intensive or intractable. Instead, variational inference

minimizes VFE (here denoted by F ), which scores the difference between an (initially arbitrary) approximate posterior distribution q(s) and a target distribution
here the exact posterior; for an introduction to variational inference, see Appendix A). By iteratively updating the approximate posterior to minimize F (usually
via gradient descent, see main text for details), a distribution can be found that approximates the exact posterior. That is, q(s) will approximate the true posterior
when it produces a minimum value for F . Here, we have shown an example of iterative updating for the simplest distribution possible to illustrate the concept. As
shown in the bottom-left, in this example we start the agent with an approximate posterior distribution q (s) = p (s) = [.5 .5]T — which can be thought of as an
initial guess about what the true posterior belief p(s|o) should be after making a new observation (o). We then define a generative model with the joint probability,
p (o, s), where the true posterior we wish to find is p (s|o) = [.8 .2]T for the observation o (as calculated using exact inference in the top panel). On the bottom-right,
under ‘Initial F ’, we first solve for F using our initial q(s). Under ‘Update 1’, we then find (by searching neighboring values) a nearby value for q(s) that leads to a
lower value for F , and we repeat this process in ‘Update 2’. In ‘Update 3’, q (s) is equal to p(s|o), which corresponds to finding a minimum value for F (i.e., where
he remaining value above zero corresponds to surprisal, − ln p(o)). The fact that F has reached a minimum can be seen in ‘Update 4’, where continuing to change
(s) causes F to again increase in value. Thus, by finding the posterior q (s) over states that generates the minimum for F , that q(s) will also best approximate the
rue posterior. In the supplementary code, we have included a script VFE_calculation_example.m that will allow you to define your own priors, likelihoods, and
bservations and calculate F for different q (s) values.
5
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f VFE (see the next subsection for an introduction to the relevant
athematics).
Although Bayesian inference is used to model perception and

earning in related frameworks (e.g., predictive coding; see (Bo-
acz, 2017), the active inference approach covered in this tutorial
xtends this application of Bayesian inference in two ways. First,
t models categorical inference (e.g., the presence of a cat vs. a
og), as opposed to continuous inference (i.e., variables that take
continuous range of values, such as speed, direction of motion,
rightness, etc.). Second, it models the inference of optimal action
equences during decision-making (i.e., inferring a probability
istribution over possible action options, which can be thought
f as encoding the estimated probability of achieving one’s goals
f each action were chosen). In planning, possible sequences of
ctions (called ‘policies’)3 are denoted by the Greek letter pi (π ),
o the generative model is extended to:

(o, s, π ) = p(o|s, π )p(s|π )p(π ) (3)

We will return to the prior over policies p(π ) later. For now,
e simply note that active inference models can include addi-
ional elements that control (for example) howmuch randomness
s present in decision-making and how habits can be acquired
nd influence decisions. They can also be extended to include
earning. We will return to these extensions in later sections.

To make decisions, an agent requires a means of assigning
igher value to one policy over another. This in turn requires
hat some observations are preferred over others. One of the
ore (superficially) counterintuitive aspects of active inference

s the way it formalizes preferences. This is because there are
o additional variables labeled as ‘rewards’ or ‘values’. Instead,
references are encoded within a specific type of prior probability
istribution — which is often called a ‘prior preference distribu-
ion’. This distribution is often simply denoted as p(o); however,
he term p(o) is also used in other ways, which can be a source of
onfusion. Therefore, we will instead represent this distribution
s p(o|C), where the variable C denotes the agent’s preferences
Parr, Pezzulo, & Friston, 2022). In this distribution, observations
ith higher probabilities are treated as more rewarding. Note that
his is distinct from priors over states, p(s), which encode beliefs
bout the true states of the world (i.e., irrespective of what is
referred).
The value of each policy in active inference is also specified

ithin a probability distribution, where a higher value corre-
ponds to a higher probability of being selected. This probability
s based on EFE (i.e., lower EFE indicates higher value) and reflects
eliefs about how likely each policy is to generate preferred
bservations (and how effective it is expected to be at maxi-
izing information gain; discussed further below). In one sense,

he use of probability distributions to encode preferences and
olicy values can simply be considered a kind of mathematical
trick’ to bring all elements of action selection within the domain
f Bayesian belief updating — a kind of planning as inference
Attias, 2003; Botvinick & Toussaint, 2012; Kaplan & Friston,
018). However, many articles have considered the possibility (or
se language suggesting) that the formalism may have deeper
mplications. Specifically, the active inference literature often dis-
usses how prior preferences may be thought of as encoding
he observations that are implicitly ‘expected’ by an organism

3 It is important to note that the term ‘policy’ in active inference is used
n a different way than in model-free reinforcement learning. As stated in the
ain text, a policy in active inference refers to an allowable sequence of actions

e.g., a plan to move to state 1, then to state 2, then to state 3). In contrast, a
olicy in model-free reinforcement learning typically consists of a mapping from
tates to actions. That is, a policy specifies the action that should be chosen for
ach possible state an agent might occupy (e.g., if in state 1, move to state 2;
f in state 3, move to state 1, etc.).
6

in virtue of its phenotype (i.e., the observations an organism
must seek out to maintain its survival and/or reproduction). For
example, consider body temperature. Humans can only survive if
body temperatures continue to be observed within the range of
36.5 – 37.5 degrees Celsius. Thus, the human phenotype implicitly
entails a high prior probability of making such observations. If
a human perceives (i.e., infers) that their body temperature has
(or is going to) deviate from ‘expected’ temperatures, they will
infer which policies are most likely to minimize this deviation
(e.g., seeking shelter when they are cold or expect to become
cold). In this sense, body temperatures within survivable ranges
(for the human phenotype) are the least ‘surprising’. In formal
terms, the variable C in prior preferences p(o|C) can therefore be
hought of as standing in for a model of an organism’s phenotype,
here this model predicts specific (internal and external) ob-
ervations consistent with that phenotype and motivates actions
xpected to maintain those observations.
However, it is important to highlight that this formal treat-

ent of preferences and values as ‘Bayesian beliefs’ (i.e., prob-
bility distributions) need not be understood as a psychological
escription, nor must it be if one wishes to use active inference
odels in practice. In other words, not all beliefs at the math-
matical level of description need to be equated with beliefs at
he psychological level; some Bayesian beliefs in the formalism
an instead correspond to rewarding or desired outcomes at the
sychological level (Smith, Ramstead, & Kiefer, 2022). Similarly,
he notion of ‘surprise’ with respect to prior preferences is not
quivalent to the conscious experience of surprise; minimizing
he type of ‘phenotypic surprise’ discussed in active inference is
etter mapped onto psychological states associated with achiev-
ng one’s goals. Traditional beliefs (in the psychological sense) can
nstead be identified with other model elements, such as priors
ver states, p(s), and observations expected given policies, p(o|π ).
owever, regardless of the way one views the mapping between
athematical and psychological levels of description, active in-

erence can more broadly (and less controversially) be seen as
uggesting that the brain just is (or that it ‘implements’ or ‘en-
ails’) a generative model of the body and external environment
f the organism.

.2. Non-technical introduction to solving partially observable
arkov decision processes via free energy minimization

In this subsection, we expand on the need for approximate
nference in cases where Bayes’ theorem cannot be computed
irectly and explain how this motivates the use of VFE and EFE.
y the end of this subsection, the reader should have a basic
nderstanding of how VFE can be used to perform approximate
ayesian inference within a generative model and of how EFE
xtends this approach to infer optimal choices.
The specific type of generative model used here is a par-

ially observable Markov decision process (POMDP). A Markov
ecision process describes beliefs about abstract states of the
orld, how they are expected to change over time, and how
ctions are selected to seek out preferred outcomes or rewards
ased on beliefs about states. This class of models assumes the
Markov property’, which simply means that beliefs about the
urrent state of the world are all that matter for an agent when
eciding which actions to take (i.e., that all knowledge about
ast states is implicitly ‘packed into’ beliefs about the current
tate). The agent then uses its model, combined with beliefs about
he current state, to select actions by making predictions about
ossible future states. To be ‘partially observable’ means that the
gent can be uncertain in its beliefs about the state of the world it
s in. In this case, states are referred to as ‘hidden’ (as introduced
bove). The agent must infer how likely it is to be in one hidden
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tate or another based on observations (i.e., sensory input) and
se this information to select actions.
In active inference, these tasks are solved using a form of

pproximate inference known as variational inference (Attias,
000; Beal, 2003; Markovic, Stojic, Schwoebel, & Kiebel, 2021)
or a brief introduction, see Appendix A). Broadly speaking, the
dea behind variational inference is to convert the intractable
um or integral required to perform model inversion into an
ptimization problem that can be solved in a computationally
fficient manner. This is accomplished by introducing an approxi-
ate posterior distribution over states, denoted q(s), that makes

simplifying assumptions about the nature of the true posterior
distribution. For example, it is common to assume that hidden
states under the approximate distribution do not interact (i.e., are
independent), which gives the approximate distribution a much
simpler mathematical form. Such assumptions are often violated,
but the approximation is usually good enough in practice. Note
that, despite its aim of approximating the true posterior p (s|o),
the approximate posterior q(s) is typically not written as being
conditioned on observations. This is because it does not directly
depend on observations — it is simply an (initially arbitrary) dis-
tribution over states that is iteratively updated to match the true
posterior distribution as closely as possible (described below).

After introducing q(s), the next step in variational inference
is to measure the similarity between this distribution and the
generative model, p (o, s), using a measure called the Kullback–
Leibler (KL) divergence. We will discuss the KL divergence in
more detail in the following (technical) section. For now, it is
sufficient to think of the KL divergence as a measure of the
dissimilarity between two distributions. It is zero when the dis-
tributions match, and it gets larger the more dissimilar the dis-
tributions become. VFE corresponds to the surprisal we want to
minimize plus the KL divergence between the approximate and
true posterior distributions. In variational inference, we system-
atically update q (s) until we find the value that minimizes VFE,
at which point q (s) will approximate the true posterior, p (s|o).
In Fig. 3 we provide a simple example of calculating VFE under
different values for q (s) to provide the reader with an intuition
for how this works (this example can also be reproduced and
customized in the VFE_calculation_example.m script provided
in the supplementary code). For ease of calculation, this figure
uses the following expression for VFE (note that VFE is denoted
by F when presented in equations):

F =
∑
s∈S

q (s) ln
q (s)

p (o, s)
(4)

However, this expression does not make it obvious how min-
imizing VFE will lead q (s) to approximate the true posterior. As
discussed further in the technical sections, this can be seen more
clearly by algebraically manipulating VFE into the following form,
hich is more often seen in the active inference literature:

= Eq(s)[ln
q (s)
p (s|o)

] − ln p (o) (5)

For details on how we move between different expressions
for F , see the optional technical section (Section 1.3). Here the
Eq(s) term indicates the expected value or ‘expectation’ of a
distribution and is equivalent to the

∑
s∈S q (s) term in Eq. (4). It

indicates that q (s) [ln q(s)
p(s|o) ] is evaluated for each value of q (s) and

hen the resulting values are summed (see numerical example
n Fig. 3). Based on this form of the equation, we can see that,
ecause ln p(o) does not depend on q (s), the value of F will
ecome smaller as the value of q (s) approaches the value of the
rue posterior, p (s|o) — since the former is divided by the latter
nd the log of one is zero.
7

Within the active inference framework, the task of both per-
ception and learning is to minimize VFE in order to find (approx-
imately) optimal posterior beliefs after each new observation.
Perception corresponds to posterior state inference after each
new observation, while learning corresponds to more slowly up-
dating the priors and likelihood distributions in the model over
many observations (which facilitates more accurate state infer-
ence in the long run). It is important to note, however, that
minimizing VFE is not simply a process of finding the best-fitting
approximation on every trial. Sensory input is inherently noisy,
and simply finding the best-fitting posterior on each trial would
lead to fitting noise, which would result in exaggerated and
metabolically costly updates. In statistics, this is known as overfit-
ting. Fortunately, VFE minimization naturally avoids this problem.
Put into words, VFE measures the complexity of a model minus the
accuracy of that model. Here, the term ‘accuracy’ refers to how
well a model’s beliefs predict sensory input (i.e., the goodness of
fit), while the term ‘complexity’ refers to how much beliefs need
to change to maintain high accuracy when new sensory input is
received (i.e., VFE remains higher if beliefs need to change a lot to
account for new sensory input). Perception therefore seeks to find
the most parsimonious (smallest necessary) changes in beliefs
about the causes of sensory input that can adequately explain that
input.

Analogously, the task of action selection and planning is to
select policies that will bring about future observations that min-
imize VFE. The problem is, of course, that future outcomes have
not yet been observed. Actions must therefore be selected such
that they minimize expected free energy (EFE). Crucially, EFE
scores the expected cost (i.e., a lower value indicates higher
reward) minus the expected information gain of an action. This
means that decisions that minimize EFE seek to both maximize
reward and resolve uncertainty. When beliefs about states are
very imprecise or uncertain, actions will tend to be information-
seeking. Conversely, selected actions will tend to be reward-
seeking when confidence in beliefs about states is high (i.e., when
there is no more uncertainty to resolve and the agent is confident
about what to do to bring about preferred outcomes).

However, as we will see later, if the magnitude of expected
reward is sufficiently high (i.e., if a preference distribution is
highly precise), actions that minimize EFE can become ‘risky’
— in that they seek out reward in the absence of sufficient
information (i.e., reward value outweighs information value). In
general, the imperative to minimize EFE is especially powerful in
accounting for commonly observed behaviors in which, instead
of seeking immediate reward, organisms first gather informa-
tion and then maximize reward once they are confident about
states of the world (e.g., turning on a light before trying to
find food). It can also capture interesting behaviors that occur
in the absence of opportunities for reward, where organisms
appear to act simply out of ‘curiosity’ (Barto, Mirolli, & Bal-
dassarre, 2013; Oudeyer & Kaplan, 2007; Schmidhuber, 2006).
Further, variations in the precision of preferences during EFE
minimization can capture interesting individual differences in
behavior, as exemplified in the example of ‘risky’ behavior just
mentioned. Note that this crucial aspect of active inference effec-
tively addresses the ‘explore–exploit dilemma’ (discussed further
below), because the imperatives for exploration (information-
seeking) and exploitation (reward-seeking) are just two aspects
of expected free energy, and whether exploratory or exploitative
behaviors are favored in a given situation depends on current
levels of uncertainty and the level of expected reward.

As we shall see in later sections, the posterior over policies
can be informed by both VFE and EFE. For now, we simply note
that this is because VFE is a measure of the free energy of the

present (and implicitly the past), while EFE is a measure of the



R. Smith, K.J. Friston and C.J. Whyte Journal of Mathematical Psychology 107 (2022) 102632

f
p
t
(
o
a
f

f
p
‘
‘
a

a
c
i
o
p
p
t
s

f

D

r
d
c

ree energy of the future. This is important, because while some
olicies may lead to a minimization of free energy in the future,
hey may not have led to a minimization of free energy in the past
and are therefore suboptimal policies when evaluated overall). In
ther words, EFE scores the likelihood of pursuing (i.e., the value
ssigned to) a particular course of action based upon expected
uture outcomes, while VFE reflects the likelihood of (i.e., the
value assigned to) a course of action based upon past/present
outcomes. This means the posterior distribution over policies is a
function of both VFE and EFE, where these quantities respectively
urnish retrospective and prospective policy evaluations. At the
sychological level, one can intuitively think of VFE as asking
how good has this action plan turned out so far?’, while EFE asks
how good do I expect things to go if I continue to follow this
ction plan?’.
When viewed from the perspective of potential neuroscientific

pplications, another crucial benefit of VFE and EFE is that they
an be computed in a biologically plausible manner. This has
nspired neural process theories that specify ways in which sets
f neuron-like nodes (e.g., neuronal populations), with particular
atterns of synapse-like connection strengths, can implement
erception, learning, and decision-making through the minimiza-
ion of these quantities. These neural process theories postulate
everal neuronal populations whose activity represents:

(1) Categorical probability distributions (a special case of
the multinomial distribution) over the possible states of
the world. For those without background in probability
theory, these distributions assign one probability value to
each possible interpretation of sensory input, and all these
probability values must add up to a value of 1. In other
words, this assumes the world must be in this state or
that state, but not both at the same time, and assigns one
probability value to the world being in each possible state.
(Note: in other papers you may come across the notation
Cat(x), which simply indicates that a distribution x is a
categorical distribution).

(2) Prediction-errors, which signal the degree to which sen-
sory input is inconsistent with current beliefs. Prediction
errors drive the system to find new beliefs – that is,
adjusted probability distributions – so that they are more
consistent with sensory input, and therefore minimize
these error signals.

(3) Categorical probability distributions over possible policies
the agent might choose.

These neural process theories also include simple,
coincidence-based learning mechanisms that can be under-
stood in terms of Hebbian synaptic plasticity (i.e., which involve
adjusting the strength of the connections between two neu-
rons when both neurons are activated simultaneously; (Brown,
Zhao, & Leung, 2010). They further incorporate message pass-
ing algorithms (discussed in detail below) that can model the
connectivity and firing rate patterns of neuronal populations
organized into cortical columns. Such theories afford precise
quantitative predictions that can be tested using neuroimaging
and other electrophysiological measures of neuronal activation
during specific experimental paradigms.

1.3. Technical introduction to variational free energy and expected
free energy (optional)

In the previous subsections we introduced two quantities, VFE
and EFE, which were described in largely qualitative terms. In
this subsection, we consider the formal details behind the above
descriptions. By the end of this subsection, the reader should
have a working understanding of the different ways that VFE and
 s

8

EFE are often expressed in the literature, how these expressions
are derived, and the theoretical insights that each expression
provides. Readers without strong mathematical background can
safely skip much of this section (if so desired) and move on to
the next section without significant loss of understanding. That
is, they should still be able to follow the rest of the paper. For
those who choose to read this section, we provide accessible
explanations of each equation in the hope that as many people
as possible will be able to follow and learn from the material.

Before formally defining VFE and EFE, it will be helpful to first
familiarize the reader with the relevant mathematical machinery.
We will first expand on the KL divergence (DKL; also sometimes
called relative entropy), which was briefly introduced in the
previous subsection. To remind the reader, this is a measure of
the similarity, or dissimilarity, between two distributions. The KL
divergence between two distributions, q(x) and p(x), is written as
ollows:

KL[q(x) ∥ p(x)] =
∑
x∈X

q(x) ln
q(x)
p(x)

(6)

This equation states that the KL divergence is found by taking
each value of x in range X (for which p and q assign values),
calculating the value of the right-hand quantity, and then sum-
ming the resulting values (for a concrete numerical example, see
the calculation of F in Fig. 3). From the perspective of information
theory, the KL divergence can be thought of as scoring the amount
of information one would need to reconstruct p(x) given full
knowledge of q(x). In this context, ‘information’ is measured in
a quantity called nats because it depends on the natural log, as
opposed to log base 2 where information would be quantified in
bits.

As mentioned above, because calculating model evidence is
generally not possible, we instead minimize VFE, which is con-
structed to be an upper bound on negative (log) model evidence.
As we noted above, this is also called ‘surprisal’ in information
theory: − ln p (o). In other words, by minimizing VFE, one can
minimize the negative model evidence — or, more intuitively,
one can maximize model evidence (i.e., by finding beliefs in a
model for which observations provide the most evidence).

Before turning to the formal definition of VFE, it will be helpful
to clarify some notational conventions and concepts. Specifically,
using the sum rule of probability we can express model evidence
in terms of our generative model as: p (o) =

∑
s,π p (o, s, π).

That is, p (o) is the sum of the probabilities of observations for
every combination of states and policies in the model. Next, one
can multiply and divide the joint distribution, p (o, s, π), by the
(initially arbitrary) approximate distribution q(s, π ). By definition,
multiplying and then dividing by q(s, π ) does not change the
value of this distribution. However, this trick ends up being
quite useful as we will see. For mathematical convenience, one
can take the negative logarithm of the resulting term, leading
to:

− ln p (o) = − ln
∑
s,π

p (o, s, π) q (s, π)
q (s, π)

= − ln Eq(s,π)

[
p (o, s, π)
q (s, π)

]
(7)

As briefly mentioned in the previous subsection, Eq(s,π) de-
notes the expected value or expectation of a distribution. This
can be thought as a kind of weighted average, where each value
of one distribution (here q (s, π)) is multiplied by the associated
value in another distribution (here

[
p(o,s,π)
q(s,π)

]
), and each of the

esulting values is summed to get the expected value of the latter
istribution. Note that, although written as a summation, the
alculation of F in Fig. 3 represents a numerical example. Readers
hould note the formal similarity between the KL divergence and
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he expectation value. This is no accident, as the KL divergence
s simply the expected difference of the log of two distributions,
here the expectation is taken with respect to the distribution in
he numerator. Note that, because ln x

y = − ln y
x , the distributions

n the numerator are often swapped around, as we have done
elow. In the active inference literature, it is very common to
ove between KL divergence notation and expectation notation.
s such, it can be useful to keep the following identities in
ind:

KL[q(x) ∥ p(x)] = Eq(x)

[
ln

q (x)
p (x)

]
=

∑
x∈X

q (x) ln
q(x)
p(x)

= −

∑
x∈X

q (x) ln
p(x)
q(x)

(8)

With a clear idea of expectation values and the KL divergence
now in mind, we move onto the definition of VFE. Specifically,
everaging the mathematical result referred to as Jensen’s in-
quality (Kuczma & Gilányi, 2009) – which states that the expec-
ation of a logarithm is always less than or equal to the logarithm
f an expectation – we arrive at the following inequality:

ln p (o) = − ln Eq(s,π)

[
p (o, s, π)
q (s, π)

]
≤ −Eq(s,π)

[
ln

p (o, s, π)
q (s, π)

]
= F (9)

On the right-hand side of this equation is VFE, which is defined
in terms of the KL divergence – that is, expected difference of
the respective logs – between the generative model p (o, s, π)
and the approximate posterior distribution q (s, π). When the ap-
proximate posterior distribution and the generative model match,
VFE is equal to zero (i.e., when q = p, ln

(
p(o, s,π )
q(s,π )

)
= 0). To

nderstand the equality on the left-hand side, consider that the
xpectation, − ln Eq(s,π)

[
p(o,s,π)
q(s,π)

]
, entails summing over all values

of s and π ; that is, − ln
∑

s,π q (s, π)
[
p(o,s,π)
q(s,π)

]
. This removes s

and π from the expression in both the denominator and the
numerator, leaving − ln p (o). From this, we can see that, by
minimizing VFE, we minimize an upper bound on negative log
model evidence (here, with respect to states under each policy).
This means that VFE will always be greater than or equal to
− ln p (o), which entails that by minimizing the value of VFE, the
odel evidence p (o) will either increase or remain the same

(i.e., it will be maximized, as the logarithm is a monotonically
increasing function).

Therefore, all that is needed to perform approximate Bayesian
inference in perception, learning, and decision-making is a
tractable approach to finding the value of s (i.e., the approximate
posterior distribution over s) that minimizes VFE. This can be
ccomplished by performing a gradient descent on VFE. Gradient
escent is a technique that starts by picking some initial value for
and then calculates VFE for this value. It then calculates VFE for
eighboring values of s and identifies the neighboring values for
hich VFE decreases most. It then samples from values of s that
eighbor those values and continues to do so iteratively until a
inimum VFE value is found (i.e., where VFE no longer decreases

for any neighboring values). At this point, an approximation to
the optimal beliefs for s has been found (given some set of
observations o). On a final terminological note, because VFE is
a function that is defined in terms of probability distributions,
which are themselves functions, VFE is sometimes referred to
as a ‘functional’, which is simply the mathematical term for a
function of a function.
9

Note that in active inference we calculate VFE with respect to
each available policy individually (denoted by Fπ ). This is because
different policies, through their impact on hidden states in the
generative process, make certain observations more likely than
others. For example, consider a situation where I believe there is
a chair to my left and a table to my right. Conditional on having
chosen to look left, it is more likely that I will observe a chair
than a table. This means that observing the chair acts as evidence
that I have chosen the policy of looking left. Because observations
provide evidence for policies in this way, both the approximate
posterior q (s|π), and the generative model p (o, s|π), are condi-
tioned on policies. This may be useful in some cases where, for
example, one is considering the possibility that an agent could
have false beliefs about the actions they are carrying out or could
be surprised when their intended policy does not match the true
observed actions. Going forward, VFE will be presented in terms
of Fπ (as shown in the following paragraph).

As we will discuss below, one way in which the brain may
accomplish gradient descent on VFE during perception is through
the minimization of prediction error. The reason for this can be
brought out by doing some algebraic rearrangement to express
VFE as a measure of complexity minus accuracy (i.e., as touched
upon informally in the previous subsection):

Fπ = Eq(s|π)

[
ln

q (s|π)
p (o, s|π)

]
(10)

= Eq(s|π )[ln q (s|π)− ln p (o, s|π)] (L2)

= Eq(s|π )[ln q (s|π)− ln p (s|π)] − Eq(s|π )[ln p (o|s, π)] (L3)

= DKL[q (s|π) ∥ p (s|π)] − Eq(s|π) [ln p (o|s)] (L4)

The first line expresses VFE in terms of the expected log
difference (KL divergence) between the approximate posterior
and the generative model. In the second line we use log algebra
to express the division as a subtraction (ln x

y = ln x − ln y). In
the third line we use the product rule of probability (p (o, s|π) =
p (s|π) p (o|s, π) to take the likelihood term out of the first ex-
pectation term. The fourth line re-expresses the third line, but
uses more compact notation for the first term and drops the
dependency on policies in the second term (i.e., because we
assume here that the likelihood mapping does not depend on
policies). The first term in line 4 is the KL divergence between
prior and posterior beliefs. This value will be larger if one needs
to make larger revisions to one’s beliefs, which is the measure
of complexity introduced earlier. A greater complexity means
there is a greater chance of changing beliefs to explain random
aspects of one’s observations, which can reduce the future pre-
dictive power of a model (analogous to ‘overfitting’ in statistics).
The second term in line 4 reflects predictive accuracy (i.e., the
probability of observations given model beliefs about states). The
brain will therefore minimize VFE if it minimizes prediction er-
ror (maximizing accuracy) while not changing beliefs more than
necessary (minimizing complexity).

Another common way that VFE is expressed is in terms of
placing a bound on surprisal:

Fπ = Eq(s|π )[ln q (s|π)− ln p (s|o, π)] − ln p (o|π) (11)

This equation rearranges line 1 in Eq. (10) (again using the
product rule: p (o, s|π) = p(s|o, π )p(o|π )) to show that VFE is al-
ways greater than or equal to surprisal (i.e., is an upper bound on
surprisal) with respect to a policy (i.e., greater than − ln p (o|π)).
In machine learning, the sign of VFE is usually switched, so that
it becomes an evidence lower bound, also known as an ELBO.
Maximizing the ELBO is a commonly used optimization approach
in machine learning (Winn & Bishop, 2005).
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From a slightly different perspective, the gradients of VFE
leveraged in active inference can also be expressed as a mix-
ture of prediction errors (i.e., when thought of more broadly
as differences to be minimized). This is because complexity is
the average difference between posterior and prior beliefs, while
accuracy is the difference between predicted and observed out-
comes. This therefore also licenses a description of active infer-
ence as prediction error minimization (Burr & Jones, 2016; Clark,
2017; Fabry, 2017; Hohwy, Paton, & Palmer, 2016), corresponding
to the minimization of these two differences (minimizing VFE
through prediction error minimization is described in more detail
in Sections 2.4 and 5).

However, active inference is not solely concerned with min-
imizing prediction error in perception. It is also a model of ac-
tion selection. When inferring optimal actions, one cannot sim-
ply consider current observations, because actions are chosen to
bring about preferred future observations. As described infor-
mally above, this means that, to infer optimal actions, a model
must predict sequences of future states and observations for each
possible policy, and then calculate the expected free energy (EFE)
associated with those different sequences of future states and
observations. As a model of decision-making, EFE also needs
to be calculated relative to preferences for some sequences of
observations over others (i.e., how rewarding or punishing they
will be). In active inference, this is formally accomplished by
equipping a model with prior expectations over observations,
p(o|C), that play the role of preferences.4 For an initial intuition
of how this works, consider two possible policies that correspond
to two different sequences of states and observations, where one
sequence of observations is preferred more than the other. Since
‘preferred’ here formally translates to ‘expected by the model’,
then the policy expected to produce preferred observations will
be the one that maximizes the accuracy of the model (and hence
minimizes EFE). This means that the probability (or value) of each
policy can be inferred based on how much expected observa-
tions under a policy will maximize model accuracy (i.e., match
preferred observations). When preferred observations are treated
as implicit expectations definitive of an organism’s phenotype
(e.g., those consistent with its survival, such as seeking warmth
when cold, or water when thirsty) this has also been described as
‘self-evidencing’ (Hohwy, 2016).

To score each possible policy in this way, EFE (denoted Gπ in
equations) can be expressed as follows:

Gπ = Eq(o,s|π )[ln q (s|π)− ln p (o, s|π)] (12)

= Eq(o,s|π )[ln q (s|π)− ln p (s|o, π)] − Eq(o|π )[ln p (o|π)] (L2)

≈ Eq(o,s|π )[ln q (s|π)− ln q (s|o, π)] − Eq(o|π )[ln p (o|C)] (L3)

= −Eq(o,s|π )[ln q (s|o, π)− ln q (s|π)] − Eq(o|π )[ln p (o|C)] (L4)

The first line expresses EFE as the expected difference between
the approximate posterior and the generative model. Note that
because EFE is calculated with respect to expected outcomes
that (by definition) have not yet occurred, observations enter the
expectation operator Eq as random variables (i.e., otherwise it
is identical in form to the expression for VFE in Eq. (10)). The

4 Note that in some papers, preferences are formulated over states instead
f observations. In this case, one might wonder how an agent can have two
riors over states at the same time (one for beliefs and one for preferences).
lthough the technical details are beyond the scope of this paper, in this case
ne must think more explicitly in terms of an agent having two models — one
f true states of the world and one of preferred states (cast as priors in each
odel, respectively). Policy selection then attempts to minimize the divergence
etween the two by bringing true states to match preferred states (for details,
ee Da Costa, Parr et al., 2020).
10
second line uses the product rule of probability, p (o, s|π) =
(s|o, π) p(o|π ) to rearrange EFE into two terms that can be as-
ociated with information-seeking and reward-seeking. To make
his clear, the third line does two things. First, it replaces the true
osterior (ln p (s|o, π)) with an approximate posterior (ln q (s|o, π)

Second, it drops the conditionalization on π in the second term
and instead conditions on the variable C described above that
encodes preferences (i.e., Eq(o|π ) [ln p (o|π)] → Eq(o|π )[ln p (o|C)]).
This is a central move within active inference. Namely, p (o|C) is
used to encode preferred observations, and the agent seeks to find
policies expected to produce those observations. The agent’s pref-
erences can be independent of the policy being followed, which
allows us to drop the conditionalization on π . As mentioned
earlier, in most papers on active inference prior preferences are
simply written as Eq(o|π )[ln p (o)]; however, to clearly distinguish
this from the ln p (o) term within VFE (i.e., where o is an observed
variable), we write the term here as explicitly conditioned on C
(Parr et al., 2022).

The first term on the right-hand side of line 3 is commonly
referred to as the epistemic value, or the expected information gain
of a state when it is conditioned on expected observations. The
second term is commonly referred to as pragmatic value, which,
as just mentioned, scores the agent’s preferences for particu-
lar observations. To make the intuition behind epistemic value
more apparent, the fourth line flips the terms inside the first
expectation so that it becomes prefixed with a negative sign
(i.e., p(x)[ln p(x) − ln q(x)] = −p(x)[ln q(x) − ln p(x)]). Because
the epistemic value term is subtracted from the total, it is clear
that to minimize EFE overall an agent must maximize the value
of this term by selecting policies that take it into states that
maximize the difference between prior and posterior beliefs; that
is, maximize the difference between ln q (s|o, π) and ln q (s|π). In
other words, the agent is driven to seek out observations that re-
duce uncertainty about hidden states (Parr & Friston, 2017a). For
example, if an agent were in a dark room, the mapping between
hidden states and observations would be entirely ambiguous, so
it would be driven to maximize information gain by turning on a
light before seeking out preferred observations (i.e., as it would be
unclear how to bring about preferred outcomes before the light
was turned on).

Another very common expression of EFE in the active infer-
ence literature is:

Gπ = DKL [q(o|π )||p(o|C)]+ Eq(s|π) [H [p(o|s)]] (13)

For a full description of how you get from line 1 of Eq. (12) to
his decomposition, see Appendix A. The first term on the right-
and side of this equation scores the anticipated difference (KL
ivergence) between (1) beliefs about the probability of some
equence of outcomes given a policy, and (2) preferred outcomes
i.e., those expected a priori within the model). This term is
ometimes referred to as ‘risk’ (or expected complexity), but it
an more intuitively be thought of as beliefs about the probability
f reward for each choice one could make. That is, the lower
he expected divergence between preferred outcomes and those
xpected under a policy, the higher the chances of attaining
ewarding outcomes if one chose that policy. The second term
ne the right-hand side of the equation is the expected value of
he entropy (H) of the likelihood function, where H[p (o|s)] =
−

∑
p(o|s) ln p(o|s). Entropy is a measure of the dispersion of

distribution, where a flatter (lower precision) distribution has
igher entropy. A higher-entropy likelihood means there are less
recise predictions about outcomes given beliefs about the possi-
le states of the world. This term is therefore commonly referred
o as a measure of ‘ambiguity’. Policies that minimize ambiguity
ill try to occupy states that are expected to generate the most
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recise (i.e., most informative) observations, because those ob-
ervations will provide the most evidence for one hidden state
ver others. Putting the risk and ambiguity terms together means
hat minimizing EFE will drive selection of policies that maximize
oth reward and information gain (for simple numerical exam-
les of calculating the risk and ambiguity terms, see discussion
f ‘outcome prediction errors’ in Section 2.4). Typically, seeking
nformation will occur until the model is confident about how
o achieve preferred outcomes, at which point it will choose
eward-seeking actions. Importantly, as briefly mentioned earlier,
he expression for EFE above entails that stronger (more precise)
references for one outcome over others will have the effect
f down-weighting the value of information, leading to reduced
nformation-seeking (and vice-versa if preferences are too weak
r imprecise). This affects how a model resolves the ‘explore–
xploit dilemma’ (Addicott, Pearson, Sweitzer, Barack, & Platt,
017; Friston et al., 2017b; Parr & Friston, 2017a; Schwartenbeck
t al., 2019; Wilson, Geana, White, Ludvig, & Cohen, 2014) —
hat is, the difficult judgement of whether or not one ‘knows
nough’ to trust their beliefs and act on them to seek reward
r whether to first act to gather more information (see example
imulations below). For a more detailed description and step-by-
tep derivation of the most common formulations of EFE in the
ctive inference literature, see Appendix A.

. Building and solving POMDPs

.1. Formal POMDP structure

In this first subsection, we introduce the reader to the abstract
tructure and elements of an active inference POMDP, which is
he standard modeling approach in active inference research at
resent. In a POMDP, one is given a specific type of genera-
ive model, including observations, states, and policies, and the
oal is to infer posterior beliefs over states and policies when
onditioning on observations. By the end of this subsection, the
eader should be able to identify and interpret each type of
ariable in these models and understand the role they play in
erforming inference. A warning: upon initial exposure, gaining
full understanding of this abstract structure can feel daunting.
owever, after we put together a model of a concrete behavioral
ask (in Section 3), this structure – and how to practically use
t – tends to become much clearer. The task we will model is
n ‘explore–exploit’ task similar to commonly used multi-armed
andit tasks employed in computational psychiatry research (see
ig. 4). In this variant, there are two slot machines with unknown
robabilities of paying out. A participant can simply guess, re-
ulting in either a large reward or no reward, or they can ask
or a hint (which may or may not be accurate). If they get it
ight after taking the hint, they receive a smaller reward. This
llows for competition between an information-seeking drive and
reward-seeking drive. This task will be described in detail in
ection 3, but we will use parts of this broad-strokes description
elow to exemplify uses of the more abstract elements making
p POMDPs.
The term POMDP denotes two major concepts. As described

bove, the first is partial observability, which means that obser-
ations may only provide probabilistic information about hidden
tates (e.g., observing a hint may indicate that one or another slot
achine is more likely to pay out). The second is the Markov
roperty, which simply means that, when making decisions, all
elevant knowledge about distant past states is implicitly in-
luded within beliefs about the current state. This assumption
an be violated, but it allows modeling to be more tractable and
s ‘good enough’ in many cases. When dealing with violations of
he Markovian assumption – such as when modeling memory –
11
it is necessary to model several interconnected Markovian pro-
cesses that evolve over different timescales. We will see related
examples in later sections covering both hierarchical models and
how the parameters of a POMDP can be learned through repeated
observations. Here we start with a simple, single-level POMDP
where Markovian assumptions are not violated. In the presen-
tation below, note that vectors (i.e., single rows or columns of
numbers) are denoted with italics, while matrices (i.e., multiple
rows and columns of numbers) are not italicized and denoted
with bold.

A POMDP includes both trials and time points (tau; τ ) within
ach trial (sometimes called ‘epochs’). An important thing to note
ere is that τ indexes the time points about which agents have
eliefs. This is distinct from the variable t , which denotes the
ime points at which each new observation is presented. This is
common (and understandable) source of confusion for those
ew to the active inference literature (perhaps exacerbated by
he fact that t and τ look so similar). To appreciate the need
or this distinction, consider cases in which an observation in
he present can change one’s beliefs about the past. For example,
magine that you start out in one of two rooms (a green room
r a blue room), but you do not know what color the walls are.
ater, when you open your eyes and find out the room is painted
lue, you will change your belief now about where you were
arlier before you opened your eyes (i.e., you had been in the
lue room the whole time). In a formal model, this would be a
ase in which beliefs about one’s state at time τ = 1 change after
aking a new observation at time t = 2. Thus, the inclusion of
oth t and τ in active inference entails that the agent updates its
eliefs about states at all time points τ with new observations at
ach time point t . This allows for retrospective inference, as in the
revious example, as well as for prospective inference, in which
n agent updates beliefs about the future (e.g., τ = 3), when
aking new observations in the present (e.g., t = 2). This would
e the case in the explore–exploit task example, where observing
hint at one time point could update beliefs about which slot
achine will be better at the next time point. This is an important
istinction to keep in mind when trying to understand simulation
esults (e.g., in terms of working memory for the past and future;
.e., postdiction and prediction).

In practice, this is accomplished by having entries of 0 for all
lements of an observation vector when t < τ . To illustrate this
ormally, we will use the simpler example of being in one of two
ooms described above. In this case, there will be a ‘color’ ob-
ervation modality where observations could be ‘blue’ or ‘green’
i.e., a vector with one element for each color). At time t = 1, the
bserved color for time τ = 2 has not yet occurred. So, at t = 1:

oτ=2 =
[

0
0

]
If blue were then observed at t = 2, the observation for τ = 2

would be updated to:

oτ=2 =
[

1
0

]
This vector would then remain unchanged for all future time

points t > 2 (i.e., the observation is never ‘forgotten’ once it has
taken place). The same thing would then occur for all subsequent

observations (e.g., oτ=3 =
[

0
0

]
at t = 1 and 2; but if green

were observed at t = 3 then the vector would be updated to

oτ=3 =
[

0
1

]
and remain that way for t > 3, etc.). This allows

beliefs about states for all time points to be updated at each time
point t when these observation vectors are updated.
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Fig. 4. Depiction of the explore–exploit task example. Note that the states and outcomes shown on the right are only examples. Table 1 and Section 3 list all states,
outcomes, and policies required to build a generative model for this task.
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Having now clarified time indexing, we will move on to other
odel elements. At the first time point in a trial (τ = 1), the
odel starts out with a prior over categorical states, p (sτ=1),

encoded in a vector denoted by D – one value per possible state
(e.g., which slot machine is more likely to pay out). When there
are multiple state factors, there will be one D vector per factor. As
touched on above, multiple state factors are necessary to account
for multiple types of beliefs one can hold simultaneously. One
common example is holding separate beliefs about an object’s
location and its identity. In the explore–exploit task example,
this could include beliefs about which slot machine is better and
beliefs about available choice states (e.g., the state of having taken
the hint).

At each subsequent time point, the model has prior beliefs
about how one state will evolve into another depending on the
chosen policy, p (sτ+1|sτ , π), encoded in a ‘transition matrix’ de-
noted by Bπ,τ — one column per state at τ and one row per
state at τ + 1. If transitions for a given state factor are identical
across policies, they can be represented by a single matrix. When
transitions for a state factor are policy-dependent, there will be
one Bπ,τ matrix per possible action (i.e., one for each possible
state transition under a policy). In other words, the combination
of a policy and a time specifies a transition matrix (i.e., encoding
the action that would be taken under that policy at that point
in time; described further below). In the explore–exploit task
example, this could include transitioning to the state associated
with getting the hint or transitioning to the state associated with
selecting one of the two machines (depending on the policy).

The likelihood function, p(oτ |sτ ), is encoded in a matrix de-
noted by A — one column per state at τ and one row per
possible observation at τ . When there are multiple outcome
modalities, there will be one A matrix per outcome modality. As
ouched upon above, multiple outcome modalities are necessary
o account for parallel channels of sensory input (e.g., one for
ossible visual inputs and one for possible auditory inputs). In the
xplore–exploit task example, this could include one modality for
bserving the hint and another modality for observing reward vs.
o reward.
12
Preferred outcomes, ln p(oτ |C), are specified using a matrix
enoted by C — one column per time point and one row per pos-
ible observation. When there are multiple outcome modalities,
here will be one C matrix per modality. In the explore–exploit
ask example, this could encode a strong prior preference for a
arge reward, a moderate preference for a small reward, and low
reference for no reward.
Prior beliefs about policies p (π) are encoded in a (column)

ector E (one row per policy) — increasing the probability that
ome policies will be chosen over others (i.e., independent of
bserved/expected outcomes). This can be used to model the
nfluence of habits. For example, if an agent has chosen a par-
icular policy many times in the past, this can lead to a stronger
xpectation that this policy will be chosen again. In the explore–
xploit task example, E could be used to model a simple choice
ias in which a participant is more likely to choose one slot
achine over another (independent of previous reward learning).
owever, it is important to distinguish between this type of prior
elief and the initial distribution over policies from which actions
re sampled before making an observation (π0). As explained
urther below (and in Table 2), this latter distribution depends on
, G, and γ , where the influences of habits and expected future
utcomes each have an influence on initial choices.
Each allowable action (u) is encoded as a possible state tran-

ition (one of several B matrices that can be chosen for a state
actor). In this case, each possible action is encoded in a vector
, and the possible sequences of actions (where each allowable
equence defines a policy) are encoded in a matrix denoted by
(one row per time point, one column per policy, and a third

imension for state factor). In the explore–exploit task example,
could include the choice to take the hint and the choice to se-

ect each of the two machines, while V could include the possible
ction sequences, such as, for example, taking the hint and then
hoosing the left machine vs. taking the hint and then choosing
he right machine. Note that the possible actions encoded in the
ector U are also sometimes referred to as ‘control states’ in the
ctive inference literature.
As we have done in previous sections, the free energy and

xpected free energy for each policy are denoted by vectors F and
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, respectively. The degree to which G controls policy selection
s modulated by a further parameter γ (a single number; i.e., a
calar). This parameter is a precision estimate for the expected
ree energy over policies. It can be thought of as encoding a prior
elief about the confidence with which policies can be inferred
i.e., how reliable beliefs about the best policy are expected to be).
t is often called the ‘prior policy precision’ parameter; however,
t is important to note that this is not the same thing as the
recision of posterior beliefs over policies (π ). This is because π
lso depends on the vectors E (habits) and F (shown in Table 2
urther below) — which means, for example, that π could be
recise even if γ were low (Hesp et al., 2020). For this reason,
t is better to think of γ as an ‘expected free energy (G) precision’
arameter as opposed to a policy precision parameter per se. If no
abits are present (i.e., if E is a flat distribution), lower γ values
ead to more randomness in policy selection. In the presence of
trong habits, lower γ values increase how much habits influence
olicy selection, because the influence of G is reduced relative to
(see equation for π in Table 2 further below). You can simulate

hese dynamics yourself by specifying values for γ , E, F , and
within the EFE_Precision_Updating.m code provided in the

upplementary code.
In some models we will discuss below with multi-step poli-

ies, the prior value for γ is updated into a posterior γ estimate
via updates to its hyperparameter β). Table 2 and Fig. 9 explain
his in detail. Briefly, the value of this precision parameter is in-
reased after each observation if the variational free energy over
olicies is consistent with the expected free energy over policies
rior to that observation. If these free energies are inconsistent,
his precision is decreased (i.e., the agent becomes less confident
n its estimates of G). However, it is important to note that there
are situations in which policies are only considered from the
current time step into the future (such as ‘shallow’ or ‘short-
sighted’ policies that, at each time step, only ‘look ahead’ one
time step to consider the immediate consequences of different
actions). In such cases, previous observations do not inform the
relative probabilities of policies (i.e., they are just ‘reset’ at each
time step) — and the expected precision reduces to the prior
value for γ (and is not updated). (Note: below, and in the sup-
plementary code, we show how ‘shallow’, one-step policies vs.
‘deep’, multi-step policies can be included by specifying policies
with the variable U vs. V ).

All the model variables are summarized in Table 1. Solutions
or inference in the POMDP are shown in Table 2 at the end of
his section. In each of these tables we also provide a description
f the way each model element can be used to implement the
xplore–exploit task example, which we build in Section 3.

.2. Graphical models

In many papers in the active inference literature, POMDPs
re represented using graphical models. We will now discuss

these representations and what their role is in active inference.
By the end of this subsection, the reader should be able to
interpret graphical models and understand the different benefits
they provide.

Graphical models, such as the graphs shown in Figs. 5–7,
are a useful method for visually depicting how variables in a
model depend on one another. When models include probability
distributions over variables, these graphs can be used to repre-
sent the conditional relationships between these variables. These
types of probabilistic graphical models are particularly useful
in the context of active inference because they provide a clear
visual summary of the computational architecture of the models,
and the way (biologically plausible) message passing algorithms
(described below) can be used to update beliefs. Here we consider
13
two types of graphical models – Bayesian networks (or ‘Bayes
ets’, see Fig. 5; and for an introduction, see chapter 8 of (Bishop,
006) and Forney-style (normal) factor graphs (Dauwels, 2007;

Loeliger, 2004). For readers interested in a more detailed in-
troduction to the use of Forney-style factor graphs in active
inference, we recommend the excellent tutorial introduction by
de Vries and Friston (2017).

When depicting active inference models with Bayes nets
(Fig. 5), the circles (‘nodes’) correspond to variables (e.g., obser-
vations, hidden states, and policies), while the arrows connecting
nodes (‘edges’) show the dependencies between variables repre-
sented by each node. For example, the arrows in Fig. 5 going from
the ‘sτ node’ (i.e., states at time τ ) to the ‘oτ node’ (i.e., outcomes
at time τ ) means that the value of oτ depends on the value of
sτ . This entails that if one knows something about observations,
then one can infer something about the hidden states that cause
them (i.e., the hidden states that generate those observations in
the generative model). Readers familiar with Bayesian networks
will note that the form of the graphical model shown in Fig. 5 is
slightly unusual, as squares denoting the factors that mediate the
conditional relationships have been placed on top of the edges
(e.g., the A and Bπ,τ matrices).

This graphical model serves as a concise visual depiction of
the relationships between model elements covered in detail in
the previous subsection. It illustrates how observations at each
time step (purple) are generated by hidden states (green) via a
mapping encoded by the likelihood matrix A. The Bπ,τ matrix is
shown as mediating the dependencies between states at different
time points (i.e., encoding beliefs about how states change over
time). The probability over states at the first time point is shown
to depend on the D vector. State transitions (Bπ,τ ) are shown
to depend upon policies (π ). The probability distribution over
policies in turn depends on learned priors over policies (E) and
the EFE of each allowable policy (G). The EFE is shown to depend
on the prior distribution over observations (C), which encodes the
agent’s preferences for some observations over others (i.e., this
dependency entails that policies with the lowest EFE will be
those expected to generate the most preferred observations).
The influence of EFE on policies also depends upon its precision
term (γ ), which encodes confidence in current EFE estimates.
This in turn depends on the value of β (an initial prior over γ
that can subsequently be updated; see Table 2 for a description).
To help readers gain an intuition for inference using graphical
models, Fig. 5 builds up a full POMDP starting from a graphical
representation of perception at a single time point using Bayes
theorem (with a worked example). It then adds the evolution of
states over time, followed by their dependence on policies, and
the dependence of policies on the variables just described.

The defining characteristic of a generative model such as that
shown in Fig. 5 is that it can be used to generate data (i.e., obser-
vations). The conditional dependencies depicted in the Bayesian
network in the bottom-right of this figure show how observations
are generated by a POMDP. Starting at the top of the network, a
policy (π ) is first selected via a softmax (normalized exponential)
function (σ ) of the aforementioned variables (for an introduction
to the softmax function, see Appendix A). The initial distribution
over policies prior to receiving an observation is denoted π0 =

σ (ln E − γG), while the posterior over policies after receiving an
observation also incorporates the VFE: π = σ (ln E−F−γG). Next,
policy-dependent transition probabilities encoded in the Bπ,τ ma-
trix (or the D vector at τ = 1) generate hidden states, which
in turn generate observations at each time point. The likelihood
(A) matrix determines which observations are generated by each
hidden state.

Recall that to perform inference we must invert the generative
model (i.e., infer the most likely states and policies given each
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Fig. 5. Bayesian network representations of state estimation (perception) and policy selection. Each graph depicts a generative model of the causes of observations,
which can be inverted to perform inference. Top left Static perception with a worked example. Variables: s = states, o = observations, A = likelihood mapping
etween states and outcomes, D = initial state priors. This is equivalent to exact Bayesian inference. Bottom left: Dynamic perception. Transition matrices (Bτ ) have
een added to describe (beliefs about) how states change over time. Subscripts for observations and states correspond to time point in a trial (denoted by tau;
). Importantly, when τ > 1, the Bτ matrix from the previous τ (i.e., Bτ−1) functions as an empirical prior, playing the same role as the D vector at τ = 1. Top

right: Dynamic perception with policy selection. Each policy (π ) entails a different sequence of actions, which corresponds to different transitions between states
(i.e., different Bπ,τ matrices). Based on expected free energy (G; which in turn depends on prior preferences, C), the highest probability will be assigned to policies
expected to minimize uncertainty over states and maximize the probability of preferred observations. Bottom right: Dynamic perception with flexible policy selection.
This final model includes an expected free energy precision term γ = E[γ], where p (γ) corresponds to a gamma distribution (Γ ) with a ‘shape’ parameter equal to
1 and a ‘rate’ parameter specified by β . Note that the non-italicized γ in the generative model is a random variable, whereas the italicized γ is a statistic (expected
value) of the gamma distribution (i.e., a fixed scalar) that is updated based on the equations shown in the figure. The value of γ encodes the agent’s confidence in
policy selection and adjusts the contribution of G to the posterior distribution over policies (π ). This precision value is also optimized by updating the value of β
after new observations, based on the variational free energy (F ) over policies associated with those observations. In short, when a new observation is inconsistent
with prior beliefs about policies (π0; i.e., based on G), the agent assigns a lower expected precision (γ ) to G when arriving at posteriors over policies (π ; see Fig. 9
and Table 2 for more details). A prior over policies (E) is also included, which can be used to model habit formation. A lower γ (i.e., less confidence in model-based
beliefs about G) also entails a stronger influence of the habits encoded in E on policy selection. Note that the dependency of π on F has been omitted from the
raphical depiction of the generative model in this panel. See main text for further variable descriptions. See Table 2 for further explanation of these equations.
ew observation). This is where normal factor graphs (Fig. 6) are
rucial, as they can be leveraged to both derive and visualize
suite of message passing algorithms (see below) for Bayesian

nference. Normal factor graphs are made up of square nodes
nd edges (lines connecting square nodes). Square nodes can be

thought of as functions (i.e., factors or conditional probability
distributions; see below) that take in some input (e.g., sufficient
statistics5 of beliefs over states or observations) and transform
that information in some way to produce an output (e.g., the
sufficient statistics of the conditional probabilities specified by
the factor). These inputs and outputs are called ‘messages’ and
are represented by the edges connecting the square nodes. When
an edge connects to only one square node it is called a half
edge, and it only carries messages to and from that node. When
an edge connects two square nodes, this indicates that these
nodes exchange messages and that each contributes to the value
represented on that edge. When three square nodes exchange
messages, the graph is adjusted to contain three edges (one con-
nected to each square node) that converge onto an equality node
(a small square node with an ‘=’ sign), which combines the mes-
sages in a specific manner (described in the following technical

5 Note that, for the categorical distributions we use in this tutorial, the
ufficient statistics will correspond to the probability of each possible value of
random variable (e.g., the probability of each possible state or observation).
14
section). As described further below, the messages represented on
each edge correspond to the variables represented by the circular
nodes in the Bayes’ net depiction in Fig. 5, while the square nodes
in a factor graph correspond directly to the square nodes in this
figure. Note that, in some cases, the edges in factor graphs are
also supplemented by including circle nodes to represent (the suf-
ficient statistics of) hidden variables (as in Fig. 5), but we depict
them without circle nodes in Figs. 6 and 7 to give the reader some
familiarity with this commonly presented form. Also note that,
unlike Bayes net depictions, normal factor graphs have undirected
edges, which highlights the bidirectional nature of message pass-
ing (see light purple arrows in the bottom portion of Fig. 6).

More technically, normal factor graphs represent a factor-
ization of the generative model. Recall that generative models
are formally defined as the joint probability distribution over
observations, states, and policies of the POMDP across time,
p (o1 : T , s1 : T , π). Factorization means that this joint probability
can be defined as the product of several conditionally indepen-
dent distributions. In POMDPs, the factorization assumes that
each state only depends on the state at the previous time step and
policy (i.e., the so-called Markov property). This is described by
the following equation, which shows a factorization of the joint
distribution into prior distributions over states and policies, and
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able 1
odel variables.
Model variable* General definition Model specification for explore–exploit task (described in

detail Section 3)

oτ Observable outcomes at time τ . Outcome modalities:
1. Hints (no hint, hint-left, hint-right)

2. Reward (start, lose, win)

3. Observed behavior (start, take hint,
choose left, choose right)

sτ Hidden states at time τ . One vector of possible state values
for each state factor (i.e., each independent set of states; e.g.,
visual vs. auditory states).

Hidden state factors:

1. Context (left machine is better vs.
right machine is better)

2. Choices (start, take hint, choose left, choose right)

π A vector encoding the distribution over policies reflecting the
predicted value of each policy. Each policy is a series of
allowable actions in a vector U , where actions correspond to
different state transitions (i.e., different Bπ,τ matrices) that can
be chosen by the agent for each state factor. Policies are
chosen by sampling from this distribution.

Allowable policies include the decision to:

1. Stay in the start state

2. Get the hint and then choose the left machine

3. Get the hint and then choose the right machine

4. Immediately choose the left machine (and then
return to the start state)

5. Immediately choose the right machine (and then
return to the start state)

A matrix: p(oτ |sτ ) A matrix encoding beliefs about the relationship between
hidden states and observable outcomes at each time point τ
(i.e., the probability that specific outcomes will be observed
given specific hidden states at specific times). Note that in the
POMDP structure typically used in the active inference
literature (and which we describe in this tutorial), the
likelihood is assumed to remain constant across time points in
a trial, and hence will not differ at different values for τ
(although one could adjust this if so desired). The likelihood is
also assumed to be identical across policies, and so there is no
indexing with respect to π .
When there is more than one outcome modality, there is one
A matrix per outcome modality. When there is more than one
state factor, these matrices become high-dimensional and are
technically referred to as tensors. For example, a second state
factor corresponds to a third matrix dimension, a third state
factor corresponds to a fourth matrix dimension, and so forth.

Encodes beliefs about the relationship between:

1. Probability that the hint is accurate in each context

2. Probability of reward in each context

3. Identity mapping between choice states and
observed behavior

Bπ,τ matrix: p(sτ+1|sτ , π ) A matrix encoding beliefs about how hidden states will evolve
over time (transition probabilities). For states that are under
the control of the agent, there are multiple Bπ,τ matrices,
where each matrix corresponds to one action (state transition)
that the agent may choose at a given time point (if consistent
with an allowable policy). When there is more than one
hidden state factor, there is one or more Bπ,τ matrices per
state factor (depending on policies).

Encodes beliefs that:

1. Context does not change within a trial

2. Transitions from any choice state to any other
are possible, depending on the policy.

C matrix: p(oτ |C) A matrix encoding the degree to which some observed
outcomes are preferred over others (technically modeled as
prior expectations over outcomes). When there is more than
one outcome modality, there is one C matrix per outcome
modality. Rows indicate possible observations; columns
indicate time points. Note that each column of values in C is
passed through a softmax function (transforming it into a
proper probability distribution) and then log-transformed
(using the natural log). Thus, preferences become
log-probabilities over outcomes.

Encodes the stronger preference for wins than losses. Wins
are also more preferred at the second time point than the
third time point.

(continued on next page)
the distributions representing the likelihood and state transitions.

p (o1 : T , s1 : T , π) = p (s1) p (π)
T∏

p (oτ |sτ )
T∏

p (sτ |sτ−1, π) (14)

τ=1 τ=2

15
p (o1 : T , s1 : T |π) = p (s1)
T∏
τ=1

p (oτ |sτ )
T∏
τ=2

p (sτ |sτ−1, π) (L2)

= s1 · D
T∏
τ=1

oτ · Asτ
T∏
τ=2

sτ · Bπ,τ sτ−1 (L3)



R. Smith, K.J. Friston and C.J. Whyte Journal of Mathematical Psychology 107 (2022) 102632

T

t
d
t
t
t
e
t
i
S

i
r
s
3
d
c
S
s

able 1 (continued).
Model variable* General definition Model specification for explore–exploit task (described in

detail Section 3)

D vector: p(s1) A vector encoding beliefs about (a probability distribution
over) initial hidden states. When there is more than one
hidden state factor, there is one D vector per state factor.

The agent begins in an initial state of maximal uncertainty
about the context state (prior to learning), but complete
certainty that it will start in the ‘start’ choice state.

E vector: p(π ) A distribution encoding beliefs about what policies will be
chosen a priori (a prior probability distribution over policies,
implemented as a vector assigning one value to each policy),
based on the number of times different actions have been
chosen in the past.

The agent has no initial habits to choose one slot machine or
another (prior to learning).

*While, for consistency, we have used the standard notation found in the active inference literature, it is important to note that it does not always clearly distinguish
between distributions and the possible values taken by random variables under those distributions. For example, π refers to the distribution over policies, but when
used as a subscript it indexes each individual policy (e.g., Bπ,τ indicates a distinct matrix for each different policy). This same convention holds for s and o.
Fig. 6. Top: Equations specifying the factors that constitute the factorized generative model. Numbers in the green squares highlight the correspondence between
he equations and the factors in the generative model that are represented within the normal factor graph in the bottom panel. Here, Cat() indicates a categorical
istribution. Middle: Belief update equation for approximate posteriors over states that is derived from variational message passing (note the difference between
his message passing scheme and the marginal message passing approach described in the text). Purple numbers indicate the correspondence between terms within
he update equation and the messages passed between each factor shown in the factor graph in the bottom panel. Bottom: Normal factor graph representation of
he factorized POMDP. In contrast to the Bayes net representation shown in Fig. 5, nodes (large white boxes) represent factors, whereas the edges (lines connecting
ach box) represent the sufficient statistics of approximate posteriors, which are passed as messages between factors (i.e., edges represent the common variables
hat participate in the factors they connect, such as posteriors over states under each policy for each time point, sπ,τ ). (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)
ource: Adapted from Friston et al. (2017c).
For the unfamiliar reader, please note that the symbol
∏T
τ (·)

ndicates taking the product of each of the distributions to the
ight of it for each time point τ to the final time point T . Line 2
hows the form of the distribution conditioned on policies. Line
rewrites line 2 in matrix form by replacing each categorical
istribution with the above-described matrices/vectors whose
olumns contain the parameters of the respective distributions.
pecifically, p (s1) = s1 ·D, p (oτ |sτ ) = oτ ·Asτ , and p (sτ |sτ−1, π) =
τ · Bπ,τ sτ−1. Here oτ and sτ−1 are vectors of zeros with a one
placed in the element corresponding to the state/observation of
16
interest. Their role is simply to select out the elements of the
A or B matrix corresponding to the relevant state-outcome pair
or current state-previous state pair. Once in matrix form, it is
easy to see the direct correspondence between the factorized
distribution shown in the equation above and the factors included
in the normal factor graph in Fig. 6. Each of these distributions is
associated with a factor node. Each edge represents the probabil-
ity distribution over the variable that needs to be inferred (i.e., the
approximate posteriors over states sπ,τ , and policies π ). Edges



R. Smith, K.J. Friston and C.J. Whyte Journal of Mathematical Psychology 107 (2022) 102632

t
e
i
f
t
f
s
c
(
t
t
i
r
(

c
(

2
(

p
a
o
u
p
r
l
s
o
e
t
a

Fig. 7. This figure reproduces the same graph shown in Fig. 6 to illustrate the link between message passing and policy selection in active inference. Top: As in Fig. 6,
hese equations specify the factors that constitute the factorized generative model, and the numbers in the green squares highlight the correspondence between the
quations and the factors represented by the normal factor graph below. Middle Belief update equation for inferring the posterior over policies. Purple numbers
ndicate the correspondence between terms within the update equation and the messages passed between each factor shown in the factor graph. Bottom: Normal
actor graph representation of message passing in the context of inference over policies. Red dotted lines show partition functions of the graph, which are used
o construct the free energy approximations to the probability of current observations conditioned on policies, − ln p (oτ |π) ≈ Fπ,τ , and the expected probability of
uture observations conditioned on policies, −Eq(oτ>t ,sτ>t |π ) [ln p (oτ>t |π)] ≈ Gπ,τ . The factors Fπ,τ and Gπ,τ then become the messages (shown by the purple arrows)
ent from the two transition probability factors (Bπ,τ−1 and Bπ,τ ) that converge on the equality constraint node (connecting the Bπ,τ nodes and the E node). When
ombined with the message sent from E, and after the application of a softmax function, this becomes the posterior over policies (adapted from Friston et al.
2017c), Parr and Friston (2018a)). As noted in the text, this representation of inference over policies as message passing is heuristic and only meant as an analogy
o message passing with respect to posteriors over states. This is because it is not carried out iteratively (i.e., the posterior is arrived at using a single iteration),
he messages are not bidirectional, and Fπ,τ and Gπ,τ are not factors. This graphical representation also cannot illustrate all dependencies with respect to Gπ,τ . This
s because Gπ,τ depends on two different types of predicted future observations – p (oτ>t |π) and p (oτ>t |C) — only the first of which is depicted here (i.e., with
espect to o3). For a proposed scheme for carrying out iterative message passing with respect to inference over policies, see Champion, Grześ, and Bowman (2021).
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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onnect factors that exchange messages with the same variables
e.g., D, A, and Bπ,τ are all connected by the variable sπ,1).

.3. Technical section on variational and marginal message passing
optional)

In this subsection we will introduce variational message
assing (Winn & Bishop, 2005), which is foundational to the way
ctive inference performs approximate inference of posteriors
ver states. By the end of this subsection, the reader should
nderstand the general steps for performing variational message
assing and how they can be carried out using the factor graph
epresentation of POMDPs in active inference. For readers with
ess mathematical background, this section can also be safely
kipped without compromising the ability to understand the rest
f the tutorial. Although, as always, we have made efforts to fully
xplain all equations. For readers with specific interest in this
opic, we also note here that more recent implementations of
ctive inference have used a refined algorithm – called marginal
17
essage passing – that is more robust to problems of overcon-
idence that arise with variational message passing (i.e., where
osterior beliefs can become too precise too quickly; see Parr
t al. (2019). However, understanding marginal message passing
equires us to first understanding variational message passing.
herefore, we will focus on this approach here, and return to how
t has been refined at the end of the section.

To invert the model (i.e., condition on observations to infer
pproximate posteriors over states and policies) via the mini-
ization of VFE, some simplifying assumptions need to be made

i.e., since exact inference is intractable in most real-word cases).
ariational message passing is based on the mean-field approxi-
ation, which assumes that the approximate posterior factorizes

nto the product of (independent) distributions (Bishop, 2006).
his approximation often works well in practice, but it has the
imitation of ignoring possible pairwise (or more complex) inter-
ctions between variables. In the POMDPs under discussion here,
he mean-field approximation assumes that the approximate pos-
erior factorizes into a prior distribution over policies and the
istributions over states expected under each policy at each time
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able 2
atrix formulation of equations used for inference.
Model update
component

Update equation Explanation Model-specific description for
explore–exploit task (described
in detail Section 3)

Updating beliefs about
initial states expected
under each allowable
policy.

επ,τ=1 ←
1
2

(
lnD+ ln(B†

π,τ sπ,τ+1)
)

+ lnAToτ − ln sπ,τ=1

sπ,τ=1 = σ
( 1

2

(
lnD+ ln(B†

π,τ sπ,τ+1)
)

+ lnAToτ
)

First equation: The variable επ,τ=1 is the state prediction
error with respect to the first time point in a trial.
Minimizing this error corresponds to minimizing VFE
(via gradient descent) and is used to update posterior
beliefs over states. The term

(
lnD+ ln(B†

π,τ sπ,τ+1)
)

corresponds to prior beliefs in Bayesian inference, based
on beliefs about the probability of initial states, D, and
the probability of transitions to future states under a
policy, ln(B†

π,τ sπ,τ+1). The term AToτ corresponds to the
likelihood term in Bayesian inference, evaluating how
consistent observed outcomes are with each possible
state. The term ln sπ,τ=1 corresponds to posterior beliefs
over states (for the first time point in a trial) at the
current update iteration.
Second Equation: We move to the solution for the
posterior sπ,τ=1 by setting επ,τ=1 = 0, solving for
ln sπ,τ=1 , and then taking the softmax (normalized
exponential) function (denoted σ ) to ensure that the
posterior over states is a proper probability distribution
with non-negative values that sums to 1. This equation
is described in more detail in the main text. A
numerical example of the softmax function is also
shown in Appendix A.

Updating beliefs about:

1. Whether the left vs. right
slot machine is more
likely to pay out
on a given trial.

2. The initial choice state
(here, always the
‘start’ state).

Updating beliefs about
all states after the first
time point in a trial that
are expected under each
allowable policy.

επ,τ>1 ←
1
2

(
ln

(
Bπ,τ−1sπ,τ−1

)
+ ln

(
B†
π,τ sπ,τ+1

))
+ lnAToτ − ln sπ,τ>1

sπ,τ>1 = σ

( 1
2

(
ln(Bπ,τ−1sπ,τ−1)

+ ln(B†
π,τ sπ,τ+1)

)
+ lnAToτ

)

First equation: The variable επ,τ>1 is the state prediction
error with respect to all time points in a trial after the
first time point. Minimizing this error corresponds to
minimizing VFE (via gradient descent) and is used to
update posterior beliefs over states. The term(
ln(Bπ,τ−1sπ,τ−1)+ ln(B†

π,τ sπ,τ+1)
)
corresponds to prior

beliefs in Bayesian inference, based on beliefs about the
probability of transitions from past states,
ln(Bπ,τ−1sπ,τ−1), and the probability of transitions to
future states, ln(B†

π,τ sπ,τ+1), under a policy. The term
lnAToτ corresponds to the likelihood term in Bayesian
inference, evaluating how consistent observed outcomes
are with each possible state.
Second Equation: As in the previous row, we move to
the solution for the posterior, sπ,τ>1 , by setting
επ,τ>1 = 0, solving for ln sπ,τ>1 , and then taking the
softmax function (σ ). This equation is described in more
detail in the main text.

Updating beliefs about:

1. Whether the left vs.
right slot machine is
more likely to pay
out on a given trial.

2. Beliefs about choice
states after the
initial time point
(here, this depends
on the choice to
take the hint or
to select one of
the slot machines).

Probability of selecting
each allowable policy

π0 = σ (ln E − γG)

π = σ (ln E − F − γG)

The initial distribution over policies before making any
observations (π0), and the posterior distribution over
policies after an observation (π ). The initial distribution
is made up of the learned prior over policies encoded in
the E vector (reflecting the number of times a policy
has previously been chosen) and the expected free
energy of each allowable policy (G). The posterior
distribution is determined by E, G, and the variational
free energy (F ) under each policy after making a new
observation. The influence of G is also modulated by an
expected precision term (γ ), which encodes prior
confidence in beliefs about G (described further in the
main text; also see Fig. 9). See row 1 for an explanation
of the function of the σ symbol.
We note, however, that incorporation of E, F , and/or γ
when computing π is a modeling choice. These need
not be included in all cases (e.g., see top-left portion of
Fig. 5; also see Da Costa, Parr et al., 2020). In some
contexts, one might choose to include some of these
terms but not others, or to only include G. This depends
on the research question. (e.g., E will be useful if task
behavior is influenced by habits, while F/γ can be
useful when there are many possible deep policies to
choose from). See the row in this table on ‘Expected
free energy precision’ for more details about inference
over policies when F/γ are included. This is also
discussed further in the main text.

Updating overall beliefs about
whether the best course of
action is to take the hint
and/or to choose the left vs.
right slot machine.

(continued on next page)
18
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T
able 2 (continued).
Model update
component

Update equation Explanation Model-specific description for
explore–exploit task (described
in detail Section 3)

Expected free energy of
each allowable policy

Gπ = DKL [q(o|π ) ∥ p (o|C)]

+ Eq(s|π ) [H [p(o|s)]]

Gπ =
∑
τ

(
Asπ,τ ·

(
lnAsπ,τ − ln Cτ

)
− diag

(
AT lnA

)
· sπ,τ

)

The first equation reproduces the ‘risk + ambiguity’
expression for the expected free energy of each policy
(Gπ ) that is explained in the main text. The second
equation shows this same expression in terms of the
elements in the POMDP model used in this tutorial (i.e.,
in matrix notation).
Expected free energy evaluates the value of each policy
based on their expected ability to: (1) generate the
most desired outcomes, and (2) minimize uncertainty
about hidden states. Achieving the most desired
outcomes corresponds to minimizing the KL divergence
between preferred observations, p (o|C) = Cτ , and the
observations expected under each policy,
q (o|π) = Asπ,τ = oπ,t . Minimizing uncertainty
corresponds to minimizing the expected entropy of the
likelihood (Eq(s|π ) [H [p(o|s)]] = −diag

(
AT lnA

)
· sπ,τ ).

Note that the diag() function simply takes the diagonal
elements of a matrix and places them in a row vector.
This is simply a convenient method for extracting and
operating on the correct matrix entries to calculate the
entropy, H [p (o|s)] = −

∑
p(o|s) ln p (o|s), of the

distributions encoded within each column in A. For
simple numerical examples of calculating the risk and
ambiguity terms, see discussion of ‘outcome prediction
errors’ in Section 2.4.

The ‘risk’ term –
DKL [q(o|π ) ∥ p (o|C)] =
Asπ,τ ·

(
lnAsπ,τ − ln Cτ

)
–

drives the agent to select the
slot machine expected to be
most likely to pay out. If the
value of winning money in Cτ
is high enough (i.e., if p (o|C) is
sufficiently precise), this will
deter the agent from choosing
to ask for the hint.
The ‘ambiguity’ term –
Eq(s|π ) [H [p(o|s)]] =
−diag

(
AT lnA

)
· sπ,τ – drives

the agent to minimize
uncertainty by asking for the
hint.

Marginal free energy of
each allowable policy

Fπ = Eq(s|π ) [ln q (s|π)

−
1
2
Eq(sτ−1 |π )[ln p (sτ |sτ−1, π)]

−
1
2
Eq(sτ+1 |π )[ln p (sτ |sτ+1, π)]

− ln p (oτ |sτ )]

Fπ =
∑
τ

sπ,τ ·
(
ln sπ,τ

−
1
2

(
ln(Bπ,τ−1sπ,τ−1)

+ ln(B†
π,τ sπ,τ+1)

)
− lnAToτ

)

The first equation shows the marginal (as opposed to
variational) free energy, which is now used in the most
recent implementations of active inference. The second
equation shows this same expression in terms of the
elements in the POMDP model used in this tutorial (i.e.,
in matrix notation). Marginal free energy has a sightly
different form than the expressions for VFE that are also
shown in the text (and which have been used in many
previous papers in the active inference literature). This
updated form improves on certain limitations of the
message passing algorithms derived from minimization
of VFE (see Section 2.3; also see (Parr, Markovic, Kiebel,
& Friston, 2019).
Marginal free energy evaluates the evidence that
inferred states provide for each policy (based on new
observations at each time point). See the first two rows
in this table on updating beliefs about states for an
explanation of how each term in the equation relates to
Bayesian inference.

This would encode the amount
of surprise (given a choice of
policy) when observing a hint
or a win/loss after selecting a
specific slot machine.

(continued on next page)
point:

p (s1 : T |o1 : T , π) ≈ q(s1 : T , π ) = q(π )
T∏
τ

q(sτ |π ) (15)

Note that, by convention, approximate posterior distributions
are denoted with the variable q. Also again recall that T corre-
sponds to the final time point in a trial, such that this posterior
distribution is over the values of states across time points under
each policy — and this distribution itself evolves over time with
each new observation. This means that an observation at a later
time can change posterior beliefs about states at earlier times
(i.e., retrospective inference).

With this factorization in hand, we can employ variational
message passing to infer the approximate posterior q(sτ |π ) at
each edge of the graph, and then combine them into a global
posterior q(s1 : T |π ) using the equation just presented. Variational
message passing can be summarized in terms of the following
steps:

1. Initialize the values of the approximate posteriors q(sπ,τ )
for all hidden variables (i.e., all edges) in the graph.

2. Fix the value of observed variables (here, o ).
τ

19
3. Choose an edge (V ) corresponding to the hidden variable
you want to infer (here, sπ,τ ).

4. Calculate the messages, µ(sπ,τ ), which take on values sent
by each factor node connected to V .

5. Pass a message from each connected factor node N to V
(often written as µN→V ).

6. Update the approximate posterior represented by V ac-
cording to the following rule: q(sπ,τ ) ∝ µ⃗(sπ,τ )

←

µ(sπ,τ ). The
arrow notation here indicates messages from two different
factors arriving at the same edge.

a. Normalize the product of these messages so that
q(sπ,τ ) corresponds to a proper probability distribu-
tion.

b. Use this new q(sπ,τ ) to update the messages sent by
connected factors (i.e., for the next round of message
passing).

7. Repeat steps 4–6 sequentially for each edge.
8. Steps 3–7 are then repeated until the difference between

updates converges to some acceptably low value (i.e., re-
sulting in stable posterior beliefs for all edges).
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able 2 (continued).
Model update
component

Update equation Explanation Model-specific description for
explore–exploit task (described
in detail Section 3)

Expected free energy
precision

p(γ) = Γ (1, β)

E[γ] = γ = 1/β

Iterated to convergence:
π0 ← σ (ln E − γG)
π ← σ (ln E − F − γG)
Gerror ← (π − π0) · (−G)
βupdate ← β − β0 + Gerror
β ← β − βupdate/ψ

γ ← 1/β

The β term, and its prior value β0 , is a hyperparameter
on the expected free energy precision term (γ).
Specifically, β is the ’rate’ parameter of a gamma
distribution (Γ ) with a ‘shape’ parameter value of 1.
The expected value of this distribution, E [γ] = γ , is
equal to the reciprocal of β . Note that we use the
non-italicized γ to refer to the random variable and use
the italicized γ to refer to the scalar value of that
variable. This scalar is what is subsequently updated
based on the equations shown here.
The γ term controls the precision of G, based on the
agent’s confidence in its estimates of expected free
energy. This confidence changes when new observations
are consistent or inconsistent with G. More specifically,
γ modulates the influence of G on policy selection based
upon a G prediction error (Gerror ). This is calculated
based on the difference between the initial distribution
over policies (π0) and the posterior distribution after
making a new observation (π ). The difference between
these terms reflects the extent to which new
observations (scored by F ) make policies more or less
likely. If the vector encoding the posterior over policies
increases in magnitude in comparison to the prior, and
still points in the same direction, the difference vector
between the posterior and the prior will point in the
same direction as the −G vector (i.e., less than a 90◦
angle apart; see Fig. 9). If so, the value of γ will
increase, thereby increasing the impact of G on policy
selection. In contrast, if the difference vector between
the posterior and the prior does not point in the same
direction as the −G vector (i.e., greater than a 90◦ angle
apart), γ will decrease and thereby reduce the impact
of G on policy selection (i.e., as the agent’s confidence
in its estimates of expected free energy has decreased).
Note that the βupdate term mediating these updates
technically corresponds to the gradient of free energy
with respect to γ (∇γ F ). The subsequent update in the
value of γ is such that G contributes to the posterior
over policies in an optimal manner. β and Gerror are
often discussed in relation to dopamine in the active
inference literature.
Note that β0 is the initial prior (which is not updated),
and β is the initial posterior, which is subsequently
updated to provide a new estimate for γ = 1/β . The
variable ψ is a step size parameter that reduces the
magnitude of each update and promotes stable
convergence to final values of γ . For a derivation of
these equations, see Appendix in Sales, Friston, Jones,
Pickering, and Moran (2019).

A higher value for β would
reduce an agent’s confidence in
the best policy based on the
values in G. This might lead
the agent to select a slot
machine more randomly or
based to a greater extent on
its past choices (i.e., if it has a
precise prior over policies in
the vector E).

Table note: The term B†
π,τ denotes the transpose of Bπ,τwith normalized columns (i.e., columns that sum to 1). Note that you may commonly see the dot (·)

notation used in the active inference literature to denote transposed matrix multiplication, such as A · oτ , which means AToτ (we use the latter notation here).
hen A matrices have more than two dimensions (i.e., when they are tensors), the transpose is applied to the two-dimensional matrix associated with each value
f the other dimensions. The σ symbol indicates a softmax operation (for an introduction see Appendix A), which transforms vector values to make up a proper

probability distribution (i.e., with non-negative values that sum to 1). Italicized variables indicate vectors (or single numbers [scalars] in the case of β and γ ). Bold,
non-italicized variables indicate matrices. Subscripts indicate conditional probabilities; e.g., sπ,τ = p(sτ |π ).
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For unfamiliar readers, the ‘∝’ symbol in step 6 denotes pro-
ortionality, meaning that the ratio between variables is always
onstant. We can change from the proportionality sign to an
quals (‘=’) sign by explicitly introducing a constant (k) into the
quation, so x ∝ y becomes x = k × y. For probability distri-
utions, the constant is the normalization factor that ensures a
istribution sums to 1. Also note that, while the arrows above
ach µ in step 6 are used to distinguish messages conveyed from
wo different factor nodes onto the same edge, the factor graphs
n active inference models require three factor nodes to exchange
essages. As mentioned earlier, when more than two factors
xchange messages, this requires edges from each factor node to
20
onverge onto an equality node. In this case, the message con-
eyed to each edge is the product of the messages from the other
onnected factors: µ⃗

(
sπ,τ

)
∝ µ⃗1

(
sπ,τ

)
µ⃗2

(
sπ,τ

)
. . . µ⃗N

(
sπ,τ

)
.

For hidden states sπ,τ , each message conveys the exponenti-
ted expected log value of each factor µ⃗(sπ,τ ) ∝ exp Eq[ln g(sπ,τ )],
here g(sπ,τ ) denotes the function represented by each factor
Dauwels, 2007). For observed variables, the message simply con-
eys the known value of the factor, which is easily calculated
e.g., in the POMDPs considered in this tutorial, the message
s simply ATo). When combined, these messages allow for ap-
roximation of the posterior represented by the associated edge.
he posterior at each edge q

(
sπ,τ

)
is normalized by applying a

oftmax function prior to the next round of message passing.
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M

M

Using these update rules, we arrive at the following update
equations for approximate posteriors over states in our POMDP
models, which we will call messages 1–3 (i.e., performed in log-
space; represented by purple circles on the factor graph at each
location in Fig. 6 where edges meet factors):

Message 1 : ln µ⃗Bπ,τ−1→sπ,τ = Eq(sτ−1|π )[ln p (sτ |sτ−1, π)]

Message 2 : ln
←

µBπ,τ→sπ,τ = Eq(sτ+1|π )[ln p (sτ |sτ+1, π)]
Message 3 : lnµA→sπ,τ = ln p(oτ |sτ )

Note the straightforward relation between these messages and
Bayes’ theorem. As depicted in Fig. 6, message 1 corresponds to
the prior from the previous time point (denoted by the right-
facing arrow). Message 2 corresponds to prior information from
the future time point (denoted by the left-facing arrow; e.g., al-
lowing retrospective inference about the state at time point 1
after receiving an observation at time point 2). Message 3 cor-
responds to the likelihood of an observation at the current time
point (no arrow notation; here assumed to be the same for all
values of π ). So, for example, if we take the edge corresponding
to the posterior for sπ,2 (in the middle of the graph), this posterior
will then correspond to integrating priors (Bπ,τ−1 and Bπ,τ ) with
the likelihood (A) and then normalizing to convert back to a
proper probability distribution (i.e., as in Bayes’ theorem). When
adopting the matrix notation for these messages, belief updating
can be written as:

sπ,τ = σ
(
lnBπ,τ−1sπ,τ−1 + lnBT

π,τ sπ,τ+1 + lnAToτ
)

(16)

Note that Bπ,τ−1sπ,τ−1 is replaced by the prior over initial
states D for τ = 1. As described in the following section, these
updates (or their marginal message passing counterparts) can
also be reformulated in terms of prediction errors that illustrate
the biological plausibility of this message passing scheme. To
help the reader get a concrete sense of the dynamics of message
passing, we have provided some simple example code within the
accompanying MATLAB scripts (Message_passing_example.m).

Inferring policies can be thought of as making use of an analo-
gous process. Although it should be emphasized that posterior in-
ference over policies in the current implementation (spm_MDP_
VB_X_tutorial.m) is not explicitly done in this manner. Still, we
will stay with the message passing notation for didactic purposes.
Recall that, under active inference, policies are selected based on
their (expected) ability to generate preferred observations and
maximize information gain. In addition, recall from the previous
two sections that preferred observations are formally treated
as being more probable a priori. State transitions under a pol-
icy can then be seen as more probable if they maximize the
probability of current observations, ln p(oτ |π ), and the expected
probability of future observations conditioned upon the policy
in question, Eq(oτ ,sτ |π )[ln p (oτ |π)]. Notice that future observations
are here treated as random variables that need to be inferred
(i.e., because they have not yet been given to the model). Also
notice the similarity between this and the expression for EFE.
This similarity is no accident, as we shall see shortly (Parr &
Friston, 2018a). Inferring these distributions requires us to evalu-
ate partition functions of the normal factor graph. This means
summing over the variables (i.e., probabilities) represented by
the edges enclosed in the red dotted lines in Fig. 7. This oper-
ation is also sometimes called ‘closing the box’ (Loeliger, 2004).
For example, to obtain the probability of current observations
conditioned upon policies, and that of expected future observa-
tions conditioned upon policies, we must evaluate the following
summations:

ln p(oτ |π ) = ln
∑

p(oτ , sτ |π ) (17)

s

21
Eq(oτ>t ,sτ>t |π ) [ln p (oτ>t |π)] = Eq(oτ>t ,sτ>t |π )[ln
∑
s

p (oτ>t , sτ>t |π)]

(18)

As we have seen, however, such summations are often in-
tractable. Instead, we evaluate the free energy functionals VFE
and EFE, as they approximate the required probabilities (as we
saw in Section 1) and can be computed efficiently:

− ln p (oτ |π) ≈ Fπ,τ (19)

− Eq(oτ>t ,sτ>t |π ) [ln p (oτ>t |π)] ≈ Gπ,τ (20)

The posterior over policies can then be computed in a similar
manner as the posterior over states. Specifically, we can express
the messages sent from the Bπ,τ−1 and Bπ,τ matrix factor nodes,
and the E vector factor node, to the edges representing the
posterior over policies as follows (messages 1–3 shown in Fig. 7).

q (π) ∝ µE→π · µ⃗Bπ,τ−1→π ·
←

µBπ,τ→π (21)
essage 1 : lnµE→π = ln E

Message 2 : ln µ⃗Bπ,τ−1→π = Fπ,τ

essage 3 : ln
←

µBπ,τ→π = Gπ,τ

Here again, messages from past and future time points are de-
noted with right-pointing and left-pointing arrows (respectively),
while the message conveying priors over policies is denoted
without arrow notation. Once these messages are passed, if we
normalize the result by applying a softmax function, we arrive at
an expression for the posterior over policies that (suppressing the
precision term γ ) corresponds to the equation shown in Table 2:

π = σ (ln E − F − G) (22)

It is important to note, however, that unlike the state in-
ference process shown in Fig. 6, there is no need for iterative
message passing in this case. A single round of message passing
is equivalent to the equation above. Thus, while inference over
policies can be heuristically viewed in terms of message passing
(for illustrative consistency with variational message passing in
state inference), it need not be described in this manner (and
there are differences; e.g., the messages are not bidirectional).

At this juncture, we return to the more recent development
of marginal message passing that was mentioned at the begin-
ning of this section. Because variational message passing and
the mean-field approximation have known limitations, this im-
proved algorithm has been adopted, and is incorporated into the
most recent software implementation (spm_MDP_VB_X.m; as
well as in the tutorial version included as supplementary code:
spm_MDP_VB_X_tutorial.m). Briefly, marginal message passing
represents a type of compromise between the computational
efficiency of variational message passing and another widely
used algorithm – called belief propagation – that is more com-
putationally expensive but can perform exact (as opposed to
approximate) inference under suitable conditions (for details, see
Parr et al., 2019). A full explanation of marginal message passing
is beyond the scope of this tutorial, as it first requires a more
thorough introduction to both variational message passing and
belief propagation. Here, we chose to introduce the reader to
the mean-field approximation in combination with variational
message passing due to its simplicity and wide usage within the
active inference literature, and to provide the interested reader
with a foundation to build from when pursuing more details on
these topics elsewhere.

However, the major resulting adjustment under marginal mes-
sage passing is that the posterior over states becomes:

sπ,τ = σ
(
1 (

lnBπ,τ−1sπ,τ−1 + lnB†
π,τ sπ,τ+1

)
+ lnAToτ

)
(23)
2
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As above, note that Bπ,τ−1sπ,τ−1 is replaced by the prior over
initial states D for τ = 1. The result of adding the 1

2 to scale
he influence of transition beliefs (Bπ,τ ) is that the precision
f transition probabilities is reduced. This prevents overestima-
ion of the precision of posteriors — something that can occur
ith variational message passing. Also note that B†

π,τ denotes
he transpose of Bπ,τ with normalized columns (i.e., columns
hat sum to 1). As presented here, this modification may come
cross somewhat ad hoc. However, as with variational message
assing, the update equations for marginal message passing can
e derived in a principled manner (described in Parr et al., 2019).

.4. Prediction error formulation

One strength of active inference is that it comes equipped
ith a biologically plausible instantiation in terms of prediction-
rror minimization. In this subsection, we will introduce the
eader to the different types of prediction errors described in the
ctive inference literature and how their minimization affords
tate inference and policy selection. We will also provide explicit
umerical examples. By the end of this subsection, the reader
hould understand the basis of these prediction errors, the role
f the different terms within their respective equations, and how
hey relate to VFE and EFE.

There are two types of prediction errors described in active
nference – ‘state’ and ‘outcome’ prediction errors – based on
he equations for Fπ and Gπ , respectively (see Table 2). State
rediction errors drive belief updating with respect to states and
re based on message passing algorithms. Outcome prediction
rrors drive policy selection. They are not based on an explicit
essage passing algorithm, but they illustrate how Gπ can be

ormulated within the same type of biologically plausible error-
inimization scheme. We will now cover each of these types of
rediction errors in turn.
State prediction errors track how Fπ changes over time as be-

iefs about states sπ,τ are updated (i.e., reductions in Fπ correspond
o reductions in state prediction error). These prediction errors
re based on the marginal message passing scheme described in
he previous technical section. For those who skipped this section,
lease briefly review Eq. (23), which corresponds to message
assing between the square nodes and edges in the factor graph
or an active inference POMDP (shown in the bottom panel of
ig. 6). As we now describe, it is this equation that can be refor-
ulated in terms of a state prediction-error signal that the brain
eeks to minimize in order to infer posteriors over states sπ,τ ,
sing three types of messages (i.e., message 1: lnBπ,τ−1sπ,τ−1,
essage 2: lnB†

π,τ sπ,τ+1, and message 3: lnAToτ ). This is part
of a more general mapping proposed between the variables
included in active inference and both neuronal and synaptic
activity.

In the proposed mapping, firing rates in specific neuronal
populations represent the continually updated posteriors over
states sπ,τ – corresponding to edges in the factor graph shown
in Fig. 6 or circle nodes in the Bayes’ net depiction in Fig. 5. Pat-
terns of synaptic connection strengths implement factors (i.e., the
square nodes within graphs), such as the A and Bπ,τ matrices,
that implement functions and transform the incoming messages
encoded within firing rates; see Parr and Friston (2018a). To
simulate neuronal dynamics, one can set up an ordinary differen-
tial equation, based on marginal message passing, that performs
a gradient descent on VFE by introducing the state prediction
error (επ,τ ) as an auxiliary variable. This prediction error scores
the difference between the log prior probability of each hidden
state (i.e., the posterior from the previous time step) and the log
probability of each hidden state following a round of message
passing (i.e., when a new observation has been received). As
22
described in the previous section, with each observation there
will be many rounds (iterations) of message passing (i.e., the
message passing equation will be repeated many times) until
posterior beliefs over states converge to a stable value. All of this
is conditioned upon a specific policy (denoted by the subscript π ),
because the agent is trying to infer the states it will occupy if it
chooses one policy vs. another. To arrive at empirical predictions
about measurable neural responses, we can then substitute in
a ‘depolarization’ or ‘voltage’ variable, vπ,τ , to stand in for the
log posterior over states; vπ,τ = ln sπ,τ . The resulting state
prediction error equation and belief updating are then written as
follows.

State Prediction Errors

επ,τ ←
1
2

(
ln

(
Bπ,τ−1sπ,τ−1

)
+ ln

(
B†
π,τ sπ,τ+1

))
+ lnAToτ

− ln sπ,τ (24)

vπ,τ ← vπ,τ + επ,τ (25)

sπ,τ ← σ (vπ,τ ) (26)

For those who skipped the technical section, note that B†
π,τ in

q. (24) denotes the transpose of Bπ,τ with normalized columns
i.e., columns that sum to 1). In this equation, the combination
f the two B matrices (combined with state beliefs) correspond
o priors, whereas the A matrix (combined with observations)
orresponds to the likelihood. The arrow notation indicates up-
ates to the value of a variable at each iteration. Eq. (25) states
hat the change in level of depolarization vπ,τ with each iterative
pdate corresponds to the prediction error επ,τ . Note that this
rror term corresponds to the rate of change in VFE; επ,τ =
∂Fπ
∂sπ,τ

. The updated value of vπ,τ is subsequently put through a
softmax function (σ ) in Eq. (26) to return an updated posterior
distribution over states sπ,τ . The key aspect of this set of update
equations is that the value of sπ,τ continues to change (i.e., the
equations are continually repeated) until the value of the state
prediction error term επ,τ is minimized. In other words, the
equations are set up such that they change the value of sπ,τ (in the
direction of steepest descent) until this produces the lowest value
of επ,τ , at which point the resulting value of sπ,τ will correspond
to an approximate posterior over states. This is because επ,τ = 0
is the attracting fixed point, meaning that the system tends to
evolve towards επ,τ = 0, and that once it reaches this value
it will remain there. This leaves us with a biologically plausible
prediction-error minimization scheme that can perform posterior
inference over states and can be instantiated in a relatively simple
neural network (see Section 5; for more details, see Parr and Fris-
ton (2018a). That is, by finding posterior beliefs over states sπ,τ
(on the far right of Eq. (24)) that minimize επ,τ , Fπ is minimized
and sπ,τ becomes a stable posterior belief.

As described in more detail below (and elsewhere; Da Costa,
Parr, Sengupta, & Friston, 2021), the variable vπ,τ is used to model
the average voltage or membrane potential of a neural population
(i.e., by taking either positive or negative values), where one
population is assumed to encode information about each state
factor (i.e., the probability of each state within that factor for
each time τ under each policy). The state variable sπ,τ then corre-
sponds to the firing rates of that population, which are driven by
their membrane potential. This is because sπ,τ is the softmax (σ )
of the voltage and therefore, similar to a firing rate, takes only
non-negative values (i.e., between 0 and 1). This follows from
the assumption made in mean-field models of neural dynamics
that the average firing rate of a population can be treated as a
sigmoid function of the average membrane potential (Breakspear,
2017; Da Costa et al., 2021). Local field potentials (LFPs) and
event-related potentials (ERPs) in electroencephalography (EEG)
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esearch are then modeled as the time derivative (rate of change)
n the firing rates sπ,τ .

To make these equations more concrete, consider a worked
example with the following generative model entailed by a policy,
combined with a specific observation and initialized value of the
approximate posterior:

A =
[
.8 .4
.2 .6

]
;Bπ,τ−1 =

[
.9 .2
.1 .8

]
;Bπ,τ =

[
.2 .3
.8 .7

]
;

τ =

[
1
0

]
; sπ,τ =

[
.5
.5

]
vπ,τ = ln sπ,τ =

[
−.6931
−.6931

]
As can be seen here, the likelihood (A) matrix indicates that

outcome 1 (row 1) is more likely (i.e., p = .8) under state 1
column 1). Under the policy being considered, the agent believes
t will most likely remain in its current state in the first state
ransition (i.e., p = .9 and .8 on the diagonal in Bπ,τ−1; columns
ndicate states at time τ − 1, rows indicate state at time τ ) and
ore likely to move to state 2 during the second state transition

i.e., p = .8 and .7 in the bottom row in Bπ,τ ). Further, the agent
bserves outcome 1 at time τ (oτ ) and has a prior expectation
hat both states are equally likely (sπ,τ and v). Here we will also
et sπ,τ−1 = sπ,τ = sπ,τ+1, which is a common initialization
t the beginning of a trial. However, the values of these three
ariables will often not remain equal after new observations as
trial progresses. In this case, the error signal will be:

π,τ ←
1
2

(
ln

([
.9 .2
.1 .8

][
.5
.5

])
+ ln

([
.475 .525
.525 .475

][
.5
.5

]))
+ ln

([
.8 .2
.4 .6

][
1
0

])
− ln

[
.5
.5

]
=

1
2

(
ln

[
.55
.45

]
+ ln

[
.5
.5

])
+ ln

[
.8
.4

]
− ln

[
.5
.5

]
=

[
−.6455
−.7458

]
+

[
.4700
−.2231

]
=

[
−.1755
−.9690

]
This error signal will then update beliefs over states through

he depolarization variable vπ,τ as follows:

π,τ ← vπ,τ + επ,τ =

[
−.6931
−.6931

]
+

[
−.1755
−.9690

]
=

[
−.8686
−1.6621

]
sπ,τ ← σ

(
vπ,τ

)
=

[
e−.8686

e−.8686+e−1.6621
e−1.6621

e−.8686+e−1.6621

]
=

[
0.6886
0.3114

]
Notice that in this example the variational update (i.e., single

step of gradient descent) results in a negative value for the state

prediction error term (i.e., επ,τ ←
[
−.1755
−.9690

]
). As can be

een, this shifts the approximate posterior such that it will better
inimize prediction error in the next variational update (i.e., here

ncreasing the probability of occupying state 1).
In contrast to state prediction errors, the outcome prediction

rrors mentioned above track how Gπ changes over time as beliefs
bout policies are updated (i.e., reductions in Gπ correspond to
eductions in outcome prediction error). In other words, when
 s

23
his type of prediction error is minimized, policies are identified
hat minimize both uncertainty over states (i.e., ambiguity) and
he expected difference between predicted and preferred out-
omes. However, as noted above, it is important to clarify that,
nlike state prediction errors, outcome prediction errors are not
irectly tied to the message passing schemes described above

and the currently available routines in SPM for performing
ctive inference do not explicitly calculate outcome prediction
rrors. The current implementation instead calculates Gπ directly.
hen this prediction error formulation has been presented in
revious literature, it has largely been for illustrative purposes
ith respect to demonstration of biological plausibility (Parr &
riston, 2018a). However, calculating outcome predictions errors
ould feasibly be added if one were interested in modeling the
ssociated neuronal responses predicted by this aspect of the
rocess theory (for one recently proposed scheme for inferring
olicies through message passing, see Champion et al. (2021). In
ontrast, the current routines do calculate state prediction errors,
hich can be used without modification for purposes of empirical
rediction.
The update equation for outcome prediction error is as follows.

utcome Prediction Errors:

π,τ = Asπ,τ ·
(
lnAsπ,τ − ln Cτ

)
− diag

(
AT lnA

)
· sπ,τ (27)

This prediction error is best understood as a mixture of two
types of expected predictions errors. The first term,
Asπ,τ · (lnAsπ,τ − ln Cτ ), corresponds to the expected difference
between preferred outcomes (i.e., the probability distribution
encoding preferences over outcomes specified by Cτ ) and the
utcomes expected under a policy (i.e., Asπ,τ corresponds to the

observations expected under a policy, oπ,τ ). This can therefore be
hought of as the expected prediction error (under each policy)
ith respect to the observations predicted by prior preferences.
he second term, diag

(
AT lnA

)
· sπ,τ , corresponds to how much

observations are expected to update beliefs if adopting a particu-
lar policy (i.e., it is the entropy term, where lower entropy entails
greater information gain). Therefore, as with state prediction
error, minimizing this term minimizes uncertainty — but in this
case it is uncertainty with respect to policies. Note that the diag()
function simply takes the diagonal elements of a matrix and
places them in a row vector. Note also that, unlike with state
prediction errors, we have not used the update (←) notation
for outcome prediction errors. This is because, in the current
formulation of active inference, outcome prediction errors are
not iteratively minimized; they are simply computed once for
each policy. Those who read the technical section on VFE and EFE
will recognize these two terms as the matrix forms of the risk
(DKL [q(oτ |π )||p(oτ )] ≈ Asπ,τ · (lnAsπ,τ − ln Cτ ), and ambiguity
Eq(s|π) [H[p(oτ |sτ )]] ≈ −diag

(
AT lnA

)
· sπ,τ ) terms in EFE.

Again, to make this more concrete we provide a worked ex-
mple of each term under two possible policies, assuming the
ollowing variable values:

=

[
.9 .1
.1 .9

]
; Cτ =

[
1
0

]
; sπ=1,τ =

[
.9
.1

]
;

π=2,τ =

[
.5
.5

]
In other words, the agent prefers outcome 1 (row 1), and the

ikelihood (A) matrix indicates that state 1 (column 1) is more
ikely to generate outcome 1 (i.e., p = .9). Further, state beliefs
nder policy 1 (sπ=1,τ ) entail a higher probability of being in

tate 1 (i.e., p = .9) than state beliefs under policy 2 (sπ=2,τ ;
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.e., p = .5). We can first calculate the risk (reward-seeking) term
ithin the outcome prediction error for each policy:

olicy 1:

π=1,τ = Asπ=1,τ =
[
.82
.18

]
sπ=1,τ ·

(
lnAsπ=1,τ − ln Cτ

)
=[

.82

.18

]
·

(
ln

[
.82
.18

]
− ln

[
1
0

])
= 2.4086

olicy 2:

π=2,τ = Asπ=2,τ =
[
.5
.5

]
sπ=2,τ · (lnAsπ=2,τ − ln Cτ ) =[
.5
.5

]
·

(
ln

[
.5
.5

]
− ln

[
1
0

])
= 7.3069

Note that a negligibly small number (here, e−16) is added to
he values in Cτ because ln (0) is undefined. As expected, because
he approximate posterior over states for policy 1 makes the
eneration of preferred observations more likely, policy 1 has
ower values for the risk term (i.e., leading to lower outcome
rediction error, all else being equal).
Moving onto the ambiguity (information-seeking term), con-

ider another example with the following variables:

=

[
.4 .2
.6 .8

]
; sπ=1,τ =

[
.9
.1

]
; sπ=2,τ =

[
.1
.9

]
In this case, the likelihood (A) matrix indicates that state 2

column 2) has a more precise distribution than state 1 (column
). In other words, observations are expected to provide more
recise information about states when in state 2. As such, we
xpect outcome prediction errors to drive selection of the policy
hat will lead the agent toward state 2. In this case, policy 2
ssigns a higher probability to state 2 (i.e., = .9 in row 2). We can
onfirm this by calculating the ambiguity term for each policy as
ollows:

olicy 1:

− diag
(
AT lnA

)
· sπ=1,τ = −diag

([
.4 .6
.2 .8

]
ln

[
.4 .2
.6 .8

])
·

[
.9
.1

]
= −diag

([
−.67 −.78
−.59 −.50

])
·

[
.9
.1

]
=

[
−.67
−.50

]
·

[
.9
.1

]
= − (−.66) = .66

olicy 2:

− diag
(
AT lnA

)
· sπ=2,τ = −diag

([
.4 .6
.2 .8

]
ln

[
.4 .2
.6 .8

])
·

[
.1
.9

]
= −diag

([
−.67 −.78
−.59 −.50

])
·

[
.1
.9

]
=

[
−.67
−.50

]
·

[
.1
.9

]
= − (−.52) = .52

As expected, because the outcomes generated by state 1 are
ore ambiguous (i.e., less informative), and policy 2 assigns
higher probability to state 2 than policy 1, policy 2 better
inimizes ambiguity.
 t
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It is important to stress that the risk and ambiguity terms
or outcome prediction errors work synergistically, and one often
as policies that minimize both risk and ambiguity. As can be
een in the outcome prediction error equation above, subtracting
he ambiguity term from the risk term corresponds to adding
i.e., note the double negative) the entropy of the likelihood
apping under a policy to the risk of the policy, which we have
alculated separately here. This drives selection of policies that
aximize both reward- and information-seeking by minimizing

he overall resulting error.
While these example calculations may appear somewhat in-

olved (even for a single policy), an intuitive way to think about
hese two prediction errors is that minimizing state prediction
rror maximizes confidence in posterior beliefs, while minimiz-
ng outcome prediction error maximizes confidence in how to
chieve goals or desires. To reproduce the worked examples
bove and allow the reader to calculate state and outcome predic-
ion errors under different model parameters, we have provided
he Prediction_error_example.m script in the supplementary
ode.

. Building specific task models

.1. Explore-exploit task

To make the structure of a POMDP more concrete, in this and
ubsequent sections we will build models of specific behavioral
asks commonly used in empirical studies. This will provide the
eader with the necessary tools to build their own models and
se them in both simulation work and empirical studies. This
ill also allow us to concretely demonstrate some of the unique
esources offered by active inference when modeling behavior
n a simple reinforcement learning context. To be sure, in many
ask contexts (e.g., when there is no uncertainty about states)
ctive inference models can perform similarly to reinforcement
earning models, and they do not always generate optimal be-
avior (Da Costa, Sajid, Parr, Friston, & Smith, 2020; Markovic
t al., 2021).6 However, as discussed above, when tasks involve
arious types of uncertainty (e.g., about task condition or re-
ard probabilities), active inference offers a unique approach

or modeling information-seeking behavior that can lead to su-
erior performance in some cases (Markovic et al., 2021; Sajid,
all, Parr, & Friston, 2021). Another resource offered by active
nference, even when it performs similarly to other types of
odels, is its associated neural process theory (i.e., describing
ow neural signaling might implement variational or marginal
essage passing; see Section 5). The task models we build in this

utorial will further allow us to illustrate how active inference
an be used to make testable empirical predictions about neural
esponses. As we will see, because active inference models inte-
rate perception, learning, and decision-making within a single
odel architecture, this affords the generation of predictions
bout neural responses across a wide range of perceptual tasks
n addition to reinforcement learning and decision-making tasks.

In this subsection, we will build a model of the explore–exploit
ask briefly described in the previous section. Every step we
utline in this section for building the explore–exploit task model
s laid out in the accompanying MATLAB code (Step_by_Step_AI_
uide.m). This code is included in the supplementary code files

6 Although note that, even in task contexts where they perform similarly,
ctive inference models and reinforcement learning models make decisions
n a different way. Specifically, while reinforcement learning models seek to
aximize a reward signal, active inference models instead seek to reach a

arget distribution that is treated as rewarding (i.e., the distribution encoding
he agent’s preferred observations).
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nd can also be found at: https://github.com/rssmith33/Active-
nference-Tutorial-Scripts. While going through this section, we
ncourage the reader to work through this code in parallel. Here
e will use non-bold italics when presenting the general mathe-
atical notation and subsequently show the associated MATLAB
yntax in bold.
In the beginning of the explore–exploit task, the participant

s told that on each trial one machine will tend to pay out more
ften, but they will not know which one. They are also told that
he better machine will not always be the same on each trial.
hey can choose to select one right away and possibly win $4.
r they can choose to press a button that gives them a hint about
hich slot machine is better on that trial. However, if they choose
o take the hint, they can only win $2 if they pick the correct
achine. Over many trials, the participant can learn which slot
achine tends to pay out more often and either make safe or

isky choices (i.e., take the hint or not).
To model this task, it can be helpful to start by specifying the

ets of possible hidden states (state factors). In this case, one state
actor corresponds to whether the left or right slot machine is
ore likely to win (‘left-better context’, ’right-better context’).
he second state factor corresponds to the choice state (‘start
tate’, ‘asking for the hint’, ‘choosing the left machine’, ‘choosing
he right machine’). Moving to MATLAB code, we can set these up
y specifying the priors over initial states with a set of vectors D,
ith one vector per state factor (i.e., where the factor number is
pecified in brackets). The general structure for these vectors is:(
sfactorτ=1

)
=

D {state factor} (state, 1) = [vector]

In this case, we specify:(
scontextτ=1

)
=

{1} = [ 0.5 0.5 ]′(
schoiceτ=1

)
=

{2} = [ 1 0 0 0 ]′

Note that, to match MATLAB syntax, we use the apostrophe
‘) to indicate a transpose. This says that the participant begins
ith the belief that the ‘left-better’ and ‘right-better’ contexts
ave equal probability (left and right entries, respectively), and
ith a fully precise belief that he/she will start the trial in the
tart state (from left to right: ‘start’, ‘get hint’, ‘choose left’, and
choose right’ states).

It is important to briefly note, however, that things change
lightly if we wish to simulate learning as opposed to just infer-
nce, because we need to separate the generative process from
he generative model. In this case, capital D stands for initial state
robabilities in the generative process, while lowercase d stands
or the initial state priors in the generative model (which are
earned). For example, one could specify D{1} = [ 1 0 ]’ and
{1} = [ .5 .5 ]’, which would mean the true context is ‘left-
etter’ but the agent believes each context is equally likely. In
he supplementary code accompanying this section, we do this
s a way of controlling which context we want to simulate. The
ame capital vs. lowercase letter convention holds for all other
atrices/vectors used here. We return to this in the section on

earning further below (Section 4).
Moving forward, we must next specify the (in this case three)

ets of possible observations (outcome modalities). Here, the first
et of observations corresponds to the hint (‘no hint’, ‘machine-
eft hint’, ‘machine-right hint’). The second set of observations
orresponds to decision outcomes (‘start’, ‘lose’, and ‘win’). Fi-

ally, the participant also observes their own behavior; namely,

25
the observed action (‘start’, ‘asking for the hint’, ‘choosing the
left machine’, ‘choosing the right machine’). This last outcome
modality can be important in active inference models because
choice states must be inferred just like any other state. Ob-
serving their own behavior therefore allows a participant to be
more confident about whether their intended actions have been
successfully carried out. In MATLAB, we can set these up by
specifying the likelihood (A) matrices. There will always be one
A matrix for each outcome modality. Rows correspond to out-
comes, columns correspond to the states in the first state
factor, and there is an additional dimension for each additional
state factor (note that, as mentioned in Table 1, the A matrices
are more correctly referred to as tensors if they include more than
two dimensions). The general structure is therefore:

p
(
omodality
τ |sfactorτ

)
=

A {outcome modality} (outcome, factor 1, factor 2,
. . . , factor N) = [matrix]

In this case, only the ‘get hint’ state (state 2) in state factor
2 generates a hint observation, so for the third dimension we
specify a ‘2’ as follows:

p
(
ohintτ |s

context, choice=get hint
τ

)
=

A {1} ( : , : , 2) =

[ 0 0
1 0
0 1

]
Here, columns from left to right correspond to the ‘left-better’

and ‘right-better’ states, while rows from top to bottom corre-
spond to the ‘no hint’, ‘machine-left hint’, ‘machine-right hint’
observations. This matrix indicates that the hint is accurate with
a probability of 1 (100% accuracy). For example, a ‘machine-left
hint’ observation (row two) will be generated by the ‘left-better
context’ (column one) with probability = 1. Here each column
must add up to 1.

For the other dimensions of state factor 2 (i.e., matrix dimen-
sion 3):

p
(
ohintτ |s

context, choice=start, choose left, choose right
τ

)
=

for i = 1, 3, 4 :

A {1} ( : , : , i) =

[ 1 1
0 0
0 0

]
end

This indicates that all other choice states will generate the
‘no hint’ observation (i.e., a hint will never be observed in those
states).

For the second outcome modality, the ‘start’ and ‘get hint’
states generate ‘start’ observations (row 1):

p
(
owin
τ |s

context, choice=start, get hint
τ

)
=

for i = 1, 2

A {2} ( : , : , i) =

[ 1 1
0 0
0 0

]
end

We will now specify the probability of winning in the ‘left-
better context’ vs. the ‘right-better context’ depending on choice
state. First, we specify that choosing the left machine (i.e., tran-
sitioning to the ‘choose left machine’ state; state 3 in factor 2)
will lead to a win 80% of the time (row 3) if in the ‘left-better
context’ (column 1) and lead to a win 20% of the time if in the
‘right-better context’ (column 2), with inverse probabilities for a

loss (row 2), and a probability of 0 of continuing to observe the

https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
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start’ observation (row 1):(
owin
τ |s

context, choice=choose left
τ

)
=

{2} ( : , : , 3) =

[ 0 0
.2 .8
.8 .2

]
We will then specify that the probabilities of winning are

eversed if choosing the right machine (i.e., transitioning to the
choose right machine’ state; state 4 in factor 2):(
owin
τ |s

context, choice=choose right
τ

)
=

{2} ( : , : , 4) =

[ 0 0
.8 .2
.2 .8

]
Remember, the first column is the context where the left ma-

hine is better, and the second column is the context where the
ight machine is better. It is the third dimension that corresponds
o choice states (in this case, choice state 3 and 4, corresponding
o choosing the left vs. right machine).

Finally, for the third observation modality (observed action),
tates simply map 1-to −1 to outcomes (across all other state
ombinations):(
oobserved action
τ |scontext, choice=start

τ

)
=

{3} ( : , : , 1) =

⎡⎢⎣ 1 1
0 0
0 0
0 0

⎤⎥⎦
(
oobserved action
τ |scontext, choice=get hint

τ

)
=

{3} ( : , : , 2) =

⎡⎢⎣ 0 0
1 1
0 0
0 0

⎤⎥⎦
(
oobserved action
τ |scontext, choice=choose left

τ

)
=

{3} ( : , : , 3) =

⎡⎢⎣ 0 0
0 0
1 1
0 0

⎤⎥⎦
(
oobserved action
τ |scontext, choice=choose right

τ

)
=

{3} ( : , : , 4) =

⎡⎢⎣ 0 0
0 0
0 0
1 1

⎤⎥⎦
This simply allows the individual to infer what their choice

as with complete certainty (rows top to bottom: ‘start’, ‘asking
or the hint’, ‘choosing the left machine’, ‘choosing the right
achine’ observations).
Now that we have the likelihood, the next step is to specify the

policy-dependent) state transition (Bπ,τ ) matrices. The general
tructure for these matrices is:(
sfactorτ+1 |s

factor
τ ,U

)
=

{state factor} (state at time τ + 1, state at time τ, action number)
= [matrix]

Here the vector U contains indices specifying the action num-
er assigned to each matrix, where each policy π subsequently

specifies a sequence of these action numbers (described further
below).

Because we have two state factors, we need two sets of matri-

ces. The first matrix is for the context factor. In this case, because

26
a context remains the same within each trial, this is simply an
identity matrix that says states at time τ (columns) remain the
same at τ + 1 (rows):

p
(
scontextτ+1 |s

context
τ ,U

)
=

B {1} ( : , : , 1) =
[

1 0
0 1

]
Columns from left to right and rows from top to bottom both

correspond to the ‘left-better’ and ‘right-better’ states. There is
only one ‘action’ (possible transition from each state) for this
factor, so the third dimension is a 1 and has a length of 1;
i.e., there is no B {1} ( : , : , 2).

In contrast, the second state factor is choice state, where four
different transitions (actions) are possible at each time step. In
this case, each matrix below indicates that one could move from
any state to the chosen state:

p
(
schoiceτ+1 |s

choice
τ ,U = start

)
=

{2} ( : , : , 1) =

⎡⎢⎣ 1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎦
p
(
schoiceτ+1 |s

choice
τ ,U = get hint

)
=

{2} ( : , : , 2) =

⎡⎢⎣ 0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0

⎤⎥⎦
p
(
schoiceτ+1 |s

choice
τ ,U = choose left

)
=

B {2} ( : , : , 3) =

⎡⎢⎣ 0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

⎤⎥⎦
p
(
schoiceτ+1 |s

choice
τ ,U = choose right

)
=

{2} ( : , : , 4) =

⎡⎢⎣ 0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

⎤⎥⎦
In other words, action 1, B {2} ( : , : , 1), entails moving to the

start’ state from any other state, action 2, B {2} ( : , : , 2), entails
oving to the ‘get hint’ state from any other state, and so forth.
he third dimension labels these as action numbers 1, 2, 3, and
.
Next, we need to specify preferences over each set of out-

omes (C), with one matrix per outcome modality. Here, rows
ndicate observations (same order as in the corresponding A
atrices) and columns indicate time points in a trial from left

o right. In other words:
modality

=

{outcome modality} (outcome, time point) = [matrix]

In this case, the model has no direct preference for getting
a hint (i.e., preferences for outcome modality 1: C {1}) or for
bserving the choice of a particular action (i.e., preferences for
utcome modality 3: C {3}). So:
hint
=

{1} =

[ 0 0 0
0 0 0
0 0 0

]
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observed action
=

{3} =

⎡⎢⎣ 0 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎦
Here, columns from left to right indicate τ = 1, 2, 3 in the

rial. The model does have preferences for winning and losing
outcome modality 2), which are specified as follows:
win
=

{2} =

[ 0 0 0
0 −1 −1
0 4 2

]
This indicates that, at the second and third time points, a

in (row 3) has a value of 4 and 2, respectively. Remember, the
alue is less at the third time point (third column) because the
ndividual wins less money if they instead choose to take the hint
t the second time point (i.e., and thus continues to observe the
start’ outcome in row 1 for this outcome modality). The values
f −1 in row 2 indicate a preference against observing a loss at
ime points 2 and 3.

Note that we only initially specify the C matrix values in this
orm for convenience. These preference distributions are passed
hrough a softmax (normalized exponential) function (σ ) such
hat each column (i.e., the preference distribution for each time
) in the C matrix encodes a proper probability distribution
f non-negative values that sums to 1, at which point a natu-
al log is applied. This means that the values are transformed
nto log-probabilities as follows (i.e., less negative indicates more
referred):
ln p

(
omodality
τ |Cmodality

τ

)
= ln(σ (Cmodality

τ ))
For example, in the case of the preferences for Cwin specified

bove:

ln p
(
owin
τ |C

win
τ

)
=

ln(σ (C {2})) =

[
−1.1 −4.0 −2.1
−1.1 −5.0 −3.2
−1.1 −0.02 −0.2

]
To be clear, in the line immediately above, the softmax is

pplied to each column separately (i.e., corresponding to the
reference distribution over outcomes at each time point).
Next, we need to specify allowable policies. There are three

ime points in a trial for this task, which means a policy will
onsist of two actions. If we want to include ‘shallow’ policies,
here the model only looks one step ahead, we need to specify
set of vectors U that index each action (as already referred to
bove). Technically, this set of vectors is specified as a matrix
ncluding one row, one column for each allowable action, and a
hird dimension specifying each state factor. Thus, the structure
s:
factor
=

(1, action number, state factor) = [vector]

In this case, we can include all actions:
context

=

( : , : , 1) = [ 1 1 1 1 ]
choice
=

( : , : , 2) = [ 1 2 3 4 ]

Entries for U( : , : , 2) allow all four possible transitions (ac-
ions) between choice states (factor 2) at each time point. The
ntries for U( : , : , 1) are all ones because there is only one
ossible ‘action’ – that is, one transition matrix B – for state
π,τ w

27
actor 1. There still needs to be four ones within U( : , : , 1) to
atch the number of actions in U( : , : , 2). In other words, each
verall action option corresponds to the combined entries in a
iven column for both state factors.7
If we instead want to include ‘deep’ policies, where the simu-

ated participant plans ahead until the end of the trial, this means
hat we need to specify one column for each allowable policy
with each entry indicating an action number) in a matrix V,
ith one row per time point and a third dimension specifying
ach state factor. Thus, the general structure is:
factor
=

(time point, policy, state factor) = [matrix]

In this case, we might reasonably include five policies:
context

=

( : , : , 1) =
[

1 1 1 1 1
1 1 1 1 1

]
choice
=

( : , : , 2) =
[

1 2 2 3 4
1 3 4 1 1

]
As with U , all policies here do not change state factor 1 at

ither time point (hence, all entries are ones8). For state factor
, we have included policies in which the model chooses to
emain in the ‘start state’ (i.e., choosing action 1 twice; column
), chooses to take the hint (action 2) and then select either of
he slot machines (i.e., actions 3 or 4; columns 2–3), or decides
o choose a slot machine right away (columns 4–5; note, these
olicies subsequently return to state 1, since it is not possible
o win twice in one trial). We will use deep policies in the
imulations below.
If so desired, one can also specify a fixed prior over policies E

o incorporate a bias or ‘habit’ to select some policies over others.
his is simply a column vector with one entry per policy that
ncodes the probability of that policy. Here we will not include
uch a bias, which means that E will simply be a flat distribution
ver our 5 allowable policies in V:

(π ) =

= [
1
5

1
5

1
5

1
5

1
5 ]
′

Finally, there are several scalar (single-value) parameters one
can set. One parameter is beta (β), which is the prior on the
expected free energy precision term γ discussed above (which
ncodes the precision estimate for the expected free energy over
olicies). A low β value (around 1) indicates high expected preci-
ion, whereas higher values (e.g., 3, 5, 10) indicate lower expected
recision. Higher β values will increase randomness in policy se-
ection and also make policy selection more influenced by habits
ncoded in the E vector (for an example of these dynamics, see
mith, Khalsa, & Paulus, 2021b. This follows from the fact that it
mplies less confidence that model beliefs will generate preferred
utcomes (Hesp et al., 2020). Another parameter is alpha (α),
hich is a standard ‘inverse temperature’ (or ‘action precision’)
arameter that controls randomness (e.g., motor stochasticity) in

7 Although not shown in detail here, this also affords the possibility of
ultidimensional policies in more complex models. For example, if there were
ultiple possible actions (transition matrices) for two different state factors, one
ight specify that action 2 for state factor 1 can be chosen together with action
for state factor 2, but that action 2 for state factor 1 cannot be chosen together
ith action 3 for state factor 2 (simply by including a column that has entries
f 2 for both state factors but no column that has an entry of 2 for state factor
and an entry of 3 for state factor 2).
8 However, note that they need not all be ones in a more complex model
ith multidimensional policies, as also described for U in the previous footnote.
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ction selection under a chosen policy (higher values indicate less
andomness; typical range is between around 1 – 32, but very
igh values can be chosen to remove choice stochasticity).

(Action|α) = σ (α × ln p(Action|π )) (28)

Here, sigma (σ ) indicates a softmax function that transforms
he quantity on the right into a proper probability distribution
hat sums to 1 (see Appendix A for more detail). Both β and
must be positive numbers. Here we will make β = 1 and
= 32, specifying reasonable amounts of indeterminacy in

ction selection.

.2. Running and plotting simulations

We have now specified a generative model and are ready
o run single-trial simulations. To do so in MATLAB, we will
ssign each of our variables to a structure called mdp (for Markov
ecision process). Concretely, this means assigning mdp.D =
, mdp.V = V, mdp.beta = beta, and so forth for all the
calars, vectors, and matrices constructed above. We can then run
his structure through the standard active inference estimation
unction spm_MDP_VB_X.m (available in the DEM toolbox of the
ost recent versions of SPM academic software: http://www.fil.

on.ucl.ac.uk/spm/). This just means entering:

DP = spm_MDP_VB_X(mdp)

However, because SPM software is often updated, we include
specific version for this tutorial. So here you should run:

DP = spm_MDP_VB_X_tutorial(mdp)

This function will simulate behavior based on an POMDP
tructure (i.e., it runs the equations in Table 2), and the out-
ut MDP (capital letters) structure will contain the simulation
esults. As we have specified it here, it assumes the gener-
tive process and generative model are identical (see section
n learning below where we remove this assumption). It will
hus generate outcomes based on the generative process and
imulate the subsequent inference and decision dynamics within
he generative model when observing those outcomes. Because
he above-mentioned simulation script is quite complex, we also
irect readers interested in the details of how the belief updating
cheme is implemented to the Simplified_simulation_script.m
cript included in the supplementary code, which is a stripped
own (but heavily commented) version of the standard model
nversion scheme used in spm_MDP_VB_X.m. For clarity, this
dditional tutorial script inverts the same generative model of
he explore–exploit task introduced above.

Single-trial behavior can be plotted with some default plotting
outines. The primary single-trial plotting routine available in
PM can be run in MATLAB by entering:

pm_figure(′GetWin′,′ Figure1′); clf; spm_MDP_VB_trial(MDP);
subplot(3, 2, 3)

This plotting routine can also take additional optional inputs:

pm_MDP_VB_trial(MDP,Gf,Gg).

Gf: state factors to plot.
Gg: outcome modalities to plot.

For example, spm_MDP_VB_trial(MDP, 1 : 2, 2 : 3) would plot
he first two state factors and the second and third outcome
odalities.
At this point, the reader is encouraged to set the variable

im in the first section of the accompanying tutorial code (i.e.,
tep_by_Step_AI_Guide.m, line 51) to Sim = 1 and then click
28
Run’, which will run the model and this plotting script. Before
unning this script, remember to make sure SPM12 is installed
nd that the ‘DEM’ folder within the SPM folder structure is added
s a path in MATLAB (. . . spm12\toolbox\DEM).
Based on the current model specification, a representative plot

f simulation results is shown in Fig. 8A. This and similar plots
re generated from specific output fields in the MDP structure
Table 3 describes each output field). The two panels in the
op-left of Fig. 8A show posteriors over states at the end of the
rial (i.e., the states the model believes it was in at each time
oint τ when at the last time point t). Here time goes from left
o right, darker indicates higher probability, and the cyan dots
enote the true states. Here, the model believes it was in the ‘left-
etter context’ and that it chose to take the hint and then chose
he left slot machine. The top-right shows the action probabilities
nd true actions. Here the agent is highly confident that taking
he hint and choosing the left machine were the best choices
and cyan dots indicate that these were also the actual actions
aken). The left-middle panel just shows the different possible
wo-step action-sequences specified in the model (from left to
ight). Note that lighter shades in this panel just indicate higher
ction numbers (e.g., action 1 is black, action 2 is dark gray, etc.).
he right-middle panel shows the evolution of the posterior dis-
ribution over policies over time (from left to right). Here, it can
e seen that at the second time point the model became highly
onfident in policy 2 (i.e., the ‘take the hint and then choose
he left slot machine’ policy). The three panels in the bottom-left
how the outcomes (cyan dots) and preference distributions. The
irst ‘hint’ modality shows that the model received the hint at
ime point 2. The plot is gray because there is no preference for
ne observation over others. This is also the case for the third
observed action’ plot, which simply confirms what the model
hose. The second ‘win/lose’ modality shows that a win was
bserved at the third time point. The preference distribution here
ndicates the strong preference for the win at time points 2 and
(darker value), and a preference not to lose (lighter value). The

null’ (starting) outcome in the top row is an intermediate gray
t time point 2 (no preference for or against this outcome); the
istribution becomes darker gray at the third time point because
he value of the win at time point 3 was relatively less (i.e., $2
s. $4) and so the overall distribution over outcomes at the third
ime point is less precise.

As mentioned earlier, however, optimal information-seeking
in the sense of maximizing preferred outcomes in the long-
un) depends on having the right balance of reward value and
nformation value. To illustrate this, Fig. 8B shows simulations
n which the magnitude of the preference distribution for a win
as been multiplied by 2: C {2} (3, : ) = [0 8 4]. As can be seen
here, the model instead decided to make a guess right away
bout which machine will win (in this case, choosing right) and
nfortunately observed a loss (bottom-left, middle sub-panel).
s can be seen in the upper right, its confidence in the left vs.
ight action is equal (equally gray over each). As can be seen
n the upper left, the model’s posterior over states shows high
onfidence that it was in fact in the ‘left-better’ context at every
ime point, because (retrospectively) this was most likely the case
f it lost after choosing the machine on the right.

Finally, the bottom-right plots in these panels display predic-
ions about dopamine responses in the neural process theory,
hich we have not yet discussed. These responses are based on
hanges in confidence in expected free energy estimates after
eceiving new observations (i.e., the updates to the expected free
nergy precision parameter γ ; explained in the bottom row of
able 2). In this case, the large ‘dopamine spike’ shown at the
econd time step is because EFE at that time step favored policy
(i.e., taking the hint and then choosing the left machine) and

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 8. Example simulation plots that can be generated with the code included in this tutorial. A detailed walk-through is provided in the main text. Panel A
xample simulation of a risk-averse agent performing the explore–exploit task. The agent takes the hint, then chooses the left slot machine, and observes a win.
anel B: Example simulation of a risk-seeking agent performing the explore–exploit task. The agent foregoes the hint and immediately chooses the right slot machine,

observes a loss, and then returns to the start state. Panel C: Example neuronal simulations based on the risk-averse agent in Panel A. This illustrates the neuronal
iring rates, local field potentials, and dopamine responses predicted by the neural process theory. For all panels, note that darker colors indicate higher probability
alues for beliefs about states, actions, and policies over time. For outcomes, darker values indicate stronger prior preferences. The ‘allowable policies’ plots in the
irst two panels simply display the action sequences corresponding to each policy (darker indicates lower numbers, where each number denotes an available action).
he dopamine response plots (lower-right plots in each panel) correspond to updates in the expected precision of the EFE distribution over policies (γ ); cyan lines
ndicate γ values while black spikes correspond to their rate of change. In the upper- and lower-left plots (‘contexts’ and ‘firing rates’) of panel C, each column
moving left to right along the x-axis) corresponds to beliefs about context states at the time when an observation was received (t), while rows from top to bottom
n the y-axis correspond to the time point for which beliefs are updated (tau; τ ). For example, the top-right quadrant corresponds to beliefs at time t = 3 about
ime τ = 1 (note that, unfortunately, this standard SPM plotting routine inappropriately labels each row with ts instead of τ s). Firing rates (upper-right) correspond
o the magnitude of posteriors over each state (in this case, the states in the ‘context’ state factor), while local field potentials (middle-right) correspond to their
ate of change (in both cases, there is one line plotted for each row in the plots in the upper- and lower-left). See main text for interpretation of time frequency
esponse plots and their motivation. These simulations can be reproduced by running the Sim = 1 option in the supplementary Step_by_Step_AI_Guide.m code
although note that, because outcomes are sampled from probability distributions, results will not be identical each time)
a
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FE at that time step (based on observations) provided support
or policies 2 and 3 (i.e., after observations at the second time
tep, only the two policies that included taking the hint remained
lausible). Because the policy favored by EFE was supported,
he precision estimate for EFE increased (corresponding to the
ositive dopamine spike).

As a numerical example to help offer an intuition for how
hese updates operate, we can plug the VFE and EFE values at
ime point 2 in this simulation into the policy distribution and
recision update equations shown in Table 2. In these equations,
is the expected free energy precision term, β0 is the initial prior

or this precision at the start of a trial (γ = 1/β), and β is the
osterior value that is continuously updated over time by a term
e label βupdate. This term technically reflects the gradient of free
nergy with respect to γ (∇γ F ) and is informed by a value scoring
he level of (dis)agreement between expected free energy and
bserved (variational) free energy after making a new observation
which can be thought of as a type of prediction error (Gerror ;

ith proposed associations with emotion; see (Hesp et al., 2020).
or the sake of illustration, we can set γ , β0, and β equal to one
29
nd specify the distributions over policies as follows9:

E =
[

1 1 1 1 1
]T

G ≈
[

12.505 9.51 12.5034 12.505 12.505
]T

F ≈
[

17.0207 1.7321 1.7321 17.0387 17.0387
]T

As can be seen here, the agent has no habit-like prior expecta-
tions over policies (i.e., the E distribution is flat), and the expected
free energy over policies (G) favors policy 2 (i.e., entry 2 has the
lowest value). The variational free energy after a new observation
(F ) provides precise evidence for policies 2 and 3 (values much
closer to 0, indicating that the new observation is inconsistent
with policies 1, 4, and 5). Given this setup, one round of iterative
updating would be:

π0 ← σ (ln E − γG)

=
[

0.0417 0.8332 0.0418 0.0417 0.0417
]T

π ← σ (ln E − F − γG) =
[

0 .9523 .0477 0 0
]T

9 Note that the spm_MDP_VB_X.m script (and the tutorial version here)
orks with negative free energies, and so these F and G values are made

negative in the MDP output structure in MATLAB.
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able 3
utput fields for spm_MDP_VB_X_tutorial.m simulation script.
MDP Field Model Element Structure Description

MDP.F Negative variational free energy of each policy
over time.

Rows = policies.
Columns = time points.

Negative variational free energy of each policy
at each time point in the trial. For example, if
there are 2 policies and 6 time points there
will be a 2 × 6 matrix containing the negative
variational free energy of each policy at each
point in the trial.

MDP.G Negative expected free energy of each policy
over time.

Rows = policies.
Columns = time points.

Negative expected free energy of each policy
at each time point in the trial. For example, if
there are 2 policies and 6 time points there
will be a 2 × 6 matrix containing the negative
expected free energy of each policy at each
point in the trial.

MDP.H Total negative variational free energy over
time.

Columns = time points. Total negative variational free energy averaged
across states and policies at each time point.
For example, if there are 8 time points there
will be a 1 × 8 row vector containing the
total negative free energy at each time point.

MDP.Fa
MDP.Fd
MDP.Fb
. . .

MDP.Fa is the negative free energy of
parameter ‘a’ (if learning A matrix). There are
also analogous fields if learning other
matrices/vectors (e.g., MDP.Fd for learning the
parameters of the D vector, etc.).

Columns = one per outcome modality or
hidden state factor (i.e., depending on the
specific parameters being learned). If the agent
is learning parameters of a single vector (e.g.,
E), this will be a single column.

KL divergence between the parameters of the
matrix/vector that is being learned at the
beginning of each trial and at the end of each
trial. Each column in the vector may represent
an outcome modality (i.e., in the case of the A
matrix), a hidden state factor (i.e., in the case
of the B matrix and D vector), or any other
vector (e.g., the E vector).

MDP.O Outcome vectors. Rows = outcome modalities.
Columns = time points.

Vectors (one per cell) specifying the outcomes
for each modality at each time point. Observed
outcomes are encoded as 1s, with 0s
otherwise.

MDP.P Probability of emitting an action. Rows = one per controllable state factor.
Columns = actions.
Third dimension = time point.

The probability of emitting each particular
action, expressed as a softmax function of a
vector containing the probability of each
action summed over each policy. For example,
assume that there are two possible actions,
with a posterior over policies of [.4 .4 .2], with
policy 1 and 2 leading to action 1, and policy
3 leading to action 2. The probability of action
1 and 2 is therefore [.8 .2]. This vector is then
passed through another softmax function
controlled by the inverse temperature
parameter α, which by default is extremely
large (α = 512). Actions are then sampled
from the resulting distribution, where higher α
values promote more deterministic action
selection (i.e., by choosing the action with the
highest probability).

MDP.Q Posteriors over states under each policy at the
end of the trial.

1 cell per state factor.
Rows = states.
Columns = time points.
Third dimension = policy number.

Posterior probability of each state conditioned
on each policy at the end of the trial after
successive rounds of updating at each time
point.

MDP.R Posteriors over policies. Rows = policies.
Columns = time points.

Posterior over policies at each time point.

MDP.X Overall posteriors over states at the end of the
trial. These are Bayesian model averages of the
posteriors over states under each policy.

1 cell per state factor.
Rows = states.
Columns = time points.

This means taking a weighted average of the
posteriors over states under each policy,
where the weighting is determined by the
posterior probability of each policy.

MDP.un Neuronal encoding of policies. 1 cell per policy dimension.
Rows = policies.
Columns = iterations of message passing (16
per time point). For example, 16 iterations,
and 8 time points gives a vector with 128
columns).

Simulated neuronal encoding of the posterior
probability of each policy at each iteration of
message passing.

MDP.vn Neuronal encoding of state prediction errors. 1 cell per state factor.
Rows = iterations of message passing (16 per
time point).
Columns = states.
Third Dimension: time point the belief is about
(τ ).
Fourth Dimension: time point the belief is at
(t).

Bayesian model average of state prediction
errors at each iteration of message passing
(weighted by the posterior probability of the
associated policies).

(continued on next page)
30
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able 3 (continued).
MDP Field Model Element Structure Description

MDP.xn Neuronal encoding of hidden states. 1 cell per state factor.
Rows = iterations of message passing (16 per
time point).
Columns = states.
Third Dimension: time point the belief is about
(τ ).
Fourth Dimension: time point the belief is at
(t).

Bayesian model average of normalized firing
rates, which reflect posteriors over states at
each iteration of message passing (weighted
by the posterior probability of the associated
policies).

MDP.wn Neuronal encoding of tonic dopamine,
reflecting the current value of γ .

Rows = number of iterative updates (16 per
time point). For example, if there were two
time points in a trial this would be 1 column
with 32 rows.

This reflects the value of the expected
precision of the expected free energy over
policies (γ ) at each iteration of updating.

MDP.dn Neuronal encoding of phasic dopamine
responses, reflecting the rate of change in γ .

Rows = number of iterative updates (16 per
time point). For example, if there were two
time points in a trial this would be 1 column
with 32 rows.

This variable reflects the rate of change in the
expected precision of expected free energy
over policies (γ ) at each iteration of updating.

MDP.rt Simulated reaction times. Columns = time points. Computation time (i.e., time to convergence)
for each round of message passing and action
selection.
Gerror ← (π − π0) · (−G) = .3567
βupdate ← β − β0 + Gerror = .3567
β ← β − βupdate/ψ = 1− .3567/2 = .8216

γ ←
1
β
= 1.2171

Here we have included a step size parameter of ψ = 2,
hich reduces the magnitude of each update and promotes stable
onvergence. Note that, while we have here shown an example
f a single round of updating, there will be many rounds of
pdating to convergence for each new observation. Notice that
he increase in the probability of policy 2 and 3 between the
rior and posterior over policies is driven by F , which scores the
vidence afforded each policy given current observations. Policy
and 3 better minimize F and are therefore more plausible.

Taking the dot product between the vector encoding the dif-
ference between the prior and posterior over policies (π − π0)
and the −G vector is equivalent to scaling each element of the
difference vector by the associated G value and then summing
the results, which in this case creates a positive update. This is
because the difference vector is pointing in roughly the same
direction as the −G vector. This is apparent in that G initially
indicated the highest probability for policy 2, and F also pro-
vided evidence for policy 2. As a result, the prediction error
(Gerror ) is positive and the updated γ value increases the impact
of G on the posterior over policies (i.e., because the agent is
now more confident in its beliefs about G). In contrast, if the
policies favored by G were not supported by F (as in Fig. 8B),
the Gerror term would be negative and the updated value of
γ would decrease the impact of G on the posterior over poli-
cies, as the agent has lost confidence in its beliefs about G.
For a derivation of these update equations, see Appendix in
(Sales et al., 2019).

Note that the cyan line in the dopamine plot corresponds
to the stable expected free energy precision value (γ ; with a
hypothesized link to tonic dopamine levels), as opposed to the
rate of change in this precision (in black; with a hypothesized link
to phasic dopamine responses). To help the reader gain a better
intuition for the dynamics of these updates, we have provided
supplementary code (EFE_Precision_Updating.m), which allows
the reader to specify the number of policies, the values for the
vectors E, F , and G, and the value of β0, and then simulate these
updates. Fig. 9 also illustrates a helpful geometric interpretation
of the factors that determine the direction of β updates. Namely,
when the difference vector (π − π ) and the −G vector point in
0

31
a similar direction (i.e., an angle of less than 90◦ apart), the dot
product of the two will result in an increase in γ . The fact that
these vectors point in the same direction is a way to visualize
how new observations (through F ) provide evidence supporting
the reliability of G, and therefore increase its precision weight-
ing. In contrast, when these vectors point in different directions
(i.e., the angle separating them is greater than 90◦), this suggests
that G is less reliable; its precision (γ ) is therefore reduced
and it contributes less to the posterior distribution over policies
(π ).

Now that we have gone through an example of these dy-
namics, an important question concerns the settings in which
they may be useful. Here, it is important to highlight that E,
F , and β/γ can be viewed as optional elements (e.g., they are
not incorporated in the policy selection model within the upper
right portion of Fig. 5, or in other examples of active infer-
ence (Da Costa, Parr et al., 2020)). For example, incorporating E
may not be useful unless modeling a task in which you suspect
that participants enter a study with a particular choice bias or
that habitual choice behavior could be learned over time. Incor-
porating F and β/γ updating is only useful in the context of
deep policies. As mentioned elsewhere, β/γ can optimize the
relative influence of goals and habits (E and G). Among others,
one benefit of incorporating F emerges when there are a large
number of deep policies to choose from. This is because it allows
observations to render some policies highly implausible early
in a trial, which has the effect of narrowing the search space
for the optimal policy. This typically works in conjunction with
an ‘Occam’s window’ parameter that removes policies from the
search space if their probability becomes too low relative to the
most probable policy (this parameter is specified asmdp.zeta and
explained in more detail within the accompanying tutorial code
Step_by_Step_Hierarchical_Model.m.

4. Modeling learning

In this section we will discuss how learning is implemented
in active inference and how this can be used to model multi-
trial behavioral data. As a concrete example, we will return to
the explore–exploit task model and allow the agent to learn prior
beliefs (i.e., within the vector D) about how often the left slot
machine and right slot machine tend to pay out. More generally,
we will discuss how any set of model parameter values – such
as those encoding distributions within the likelihood (A), tran-
sition beliefs (B ), or priors over policies (E) – can be learned
π,τ
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Fig. 9. Illustration of a geometric interpretation of the factors contributing to updates in expected free energy precision estimates (γ ). In these examples we include
two policies and specify the values of priors over policies (E), expected free energy over policies (G), and the variational free energy over policies following a new
observation (F ). Based on these, a prior and posterior over policies (π0 and π ) are computed (calculations shown in each of the top panels). Updates are then
computed for β , where γ = 1/β , constrained by a fixed prior value β0 and a step size parameter (ψ) that promotes convergence to a stable posterior across
terations. The direction and magnitude of the resulting update in γ is driven by the dot product between the difference vector for prior and posterior policy beliefs
(π − π0) and the −G vector. This dot product can be thought of as a prediction error (Gerror ) reflecting the level of (dis)agreement between expected free energy
and the variational free energy of a subsequent observation. The plots in the top panels show cases where γ is positively updated (left) and negatively updated
(right). In the case on the left, the two vectors (π −π0 and −G) point in a similar direction (i.e., less than 90◦ apart), which represents a way to visualize how new
observations (through F ) provide evidence for the reliability of G (leading to an increase in its precision weighting γ ). In the case on the right, the vectors are greater
than 90◦ apart, providing evidence against the reliability of G (leading to a decrease in its precision weighting γ ). Note that, for reasons of clarity, the endpoints of
the vectors shown here are not the actual values of π − π0 and −G; they instead correspond to scaled values of these vectors, which makes them similar in length
and more clearly illustrates the angle separating them. The middle panels show 16 iterations of γ updating, as is done per time point (i.e., observation) in a trial in
the supplementary code (and in the standard SPM routines) until a stable posterior estimate is reached. This is similar to prediction error minimization dynamics
for the state and outcome predictions errors described earlier. The bottom panels show the rate of change in γ , which bears some similarity to prediction error
esponses. The updates shown in this figure have been associated with dopamine in the neural process theory accompanying active inference. These simulations can
e reproduced using the EFE_Precision_Updating.m code provided in the supplementary code.
over repeated trials. This is based on updating prior beliefs over
these parameters within a class of distributions called Dirichlet
distributions. We first provide a technical introduction to the
general mathematical foundations of Dirichlet distributions. Then
we discuss learning in more intuitive terms, provide numerical
examples, and demonstrate how to run simulations in practice.

4.1. Technical introduction to Dirichlet priors (optional)

In this subsection we provide a technical introduction to the
Dirichlet distribution used to implement learning in active infer-
ence. After completing this section, the reader should have an
32
understanding of how the parameters in a Dirichlet distribution
can: (1) act as priors on the categorical distributions used in
the POMDP models covered above, and (2) be updated based on
posterior beliefs at the end of a trial. For readers less interested in
these technical details, this section can be skipped. As mentioned
above, we will provide a more intuitive conceptual introduction
in the next subsection. We encourage all readers to consider
the formal details below, but a complete understanding of this
subsection will not be required to follow subsequent sections.

Learning in active inference is formulated in terms of a
Dirichlet-categorical model. Specifically, Bayesian inference is
performed using a categorical distribution (which was discussed
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arlier) as the likelihood, and a Dirichlet distribution as the prior.
he Dirichlet distribution is a distribution defined over a vector
f values that sit on the interval [0, 1], and sum to 1. That is, the
alues of the vector have the same properties as a probability
istribution. As such, the Dirichlet distribution is often described
s a distribution over a distribution. In this case, it can be used
o encode beliefs about model parameters (e.g., confidence in
arameters in the likelihood or transition matrices of a POMDP).
The Dirichlet distribution is used as the prior over the param-

ters of the categorical distribution because it is the conjugate
rior for the categorical distribution. This means that if we mul-
iply a categorical distribution by a Dirichlet distribution, and
hen normalize to obtain the posterior distribution over the pa-
ameters of the categorical distribution, we end up with another
irichlet distribution — allowing it to be used as a prior in
he next round of inference. This allows active inference agents
o sequentially update their beliefs about model parameters as
hey receive new observations. The Dirichlet distribution, denoted
ir (θ |α), is defined as follows:

(θ|α) = Dir (θ|α) =
Γ (

∑K
k=1 αk)∏K

k=1 Γ (αk)

K∏
k=1

θ
αk−1
k (29)

Where Γ (
∑K

k=1 αk)∏K
k=1 Γ (αk)

is a normalization constant that ensures the
istribution sums to 1, and Γ denotes the gamma function (for a
rief introduction to the gamma function, see Appendix A). The
ariable θ = (θ1, . . . , θK ) is a vector of length K containing the
arameters of a categorical distribution, and α = (α1, . . . , αK )

is the set of concentration parameters of the Dirichlet distri-
bution, which satisfy the condition that αk > 0. The gamma
function is used in the normalization constant to account for the
combinatorics of drawing a random variable from a categorical
distribution. That is, it counts the number of ways in which we
can place the variable α in one of K mutually exclusive states.
imilarly, the categorical distribution is defined as:

(x|θ) = Cat (x|θ) =
1

x1!x2! . . . xK !

K∏
k=1

θ
xk
k (30)

Where x = (x1, . . . , xK ) is a categorical variable that occupies
one of K mutually exclusive states (e.g., x =

[
0 1 0

]T). Here
θ = (θ1, . . . , θK ) are the parameters of the distribution and satisfy
the conditions θk ≥ 0, and

∑
k θk = 1. The term 1

x1!x2!...xK !
is the

ormalization constant.
If we multiply the Dirichlet and categorical distributions to

rrive at the posterior distribution over the parameters θ =
θ1, . . . , θK ) of the categorical distribution, we obtain the follow-
ng (ignoring the normalization constant for the sake of brevity):

(θ|x,α) = Dir (θ|x,α+ x) ∝
K∏

k=1

θ
αk+xk−1
k (31)

Notice that this has exactly the same form as the prior defined
bove, except that we have added a ‘count’ (i.e., xk) of 1 to the
oncentration parameters corresponding to the observed variable,
hile a ‘count’ of 0 is added to those corresponding to the
on-observed variables. It is the concentration parameters of the
irichlet distributions in the POMDP structure that are updated
uring learning. The exact way they are updated depends on the
odel element in question (e.g., A or B matrix, or D vector) which

we discuss in more intuitive terms below. For a more detailed
introduction to the Dirichlet-categorical model, see Tu (2014).
33
4.2. Non-technical continuation on Dirichlet priors

In this subsection we will introduce learning in more concrete
and intuitive terms. This will build on what was presented in the
previous technical section, but it does not require an understand-
ing of the details presented there. At the end of this subsection,
readers should have a practical understanding of what changes in
a model during learning and what causes these changes to occur.
Although the form of the Dirichlet distribution shown in the
previous section can seem complex, the resulting learning process
turns out to be quite intuitive. Essentially, it just involves adding
counts to a vector or matrix based on posterior beliefs, where
larger numbers of counts indicate higher confidence. To illustrate
this, we will first consider a Dirichlet distribution for initial state
priors over two possible states. As is standard notation in the
active inference literature, we represent Dirichlet distributions
with the lowercase letters associated with each vector or matrix.
For example, we will denote the Dirichlet (Dir) distribution for
the initial state prior D as d. Expressed formally:

p (D) = Dir(d) (32)

d = p(sτ=1) =
[

d1 d2
]T (33)

Here, the concentration parameters for D – denoted by low-
ercase d = d1, d2 – are the individual parameters that will change
during learning. In other words, the process of adding counts
mentioned above will apply to the values of these variables. This
is based on the following learning equation:

dtrial+1 = ω × dtrial + η × sτ=1 (34)

The eta (η) parameter is a learning rate (scalar from 0–1),
which controls how much the values in d change after each
trial. The omega (ω) parameter is a forgetting rate (scalar from
0–1), which influences how quickly learning in recent trial can
‘overwrite’ the changes in d that occurred in earlier trials. We
will return to these below (for now we will assume they are both
equal to 1).

To get an intuition for how this ‘learning by counting’ process
works, consider a case where you start out with an initial state
prior of d = [0.5 0.5]T on the first trial, and your posterior belief
at the end of that trial is that you were in state 1 (with probability
= 1). In this case, your prior on the second trial would become
d = [1.5 0.5]T. In other words, a count of 1 was added to the first
entry (i.e., the entry for state 1). If this happened 3 more times,
then it would become d = [4.5 0.5]T. In cases of uncertainty, you
instead add proportions of counts. For example, if you start out
with an initial state prior of d = [1 1]T on the first trial, and
your posterior belief at the end of the trial was s = [0.7 0.3]T,
then your prior would be updated on the second trial to be d =
[1.7 1.3]T. During within-trial inference, these distributions are
put through a softmax function so that they retain their same
shape but again add up to 1. However, larger numbers indicate
greater confidence in the shape of the distribution. This can be
seen by comparing d = [1 1]T to d = [50 50]T. While both
distributions have the same (in this case flat) shape, it would take
many more (new) observations to meaningfully change the shape
of the second distribution compared to the first. For example,
after one further trial with a precise posterior over state 1, the
resulting shape of the distribution d = [2 1]T has changed quite
a bit more than d = [51 50]T. This is an important aspect of
active learning because it means that the initial (prior) counts
determine how ‘open’ an agent is to new experience. Typically, in
a novel environment or task, the initial counts are set to very low
values (e.g., .25) – so that experience has a substantial effect on
an agent’s prior beliefs. This makes inference and planning more

context-sensitive, as opposed to an agent with high initial counts
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ho is ‘stuck in its ways’ and would require much more evidence
o ‘change its mind’.

As mentioned above, the agent also has a learning rate η.
his controls how quickly it gets ‘stuck in its ways’ during learn-
ng (this also influences how quickly the agent ceases to select
nformation-seeking policies; see below for more details). For
xample, if η = 0.5, then an update from d = [1 1]T after inferring

state 1 would not lead to d = [2 1]T as shown above. Instead, it
would be d = 1 × [1 1]T + 0.5 × [1 0]T = [1.5 1]T. Thus, counts
(and hence confidence) will increase more slowly after each trial.

As also mentioned above, learning can be further modulated
(multiplied) by a forgetting rate (ω). This parameter controls how
strongly recent experience is able to ‘overwrite’ what one has
learned in the more distant past. A value of ω = 1 indicates
no forgetting (i.e., recent experience is unable to overwrite what
has been learned previously), while values less than 1 allow
increasing levels of forgetting (essentially, with each new obser-
vation the agent becomes less confident in what it has previously
learned). This is important because, as counts increase during
learning, an agent’s beliefs can become rigid and resistant to
change, which is suboptimal in changing environments. Higher
counts also reduce information-seeking, because the agent is
highly confident in its beliefs (described in more detail below),
which further hinders the opportunity to learn that (and how)
the environment has changed. As such, if an agent believes that
the environment is volatile (e.g., that the probabilities of rewards
under each policy can change over time), then it is appropriate
to adopt a low value for ω (i.e., a high forgetting rate). In other
words, a low value for ω can be understood as encoding an agent’s
prior belief that the contingencies in the world are unstable. It
is worth noting that inferences about changes in the environ-
ment (and about the volatility of the environment) could also
be implemented in a more principled manner in a hierarchical
model (one example of a model with dynamically updated beliefs
about environmental volatility is the Hierarchical Gaussian Filter;
(Mathys et al., 2014). However, including the simpler forgetting
rate parameter described here could be sufficient for modeling
task behavior in many cases.

To get an intuition for how this works, glance back at the
equation for learning at the end of the previous section (Eq. (34))
and then consider a case where d = [50 50]T and η = 1. If ω = 1,
and the agent infers that it is in state 2, then the update will be
d = 1 × [50 50]T + 1 × [0 1]T = [50 51]T. In contrast, if ω = 0.1,
then the update will be d = 0.1× [50 50]T+1× [0 1]T = [5 6]T. In
this latter case, the agent therefore becomes much less confident
in its prior beliefs, and the shape of the posterior (Dirichlet)
distribution is changed to a greater degree at the end of that trial.

As a slightly more complex example of learning, the updates
for an example A matrix become:

p (A) = Dir(a) (35)

a = p(oτ |sτ ) =

[ a1 a2
a3 a4
a5 a6

]
(36)

atrial+1 = ω × atrial + η ×
∑
τ

oτ ⊗ sτ (37)

Here, the concentration parameters for A – denoted by lower-
case a = a1.., a6 – are the individual parameters in the matrix to
be updated. The ⊗ symbol indicates the outer product. This again
just involves accumulating (proportions of) counts, modulated by
a learning rate and a forgetting rate. But in this case, what is
being counted are coincidences between states and observations.
For example, assume you have a posterior over states of s = [1 0]T

T
nd you made the observation associated with row 1, o = [1 0 0] .

34
Because you believed you were in state 1 when you observed out-
come 1, this indicates that their association in a should increase.
That is, a count should be added to a1 (i.e., the intersection of state
1 and outcome 1) before the subsequent trial. If you instead have
a posterior over states of s = [0.7 0.3]T and you made the obser-
vation associated with row 2, o = [0 1 0]T, this indicates that their
association in a should increase proportionally. That is, updates of
a3+0.7 and a4+0.3 should occur before the next trial. Analogous
update rules apply to the other model parameters (B, C, E). This
general type of ‘coincidence detection’ learning is analogous to
Hebbian synaptic plasticity, where neurons with coincident firing
rates increase their synaptic connection strengths (Brown et al.,
2010). As discussed further below, the neural process theory
associated with active inference proposes that each concentration
parameter can therefore be associated with the strength of a
synaptic connection.

Another important change when learning is incorporated is
that the expected free energy gains an extra term, depending
on which parameter is being learned. This is because learning is
also based on minimizing expected free energy. For example, if
learning A, the equation for expected free energy becomes:

Gπ = DKL [q (oτ |π) ||p (oτ )]+ Eq(sτ |π ) [H[p (oτ |sτ )]]

− Ep(oτ |sτ )q(sτ |π )[DKL [q (A|oτ , sτ ) ||q (A)]] (38)

≈

∑
τ

(
Asπ,τ ·

(
lnAsπ,τ − ln Cτ

)
− diag

(
AT lnA

)
· sπ,τ − Asπ,τ ·Wsπ,τ

)
(39)

W :=
1
2
(a

⨀
(−1)
− a

⨀
(−1)

sums ) (40)

Note that the := symbol just means that two things are de-
fined to be equivalent. The

⨀
symbol indicates the element-wise

power (i.e., separately raising each element in a matrix to the
power of some number). The term asums is a matrix of the same
size as a where each entry within a column corresponds to the
sum of the values of the associated column in a. For exam-

ple, if a =
[
.25 1
.75 3

]
, then asums =

[
.25+ .75 1+ 3
.25+ .75 1+ 3

]
=

[
1 4
1 4

]
.

Although this updated equation for EFE may appear complex,
it simply adds one additional term — often called the ‘nov-
elty’ term (i.e., Ep(oτ |sτ )q(sτ |π )[DKL [q(A|oτ , sτ )||q (A)]] in Eq. (38), or
Asπ,τ · Wsπ,τ in the matrix formulation in Eq. (39)). This term
scores how much beliefs within the A matrix are expected to
change after receiving a new observation. Because the novelty
term is a positive value (and subtracted from the total value),
this entails that minimizing expected free energy will now also
drive information-seeking about parameter values in the Amatrix
(i.e., as opposed to simply seeking out information about states).
In other words, the agent will also seek out observations to
increase confidence in its beliefs about p(oτ |sτ ). To do this, the
agent will seek out state-observation pairings that will maximize
the difference in concentration parameters between posterior and
prior distributions over A. This difference quantifies the drive or
epistemic affordance of finding out ‘what would happen if I do
that?’. Although we do not show them explicitly here, similar
terms can also be added to the EFE if the agent is learning any
of the other matrices or vectors in the model (e.g., learning the
transition probabilities in Bπ,τ ).

Note that the value of the novelty term is inversely related
to concentration parameter values. When the concentration pa-
rameters have large values, this term will have a small value,
and when the concentration parameters have small values, this
term will have a large value. Therefore, when the concentration
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arameter values are high (i.e., novelty is low), the model will
ecome primarily reward-seeking, as it will be highly confident
n its beliefs. In contrast, the agent will be information-seeking
hen concentration parameter values are low. Analogous dy-
amics occur when updating concentration parameters for other
odel parameters.
To make this more concrete, we show a worked example of

he novelty term for two A matrices. One with small concentra-
tion parameter values (i.e., low confidence in beliefs about the
outcomes generated by hidden states), and the other with large
concentration parameter values (i.e., high confidence in beliefs
about the outcomes generated by hidden states).

Small concentration parameter values (low confidence)

a =
[
.25 1
.75 1

]
;A = σ (a) =

[
.25 .5
.75 .5

]
; sπ,τ =

[
.9
.1

]

asums =

[
.25+ .75 1+ 1
.25+ .75 1+ 1

]
=

[
1 2
1 2

]
;

sπ,τ =
[
.275
.725

]
W :=

1
2
(a

⨀
(−1)
− a

⨀
(−1)

sums )

W =
1
2

([
.25−1 1−1

.75−1 1−1

]
−

[
1−1 2−1

1−1 2−1

])
=

1
2

([
4 1

1.3333 1

]
−

[
1 .5
1 .5

])
=

1
2

([
3 .5

.3333 .5

])
=

[
1.5 .25
.1667 .25

]
sπ,τ =

[
1.5 .25
.167 .25

][
.9
.1

]
=

[
1.375
.175

]
ovelty = Asπ,τ ·Wsπ,τ =

[
.275
.725

]
·

[
1.375
.175

]
= .505

arge concentration parameter values (high confidence):

=

[
25 100
75 100

]
;A = σ (a) =

[
.25 .5
.75 .5

]
; sπ,τ =

[
.9
.1

]

asums =

[
25+ 75 100+ 100
25+ 75 100+ 100

]
=

[
100 200
100 200

]
;

Asπ,τ =
[
.275
.725

]
W :=

1
2
(a

⨀
(−1)
− a

⨀
(−1)

sums )

=
1
2

([
25−1 100−1

75−1 100−1

]
−

[
100−1 200−1

100−1 200−1

])
=

1
2

([
.04 .01
.0133 .01

]
−

[
.01 .005
.01 .005

])
=

1
2

([
.03 .005
.0033 .005

])
=

[
.015 .0025
.0017 .0025

]

sπ,τ =
[

.015 .0025
.00167 .0025

][
.9
.1

]
=

[
.01375
.00175

]
ovelty = Asπ,τ ·Wsπ,τ =

[
.275

]
·

[
.01375

]
= .00505
.725 .00175

35
In both examples, the policy assigns high probability to occu-
ying state 1 (p = .9). The normalized shape of the distribution
or each column in A is also the same in both examples. However,
he novelty term is larger in the first example where the associ-
ted Dirichlet prior a has smaller concentration parameter values
which, when subtracted from the total, will lead to a lower EFE).
his means the agent will learn more (i.e., change its beliefs more)
hen moving to states where it is less confident in its beliefs
encoded as smaller concentration parameter values). To get a
ore intuitive sense for these computations, you can reproduce

hese results and adjust the concentration parameter values in
he supplementary script EFE_learning_novelty_term.m.

.3. Simulating learning

In this subsection we will build on the explore–exploit task
odel we specified above and demonstrate how it can also be
sed to simulate learning. By the end of this section, the reader
hould be equipped to run these simulations independently, and
o plot and interpret their results. With the explore–exploit task
odel in place, we only need a few additions to the code. First,
lowercase version of the to-be-learned model element must
e created. For example, to enable learning within the A ma-
rix, one must specify an mdp.a with the same dimensions as
dp.A. The same goes for other parameters (mdp.b, mdp.d,
tc.). Typically, the initial concentration parameters would be set
o low-confidence (i.e., low-magnitude), flat distributions before
earning begins; for example: Dir (d) = d {1} = [.25 .25]′. Note
here that the generative process continues to correspond to the
capital-letter matrices (i.e., which will generate the patterns of
observations), while the lowercase-letter matrices are now the
generative model. Next, we can specify a learning rate and a
forgetting rate by setting mdp.eta and mdp.omega equal to
values between 0 and 1. Finally, we need to replicate the mdp
structure to include many trials; for example, using code such as:

N_Trials = 30;
[mdp(1 :N_Trials)] = deal(mdp);

Then, we can simply run the mdp structure through the
spm_MDP_VB_X_tutorial.m function as before. Here, we will
simulate two different versions of the task. In the first version,
there are 30 trials, and the better slot machine is the same
for all trials (left machine). We will allow the simulated agent
to learn prior expectations about which context is more likely
(i.e., whether the left or right machine tends to lead to wins more
often). To enable this type of learning, we will include mdp.d.
As shown in the Step_by_Step_AI_Guide.m code, we specify low
confidence in initial state priors, d {1} = [.25 .25]′. We also set
the learning rate to mdp.eta = .5 and the forgetting rate to
mdp.omega = 1 (i.e., no forgetting). We then define a ‘risk-
seeking’ (RS) parameter that corresponds to how precise the
preference is to win the higher amount of money in the C matrix:

Cwin
=

C {2} =

⎡⎣ 0 0 0
0 −1 −1
0 RS RS

2

⎤⎦
In our first simulation, we set RS = 3 and in our second we set

RS = 4. We expect the agent will be less information-seeking, and
more risk-seeking, in the latter case. As can be seen in Fig. 10 (top-
left), the agent with RS = 3 chooses to take the hint on the first
several trials, and slowly begins to forego the hint on later trials
(with some choice stochasticity). Unexpected losses, shown in the
panel just below, also cause the agent to return to ‘playing it safe’
and again ask for the hint. In contrast, the agent with RS = 4



R. Smith, K.J. Friston and C.J. Whyte Journal of Mathematical Psychology 107 (2022) 102632

c
a
a
c
u
o
r
r

i
c
o

a
t
t
w

c
p

a
t
t
t
r
W
i

Fig. 10. Simulated learning on the explore–exploit task and predicted neuronal responses. Blue circles in the top panel indicate chosen actions (i.e., the agent’s first
hoice on each trial); darker shading indicates a higher action probability. Wins/losses, free energies, simulated neuronal responses, and changes in prior beliefs
bout context over time (darker = stronger prior belief) are shown in the lower panels. See main text for more details. Left: Example simulation of a risk-averse
gent (i.e., defined by a moderately precise preference distribution; RS = 3) learning from repeated trials of the explore–exploit task. Here the agent slowly gains
onfidence that the left machine will always be better and begins to choose that option without taking the hint. This agent often returns to taking the hint after
nexpected losses. Right: Example simulation of a risk-seeking agent (i.e., defined by a highly precise preference distribution; RS = 4) learning from repeated trials
f the explore–exploit task. This agent only required seeing the hint one time before attempting to pick the correct option directly (and win more money). It did not
eturn to taking the hint with occasional unexpected losses. Note that both agents also show some stochasticity in choice. These simulations can be reproduced by
unning the Sim = 2 option in the supplementary Step_by_Step_AI_Guide.m code (although note that, because outcomes are sampled from probability distributions,
results may not be identical each time). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
chooses to take the hint only once (Fig. 10, top-right) and then
takes that as sufficient evidence that the left machine must be the
better one (and continues to choose this one throughout, despite
occasional losses). The lower panels in the figure show simulated
event-related potentials (ERPs), simulated dopamine responses,
and how beliefs change over time regarding which context is
more likely (darker = higher probability). When the Sim variable
s set to Sim = 2 in the Step_by_Step_AI_Guide.m code, you
an reproduce these simulations (and adjust the RS parameter to
ther possible values).
Next, we simulate a reversal learning paradigm. Here, there

re 32 trials in total. Unbeknownst to the agent, in the first 4
rials the left machine will be better, but in the rest of the trials
he right machine will be better. Again, we examine an agent
ith RS = 3 and RS = 4. As shown in Fig. 11, the RS = 3

agent chose to take the hint on all trials in this simulation. In
contrast, the RS = 4 agent quickly locked on to the left machine,
but it then returned to taking the hint after the reversal. After
several trials of again choosing the hint, it becomes confident in
directly choosing the right machine in the final trials. When the
Sim variable is set to Sim = 3 in the Step_by_Step_AI_Guide.m
ode, you can reproduce these simulations (and adjust the RS
arameter to other possible values).
Each of these examples is meant primarily to give the reader
sense of how to work with these types of simulations. But

here are many other parameters that could be manipulated. In
he accompanying MATLAB code, the reader can easily re-run
hese simulations while changing the learning rate, forgetting
ate, action precision, or any other parameters in the model.
e encourage the reader to do so to get a sense of the unique

nfluences of different parameters on task behavior. For examples
36
of papers that model learning using active inference, see Friston
et al. (2016a, 2017b), Schwartenbeck et al. (2019), Smith et al.
(2021e), Smith, Parr, and Friston (2019b), Smith, Schwartenbeck,
Parr, and Friston (2020d), Smith et al. (2020e) and Tschantz, Seth,
and Buckley (2020).

5. Neural process theory

In many active inference papers, one sees figures similar to
Fig. 12. These figures typically depict a series of update equations,
several columns of ‘ball’ neurons, a specific pattern of synaptic
connections, and labels assigning model variables to those neu-
rons and synaptic connections. Such figures are meant to depict
one possible neural implementation of active inference, which
serves as a concrete illustration of the general biological plausibil-
ity of the theory. This type of biological plausibility is considered
an important strength of active inference models, due to the
resulting ability to make empirical predictions about neurophys-
iological responses. In turn, these predictions allow one to assess
the evidence for distinct message passing algorithms and possible
neuronal implementations (Parr et al., 2019). Some of the simula-
tion outputs in Table 3 contain predicted neuronal responses that
can be assigned to distinct neuronal populations or synaptic con-
nections (some examples are plotted in Fig. 8). To be clear, some
neurophysiological predictions in active inference are not specific
to a single neural implementation (i.e., they are based only on
the generic prediction error minimization and precision updating
equations described above); and these types of predictions have
been successfully associated with neural responses observed in
previous functional magnetic resonance imaging [fMRI] and EEG
studies (e.g., see (Schwartenbeck et al., 2015; Smith et al., 2021e;
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Fig. 11. Simulated reversal learning on the explore–exploit task and predicted neuronal responses. Here, the better machine was on the left for the first 4 trials and
then on the right for all subsequent trials (without the agent expecting this). Blue circles in the top panel indicate chosen actions (i.e., the agent’s first choice on
ach trial); darker shading indicates a higher action probability. Wins/losses, free energies, simulated neuronal responses, and changes in prior beliefs about context
ver time (darker = stronger prior belief) are shown in the lower panels. See main text for more details. Left: Example simulation of a risk-averse agent (i.e., defined
y a moderately precise preference distribution; RS = 3), who always chose to take the hint. Right: Example simulation of a risk-seeking agent (i.e., defined by a
ighly precise preference distribution; RS = 4), who quickly became confident in choosing the left machine without taking the hint. After the unexpected reversal,
t decided to again take the hint for many trials before becoming confident in choosing the right machine directly. These simulations can be reproduced by running
he Sim = 3 option in the supplementary Step_by_Step_AI_Guide.m code (although note that, because outcomes are sampled from probability distributions, results
ay not be identical each time). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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hyte, Hohwy, & Smith, 2021; Whyte & Smith, 2020). How-
ver, cortical column proposals – such as that shown in Fig. 12
can also motivate targeted research using methods (such as

aminar fMRI) that have been applied to test similar columnar
mplementations proposed for predictive coding (Stephan et al.,
019). To prepare the reader for understanding – and potentially
ontributing to – this important area of active inference research,
e will walk the reader through Fig. 12 step-by-step. This will
lso be important when we discuss hierarchical models in the
ext section (Section 6), in which simulated EEG responses occur
ver different timescales and are predicted to occur at distinct
evels of processing within the brain.

In the depicted neural network, each column of neurons (in
his case, 3 columns) represents beliefs and prediction errors
bout each point in time (from left to right, indicated by sub-
cripts for τ = 1, 2, 3). With each new observation, beliefs
about all time points (i.e., about the past, present, and future)
are updated, corresponding to changes in neural activation across
all neurons. The upward arrows from observations (purple nodes
at the bottom) to layer 3 (denoted by επ,τ for state prediction
errors) are depicted as conveying excitatory (red) observation
signals (e.g., sensory input) to granular cells in each cortical
column, where these observations can differ at each time point.
The receiving (pink) state prediction error neurons calculate their
prediction errors by combining observation signals with predic-
tion signals from the state representations in the cyan neurons of
layer 2 (supragranular neurons denoted by sπ,τ for state represen-
tations). Note that excitatory (red) downward signals from these
neurons to layer 3 are conveyed both forward (from the τ = 1,
eft neurons) and backward (from the τ = 3, right neurons) – in-
icating both prospective and retrospective predictive influences
37
on state representations about a time point. In contrast, inhibitory
(blue) signals are conveyed by these state representation neurons
to layer three neurons for the current time point, leading to
minimization of prediction error when predictions from state
representations match observation signals.

Note next that each of these state and state prediction error
representations are calculated in parallel for each policy (denoted
by one example neural column in front of another). The top (red)
layer 1 neurons, however, do not have another set of neurons
behind them. This is because they perform a Bayesian model
average as an overall best guess about states. They do this by
taking state representations for each policy, multiplying them by
the probability of that policy, and then averaging them to get a
final posterior over states. This is accomplished in conjunction
with the policy representation (π ) neuron on the left (meant
to represent a subcortical neural population), the signals from
which multiply (via the green modulatory connection) the ex-
citatory (red) signals from the state representation neurons for
each policy in layer 2. After each new observation, activity in
these policy representation neurons also promotes some actions
(u) over others.

Policy representation (π ) neurons are in turn activated by
eurons encoding habits (E) and inhibited by those encoding
xpected free energy (G; i.e., greater expected free energy reduces
he probability of a policy). The influence of G on π is modulated
y the expected free energy precision term (γ ) — depicted here

as being conveyed by subcortical dopamine neurons. The activity
of G neurons is increased by outcome prediction errors (ζπ,τ )
n layer 5, multiplied (green connections) by the probability of
hose outcomes under each policy (oπ,τ , cyan neurons in layer 4;
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‘

Fig. 12. Common depiction of the neural process theory associated with active inference. This includes the update equations on the left and an example neural
network that could implement them on the right (only exemplar synaptic connections are shown to avoid visual clutter). See main text for an in-depth walk-through.
Note that while most equations are presented in the same form as in the main text, we have updated the outcome prediction error (ςπ,τ ) equation to include the
novelty’ term (Asπ,τ ·Wsπ,τ ) within Gπ that was introduced in the previous section on learning. We also depict iterative prediction error minimization and precision
updating processes using arrows indicating the order of repeated updating until convergence. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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note that these are calculated from Asπ,τ ). These outcome pre-
diction errors reflect the expected difference between preferred
outcomes and predicted outcomes under each policy (from layer
4; downward excitatory connections between layers 4 and 5),
and where those predicted outcomes are in turn based on state
representations in layer 2 (excitatory red connections from layer
2 to layers 4 and 5). Note that the matrix W (i.e., calculated based
on the synaptic strengths encoded in A) also influences G through
interaction with activity in the neurons encoding sπ,τ , but these
connections are not explicitly shown to minimize visual clutter.

Based on this description, we assume the reader should be
able to follow the equations on the left to identify each associated
connection in the network on the right. Note that this figure only
shows example connections, assuming two policies and three
time points. However, the basic idea is that, if each excitatory
connection corresponds to addition, each inhibitory connection
corresponds to subtraction, and each modulatory connection cor-
responds to multiplication, then each of the update equations on
the left (in the ‘Belief updating’, ‘Policy inference and expected
free energy precision’, ‘Action selection’, and ‘Learning’ boxes) can
be implemented in a straightforward manner within a relatively
simple neural network. It is worth mentioning that these update
equations are not always presented in identical form in such
figures across the literature. However, these variations are either
algebraically equivalent or have been presented with or without
certain elements (e.g., with or without learning, with or without
expected free energy precision, etc.), depending on the goals of
the paper.

One other aspect of the neural process theory that we will not
discuss in detail – but that we would like to briefly point the in-
terested reader toward – pertains to the idea that Bayesian model
reduction (i.e., comparing models to find the simplest one that
can account for available data) is implemented by homeostatic
synaptic adjustment processes during sleep and resting wake-
fulness (Bucci & Grasso, 2017; Friston et al., 2017b; Hobson &
38
Friston, 2012; Hobson, Hong, & Friston, 2014; Smith et al., 2020d;
Tononi & Cirelli, 2014). In short, this literature suggests that, dur-
ing sleep/rest, the brain can also minimize VFE by finding simpler
models (with fewer parameters) that can successfully account
for previous experience. This can be accomplished in part via a
‘synaptic downscaling’ process – known to occur during sleep –
in which synaptic connections that have gotten stronger during
recent learning are subsequently attenuated. Synaptic downscal-
ing can be helpful in removing any small synaptic changes driven
by noise (e.g., uninformative coincidences in the presence of mul-
tiple stimuli), leaving only the larger synaptic changes needed to
account for consistent patterns in recent experience. Although we
do not cover it here, we note that the spm_MDP_VB_X.m script
and our tutorial version) does have an additional ‘BMR’ option
hat can be turned on, which will implement Bayesian model
eduction by calling a further SPM script written to simulate
his proposed function of sleep/rest (spm_MDP_VB_sleep.m). In
his case, the entries in each matrix (e.g., the A matrix) are
ssumed to represent synaptic connections, and model reduc-
ion involves eliminating any changes in the concentration pa-
ameters for those matrices during learning that did not im-
rove the explanatory power of the model (i.e., in terms of the
ccuracy/complexity trade-off).
To facilitate the reader’s ability to use the neural process

heory in their own research, the spm_MDP_VB_X_tutorial.m
cript automatically generates simulated responses for several
f the neuronal populations described above (see Table 3 for
pecific output descriptions). This includes the simulated firing
ates of neuronal populations representing posteriors over states
i.e., whose predicted location in the brain would depend on the
ask). Here, distinct firing rates are generated for the states within
ach state factor of a model (e.g., in the explore–exploit task,
iring rates in one population would encode the probability of
he ‘left-better context’, while those in another population would
ncode the probability of the ‘right-better context’). The script
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lso generates vectors encoding the associated state prediction
rrors discussed above. Simulated electrophysiological responses
re based on the rates of change (derivatives) in firing rates
uring prediction-error minimization (interpreted as local field
otentials [LFPs] or event-related potentials [ERPs], depending
n the context). Separate neural populations are postulated to
ncode posteriors over states and prediction errors for each time
oint τ (i.e., each of which are updated with new observations
ver time).
Another set of potentially useful outputs generated by the

pm_MDP_VB_X_tutorial.m script corresponds to the VFE of
hanges in concentration parameters (i.e., higher = greater sur-
rise during learning; see Table 3). Recall here that another
mportant aspect of the neural process theory is that synaptic
nputs with different strengths are postulated to carry the prior
nd conditional probabilities encoded in each of the vectors/
atrices that define a model (e.g., the probabilities in the A
r Bπ,τ matrices, or in the D or E vectors). More specifically,
he value of each entry in particular matrices or vectors can be
hought of as corresponding to the strength of a synaptic connec-
ion between two neurons. Updating concentration parameters
ver repeated trials (i.e., over a slower timescale than perception)
an therefore be linked to synaptic plasticity — where the
pecific changes involved depend on the pattern of observations,
elief updates, and/or policies chosen on each trial). The VFE
f changes in concentration parameters can therefore be used
o quantify the magnitude of change in a model on a trial by
rial basis, which could be used to identify neural correlates of
uch changes. The predicted dynamics of within-trial prediction
rrors and belief updates will also be modulated by these synaptic
hanges, allowing for predicted time courses that could be used
or similar experimental purposes. In addition, synaptic strength
hanges will also inform the matrix W – dynamically adjusting
otivation to seek information about model parameters. Thus,
everal experimentally useful outputs are provided to test the
eural process theory.
An available SPM function for plotting single-trial neural sim-

lations can be run by inputting the following into MATLAB:

pm_figure(′GetWin′,′ Figure 2′); clf; spm_MDP_VB_LFP(MDP);
subplot(3, 2, 3)

Setting the variable Sim in the accompanying tutorial code
i.e., Step_by_Step_AI_Guide.m, line 51) to Sim = 1 will also
enerate simulation plots using this function.
Based on the current model specification, a representative plot

f simulation results is shown in Fig. 8C, based on the single trial
epicted in Fig. 8A. The top-left panel depicts the belief updates
t each time point t (columns) about each time point τ (rows).
s before, darker indicates higher probability. In this case, after
resentation of the first observation (t = 1, column 1), the
odel is fully uncertain about current or future states (each row).
fter presentation of the second observation (t = 2, column 2),
hen the model receives the hint, it becomes highly confident
hat it was, currently is, and will continue to be in the ‘left-
etter’ state (i.e., based on its transition beliefs that this state does
ot change within a trial). These beliefs remain stable when it
eceives the third observation (column 3; i.e., upon observing the
xpected win). The top-right panel depicts these belief updates
i.e., changes in beliefs over time about the state at each time
oint; 2 possible states for each of the 3 time points). These belief
pdates are depicted as traces of changes in neural firing rates,
ith 2 firing rates per distribution (i.e., encoding the probability
f the left- vs. right-better context), resulting in 6 firing rate
races in total (note that, due to overlap, not all 6 traces are clearly
isible in this example). The bottom-left plot depicts this same
 n

39
nformation, but here displayed in terms of a simulated raster
lot (i.e., one tick per action potential per neuron in a simulated
opulation). The middle-right panel depicts predicted local field
otentials (or event-related potentials), which reflect the rate of
hange in the simulated firing rates. The middle-left panel depicts
he neural responses associated with context state beliefs before
dotted line) and after (solid line) filtering at 4 Hz, superimposed
n a time–frequency decomposition of the local field potential
averaged over all simulated neurons). This type of plot has been
sed in previous work to explain how/why simulated depolar-
zation in specific frequency ranges may coincide with specific
timulus-induced neural responses (Friston et al., 2017a). The
ottom-right panel depicts simulated dopamine responses after
ach new observation (as also depicted in a slightly different way
n Fig. 8A). These were covered in detail in Section 3 (see Fig. 9
nd the last row of Table 2).
This plotting function also has several options as additional

unction entries and outputs as follows:

u, v] = spm_MDP_VB_LFP(MDP,UNITS, FACTOR, SPECTRAL).

UNITS: a matrix with 2 rows and one or more columns. The
irst row indicates which hidden state(s) to plot over time for
he specified state factor. The second row specifies the time point
eing represented. For example: UNITS = [1 2 1 2; 1 1 3 3] would
lot firing rates for the first two hidden states of the selected state
actor over time with regard to beliefs about time points 1 and 3.
y default, all units are selected.
FACTOR: a single number denoting which state factor to plot

default = 1).
SPECTRAL: either a 0 or 1 (default = 0). If 1, the top-left plot

s replaced by a plot of the power of simulated neural responses
n different frequency ranges.

The optional outputs u and v correspond to vectors encoding
imulated event-related potentials and firing rates, respectively
for selected units). As was mentioned above, the event-related
otentials correspond to the temporal derivative of the firing
ates, while the firing rates reflect the magnitude of posterior
eliefs over each state at each iteration of marginal message
assing.

. Building hierarchical models

.1. Hierarchical model structure

Now that we have a clear idea of how to specify a genera-
ive model of a behavioral task, how to interpret the relevant
utputs, and how we can generate testable predictions regarding
eural responses, we will now extend this foundation by build-
ng a hierarchical or ‘deep temporal’ model and demonstrating
ow it can be used to reproduce established neurophysiological
esults (for examples, see Friston et al., 2018; Parr & Friston,
017b; Smith, Lane, Parr, & Friston, 2019a; Whyte et al., 2021;
hyte & Smith, 2020). Specifically, we will reproduce the results
f experiments examining ERPs in a commonly used auditory
ismatch paradigm designed to study the neural basis of per-
eptual learning and expectation violation. This should help the
eader to generalize their understanding by seeing how to build
model with a different structure. It will also demonstrate the
ersatility and wide range of applications of active inference
odels. For example, while reinforcement learning models are
ften used to solve tasks like the slot machine task, such models
re not readily applicable to perceptual tasks, like the auditory
ismatch paradigm, that do not include rewards or produce
otable variability in behavior (e.g., when performance tends
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o be near ceiling across participants). By the end of this sec-
ion, the reader should have a solid understanding of both how
ierarchical models work and how to implement them.
The steps for building hierarchical models are quite simi-

ar to what we have already covered, because this primarily
ust involves building two models, and then placing one be-
ow the other. The further step is figuring out how to link
he two models together. This is because, in hierarchical mod-
ls, the states at the lower level exchange information with
tates at the higher level in a very specific bidirectional manner
see Fig. 13). First, for each time point in a second-level trial,
he hidden states at the second level (s{2}τ ; superscript indicates
ierarchical level) provide prior beliefs over the initial states
f a first-level trial (i.e., D{1} = A2TD{2} for the first first-level

trial; D{1} = A2Ts{2}τ ,t=τ−1 for all subsequent first-level trials). In
turn, posterior beliefs over initial states at the end of a first-
level trial (i.e., s{1}τ=1,t=T ) are treated as observations at a time
point in a second-level trial (o{2}τ ). This means that the second-
level A matrix (likelihood mapping) mediates the ascending and
descending messages between hierarchical levels. This structure
also entails that the second-level model must operate at a slower
timescale than the first-level model, because each observation in
the second-level model (i.e., each time point in a second-level
trial) corresponds to the results of (i.e., posterior beliefs after) a
complete trial in the first-level model. Thus, there are as many
first-level trials as there are time points in a second-level trial.
For example, if there are four time points in a second-level trial,
this means there will need to be a corresponding sequence of four
first-level trials (i.e., where each first-level trial could itself have
several time points). This is why such models are often called
deep temporal models.

This type of model architecture is essential for capturing per-
ceptual phenomena with nested dynamics, or where objects must
be recognized before regularities in the behavior of those objects
can be detected. For example, to perceive a baseball flying in a
leftward direction, a lower-level model would first need to infer
the baseball’s identity and position (i.e., one inferred position per
lower-level trial), and a higher-level model would then need to
accumulate evidence for a leftward trajectory of motion based
on how the baseball’s inferred position changes across several
lower-level trials. As another example, to recognize a melody,
a lower-level model would be needed to infer the presence of
each note, and a higher-level model would then be needed to
accumulate evidence for a specific melody, based on a specific
sequence of inferred notes over time. A further intuitive exam-
ple is reading, where the first level infers single words, while
the second level infers the narrative entailed by sequences of
words (Friston et al., 2018). Note, as soon as we start to use
deep or hierarchical generative models, we are essentially re-
laxing the Markovian assumption by introducing a separation of
temporal scales to produce what are known as semi-Markovian
models. These are essential for inferring narratives, language, or
any deeply structured sequence of state transitions.

Aside from these examples, the hierarchical POMDP setup is
quite flexible and can be used to model a wide range of tempo-
rally structured phenomena. For example, a policy space could
be included at either level alone, or both levels, depending on
the target phenomenon to be modeled (e.g., verbal report at a
higher level vs. reflexive behavior at a lower level). One could
also specify several time points in each lower-level trial, such
that higher-level states generate sequences or trajectories of state
transitions at the lower level (i.e., within-trial). In previous work,
hierarchical models have been used to model working memory,
reading, visual consciousness, and emotional awareness, among
other phenomena (Friston et al., 2017c, 2018; Hesp et al., 2020;
40
Parr & Friston, 2017b, 2018b; Sandved-Smith et al., 2021a; Smith
et al., 2019a; Whyte et al., 2021; Whyte & Smith, 2020). Hierarchi-
cal POMDPs also afford further opportunities for simulating neu-
ronal processes. To date, simulations associated with the faster
and slower timescales of belief updating have been shown to
reproduce an impressive number of task-based electrophysiolog-
ical findings. For example, empirically observed patterns of ERPs
associated with specific cognitive and perceptual processes, such
as the P300 and mismatch negativity (MMN), emerge naturally in
simulations of different experimental paradigms, which supports
the face validity of both the model structure and the neural
process theory (e.g., Friston et al., 2017a; Parr & Friston, 2017b;
Whyte et al., 2021; Whyte & Smith, 2020).

6.2. Building a hierarchical model

As a concrete, empirically relevant example, we will now
demonstrate how one could build a hierarchical model to
simulate a simplified version of the auditory mismatch ‘local–
global’ paradigm introduced in Bekinschtein et al. (2009); see
bottom panel of Fig. 13. In our simplified version of this paradigm,
each trial consists of a sequence of four tones (with either low or
high frequency), the first three have the same frequency, and the
fourth tone either conforms to the predicted pattern (e.g., high-
high-high-high; local standard) or violates the predicted pattern
by presenting a different tone (e.g., high-high-high-low; local
deviation). During EEG, local deviations elicit a mismatch
negativity component in ERPs (i.e., a negative component
obtained by subtracting ‘local standard’ trials from ‘local devia-
tion’ trials), which appears after approximately 130 ms. Impor-
tantly, the sequence of local standard and local deviation trials
establishes a global pattern that can itself be confirmed (global
standard) or violated (global deviation). For example, this could
include several local deviation trials in a row followed by an un-
expected local standard trial. Global deviations are known to elicit
a P300 ERP component (i.e., a positive component that appears
after approximately 300 ms). Unlike other auditory mismatch
paradigms, this design also allows local and global violation
responses to be dissociated. That is, the factorial design leads
to four conditions local standard + global standard, local standard
+ global deviation, local deviation + global standard, and local
deviation + global deviation. For brevity, here we only simulate
two of the four possible combinations, local deviation + global
deviation, and local deviation + global standard. In our simulated
version of the task, we presented an active inference agent
with sequences of 4 tones, where each tone could be either
low or high, in an analogous manner to the empirical task.
We then had the agent report whether the last stimulus on
each trial was the same as, or different from, the established
pattern.

At this point, the reader is encouraged to open the accompa-
nying MATLAB script and follow along in parallel (Step_by_Step_
Hierarchical_Model.m). As with the previous model, we will
start by setting up the priors over initial states for each hidden
state factor at the first level:

p
(
stoneτ=1

)
=

D {1} = [ 1 1 ]′

Dir (d) =
d = D

The specification for D {1} means that there is an equal proba-
bility of a high or a low tone (left and right entries, respectively).
Note that, because the columns of all the vectors and matrices of

the generative process are run through a softmax function in the
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Fig. 13. Top Left: Bayesian network depiction of a 2-level POMDP. Observations depend on hidden states at the first level. In turn, hidden states at the first level
depend on hidden states at the second level. Specifically, second-level hidden states provide prior beliefs over initial states at the first level, while posterior beliefs
over initial states at the first level are treated as observations by the second level. In the example shown here, the first level has two state transitions per trial. This
entails that the first level has two state transitions for every one state transition at the second level. Thus, beliefs at the second level evolve over a slower timescale.
Top Right: Example neural network implementing the hierarchical POMDP shown on the left. Bottom: Illustration of the auditory mismatch paradigm for which
e build a generative model and run simulations in this section (Section 6). In the model specified in the main text, beliefs about single tones are encoded at the

irst level, while beliefs about sequences of tones are encoded at the second level. Across trials, the agent then builds up prior expectations through presentation
f repeated tones and tone sequences. In line with empirical results, the post-learning model simulations shown in Figs. 14–16 predict earlier ERPs for unexpected
ones (local deviations) and later ERPs for unexpected tone sequences (global deviations).
pm_MDP_VB_X_tutorial.m script, D {1} = [1 1]′ is equivalent
o D {1} = [.5 .5]′. As the simulation involves learning, we also
eed to separate the generative process from the generative
odel by including the lowercase d for the generative model.

Here we simply set d = D, as the agent will also start out
41
with the belief that a high and a low tone are equally probable
(but with fairly low confidence). However, including d will allow
the agent to accumulate concentration parameters (changing the
shape of its initial state priors) over trials based on patterns in its
observations.
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Fig. 14. Simulated beliefs and behavior in the hierarchical POMDP (analogous to the single-level model plots show in Fig. 8) described in the main task. The top
and bottom panels simulate the two task conditions described in the main text both before and after learning (Trial 1 and Trial 10, respectively). These simulations
demonstrated that the agent performed the task appropriately. The three panels in the top-left of each plot show posteriors over states at the end of the trial. That
is, the states the model believes it was in at each time point τ at the last time point t (i.e., after receiving the last observation). Here, time goes from left to right,
darker indicates higher probability, and the cyan dots denote the true states. The top-right panels in each plot show the action probabilities and true actions. The
left-middle panel in each plot just shows the different possible action-sequences/policies in the specified model (encoded numerically from left to right). A darker
color indicates a lower number. The right-middle panel in each plot shows the progression of posterior beliefs in each policy over time (from left to right, darker
= higher confidence). Policies (rows) line up with the action sequences in the plot on the middle-left. The two panels in the bottom-left of each plot display the
outcomes in cyan dots and the agent’s preference for each outcome, where darker colors indicate a greater preference (i.e., higher prior probability). Lastly, the
bottom-right plot displays predictions about dopamine responses based on the neuronal process theory (i.e., encoding changes in expected precision of EFE; see
ast row of Table 2 and Fig. 9). In terms of behavior, notice that all models selected the correct actions and received ‘correct’ feedback, as indicated in the lower
utcome plot. These simulations can be reproduced using the Step_by_Step_Hierarchical_Model.m script included as supplementary code. Note that, due to random
ampling, results may not be identical each time.
42
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Fig. 15. Simulated ERPs and firing rates extracted from the hierarchical POMDP model of the auditory mismatch paradigm during each task condition (top vs.
ottom) both before and after learning (Trial 1 vs. Trial 10). As described in the main text (and illustrated further in Fig. 16), these simulations reproduce ERP
esults observed in previous empirical studies (e.g., stronger short-latency ERPs in response to local deviations and stronger longer-latency ERPs in response to global
eviations). The unit response plots show the posterior probability over states (sπ,τ ) at each level of the model (as usual, darker colors = higher posterior = higher
iring rates). As described in the neuronal process theory section, normalized firing rates are generated by passing the depolarization variable vπ,τ through a softmax
unction sπ,τ = σ (vπ,τ ). The ERP plots show the rate of change (first derivative) of posterior beliefs over states summed over all states at each level of the model
analogous to the aggregate signal measured at the level of the scalp by EEG). Note that each increment of 0.5 along the x-axis corresponds to a trial at the lower
evel, and to a time point at the higher level (i.e., 6 time points in a higher-level trial, with 6 corresponding lower-level trials). For a detailed description of each plot
nd its meaning in relation to the task, see the main text. These simulations can be reproduced using the Step_by_Step_Hierarchical_Model.m script included as
upplementary code. Note that, due to random sampling, results may not be identical each time. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
A
Next, we must specify the likelihood mappings for the first
evel in the A matrix.(
otone|stone

)
=
τ τ

43
{1} =
[

1 0
0 1

]
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Fig. 16. Custom ERP plots generated from the simulated auditory mismatch paradigm. On the left we have the ‘raw’ first- and second-level ERP waveforms centered
n the fourth time step of the tenth trial from each condition. The right side of the figure shows how the subtraction of the deviant trials from the standard trials
eproduces both the MMN and P300. At both the first and second level, ‘deviant’ ERPs have a substantially larger amplitude than ‘standard’ ERPs. Note that, although
he relative differences in timing between simulated ERPs (and the relative differences in timing between ERPs at different levels of the model) are meaningful, the
nits we ascribe to time are (usually) somewhat arbitrary. So, for clarity, we have not included any units of time on the x-axis. These simulations can be reproduced
sing the Step_by_Step_Hierarchical_Model.m script included as supplementary code. Note that, due to random sampling, results may not be identical each time.
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This is simply an identity matrix indicating that the tone states
orrespond 1-to −1 with tone observations (columns [left to
ight]: high tone, low tone states; rows [top to bottom]: high
one, low tone observations). However, in the generative model
e may want to introduce some noise into tone perception. One
onvenient way to do this is to first specify:

ir (a) =
= A

Then, we can use a softmax function to control the expected
recision of the state-observation mapping with a precision pa-
ameter:

recision = 2;

{1} = spm_softmax(precision ∗ log(A{1} + exp(−4)))

Note that the exp(−4) is simply a very small number added
o A{1} to prevent the possibility of log(0), which is undefined
also note that, while −4 is a reasonable value, other values could
e chosen). Depending on the value of the precision parameter
higher = more precise), this will result in a likelihood mapping
hat specifies different amounts of sensory noise. For example:

ir (a) =

{1} =
[
.92 .08
.08 .92

]
Note that, for clarity, this example shows a lower precision

han what results from setting precision = 2 in the accompany-
ng tutorial code.

As we are mainly interested in simulating the learning of
rior expectations (D vector), we also multiply the concentration
arameters within a by 100 (an arbitrary large number) to ef-
ectively prevent the learning of these other parameters. This is
ecause we want the level of sensory noise to remain consistent
cross trials.
44
Next, we can specify transition probabilities in the B matrix as
dentity matrices,10 as tones do not change within a lower-level
rial.(
stoneτ+1|s

tone
τ

)
=

{1} =
[

1 0
0 1

]
Here columns (left to right) are high tone and low tone states

t time τ , while rows (top to bottom) are high tone and low
one states at time τ + 1. Here there is no need to separate
he generative process from the generative model, so we do not
pecify a separate b matrix.
We do not include preferences or policies at this level, so

e now simply assign each variable to the mdp structure. For
onvenience when later linking this to the higher-level model
elow, we will denote this structure with an ‘_1’ as follows:

dp_1.D = D
mdp_1.d = d
mdp_1.A = A
mdp_1.a = a
mdp_1.B = B

For consistency with how we link first- and second-level mod-
els below, we then set MDP_1 = mdp_1 and clear mdp_1.

Now we move on to specifying the second-level model. To
keep the variables separate, we will denote each model variable
with a ‘_2’ for this level.

10 As a brief general note, the columns of all matrices are put through a
softmax function in the spm_MDP_VB_X_tutorial.m script after the addition
of negligibly low values to each entry to prevent the problem that log(0) is
undefined. As such, even specification of identity matrices for transition beliefs
will not completely rule out the possibility that states could change over time
in the face of very strong observational evidence to the contrary.
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Here, we will include one hidden state for each possible se-
quence of tones:

p
(
ssequenceτ=1

)
=

D_2 {1} = [ 1 1 1 1 ]′

This indicates that initially there is an equal probability of
each tone sequence (left to right: ‘all high’, ‘all low’, ‘high-low’,
‘low-high’). Note again that using four 1s here is just for conve-
nience, as this vector will subsequently be run through a softmax
function and each 1 will become a .25.

Here we must also include a second hidden state factor that
encodes beliefs about the time point within a trial (e.g., ‘first tone’,
‘second tone’, etc.). This includes (from left to right) time points
for 4 tones, a delay period, and then a reporting period:

p
(
stime
τ=1

)
=

D_2 {2} = [ 1 0 0 0 0 0 ]′

This indicates that the agent always starts in the ‘time 1’ state.
We also include a reporting state factor, corresponding to the

agent either not yet reporting (left entry), reporting ‘same tone’
(middle entry), and reporting ‘different tone’ (right entry) at the
end of the trial:

p
(
sreportτ=1

)
=

D_2 {3} = [ 1 0 0 ]′

This indicates that the agent always starts in a state of not yet
having made a report.

Finally, we allow the agent to build up prior beliefs over
time with repeated trials. In this case, because the agent’s beliefs
initially match the generative process, we can simply set:

Dir(d) =
d_2 = D_2

Next, we must specify the likelihood mappings for the second-
level A matrix. Because time in trial is a state factor, this becomes
omewhat more complex. Specifically, we are now required to
pecify the type of tone at each time point that is expected under
each sequence. To do so, we can specify the matrices as follows.
For convenience, we can first specify:

p
(
olevel 1 tone state
τ |ssequence, time, report

τ

)
=

or i = 1 : 6
for j = 1 : 3

A_2 {1} ( : , : , i, j) =
[

1 0
0 1

1 0
0 1

]
end

nd

This says that for the first six time points (i = 1 : 6), and for
ll three choice states (j = 1 : 3), the first and third sequence
tates (i.e., ‘all high tones’ and ‘high tones followed by low tone’;
olumns 1 and 3) are associated with the ‘high tone’ observation
top row), whereas the second and fourth sequence states (i.e., ‘all
ow tones’ and ‘low tones followed by high tone’; columns 2 and
) are associated with the ‘low tone’ observation (bottom row).
hen, we can adjust this so that the deviation sequences (‘low
ones followed by high tone’ and ‘high tones followed by low
one’; columns 3 and 4) are associated with the opposite tone
apping at the fourth time point (i = 4):(
olevel 1 tone state
τ |ssequence, time=4, report

τ

)
=

or i = 4

for j = 1 : 3

45
A_2 {1} ( : , : , i, j) =
[

1 0
0 1

0 1
1 0

]
end

end

The second outcome modality at the higher level (which does
not correspond to a lower-level state factor) is feedback about
whether a chosen report was correct or incorrect. Here, we need
to specify that the agent will observe ‘correct’ feedback (at the fi-
nal time point) in cases where its report matches the appropriate
sequence (row 3), and ‘incorrect’ feedback otherwise (row 2). To
do this, we can initially specify that no feedback (‘null’; row 1)
will be observed across all time points:

p
(
ofeedbackτ |ssequence, time, report

τ

)
=

for i = 1 : 6
for j = 1 : 3

A_2 {2} ( : , : , i, j) =

[ 1 1
0 0
0 0

1 1
0 0
0 0

]
end

nd

Then we can specify that at time point i = 6, if the agent
eports ‘same’ (j = 2), then it will receive correct feedback when
t is one of the first two (standard) sequences and incorrect for
ither of the second two (deviant) sequences:(
ofeedbackτ |ssequence, time=6, report=′same′

τ

)
=

or i = 6
for j = 2

A_2 {2} ( : , : , i, j) =

[ 0 0
0 0
1 1

0 0
1 1
0 0

]
end

nd

The we specify the opposite mapping if the agent reports
different’ (j = 3):(

ofeedbackτ |ssequence, time=6, report=′different ′
τ

)
=

for i = 6
for j = 3

A_2 {2} ( : , : , i, j) =

[ 0 0
1 1
0 0

0 0
0 0
1 1

]
end

end

As with the first-level model, to control the precision of the
mapping between first- and second-level states in the generative
model, we can use a precision_2 parameter. To do so, we can
specify:

Dir(a) =
a_2 = A_2
precision_2 = 2;
a_2{1} = spm_softmax(precision_2 ∗log (A_2{1} + exp(−4)))

This results in a minor amount of noise in the messages passed
between levels. As with the first level, we also multiply this
parameter by 100 to (effectively) prevent learning.

Next, we must specify the transition matrices for the second

level. In this case, the sequence type is stable within a trial, so
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his should be an identity matrix (columns: states at time τ , rows:
tates at τ + 1):(
ssequenceτ+1 |ssequenceτ

)
=

_2 {1} =

⎡⎢⎣ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦
Time in trial should progress forward (e.g., ‘Time 1’ should

transition to ‘Time 2’, and so forth. As such:(
stime
τ+1|s

time
τ

)
=

_2 {2} =

⎡⎢⎢⎢⎢⎢⎣
0 0
1 0
0 1

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

1 0
0 1
0 0

0 0
0 0
1 1

⎤⎥⎥⎥⎥⎥⎦
Finally, report states are under control of the agent. In this

ase, there are three actions:(
sreportτ+1 |s

report
τ ,U = no report

)
=

_2 {3} ( : , : , 1) =

[ 1 1 1
0 0 0
0 0 0

]

(
sreportτ+1 |s

report
τ ,U = report ′same′

)
=

B_2 {3} ( : , : , 2) =

[ 0 0 0
1 1 1
0 0 0

]
p
(
sreportτ+1 |s

report
τ ,U = report ′different ′

)
=

B_2 {3} ( : , : , 3) =

[ 0 0 0
0 0 0
1 1 1

]
These three matrices (from 1–3 in dimension 3) correspond to

the actions (U) of moving (from any state) to the ‘no report’ state,
‘report same’ state, and ‘report different’ state, respectively. Next,
we must specify the allowable sequences of actions (i.e., policies).
In this case, we include two policies (two columns) and one row
per time point. There are no actions for the first state factor, so
(number = action, column = policy, row = time point):

π sequence
=

V_2 ( : , : , 1) =

⎡⎢⎢⎢⎣
1 1
1 1
1 1
1 1
1 1

⎤⎥⎥⎥⎦
There are also no actions for the second state factor:

π time
=

V_2( : , : , 2) =

⎡⎢⎢⎢⎣
1 1
1 1
1 1
1 1
1 1

⎤⎥⎥⎥⎦
For the third state factor, the agent must wait until the last

time point and then either select the ‘report same’ or ‘report
different’ actions:

report
π =

46
V_2( : , : , 3) =

⎡⎢⎢⎢⎣
1 1
1 1
1 1
1 1
2 3

⎤⎥⎥⎥⎦
Lastly, we must provide the agent with preferences that will

motivate accurate reporting. For the first outcome modality
(tones), the agent has no preferences (columns= time point, rows
[top to bottom] = high tone, low tone observation):

C level 1 tone state
=

C_2( : , : , 1) =
[

0 0 0
0 0 0

0 0 0
0 0 0

]
For the second outcome modality (accuracy feedback), the

gent prefers to receive ‘correct’ feedback at the last time point
column 6, row 3) and finds ‘incorrect’ feedback to be aversive at
he last time point (column 6, row 2):
feedback

=

_2( : , : , 2) =

[ 0 0 0
0 0 0
0 0 0

0 0 0
0 0 −1
0 0 1

]
As already mentioned when building the explore–exploit task

odel, each column in this matrix is put through a softmax
unction and then converted into log-probabilities. Having now
pecified the second-level model, we will place each of these
atrices into its own mdp structure:

dp.D = D_2
mdp.d = d_2
mdp.A = A_2
mdp.a = a_2
mdp.B = B_2
mdp.C = C_2
mdp.V = V_2

We then need to connect the lower-level model with the
higher-level model as follows:

mdp.MDP = MDP_1

Next, we need to provide a matrix specifying which outcome
modalities at the second level (columns) corresponds to which
state factors at the lower level (rows) within a ‘link’ field. Here,
the first outcome at the second level (‘tones’) corresponds to the
first state factor at the first level:

mdp.link = [1 0]

In this case, the matrix only has a single row because there is
only one state factor at the lower level.

Lastly, we need to set the value of the ERP ‘reset’ or ‘decay’
parameter mdp.erp, which at the start of every epoch of gradient
descent is used to reset the posterior over states by dividing the
posterior by the value of the parameter (i.e., higher values=more
resetting). Setting the value of the parameter is entirely up to
the discretion of the modeler, depending on assumptions about
the particular neurocognitive process under study. In empirical
work, this parameter could be fit to observed ERP responses.
In the experimental paradigm we simulate here, the tones are
played to the participant in quick succession, so we assume that
the posterior at each time step carries over and does not decay
between presentations. As such, we setmdp.erp = 1. If, however,
we were trying to model a task with longer time periods between

updating (e.g., a subject navigating a maze), some degree of decay
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ould be appropriate (mdp.erp = 4 is the default value in the
urrent spm_MDP_VB_X.m script).
As before, we can now run this structure through the standard

outine to generate simulated behavioral and neuronal responses
f an example trial.

DP = spm_MDP_VB_X_tutorial(mdp);

To simulate our two conditions of interest, local deviation +
lobal deviation, and local deviation + global standard, we will
imulate 10 sequential trials for each condition. For brevity, we
ill not describe the code that implements this here. Instead, we
irect readers to the Step_by_Step_Hierarchical_Model.m script,

which has detailed comments describing each of the necessary
steps. For both conditions, the first nine trials consist of three
high tones and a fourth low tone. On the tenth trial of the local
deviation + global standard condition, the trial again consists of
three high tones and a fourth low tone. On the tenth trial of
the local deviation + global deviation condition, the tenth trial
nstead consists of four high tones, thereby violating the global
egularity. Fig. 14 shows plots of second-level belief updating and
olicy selection, analogous to the single-level model plots shown
n Fig. 8. The model performed at ceiling with 100% accuracy
hen classifying the last stimulus in the sequence as same or
ifferent.
The next step is to visualize the resulting simulations in or-

er to make empirical predictions about behavior and neuronal
esponses.

.3. Plotting hierarchical models

To visualize the resulting belief updating and simulated neu-
onal responses for this hierarchical model, we have provided
modified version of the plotting script provided in the freely
vailable SPM routines:

DP = spm_MDP_VB_ERP_tutorial(MDP);

This plotting script shows the simulated firing rates associated
ith belief updating at each level. It also shows the simulated
RPs (summed first derivative of the firing rates) that would
e expected to be generated during the simulated task. Fig. 15
hows the first and tenth trial from each condition (i.e., before
nd after building up prior beliefs favoring some states over
thers). Notice that on the first trial of both the local deviation +
lobal deviation condition and the local deviation + global standard
ondition, the high firing rates at the first level reflect a high
osterior confidence in the tone each time it is presented. In
ontrast, after hearing the first tone, the firing rate is evenly
pread between both the ‘high’ and ‘high-low’ hidden states at
he second level, reflecting the agent’s uncertainty about which
ype of sequence is being presented (i.e., since both sequences
redict ‘high’ tones for the first three time steps). Note, however,
hat the fourth tone on the first trial generates an increased firing
ate for one of the hidden states, and the firing rate drastically
ecreases for the other state (depending on whether a ‘high’ or
low’ tone is presented). By the tenth trial, the agent has a high
rior expectation that it will experience a ‘high-low’ sequence,
eflected in the high firing rates for this second-level hidden state
rom early time points. In the local deviation + global standard
ondition, this expectation is confirmed, leading to little change
n second-level firing rates. Importantly, however, in the local
eviation + global deviation condition, this expectation is violated,
ecause the agent is presented with four high tones. This creates
rapid switch in posterior confidence from the ‘high-low’ hidden
 o

47
tate to the ‘high’ hidden state at the fourth time step, generating
very strong and rapid shift in second-level beliefs.
This brings us to simulated ERPs, which reflect the rate at

hich posterior beliefs change within each epoch of belief up-
ating, summed over hidden states at each level of the model
i.e., similar to the aggregate signal measured by EEG). At the
irst level, the repeated presentation of high tones generates small
RPs, whereas deviations from this pattern at the fourth time step
local deviations) generate a larger amplitude mismatch response
ecause posterior beliefs about the tone change rapidly. Impor-
antly, when the local deviation response is subtracted from the
ocal standard response, we can reproduce the classic mismatch
egativity effect (MMN; see Fig. 16). At the second level, the
epeated occurrence of three high tones and one low tone for
he first nine trials creates a strong prior expectation (through
he increase in concentration parameters in the D vector) for
he ‘high-low’ sequence state. When the model is unexpectedly
resented with four high tones on the tenth trial, this expectation
iolation generates a rapid change in beliefs and a correspond-
ngly large second-level ERP resembling the P300 (see Figs. 15
nd 16). Fig. 16 shows custom-made ERP plots, which isolate the
ontrasts of interest. Again, for the sake of brevity, we will not de-
cribe the code that generates this plot in the main text, but direct
nterested readers to the Step_by_Step_Hierarchical_Model.m
cript for more details.

. Fitting models to behavior

So far, we have focused on simulating behavior and establish-
ng the face validity of active inference using canonical examples
rom the decision-making and electrophysiological literature. In
his section, we demonstrate how active inference models can
e used in empirical studies. More specifically, we will describe
ow one can estimate the model parameter values that best
xplain participant behavior during an experimental task. This
pproach has been employed in several recent studies that have
sed active inference models to account for behavior during tasks
esigned to study a wide range of phenomena — such as at-
ention, risk-taking, approach-avoidance conflict, explore–exploit
ehavior, and interoception (Mirza, Adams, Mathys, & Friston,
018; Schwartenbeck et al., 2015; Smith et al., 2021d, 2021c,
020b, 2020c, 2021e, 2020e). In each of these studies, a model
as used to evaluate the prior beliefs that participants most likely
eld when performing a task (i.e., the prior beliefs that would
ave generated their behavior in a model). All necessary steps for
arrying out this approach are described below, with the goal of
reparing the reader to use active inference models in their own
mpirical studies. By the end of this section, the reader should
nderstand how to fit a model to participant behavior, how to
erform a number of diagnostic checks to ensure the validity of
arameter estimates, and how to use parameter estimates within
roup-level Bayesian models.
As stated above, empirical applications of active inference

equire fitting a task model to participant behavior. When fitting
model to behavior, one would like to find the parameters

hat maximize the posterior probability of a model given that
ehavior, p(model|participantbehavior). Assuming a flat prior be-
ief over models, this posterior is proportional to the likelihood
erm, p(participantbehavior|model). Thus, many fitting approaches
estimation algorithms) try to find the parameters that maximize
his likelihood — referred to as maximum likelihood estimation
MLE). In some cases, one might also have reason to expect that
ertain models are more likely than others a priori. In this case,

ne can also incorporate an informative prior belief over models,
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Fig. 17. Illustration of different steps in model fitting, model checking, and subsequent analysis methods. Top Left: Single-subject parameter estimates generated by
he scripts provided with this tutorial. This example includes estimation of two parameters: alpha (action precision) and RS (risk-seeking). The left subplot shows
he trajectory of parameter values as fitting progressed (from red to blue). The middle subplot shows how evidence for the model (given participant data) increased
uring estimation (via gradient descent on free energy; here shown as ascent on negative free energy). The right subplot depicts how parameters moved from
stimation priors to posterior values (pink lines indicate 95% Bayesian confidence intervals). Note that, for clarity, prior values for all parameters in these plots
re given a common reference value of 0, such that posterior values are shown as deviations from those priors. For example, the prior values for alpha and RS
ere 16 and 5, respectively. The plots therefore show that posteriors for alpha deviated to a value below 16 and that those for RS deviated to a value above 5.
op Right: Prior and posterior mean estimates for alpha and RS for a single simulated participant. This shows how posterior estimates for both parameters move
oward the true parameter values. Bottom Left: Posterior variances and co-variances for parameters at the single-subject level, here showing that both variances
nd co-variances were low. These results can be reproduced by running the Sim = 4 option in the supplementary Step_by_Step_AI_Guide.m code. Bottom Middle:
xample of a recoverability analysis for alpha in 6 simulated participants. This plot shows the (in this case strong) correlation between alpha values estimated from
imulated behavior in each participant and the true parameter values used to generate that simulated behavior. Bottom Right: Output of group-level parametric
mpirical Bayes’ (PEB) analyses (scripts provided in supplementary code). This example included estimation of three parameters for six simulated participants,
here parameters 1, 2, and 3 correspond to alpha (action precision), RS (risk-seeking), and eta (learning rate), respectively. The top row (left to right) shows the
vidence (for each parameter) for differences from 0, differences between two groups (simulated as having different RS values, i.e., parameter 2), and relationships
o (arbitrarily specified) age values in models assuming effects for all parameters. The bottom row shows analogous results for reduced models that have greater
vidence than the full models (here, no group difference in alpha [parameter 1] or eta [parameter 3], and some effects of age on alpha and eta). Recall that these
esults are based on a very small sample of only 6 simulated participants, which will generally be unreliable. They are for illustration only, and the identified
elationships with the arbitrary ‘age’ values should not be taken seriously. Note that we have omitted some additional plots that are also generated. This is because
hese are the automatic output of scripts originally designed for dynamic causal modeling in neuroimaging, and not all of them are useful in the present context.
hese results can be reproduced by running the Sim = 5 option in the supplementary Step_by_Step_AI_Guide.m code, while also setting the option PEB = 1 (note
hat, because outcomes are sampled from probability distributions, results will not be identical each time).. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
(model).11 Regardless of the specific approach, the goal of any
itting procedure is to find the set of parameters that would best
eproduce/predict the actual behavior of a participant (i.e., with
he highest probability) when running simulations using a model
while in some cases also incorporating any prior knowledge one
ight have).
To do this, one needs to feed the trial-by-trial observations

ade by participants (e.g., cues, wins/losses, etc.) into the model
nd look at the actions predicted by the model (i.e., posterior
robabilities over actions). One can then compare these predic-
ions to the actions a participant actually chose. Under some sets
f parameter values (e.g., prior expectations, precisions, etc.), the
odel’s predictions may not match behavior well (i.e., the prob-
bility of a participant’s actions under the model may be low).
owever, by searching through different possible combinations of
arameter values, the best combination can be found for a given

11 An example of this approach is maximum a posteriori (MAP) estimation,
n which an algorithm tries to find the parameter values (i.e., point estimates)
hat maximize the value of the posterior as opposed to the likelihood.
48
participant. Note, however, that this will only be the best combi-
nation possible for that model. This does not mean that the model
has high explanatory power (e.g., the best parameter combination
for one model might lead to an average action probability of 0.4,
while another model might reach 0.7, etc.). This is why it is also
important to compare the explanatory power of different models.

Throughout this section, we encourage the reader to fol-
low along in the companion MATLAB script (Step_by_Step_AI_
Guide.m). This can be found in the supplementary code files,
as well as at: https://github.com/rssmith33/Active-Inference-Tu
torial-Scripts. At the top of this script, if you set Sim = 4 it
will perform parameter estimation on a single set of simulated
behavioral data from the explore–exploit task model (see the top
panels and bottom-left panel of Fig. 17 for example outputs). If
you set Sim = 5 it will simulate behavioral data from two models
(one with two parameters and one with three parameters; see
below) for a few synthetic participants and then perform model
comparison. It will also assess how well the estimated parameter
values match with the true parameter values used to generate the

https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts
https://github.com/rssmith33/Active-Inference-Tutorial-Scripts


R. Smith, K.J. Friston and C.J. Whyte Journal of Mathematical Psychology 107 (2022) 102632

s
a
i
r
a
t
i
t
i
w
(
(
l

r
m
d
e
i
r
o
i
p
o
p
I
e
T
t
v
v
&
m
s
a
d
a
m
e
t
r
a
i
W
t
t
m

i
m
(
t
a
c
b

m

M
s
f
p
p
s

s
m
o
t
t
o
r
f
a

imulated task behavior (i.e., it will output correlation matrices
nd associated p-values; bottom-middle panel of Fig. 17). This is
mportant to check (as described below in relation to parameter
ecoverability) to ensure that parameters can be estimated reli-
bly (this is sometimes referred to as model identifiability). All
he code for performing these steps is included and described
n the script comments. All examples here will be based on
he explore–exploit task model, when simulating behavior dur-
ng the case of reversal learning used above (see Fig. 11). We
ill estimate the alpha parameter (α) encoding action precision
i.e., inverse temperature) as well as a risk-seeking parameter
described below). For model comparison, we will also estimate
earning rate (η) in a second model.

As mentioned above, finding the optimal combination of pa-
ameter values to account for a participant’s behavior requires a
odel fitting (parameter estimation) procedure. There are many
ifferent procedures (estimation algorithms) that are available,
ach with their strengths and limitations. The simplest approach
s called a grid search, where each possible combination of pa-
ameter values (within some specified range of values) is tried
ne-by-one, and then the one that best reproduces (e.g., max-
mizes the likelihood of) behavior is chosen. However, this ap-
roach is limited to fairly simple models with a small number
f parameters, and it can also lead to overfitting (i.e., finding
arameter values that reproduce random aspects of behavior).
n more complex models with a larger number of parameters,
xhaustive search of the parameter space becomes intractable.
hus, a number of other algorithms have been developed. In
his section, we will focus on an estimation technique called
ariational Bayes (i.e., a specific variant of this approach called
ariational Laplace; (Friston, Mattout, Trujillo-Barreto, Ashburner,
Penny, 2007)), which is based on exactly the same free energy
inimization ideas described above.12 Namely, variational Bayes
tarts with a prior distribution over parameter values, which acts
s the starting value of an approximate posterior (or ‘proposal’)
istribution. Via gradient descent on variational free energy, this
pproximate posterior is adjusted until convergence to a stable
inimum value, providing posterior estimates of model param-
ter values. However, the detailed mathematics underlying this
echnique are quite advanced and beyond the scope of this tuto-
ial. Therefore, our focus here is on practical applications, with the
im of equipping readers without advanced mathematical train-
ng to still be able to make use of such approaches appropriately.
e will now go over a set of concrete steps that can be taken

o use variational Bayes for model fitting. As we are focusing on
he explore–exploit task model, it may help to glance back at the
odel/task description in earlier sections before moving on.
The first step is to place trial-by trial-observations and partic-

pant actions into an mdp structure. In the explore–exploit task
odel, for each trial this would mean specifying the observations

mdp.o) a participant made for the three outcome modalities at
he three time points in each trial, and then specifying the two
ctions taken (mdp.u). For example, if on trial #1 the participant
hose to take the hint and then chose the left machine, this would
e:

dp(1).u =
[

1 1
2 3

]

12 Another important class of estimation algorithms uses Markov Chain
onte Carlo (MCMC) methods (Neal, 1993). These methods involve sequentially
ampling from a distribution according to specific sets of rules that try to
ind locations under that distribution with high probability. In this case, the
robability of a participant’s actions would be evaluated under a sequence of
arameter value combinations (with an initially random starting point) until a
ufficient approximation to the true distribution was generated.
49
mdp(1).o =

[ 1 2 1
1 1 3
1 2 3

]
Here, time goes from left to right. For mdp.u, actions for each

tate factor correspond to each row from top to bottom. For
dp.o, time also goes from left to right and rows correspond to
utcome modalities. The parenthetical ‘(1)’ for the mdp denotes
rial #1. Here, for mdp.u, remember there is only one ‘action’ for
he first state factor (i.e., the participant does not have control
f which machine will most likely lead to a win). So, the top
ow is simply a 1 for both time points. For the second state
actor (choice), the participant first chose the hint (action #2)
nd then chose the left machine (action #3). For mdp.o, the

first row indicates ‘null’ (observation 1), ‘left hint’ (observation
#2), and then back to ‘null’. The second row indicates two ‘null’
observations followed by a ‘win’ (observation #3). The last row
simply corresponds to the choices (‘start’, ‘take hint’, ‘choose
left’). Observations and behavior for each trial need to be inserted
in this same way (e.g., mdp(2), mdp(3), etc. until the final trial
number).

The second step is to choose the model parameters you want
to estimate and which you want to hold fixed. Ultimately, one
may want to try estimating different models and/or different
numbers of parameters and then compare them to find which
best accounts for behavior, as we describe further below. In
this example, we will first consider estimating two parameters:
learning rate (η) and ‘risk-seeking’ (RS). The latter corresponds to
how strong the preference is to win money in the C matrix:

Cwin
=

C {2} =

⎡⎣ 0 0 0
0 −1 −1
0 RS RS

2

⎤⎦
As reviewed above, learning rate scales the size of the ‘count’

that is added to the (Dirichlet) concentration parameters after a
new observation. The RS parameter controls the explore–exploit
trade-off. In the simulations shown in Figs. 10 and 11, we saw
that, as RS values go up, the probability that a participant will
take the hint goes down. That is, they will tend to ‘risk it’ and
simply guess left or right in hopes of winning the larger amount
of money.

When using variational Bayes, the next step is to choose a set
of estimation priors. These are not the prior beliefs of a partic-
ipant, but the initial parameter values that are evaluated during
model fitting. Estimation priors include both a prior mean and a
prior variance, each of which can be set within the supplementary
‘Estimate_parameters.m’ script, as described further below. A
simple way of thinking about the variational Bayes algorithm is
that it starts from the chosen estimation priors (i.e., the prior
means) and slowly moves away from them to find the com-
bination of parameter values that best explains a participant’s
behavior, while also balancing the associated cost of increased
model complexity that is incurred when the parameters move
too far away from the prior means. More specifically, variational
Bayes is accomplished by performing a gradient descent on VFE
(i.e., the same process active inference models use to accomplish
perception, learning, and action selection). In this case, the gra-
dient descent starts with the prior means, and then evaluates
the log-probability of a participant’s actions (e.g., sequence of
choices). This log-probability is evaluated using the posterior
beliefs about action that the subject would have had, given the
priors in question and the outcomes they observed. The scheme
then evaluates neighboring parameter values and continues in the
direction of increasing likelihood, until a combination is found
with no neighboring values that improve the fit.
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However, because we seek a VFE minimum, which includes
both complexity and accuracy terms, the algorithm will not sim-
ply maximize model accuracy. It will also try to minimize how
far parameter estimates move away from the mean values of
the estimation priors. In other words, parameter estimates for a
given participant will represent values that accurately reproduce
that participant’s behavior while moving as little as possible
from the prior values chosen by the experimenter. Importantly,
complexity minimization also depends on the prior variances that
are chosen. Setting a small prior variance will lend strong weight
to complexity minimization; in contrast, setting a large variance
for estimation priors will lead a stronger weight to be placed on
maximizing accuracy (but with a greater chance for overfitting).
How to set the prior variance can be a crucial choice in variational
Bayes, because posterior parameter estimates can in some cases
be sensitive to the choice of prior means. When available, prior
means can be based on previous studies. However, if previous
literature is not available to draw from, one might consider spec-
ifying a large prior variance to reflect this uncertainty (in which
case the complexity cost will play little-to-no role). This issue
of setting appropriate estimation priors, and diagnosing when
they may be inappropriate, is one of several important model
checking procedures that should be taken to confirm the validity
of parameter estimates, which we return to below.

Before moving forward, however, it is important to highlight
a specific subtlety in the above scheme. Namely, we are using
variational Bayes to estimate the parameters that underwrite
variational inference within the brain of a study participant. In
other words, there are two generative models: first, a subjective
model, which is the POMDP we assume the participant is using
to plan their responses. Second, there is an objective model that
the experimenter specifies in terms of the estimation priors on
parameters of the subjective model. A key conceptual point here
is that the parameters of the subjective model can always be
interpreted as priors; either explicitly or implicitly in terms of
the structure or form of the subjective model. This is important
because of something called the complete class theorem (L. D.
(Brown, 1981; Wald, 1947). This theorem says that for any pair of
reward functions (i.e., preferences) and choice behavior, there ex-
ist some prior beliefs that render the choices Bayes optimal. This
means that any behavior can be described, under ideal Bayesian
assumptions, given the right set of prior beliefs. It is these prior
beliefs that provide a theoretically complete characterization of
any given participant, in any given experimental paradigm.

After choosing a final set of estimation priors, and obtaining
parameter estimates for each participant, it is also important to
confirm what is called parameter recoverability (also sometimes
referred to as testing whether the model is identifiable or in-
vertible). What this means is that you need to be sure that, if
simulated behavior were generated from a model with a given set
of parameter values, that the estimation algorithm would provide
reasonably precise estimates that approach the parameter values
that generated the behavior. For example, assume a given partic-
ipant’s posterior parameter estimates were RS = 3.2 and α = 3.7
(e.g., using estimation priors of RS = 4 and α = 2). Assess-
ing recoverability would require: 1) putting the values of these
posterior parameter estimates into the task model, 2) generating
simulated behavior using those values, 3) feeding that simulated
behavior into the fitting algorithm, and 4) examining how similar
the resulting parameter estimates are to the parameter values
that you used to generate the simulated behavior in the first
place. If the algorithm returns estimates that move in the right
direction from the estimation priors and approach the values that
generated the data (e.g., RS = 3.3 and α = 3.5), then we can
be more confident that the participant’s estimates are capturing
something meaningful and reliable about their decision process.
50
The plot on the top-right of Fig. 17 illustrates a case in which
posterior estimates move from estimation priors toward the true
values (this plot can be reproduced by setting Sim = 4 when you
run the Step_by_Step_AI_Guide.m code). If the fitting algorithm
instead returned estimates that were farther away and moved in
the wrong direction from the estimation priors (e.g., RS = 4.9
and α = 1.3), this would suggest that the parameter estimates for
that participant may not be reliable (e.g., a different combination
of parameter values might reproduce their behavior equally well).

Thus, before interpreting parameter estimates in real par-
ticipants – and using them in subsequent group analyses – it
is important to confirm in simulated data that the estimates
provided by the fitting algorithm match well with (e.g., are sig-
nificantly correlated with) the parameters used to generate the
simulated behavior in the first place. This should be checked using
the combinations of parameter estimates found when fitting a
model to the true participant data in a study. For example, if
you had three participants with estimated parameter values of
[RS, α] = [2.8, 4.1] , [3.5, 6.2] , [3.8, 8.1], then these three com-
binations could be used to generate simulated behavior, and this
simulated behavior could then be fed into the fitting algorithm
to see if it returned results similar to the generative values
(e.g., if estimated values were highly correlated with those used
to generate the simulated behavior).

It is important to keep in mind, however, that the products
of Bayesian model inversion (here, parameter estimation) will,
generally speaking, never be the same as the parameters used
to generate data. This is because there is usually a simpler way
of generating any given set of data, which the model inversion
will identify. In other words, in a certain sense there are no ‘true’
parameters — only the best explanation in the sense of Occam’s
principle.

If the Sim variable is set to Sim = 5 when you run the
Step_by_Step_AI_Guide.m code, simulated behavior will be gen-
erated under several parameter values for the explore–exploit
task model and it will run correlations between the estimated pa-
rameter values and the parameter values that actually generated
the simulated behavior. In a representative example simulation,
recoverability appeared high for RS (r = .95) and α (r = .94).
In a model that also included learning rate (η), this parame-
ter appeared recoverable as well (r = .75). The bottom-middle
panel of Fig. 17 shows a scatterplot illustrating the correlation
between generative and estimated parameter values for α, which
the above-mentioned code will reproduce.

Before assessing parameter recoverability (i.e., model iden-
tifiability), however, it is important to first understand more
about the concrete steps for fitting. As mentioned above, if you
set Sim = 4 in the Step_by_Step_AI_Guide.m script, it will
generate simulated explore–exploit task behavior for a single
participant. It will feed this simulated behavior into a ‘DCM’
(for Dynamic Causal Modeling) data structure in the appropri-
ate format for model fitting. It then calls the supplementary
Estimate_parameters.m script we have provided, which takes
the DCM structure as input, runs the variational Bayes routine in
SPM12 (spm_nlsi_Newton.m), and calculates the log-likelihood
— that is, the sum of the log-probabilities of chosen actions
under the model. In our script, the DCM structure includes the
following:

DCM.MDP (generative model)
DCM.U (participant observations)
DCM.Y (participant actions)
DCM.field (specifies the parameters to be fit)
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Within the Estimate_parameters.m file, you will see locations
(starting on line 47) where the script searches for the to-be-fit pa-
rameter names. Here, you can enter the estimation priors (means
and variances) for each parameter. Note that some parameters
(e.g., learning rate) need to be between 0–1. For this reason,
they are here transformed into logit-space so that the estimation
routine does not assess values outside of that range. Similarly, pa-
rameters that can only take on positive values can be transformed
into log-space to preclude negative values. For illustration, we
have assumed that RS can only take positive values and is there-
fore log-transformed. Farther down in the script (starting on line
133), these values are re-transformed out of logit- or log-space
when they are fed into the model and output as final estimates.
Starting on line 188, the log-likelihood function loops through
each trial, takes the probability of a participant’s actions in the
model (stored in MDP.P; see Table 3), log-transforms it, and then
ums the log-probabilities. The closer this value is to 0, the better
he model fits the behavior.

When you run the Step_by_Step_AI_Guide.m script (which
alls the others automatically) with Sim = 4, a display will
lso appear (as in the top-left panel of Fig. 17) that shows how
he free energy changes over iterations. Note that these val-
es increase because they are negative and will approach 0 as
odel fit improves. If these values steadily increase, this suggests

hat fitting is converging to a reliable estimate. If they instead
luctuate up and down inconsistently, this could suggest one or
ore problems that need to be addressed before model estimates
re considered reliable (e.g., poor choice of estimation priors,
roblems with parameter values remaining in valid ranges, es-
imates getting stuck in locally [but not globally] optimal values).
failure to converge is usually read as a useful diagnostic that the
stimation priors are somehow mis-specified. In other words, if
odel inversion does not converge gracefully within a few tens of

terations, you may want to think about whether your priors are
ppropriate — or whether you are trying to fit too many param-
ters to rather sparse data. This type of model checking is crucial
o ensure that parameter estimates are valid and informative.

The estimates resulting from initially chosen prior means can
lso sometimes offer guidance in this regard. For example, if
stimates for all participants tend to move far from the chosen
rior means in the same direction, this could suggest that these
stimation priors were poorly chosen. If you initially set a prior
ean of RS = 1, for example, and then notice that estimates for
ll participants tend to move up to between 3 and 5, this could
ndicate that a prior of RS = 4 would be more appropriate (as it
ppears to be a better prior for the group as a whole) and might
elp prevent over-weighted complexity costs that could hinder
dentification of individual differences. It is worth noting that
etting data guide the way one chooses estimation priors in this
ay could be viewed as suspect under some interpretations of
ayesian statistics. However, it is also possible to view estimation
riors in variational Bayes as simply being starting values for
stimation that can be optimized (and may need to be in cases
here some starting values will lead gradient descent to get stuck

n suboptimal local minima). In some cases it may be useful to
ry multiple starting values and then examine whether posterior
stimates tend to converge toward similar results. Note also that,
lthough we do not go into detail here, there are also hierarchical
empirical Bayes’ methods that can be used to rigorously estimate
roup-level priors and then re-estimate individual-level param-
ters based on those group-level priors (Carlin & Louis, 1998;
riston et al., 2016b).
After convergence to the best estimates, the output DCM

tructure will contain additional fields. The following are relevant
o our current use:
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DCM.Ep: posterior mean estimates (i.e., expectations) for each
parameter.

DCM.Cp: posterior covariance matrix (with posterior
parameter variances on the diagonal).

DCM.F: the final free energy value of the best fit model.

The free energy values for each participant will later be used
or model comparison. The covariance values (i.e., the off-
iagonals in DCM.Cp) should be checked to make sure they

are not too high (e.g., > .8), or it would suggest they were not
independently estimated and that each estimate may not carry
unique/reliable information. This is the same kind of check you
would apply to an experimental design — to ensure explana-
tory variables are orthogonal and the model parameters can
be estimated efficiently. The bottom-left panel of Fig. 17 plots
an example co-variance matrix (which will be reproduced by
the accompanying tutorial scripts; Sim = 4, as with previous
plots).

When testing hypotheses about which of several models best
explains your data, one must fit each model and then compare
how well they each fit behavior. For Bayesian model comparison
using variational Bayes, this means comparing the free energies
at the group level. One common approach is to use a random
effects model, which can be done using the spm_BMS.m function
(available within SPM12). This function takes as input a matrix
containing the free energies for each participant for each model
(one column per model). For the details of this implementation
of Bayesian model selection, see (Rigoux, Stephan, Friston, &
Daunizeau, 2014) and Stephan, Penny, Daunizeau, Moran, and
Friston (2009). An important output of this function is the pro-
tected exceedance probability (pxp) of each model. In this case,
the model with the highest pxp has the most evidence. Often
there will be a clear winner, with pxp = 1 for a single model
and 0s for the others. In cases where there is no clear winner
(e.g., pxp = [.48 .52]), this will be important to note, as it
may reflect insufficient evidence for a ‘best’ model. If parameters
in both models are recoverable, one may wish to consider the
parameters of each model in further between-subjects analyses
(e.g., parameters in one model may have higher explanatory
value for specific theoretical questions). Another useful model-
checking step that could be informative in this case is to generate
simulated datasets from models that include different numbers of
parameters (e.g., frommodels that do vs. do not include a learning
rate) and then confirm that the correct model is identified by
model comparison (e.g., if the data were generated by a model
with only the RS and α parameters, and then several possible
models were fit to this data, one would confirm that the model
including only these two parameters was identified as having
the highest pxp). As mentioned above, setting Sim = 5 in the
Step_by_Step_AI_Guide.m script will generate/estimate behavior
for a few simulated participants for models with and without the
learning rate parameter. It will then do Bayesian model compar-
ison (this will take several minutes). This will output the pxp for
each model, as well as the model probabilities and a few other
diagnostic outputs we will not cover in detail here; for further
information, see Rigoux et al. (2014) and Stephan et al. (2009)
as well as the documentation within the spm_BMS.m function.
As one example, you could input the free energies for the 2-
parameter (F_2_params) and 3-parameter (F_3_params) models
as follows:

[alpha,exp_r,xp,pxp,bor] = spm_BMS([F_2_params F_3_
params])

If the output were pxp = [1 0], this would mean that the prob-
ability is equal to 1 that the 2-parameter model is a better fit than
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he 3-parameter model. In a representative example simulation,
he pxp = [.37 .63], weakly favoring the 3-parameter model. After
dentifying the best model, it is also important to make sure it
aptures the data well, which could be done by (for example)
alculating the average probability of participants’ choices under
he winning model or the percentage of trials where participants’
hoices were assigned the highest probability. If the winning
odel still doesn’t capture the data well, this suggests one may
eed to consider other possible models.
Once (recoverable) parameters for a winning model have been

stimated, and we have confirmed that this model captures the
ata well, one simple approach for group-level analysis would
e to analyze the posterior parameter means across participants
sing standard frequentist analyses. However, one advantage of
sing variational Bayes is that it also provides information about
osterior parameter variances for each individual (i.e., as opposed
o only the posterior means). This allows for between-subject
ayesian analyses that take the variances into account. One ap-
roach that takes the output DCM structures for each participant
s input is parametric empirical Bayes (PEB), described in detail

in Friston et al. (2016b) and Zeidman et al. (2019). PEB uses
a general linear model and effectively down-weights the con-
tribution of individual subject parameter estimates when those
estimates have larger posterior variances (i.e., those with greater
uncertainty). PEB can be run using the spm_dcm_peb.m and
spm_dcm_peb_bmc.m functions. These functions estimate and
compare group models, respectively. In short, they allow a test
of whether there is evidence for a model that does include group
differences or whether there is more evidence for a model that
does not include those differences. When including covariates
(e.g., age), it also allows comparing the evidence for or against
a relationship between parameters and those covariates. The
spm_dcm_peb_review.m function can be used to inspect the
results returned from the PEB scripts.

Example code to implement such empirical Bayesian (random
effects) analyses is also included in the accompanying MATLAB
code Step_by_Step_AI_Guide.m. The code shows examples about
with commented descriptions of) how to set up inputs to PEB. In
ur example, the code sets several parameters to default values
for more information on these, see Friston et al., 2016b; Zeidman
t al., 2019) and then inputs a matrix (M .X) for a general linear
odel, with a column for the mean, a column separating partici-
ants into two groups (here, with low vs. high learning rates), and
column with randomly generated participant age values). This
ill allow us to assess the evidence for models including effects
f group and/or age (and the strength of these effects).
To run PEB, set Sim = 5 and set PEB = 1. This may take

ome time, as it will first generate and estimate parameters for
everal (six) simulated participants before feeding them into the
EB scripts (note that the script will save the outputs of Sim = 5
o that this does not need to be repeated each time you want to
ractice using PEB). In beginning of Section 10 of the script, you
an also specify whether you want to use PEB on the 2-parameter
r 3-parameter model. When complete, some output plots and
he PEB results viewer window will appear. Example outputs are
hown in the bottom-right panel of Fig. 17). The figure legend
escribes how to interpret these outputs.
To review, we have covered several steps for model fitting,

odel checking, and subsequent analysis. These steps are as
ollows:

1. Select estimation priors, including prior means and vari-
ances.

2. Run variational Bayes on participant data for each model
under consideration.
52
a. Check that gradient descent shows smooth conver-
gence toward a free energy minimum (Fig. 17, top-
left panel). Note that this is displayed as maximiza-
tion because negative free energies are used.

3. Perform Bayesian model comparison to identify the best
model, and check that this model captures the data well
(e.g., by evaluating the percentage of trials in which it
assigns the highest probability to participants’ choices).

4. Generate simulated behavior in the best model using the
parameter values estimated in your participants, and then
run variational Bayes to estimate parameters using this
simulated behavior.

a. Confirm that posterior estimates approach the pa-
rameter values used to generate the simulated be-
havior (Fig. 17, top-right panel).

b. Confirm that posterior co-variances are not high
(Fig. 17, bottom-left panel).

c. Confirm that generative and estimated parameter
values are strongly correlated (Fig. 17, bottom-
middle panel).

5. Use PEB to run regression or group comparison analyses
on posterior means and variances at the between-subjects
level (Fig. 17, bottom-right panel).

. Concluding remarks

This concludes the tutorial. For readers seeking more hands-
n practice, we have also provided pencil-and-paper exercises
n Appendix B (as well as solutions to check your work; see
encil_and_paper_exercise_solutions.m code). In our experi-

ence, doing a few practice problems of this sort, and working
with the code, are the best way to gain useful intuitions about
the dynamics of these models and how they can be tailored
for specific studies. We note that, while we have strived to be
comprehensive, there are many new directions in active inference
(and associated functionality in the standard SPM routines) incor-
porating, for example, multi-agent interactions, deep parametric
models (e.g., 2nd-order parameters on habits, preferences, preci-
sions, etc.), and mixed models that link POMDPs to continuous
motor control processes, among others (e.g., see (Friston et al.,
2017c; Hesp et al., 2020)). We hope that working through the
materials provided here will offer a ‘launching point’ that will
provide the reader with a sufficient foundation to independently
extend their work with advances in the field as they emerge.
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Appendix A. Additional mathematical details

Introduction to the rules of probability
There are two basic rules in the mathematics of probability

that will underpin much of the material covered in this tutorial.
The first rule is called the sum rule:

p (a) = p (a, b)+ p (a,∼ b) (A.1)

Here we use the tilde (∼) symbol to indicate negation. So this
states that the probability of a being true, p (a), is equal to the
joint probability that both a and b are true, p (a, b), plus the joint
probability that a is true and b is false, p (a,∼ b). If the variable b
can take on several values (i.e., more than just true and false), then
calculating p (a) requires summing p (a, b) for each possible value
of b. Note that p (a) is often referred to as a marginal probability
in this context when calculated by summing over all the values of
another variable in a joint probability distribution. In the context
of Bayesian inference, it is also sometimes referred to as a prior
probability when used to describe beliefs about a before making
a new observation (described further below).

The second rule is called the product rule:

p(a|b)p(b) = p(a, b) = p(b|a)p(a) (A.2)

This says that the joint probability of a and b is equivalent to
the conditional probability of a given b, p (a|b), multiplied by
the probability of b, p (b). Here, the joint probably indicates the
likelihood that a and b will occur together (e.g., that it is cloudy
and that it is raining). The conditional probability indicates how
likely a is if we are told b (e.g., how likely it is to rain if we know
that it is cloudy). The marginal probability, p (b), indicates how
likely something is to occur in general (e.g., how often it is cloudy
overall).

Symmetrically, the product rule says that p (a, b) is also equiv-
alent to the conditional probability of b given a, p (b|a), multiplied
by the marginal probability of a, p (a). We can also use the
product rule to do standard algebraic manipulations. For example,
we can take p (a, b) = p(b|a)p(a) and then divide both sides by
p (a) to get the conditional probability of b given a, p (b|a):

p (b|a) =
p (a, b)
p (a)

(A.3)

We can then derive Bayes’ theorem by simply replacing
a, b in Eq. (A.3) with p(a|b)p(b), where this equivalence is
( )
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shown in Eq. (A.2):

p (b|a) =
p (a|b) p(b)

p (a)
(A.4)

In scientific practice, we can represent observational data with
the variable a and then use the variable b to represent some
theory. In this case, p(b) is referred to as the prior probability
of the theory being true before observing the data. Eq. (A.4)
then means that if we get some new data a, then we can use
Bayes’ theorem to infer whether it increases the probability that
some theory b is true. In other words, we can infer whether
the posterior probability of the theory given the data, p (b|a), is
igher than the prior probability that the theory was true before
bserving the new data, p(b). This just requires that we know how
trongly the theory predicts that new piece of data — typically
eferred to as the likelihood that the data would be observed if
he theory were true, p (a|b).

The use of Venn diagrams is often helpful for gaining intuitions
bout probabilistic inference. We illustrate this in Fig. A.1 by
howing one circle on the left that contains all situations in which
is true (solid outline) and another circle on the right contain-

ng all situations in which b is true (dashed outline). The total
rea within the surrounding rectangle corresponds to all possible
ituations. Thus, the area outside of both circles corresponds to
he situations where neither a or b is true. The set of situations
here both a and b are true corresponds to the shaded blue area

n the middle where the circles overlap. The overall probability
f a corresponds to how large the circle is for a relative to the
otal area within the surrounding rectangle (and likewise for the
verall probability of b). When we infer the posterior probability,
(b|a), we first simply remove the circle for b (i.e., imagine
rasing the dashed outline and the separate b variable, since we
now from our new data that we are in a situation where a
s true). However, we retain the blue shaded region within the
ircle for a corresponding to when a and b are both true. Then
e look at how large the proportion of the circle is for a that
orresponds to when b is also true (i.e., how large the blue shaded
rea is). If this area represents a large portion of the circle for a,
hen this means the posterior probability, p (b|a), will be high.
his proportion is what is captured by p(a,b)

p(a) (remember this is
equivalent to p(a|b)p(b)

p(a) in Bayes’ theorem; see Eq. (A.2)).
A further fact to keep in mind about the rules of probability is

that they do not change if other constants are included. For ex-
ample, the sum rule remains the same if all terms are conditioned
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Table A.1
Prior and conditional probabilities.

cloudy (p = .7) not cloudy (p = .3)

raining p (raining|cloudy)
= .6

p (raining|not cloudy)
= .01

not raining p (not raining|cloudy)
= .4

p (not raining|not cloudy)
= .99
Table A.2
Joint probabilities.

cloudy not cloudy Marginal probabilities

raining p (raining, cloudy)
= .7× .6 = .42

p (raining, not cloudy)
= .3× .01 = .003

p (raining)
= .42+ .003 = .423

not raining p (not raining, cloudy)
= .7× .4 = .28

p (not raining, not cloudy)
= .3× .99 = .297

p (not raining)
= .28+ .297 = .577
Table A.3
Posterior probabilities.

cloudy not cloudy

raining
p (cloudy|raining)
=

.42
.423 = .993

p (not cloudy|raining)
=

.003

.423 = .007

not raining
p (cloudy|not raining)
=

.28
.577 = .485

p (not cloudy|not raining)
=

.297

.577 = .515
on some other variable c:

(a|c) = p (a, b|c)+ p (a,∼ b|c) (A.5)

This also holds for the product rule:

(a, b|c) = p (a|b, c) p (b|c) (A.6)

As a numerical illustration of these rules, we will let a =
raining" and b = "cloudy" and use Table A.1 to indicate the
ollowing prior and conditional probabilities (i.e., the probability
f it raining if it is cloudy):
Note that while the values of each column sum to 1, the

alues of the rows do not, which is why the likelihood term in
ayes’ theorem is not technically considered a proper probability
istribution (i.e., if one wanted to treat it as such, the rows would
eed to be normalized so that they kept the same proportions but
id sum to 1).
To get the joint probabilities, we simply multiply each prior

y each conditional (i.e., the product rule):
In this case, all the joint probabilities sum to 1, as these four

ells (i.e., in the first and second columns) describe all possible
utcomes. As shown in the third column, summing across each
ow gives us the marginal probabilities for each possible value
f p (a) (i.e., raining vs. not raining), based on the sum rule.
hese are the values that end up ‘in the margin’ (which is why
hey are called marginal probabilities) when summing over the
robabilities under each possible value of b (i.e., cloudy vs. not
loudy).
We can then find the posterior probabilities (Table A.3) by

ividing the joint probabilities (i.e., the value in each cell within
he first and second columns of Table A.2) by the marginal prob-
bilities (i.e., the value of the associated row within the third
olumn in Table A.2):
This tells us, for example, that if you look out your window

nd see that it is raining, then you can confidently infer that it is
loudy.
A final rule that will be useful to know for this tutorial pertains

o logarithmic (log) transformations. Specifically, log transfor-
ations of probabilities allow multiplication and division to be
xpressed in terms of addition and subtraction (respectively). For
xample, using the natural logarithm (ln), the product rule can be
54
expressed as follows:

ln p (a, b) = ln p (b|a)+ ln p (a) (A.7)

ln p (b|a) = ln p (a, b)− ln p (a) (A.8)

Performing these transformations is often beneficial in prac-
tice because it simplifies the necessary computations and can
prevent the need to work with very small probabilities (which can
happen when many probabilities must be multiplied together in
complex real-world problems). Log-probabilities can also be eas-
ily converted back into standard probabilities by exponentiating
them. That is, eln p(a) = p (a), where e ≈ 2.71828 (often called
Euler’s number).

This concludes our brief introduction to the rules of proba-
bility. Many derivations in this tutorial work primarily based on
using these rules in combination with algebraic manipulation.

Introduction to Variational Inference
The typical goal of Bayesian inference is to find the poste-

rior distribution p (s|o) – that is, to infer how the states of the
world (s) have changed based on new observations (o). How-
ever, this requires one to calculate the marginal likelihood p (o),
which often involves intractable sums (or integrals in the case of
states/observations with continuous values). The key idea behind
variational inference is to convert this inference problem into
an optimization problem. To do so, instead of evaluating the
marginal likelihood, we optimize an auxiliary distribution q (s)
(sometimes called the recognition distribution, or variational pos-
terior) to approximate the true posterior p (s|o). This is done by
using the KL divergence as a measure of the relative difference (in
the information-theoretic unit nats – the natural log equivalent of
bits) between the two distributions:

DKL(q (s) ∥ p (s|o)) =
∑
s

q (s) ln
q (s)
p (s|o)

(A.9)

The KL divergence sums over the states of the two distribu-
tions so the output is always greater than or equal to zero. When
the recognition distribution and the true posterior match, the KL
divergence is zero (i.e., when q(s) = p(s|o),DKL(q(s) ∥ p(s|o)) = 0).
Although, as we do not know the true posterior distribution, this
sum also cannot be evaluated. Crucially, however, working from
the definition of conditional probabilities, p s|o = p(o,s) , we can
( ) p(o)
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ntroduce a quantity that can be evaluated directly (noting that
1
x/

1
y =

y
x ):

DKL(q (s) ∥ p (s|o)) =
∑
s

q (s) ln
q (s)
p(o,s)
p(o)

(A.10)

=

∑
s

q (s) ln
q (s) p (o)
p (o, s)

(L2)

=

∑
s

q (s) ln
q (s)

p (o, s)
+ ln(p (o)) (L3)

Eq. (A.10) substitutes the alternate definition of the posterior
distribution into Eq. (A.9). With some minor rearrangement, we
see that the KL divergence between our approximate posterior
and the true posterior is now equal to the KL divergence between
our approximate posterior and p (o, s) – which can be viewed as
a generative model of how states of the world generate observa-
tions – plus the log probability of observations (i.e., the log of the
marginal likelihood). This is the critical move. Because we are free
to specify the generative model, and q (s) is the variable we seek
to optimize (and can thus be initially set to an arbitrary value;
see below), we have access to both the quantities we need to
compute the KL divergence. We now introduce a new quantity,
variational free energy (VFE), denoted F , and define it in terms
f this KL divergence: F :=

∑
s q (s) ln

q(s)
p(o,s) . The value of the

pproximate posterior q (s) that minimizes VFE will then be the
q (s) that best approximates the true posterior distribution.

DKL(q (s) ∥ p (s|o)) = F + ln(p (o)) (A.11)

Equation A.11 rewrites line 3 of Eq. (A.10), but substitutes in
FE as an explicit variable. From this vantage point, we see that
hen VFE is minimized the KL divergence between the approxi-
ate posterior and the true posterior is also minimized, meaning

hat the approximate posterior is close to the true posterior.
ence, minimizing VFE allows a tractable means of performing
pproximate Bayesian inference. One way to do this is using
radient descent. That is, one can start q(s) at an arbitrary value
nd then test neighboring values to find the one that reduces VFE
ost. Then one can move to that value, search neighboring values
gain (etc.), and repeat this process until a value for q(s) is found
or which no neighboring values further reduce VFE.

xpected Free Energy
Active inference reverses the usual logic of action selection.

nstead of asking ‘which sequence of actions will bring about my
referred outcomes?’, it formally asks, ‘given the assumption that
will achieve my preferred outcomes, what course of action am
most likely to pursue?’ (Millidge, Tschantz, & Buckley, 2021).
ithin active inference, the answer to this question is the policy
π ; i.e., action sequence) that best minimizes a quantity termed
xpected free energy (EFE). Here we show the most common
ecompositions of EFE that appear in the active inference liter-
ture and describe the workings and the intuition behind each
ecomposition. EFE is defined in terms of the expected difference
etween the log of the generative model p (o, s|π) and the log
f the approximate posterior given a choice of policy q (s|π).
q. (A.12) shows the decomposition of the EFE of each policy (Gπ )

into terms often referred to as epistemic and pragmatic value (in-
tuitively, expected information gain and reward probability under
each policy, respectively). It also shows another common decom-
position into terms referred to as risk and ambiguity (similarly
corresponding to expected reward and uncertainty minimization
under each policy). Note below that, because EFE is calculated
with respect to expected outcomes that (by definition) have not
yet occurred, observations enter the expectation operator E as
q

55
random variables.

Gπ = Eq(o,s|π )[ln q (s|π)− ln p (o, s|π)] (A.12)

= Eq(o,s|π )[ln q (s|π)− ln p (s|o, π)] − Eq(o|π )[ln p (o|π)] (L2)

≈ Eq(o,s|π )[ln q (s|π)− ln q (s|o, π)] − Eq(o|π )[ln p (o|C)] (L3)

= −Eq(o,s|π )[ln q (s|o, π)− ln q(s|π )] − Eq(o|π )[ln p (o|C)] (L4)

= Eq(o,s|π )[ln q (o|π)− ln q (o|s, π)] − Eq(o|π ) [ln p (o|C)] (L5)

= DKL(q (o|π) ∥ p (o|C))+ Eq(s|π) [H [p (o|s)]] (L6)

The second line uses the product rule of probability, p (o, s|π)
= p (s|o, π) p (o|π), to rearrange EFE into the epistemic and
pragmatic value terms described in the main text. In the third
line, the dependence on policies is dropped from the pragmatic
value term so that it can be used to encode preferences (i.e., this
is a key move in active inference). Note that, in most papers
on active inference, this is simply written as Eq(o|π )[ln p (o)];
however, to clearly distinguish this from the ln p (o) term within
VFE (i.e., where o is an observed variable), we write the pragmatic
value term here as explicitly conditioned on a preference variable
C (Parr et al., 2022). Line 3 also replaces the true posterior
(ln p (s|o, π)) with an approximate posterior (ln q (s|o, π)). Line
4 offers a clearer intuition for epistemic value by flipping the
terms inside the first expectation so that it becomes prefixed
with a negative sign (i.e., p(x)[ln p(x)− ln q(x)] = −p(x)[ln q (x)−
ln p (x)]). Because the epistemic value term is now subtracted
from the total, it is clear that, to minimize EFE overall, an agent
must maximize the value of this term by selecting policies that
take it into states that maximize the difference between ln q (s|o, π
and ln q (s|π). In other words, the agent is driven to seek out ob-
servations that reduce uncertainty about hidden states (i.e., max-
imize the change from prior to posterior beliefs after a new
observation). For example, if you are in a dark room, then the
mapping between hidden states and observations is entirely
ambiguous. The best way to minimize uncertainty is to turn a
light on.

Moving from the expression in line 3, line 5 uses Bayes rule
in the denominator q(s|π)

q(s|o,π) =
q(s|π)q(o|π)
p(o|s,π)q(s|π) =

q(o|π)
p(o|s,π) to express

the same epistemic imperative, but with the conditional proba-
bilities flipped. Note here that, although algebraically q (s|o, π) =
q(o|s,π)q(s|π)

q(o|π) , in this case q (o|s, π) and p (o|s, π) refer to the same
distribution. The epistemic value terms in lines 3, 4, and 5 are
formally equivalent since they each express the mutual infor-
mation between hidden states and observations. First noting
that H[p (x)] denotes the entropy of a distribution p (x), where
H[p (x)] = −

∑
x p (x) ln p (x) = −Ep(x)[ln p (x)], mutual infor-

mation can be written as I (x, y) = H [p (x)] − H [p (x|y)] =
H [p (y)] − H [p (y|x)]. This quantity I (x, y) is symmetric and
scores the reduction in uncertainty (entropy) about the value of
a variable x afforded by knowledge of another variable y. If two
variables are independent, mutual information is zero. Finally,
line 6 expresses EFE in the form shown in the main text as risk
plus ambiguity. The first term, risk, is the KL divergence between
the observations expected under a policy and prior preferences.
The second term, ambiguity, scores the uncertainty in the like-
lihood mapping between states and observations. Minimizing
EFE thus requires agents to select policies that minimize the
difference between expected observations and preferred observa-
tions (e.g., seeking warmth when it is cold, maximizing reward,
etc.) and to take actions that reduce uncertainty (i.e., ambigu-
ity) about the mapping between hidden states and observations
(i.e., another way of expressing the drive to maximize information

gain). The work to move between the fifth and the sixth line is
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omewhat convoluted, so Eq. (A.13) shows it step by step:

π =

∑
o,s

p (o|s) q (s|π) (ln
q (o|π)
p (o|s, π)

)

−

∑
o,s

p (o|s) q (s|π) ln p (o|C) (A.13)

=

∑
o,s

p (o|s) q (s|π) (ln
q (o|π)

p (o|C) p (o|s, π)
) (L2)

=

∑
o,s

q (o, s|π) (ln
q (o|π)
p (o|C)

)

−

∑
s

q (s|π)
∑
o

p (o|s) ln p (o|s, π) (L3)

=

∑
o

q (o|π) (ln
q (o|π)
p (o|C)

)−
∑
s

q (s|π)
∑
o

p (o|s) ln p (o|s)

(L4)

=

∑
o

q (o|π) (ln
q (o|π)
p (o|C)

)+
∑
s

q (s|π)H[p (o|s)] (L5)

= DKL(q (o|π) ∥ p (o|C))+ Eq(s|π)[H[p (o|s)]] (L6)

Line 1 of Eq. (A.13) rewrites line 5 of Eq. (A.12), but makes the
summations implied by the expectation operators explicit. Line
2 moves p(o|C) back into the same expectation. Line 3 expresses
the expectation in the first term in terms of an approximate joint
distribution p (o|s) q (s|π) = q (o, s|π), and in the second term
separates out p (o|s, π). In the first term of line 4 we evaluate the
summation over states in the joint distribution

∑
o,s q (o, s|π) =

o q (o|π), leaving the fraction inside the log untouched as it
oes not depend on states. In the second term of line 4 we
rop the dependency on policies since the likelihood mapping is
onstant across choices of policy. In line 5 this then allows us to
xpress −

∑
o p (o|s) ln p (o|s) in terms of entropy H[p (o|s)], and

ewrite
∑

o q(o|π )ln
q(o|π)
p(o|C) in terms of the KL divergence (defined

in the main text) between prior preferences and observations
expected under each policy DKL(q(o|π ) ∥ p (o|C)). Finally, because
entropy is a negative quantity, we swap the sign between the two
terms, leaving us with the canonical form of EFE as risk plus ambi-
guity in line 6 – where lower risk indicates a higher probability of
preferred outcomes under a policy and lower ambiguity indicates
more precise (informative) observations expected under a policy.

It is important to highlight here that generative models in
active inference also maintain confidence estimates for the model
parameters themselves, via a form of distribution called a Dirich-
let distribution that encodes priors over these parameters (see
main text for an introduction to this type of distribution). Dirich-
let distributions contain what are called concentration parame-
ters, where higher concentration parameter values indicate lower
uncertainty in the parameters of each distribution. The above
expressions of EFE assume that the concentration parameters
are saturated (i.e., that they are maximally precise), and hence
that there is no uncertainty. However, when there is uncertainty
in parameters (as is the case for real organisms), agents must
also learn the values for those parameters via the selection of
appropriate policies. This means that parameter uncertainty now
enters the equation for EFE. For example, Eq. (A.14) shows the
form of EFE when the parameters of the likelihood p (o|s) must
be learned. Note that this likelihood is termed the A matrix in
active inference models (see Table 1).

Gπ = Eq[ln q (s,A|π)− ln p (o, s,A|π)] (A.14)
= Eq [ln q (s|π)+ ln q (A)− ln p (A|s, o, π)
− ln p s|o, π − ln p o|π ] (L2)
( ) ( )
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≈ Eq [ln q (s|π)+ ln q (A)− ln q (A|s, o, π)
− ln q (s|o, π)− ln p (o|π)] (L3)
= Eq [ln q (s|π)+ ln q (A)− ln q (A|s, o, π)
− ln q (s|o, π)]− Eq[ln p (o|C)] (L4)
= Eq [ln q (s|π)− ln q (s|o, π)]+ Eq [ln q (A)
− ln q (A|s, o, π)]− Eq [ln p (o|C)] (L5)
= −Eq [ln q (s|o, π)− ln q (s|π)]− Eq[ln q (A|s, o, π)
− ln q (A)] − Eq[ln p (o|C)] (L6)

Here q = q (o, s,A|π). Line 1 shows the form of EFE when A is
treated as a random variable. Line 2 breaks the approximate pos-
terior and generative model into separate terms using the product
rule of probability p (o, s,A|π) = p (A|s, o, π) p (s|o, π) p (o|π).
It also uses the mean-field approximation – which assumes that
the approximate posterior factorizes into the product of indepen-
dent marginal distributions – to express the approximate joint
distribution as q (s,A|π) = q (s|π) q (A). Line 3 approximates line
two, replacing the exact posteriors p (A|s, o, π) and p (s|o, π)with
approximate posteriors q (A|s, o, π) and q (s|o, π). Line 4 takes
pragmatic value Eq[ln p (o|π)] out of the first expectation term
and then (as above) conditions on the preference variable C in-
tead of π ; i.e., Eq[ln p (o|C)]. Line 5 breaks the first expectation in
line 4 into two quantities. The first, Eq [ln q (s|π)− ln q (s|o, π)])
is the epistemic value term that we saw in the previous ex-
pression of EFE without uncertainty in the parameters. As we
ow have two types of epistemic value, to distinguish them we
all the first salience and the second novelty. Salience scores the
eduction of uncertainty about states afforded by observations
driving ‘state exploration’ behavior), while novelty Eq[ln q (A)−
n q (A|s, o, π)] scores the reduction in uncertainty about param-
ters of the generative model afforded by states and observations
driving ‘parameter exploration’ behavior; see (Schwartenbeck
t al., 2019). As with line 4 in Eq. (A.12), line 6 here flips the terms
nside the first and second expectation to make the salience and
ovelty terms negative (i.e., such that maximizing these terms
rings their value closer to zero). This makes it clearer why
aximizing the difference between prior and posterior beliefs –
ere about both states and parameters – will minimize EFE. The
arameters of the model are the sufficient statistics of Dirichlet
istributions, which, in the case of learning A, essentially count
he number of times a particular categorical state is inferred when
particular outcome is observed (proportional to the posterior
robability over each state). Like the epistemic value term in the
revious expression of EFE, to minimize EFE here agents must
aximize both salience and novelty by seeking out observations

hat (1) reduce uncertainty about hidden states, and/or (2) reduce
ncertainty about parameters. The reduction of uncertainty of the
arameters via the maximization of novelty encourages agents
o explore novel parts of the state space that are less familiar
i.e., states that have low concentration parameters).

he Softmax Function
The softmax (or normalized exponential) function, denoted by

, takes a vector x of length k and normalizes the vector such that
he elements (1) have a monotonic relationship with the elements
f the input vector, and (2) sum to 1 and can thus be treated
s a categorical probability distribution over 1 to k mutually ex-
lusive states. Importantly, the vector is weighted by a precision
arameter denoted by γ , which controls the extent to which
ifferences between the elements are amplified or dampened by
he exponential.

(x) =
eγ xi∑
k eγ xk

(A.15)
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or example, for x = [1 2 3 4]T, when γ = 1, σ (x) =
0.0321 0.0871 0.2369 0.6439]T.
hen γ = 0.1, σ (x) = [0.2138 0.2363 0.2612 0.2887]T.
hen γ = 2, σ (x) = [0.0021 0.0158 0.1171 0.8650]T.

he Gamma Function
The gamma function (denoted by Γ ) is a generalization of the

actorial function that, unlike the factorial function (whose do-
ain is restricted to positive integers), is well defined for complex
nd real valued (i.e., non-integer) inputs (except for the negative
ntegers). For positive, real-valued, and complex numbers, the
amma function is defined by the following definite integral.

(z) =
∫
∞

0
xz−1e−xdx (A.16)

For the positive integers, the gamma function reduces to the
actorial function (i.e., n! = n × (n− 1) × (n− 2) × (n− 3) ×
· · × 3 × 2× 1) but is shifted by 1.

(n) = (n− 1)! (A.17)

(2) = (2–1)! = 1× 1 = 1 (L2)

(3) = (3–1)! = 2× 1 = 2 (L3)

(4) = (4–1)! = 3× 2× 1 = 6 (L4)

To gain an intuition for how the gamma function relates
o the factorial function, we will use integration by parts (i.e.,
a
b f (x) g ′ (x) dx = [f (x) g (x)]ab −

∫ a
b f ′ (x) g (x) dx) to show that

(n+ 1) = (n)!.

(z + 1) =
∫
∞

0
xze−xdx = [−xze−x]∞0

+

∫
∞

0
zxz−1e−xdx (A.18)

= lim
x→∞

(−xze−x)−
(
−0e−0

)
+ z

∫
∞

0
xz−1e−xdx (L2)

Because e−x grows faster than xz , the first term is sent to zero
eaving us with the following.

(z + 1) = z
∫
∞

0
xz−1e−xdx (A.19)

= zΓ (z) (L2)

If we plug in some examples, we see immediately that this is
quivalent to the factorial function.

(2+ 1) = 2Γ (2) = 2 (2− 1)! = 2 = 2! (A.20)

(3+ 1) = 3Γ (3) = 3 (3− 1)! = 6 = 3! (L2)

(4+ 1) = 4Γ (4) = 4 (4− 1)! = 24 = 4! (L3)

In the context of the Dirichlet distribution, the gamma func-
ion is used to define a normalization constant that accounts
or the combinatorics of the concentration parameters, which
re positive real-valued numbers (i.e., they can take non-integer
alues), most of which are not defined when using the factorial
unction, which is why the gamma function is employed. We
an think of the gamma function as interpolating between the
alues of the factorial function (i.e., because it is defined with
espect to non-negative real numbers, while the factorial function
s only defined with respect to the non-negative integers). In
ther words, when the factorial function and gamma function are
iven the same inputs, they produce consistent outputs (shifted
y one), but the gamma function outputs values between the

nteger outputs given by the factorial function.
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Appendix B. Pencil and paper exercises

The purpose of this supplementary section is to provide a set
of exercises that can be worked through using pencil and paper,
with the aim of building an intuition for how active inference
models operate. The first exercise is a simple example of static
perception. The second example extends this by modeling how
states (and the observations they generate) change across time,
which is an example of a hidden Markov model (HMM). HMMs
are the perceptual component of partially observable Markov
decision processes (POMDPs). We have not included an example
of policy selection, as performing the calculations for even two
policies involves too many computations to reasonably expect
readers to perform them by hand.

To help the reader build a conceptual bridge between the up-
date equations and their implementation in code, we have also in-
cluded MATLAB code (Pencil_and_paper_exercise_solutions.m)
that has solutions to each of the exercises shown below. Finally,
readers should note that, to ensure that the exercises can be
solved by hand, we have excluded a key aspect of active inference
models as they are usually implemented. Namely, instead of
inferring the posterior over hidden states using gradient descent,
we use only a single round of marginal message passing. For
readers seeking to understand how message passing and policy
selection operate in the model inversion procedure implemented
in spm_MDP_VB_X.m, please see the stand-alone MATLAB script
Simplified_simulation_script.m that is also provided, which is a
stripped down, but thoroughly commented, version of the model
inversion scheme used in spm_MDP_VB_X.m.

xercises

tatic Perception
For this first example we will keep things as simple as possible.

xample 1

pdate Equation

= σ (lnD+ lnATo)

enerative Model and Observation

=

[
.5
.5

]
;A =

[
.9 .3
.1 .7

]
; o =

[
1
0

]

Model Inversion

s = σ
(
ln

[
.5
.5

]
+ ln

[
.9 .1
.3 .7

][
1
0

])
= σ

(
ln

[
.5
.5

]
+ ln

[
.9
.3

])
= σ

(
ln

[
.5× .9
.5× .3

])
= σ

(
ln

[
.45
.15

])
=

[
eln(.45)

eln(.45)+eln(.15)
eln(.15)

eln(.45)+eln(.15)

]
=

[
.45

.45+.15
.15

.45+.15

]
=

[
.75
.25

]
Exercise 1

Based on the update equation in Example 1 and the observa-
tion listed below, invert the following generative model:

D =
[
.75
.25

]
;A =

[
.8 .2
.2 .8

]
; o =

[
1
0

]
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ynamic Perception

In the second example below we move from a static en-
ironment to a dynamic one in which hidden states, and the
bservations generated by these states, change across time. In
ddition to including a B matrix that encodes the transition
robabilities, we must initialize the approximate posteriors for
ach tau (τ ) before starting model inversion (recall, tau references
time about which one has beliefs, not a time at which one
pdates beliefs with a new observation). It is also important
o note that, because the log of zero is not defined, the model
nversion procedure implemented in the code adds a very small
umber (e−16 = 0.00000011253) to all inputs which turns the
og of zero into the log of a very small number. Since we expect
eaders to be able to do this exercise by hand, we approximate
his by adding 0.01 to the input of all logs.

xample 2

pdate Equations

sτ=1 = σ
(
1
2

(
lnD+ lnB†

τ sτ+1
)
+ lnAToτ

)
s1<τ<T = σ

(
1
2

(
lnBτ−1sτ−1 + lnB†

τ sτ+1
)
+ lnAToτ

)
sτ=T = σ

(
1
2
(lnBτ−1sτ−1)+ lnAToτ

)
*Recall that B† denotes the transpose of B with normalized

olumns (i.e., columns that sum to 1). Also note that because the
xample below only includes 2 time points, only the first and
hird equations will apply.

enerative Model and Observations

=

[
.75
.25

]
;A =

[
.8 .2
.2 .8

]
;B =

[
0 1
1 0

]
;

τ=1 =

[
1
0

]
; oτ=2 =

[
0
1

]

nitialize Approximate Posteriors

τ=1 =

[
.5
.5

]
; sτ=2 =

[
.5
.5

]

odel Inversion: Time Step 1

τ=1 = σ

(
1
2
ln

[
.75
.25

]
+

1
2
ln

[
0 1
1 0

][
.5
.5

]
+ ln

[
.8 .2
.2 .8

][
1
0

])
= σ

([
−.1372
−.6735

]
+

[
−.3367
−.3367

]
+

[
−.2107
−1.5606

])
= σ

([
−.6846
−2.5709

])
=

[
.8683
.1317

]
τ=2 = σ

(
1
2
ln

[
0 1
1 0

][
.8683
.1317

]
+ ln

[
.8 .2
.2 .8

][
0
0

])
= σ

([
−.9771
−.0649

]
+

[
−4.6052
−4.6052

])
= σ

([
−5.5823

])

−4.6700

58
=

[
.2865
.7135

]

Model Inversion: Time Step 2

sτ=1 = σ
(
1
2
ln

[
.75
.25

]
+

1
2
ln

[
0 1
1 0

][
.2865
.7135

]
+ ln

[
.8 .2
.2 .8

][
1
0

])
= σ

([
−.1372
−.6735

]
+

[
−.1619
−.6078

]
+

[
−.2107
−1.5606

])
= σ

([
−.5098
−2.8420

])
=

[
.9115
.0885

]

sτ=2 = σ
(
1
2
ln

[
0 1
1 0

][
.9115
.0885

]
+ ln

[
.8 .2
.2 .8

][
0
1

])
= σ

([
−1.1589
−.0409

]
+

[
−1.5606
−0.2107

])
= σ

([
−2.7195
−0.2516

])
=

[
.0781
.9219

]
Exercise 2

Using the equations presented in Example 2, and the obser-
vations listed below, invert the following generative model. Note
again that because this example only includes 2 timepoints, only
the first and third equations will apply.

D =
[
.5
.5

]
;A =

[
.9 .1
.1 .9

]
;B =

[
1 0
0 1

]
;

oτ=1 =
[

1
0

]
; oτ=2 =

[
1
0

]

Answers

Answer: Exercise 1

s = σ
(
ln

[
.75
.25

]
+ ln

[
.8 .2
.2 .8

][
1
0

])
= σ

(
ln

[
.75
.25

]
+ ln

[
.8
.2

])
= σ

(
ln

[
.75× .8
.25× .2

])
= σ

(
ln

[
.6
.05

])
=

[
eln(.6)

eln(.6)+eln(.05)
eln(.05)

eln(.6)+eln(.05)

]
=

[
.6

.6+.05
.05

.6+.05

]
=

[
.9231
.0769

]
Answer: Exercise 2

Model Inversion: Time Step 1

sτ=1 = σ
(
1
2
ln

[
.5
.5

]
+

1
2
ln

[
1 0
0 1

][
.5
.5

]
+ ln

[
.9 .1
.1 .9

][
1
0

])
= σ

([
−.3367

]
+

[
−.3367

]
+

[
−.0943

])

−.3367 −.3367 −2.2073
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s

M

s

s

A

o

R

A

B

B

B

C

C

C

C

C

C

D

D

D

D

d

F

F

F

F

F

F

F

H

H

= σ

([
−.7677
−2.8806

])
=

[
.8922
.1078

]

τ=2 = σ

(
1
2
ln

[
1 0
0 1

][
.8922
.1078

]
+ ln

[
.9 .1
.1 .9

][
0
0

])
= σ

([
−0.0515
−1.0692

]
+

[
−4.6052
−4.6052

])
= σ

([
−4.6567
−5.6744

])
=

[
.7345
.2655

]

odel Inversion: Time Step 2

τ=1 = σ

(
1
2
ln

[
.5
.5

]
+

1
2
ln

[
1 0
0 1

][
.7345
.2655

]
+ ln

[
.9 .1
.1 .9

][
1
0

])
= σ

([
−.3367
−.3367

]
+

[
−.1475
−.6446

]
+

[
−.0943
−2.2073

])
= σ

([
−.5785
−3.1886

])
=

[
.9315
.0685

]

τ=2 = σ

(
1
2
ln

[
1 0
0 1

][
.9315
.0685

]
+ ln

[
.9 .1
.1 .9

][
1
0

])
= σ

([
−0.0301
−1.2724

]
+

[
−0.943
−2.2073

])
= σ

([
−0.1244
−3.4797

])
=

[
.9663
.0337

]
ppendix C. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.jmp.2021.102632.
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