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ADA: an open-source software platform for plotting and analysis of data from 
laboratory photobioreactors
Lydia J. Mapstone a, Henry N. Taunt a, Jing Cui a, Saul Purton a and Tom G. R. Brooks b

aAlgal Research Group, Department of Structural and Molecular Biology, University College London, London, UK; bUnited Kingdom of Great 
Britain and Northern Ireland

ABSTRACT
Algal biotechnology has received significant attention over the past two decades in fields ranging 
from biofuels to cosmeceuticals. However, the development of domesticated or genetically 
engineered microalgal strains for commercial applications depends on accurate and reliable 
growth data. To this end, several companies have developed lab-scale photobioreactors (PBRs) 
that enable precision control of conditions and automated growth recording. Whilst the transition 
from manual control of conditions and measurements to automated systems has allowed research
ers to greatly improve the accuracy and scope of cultivation experiments, it has also presented 
novel challenges. The most pertinent of these being the analysis of the copious quantities of data 
produced. A standard PBR experiment can contain tens or even hundreds of thousands of data 
points, and often features outliers, noise, and a requirement for datasets to be calibrated with 
a standard curve or merged with replicates. Furthermore, complex analysis of multiple curves may 
be required in order to extract information such as the gradient or fit to a growth model. This can 
be laborious, time consuming and is not standardized between research groups. Proprietary 
software provided with most PBRs tends to lack these more advanced features and is typically 
unable to process data from other PBR manufacturers. To address these issues, we have developed 
the Algal Data Analyser (ADA), an open-source software platform providing the tools to rapidly plot 
and analyse microalgal data. ADA can simultaneously interpret datasets from three major PBR 
suppliers (Algenuity, Industrial Plankton, Photon Systems Instruments), and can also incorporate 
data from manual readings. Users can rapidly produce standardized, publication ready plots, and 
analyse multiple growth curves in parallel. Future iterations of ADA will include compatibility with 
datasets from other PBR suppliers as they become available, with the aim of making it a universal 
platform for all PBR data.
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1. Introduction

The past two decades have seen significant interest in 
the industrial application of microalgae (i.e., unicellular 
eukaryotic algae and cyanobacteria) as part of the grow
ing bioeconomy (Fabris et al. 2020; Castiglia, Landi, & 
Esposito, 2021). These photosynthetic microorganisms 
offer the potential for rapid, low-cost and sustainable 
production of a wide range of natural and recombinant 
compounds using simple inputs of light, CO2 and basic 
nutrients, but without the requirement for arable land. 
Microalgae encompass hundreds of thousands of spe
cies spread across the Tree of Life, and are adapted to 
growth in almost all habitats on the planet (Guiry, 2012; 
Malavasi, Soru, & Cao, 2020). Microalgae therefore 
represent a rich, but largely untapped resource of nat
ural compounds with potential as bioactives, pigments, 
polymers, and commodity biochemicals (Abu-Ghosh, 
Dubinsky, Verdelho, & Iluz, 2021; Balasubramaniam, 

Gunasegavan, Mustar, Lee, & Mohd Noh, 2021; 
Madadi, Maljaee, Serafim, & Ventura, 2021). 
Moreover, recent advances in genetic engineering tech
nologies combined with ever-increasing ‘omics data 
now open the door to designer strains engineered for 
light-driven synthesis of a myriad of commercially 
important recombinant proteins or novel metabolites 
(Fabris et al. 2020; Liu et al., 2021).

Algal biotechnology studies have been conducted at 
all levels of the value chain, ranging from high-volume, 
low-value products such as biofuels and feed/food 
ingredients (Khan, Shin, & Kim, 2018), through speci
ality compounds such as oleochemicals and isoprenoids 
(Sebesta & Peebles, 2020; Veetil, Angermayr, & 
Hellingwerf, 2017) and nutraceuticals (Kratzer & 
Murkovic, 2021), all the way to low-volume, high- 
value products such as recombinant therapeutic 
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proteins, which have been successfully expressed in 
Chlamydomonas reinhardtii and other algal platforms 
(Dyo & Purton, 2018; Rosales-Mendoza et al., 2020). 
Despite the orders-of-magnitude differences in the bio
mass volumes needed for different products, a common 
feature is the requirement for detailed knowledge of the 
growth parameters for each chosen algal strain. For 
large volume systems, cultivation will typically involve 
growth outdoors using open ponds or extensive tubular 
photobioreactors (PBRs) (Borowitzka, 1999) so it is 
essential to know how a culture will respond to daily 
and seasonal environmental changes. Small volume 
platforms will routinely involve indoor cultivation 
using high precision PBRs that are fitted with artificial 
illumination and capable of very tight control over 
growth parameters (Kirnev, Carvalho, Vandenberghe, 
Karp, & Soccol, 2020). Here, detailed data is required 
to understand how growth performance and product 
yield can be optimized in the bioreactor in order to 
maximize productivity.

Traditionally, laboratory studies of microalgal 
growth parameters have been conducted using conven
tional systems such as shake flasks in orbital incubators, 
magnetically stirred reactors, bubble columns, and 
scaled down 96-well plate systems (Fields, Ostrand, & 
Mayfield, 2018). Although effective for many types of 
experiment such as novel strain identification and basic 
optimization of culture conditions (Pereira et al., 2011; 
Zhao et al., 2018), these manual cultivation platforms 
lack the programmable features needed to model com
plex environmental conditions, or the resolution and 
accuracy of data to precisely fine-tune industrial pro
cesses (Daneshvar et al., 2021). As a result, researchers 
are increasingly moving towards automated and pro
grammable PBR systems. These can take the form of 
benchtop or small pilot-scale reactors where culture 
conditions can be modelled on real-world data, or can 
be data collection modules that are attached to active 
production platforms. In either case, output readings 
such as data on optical density of the culture, tempera
ture, pH, dissolved oxygen, lighting and fluorescence are 
taken automatically, sometimes as often as every 10 sec. 
Compared to manual measurements which might be 
taken every few hours, this represents a massive 
improvement in resolution of data, but also presents 
a challenge for the analysis of such data which can 
conceivably reach into the hundreds of thousands of 
discrete data points.

With such large datasets even traditionally straight- 
forward processes like plotting the data on a graph 
become difficult; standard consumer software packages 
such as Microsoft Excel can struggle when dealing with 
so much data leading to instability and crashes. More 

complex processes such as noise reduction and statisti
cal analysis are also not normally available on such 
programs. Specialist software such as R and Matlab are 
specifically designed to deal with large amounts of data 
so perform much better. However, this is typically at the 
cost of a user-friendly experience resulting in a steep 
learning curve. Even for users proficient in such lan
guages, statistical analysis such as fitting data to models 
often requires highly specific data analysis scripts to be 
written for each experiment. This takes considerable 
time, and this frequently results in analytical differences 
between (and even within) research groups.

Commercial PBRs are normally shipped with pro
prietary software for controlling growth conditions and 
experimental parameters, as well as real-time data visua
lization and analysis. Such software is typically limited 
in scope and is only compatible with data from the PBR 
in question. The closed, proprietary nature of such 
packages also prevents the addition of further features 
and prohibits the direct cross-platform comparison of 
data.

Here we present a novel, free, and open-source soft
ware application designed to simplify and standardize 
the processing and analysis of microalgal growth data 
produced from PBRs. The Algal Data Analyser (ADA) 
software is compatible with data formats from several 
commercially available PBRs, as well as manually col
lected data, and is easily extendable to new formats. The 
software combines the ease-of-use of consumer- 
orientated products, with the computational and statis
tical power of dedicated packages, all while maintaining 
an algal focus.

In the following section we detail the design and 
development of the software, and in section 3 we illus
trate the usage and applications of ADA.

2. Software design and development

2.1. ADA implementation

ADA was developed with the Python programming 
language, chosen for its high-quality scientific 
packages, wide adoption and ease of use for future 
extensions by new collaborators. The Graphical User 
Interface (GUI) components were created using the 
PyQt package, which provides bindings to the Qt 
toolkit allowing for cross-platform support with no 
extra configuration. The data processing and analysis 
tools were developed using the NumPy array proces
sing package (Harris et al., 2020) and the SciPy 
scientific computing package (Virtanen et al., 2020). 
The Matplotlib plotting library (Hunter, 2007) was 
used for data visualization.
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ADA can be installed as a desktop application, 
with installers provided for Mac OS 10.12–10.15 
and Windows 10 so that no knowledge of program
ming is required for general users. For operating 
systems (OS) that do not have an installer available, 
it is also possible to run ADA directly from the 
source code, available on GitHub (Brooks, 2021). 
Python is an interpreted language so there is no OS 
specific compilation process, and a convenience 
script is provided so that the application can be 
run with only the Python3 interpreter and the pip 
package manager needing to be pre-installed. This 
also allows users with some programming experience 
to easily modify and extend the software.

2.2. Application design

ADA is designed around a PBR independent data object 
consisting of Optical Density (OD) time series measure
ments and additional metadata (Fig 1a). This object can 
be used to store any number of measurements (Yi) 
against time (t) as well as any associated events (e.g., 
adding nutrients to the media at a given time) and is 
used to hold both OD and growth condition data. The 
sampling rates of OD and growth condition measure
ments are often different, and so separate objects are 
used and associated with each other via the metadata. 

A growth data container is used to store multiple curves 
along with any replicate measurements, and an equiva
lent container is used to store the corresponding condi
tion measurements. A data manager stores the data 
containers along with an optional calibration curve 
and implements the data processing functions that can 
be applied to the growth curves.

Modular file parsing functions are used to convert 
from common human readable PBR data formats to the 
data objects and correctly insert them into the contain
ers. When the file formats allow for multiple curves with 
replicates, these are automatically combined in the load
ing process. For some PBRs the condition data is saved 
separately from the growth data and so a custom load 
interface was developed which requests the specific file 
structure based on the PBR. The file parsing code was 
designed so that it is simple to add support for new 
formats without having to make modifications to the 
core application.

A global configuration object specifies the data pro
cessing tools to be applied to the growth curves along 
with various style options for the main plot. The con
figuration object is modified through user inputs in the 
GUI. The configured tools are then applied to the data 
objects to produce growth curve plots (Fig 1b). Several 
analysis tools are then available for either individual 
analysis of growth curves or batch processing.

Figure 1. (a) The data storage and management structure used in ADA. A data manager holds growth and condition data containers 
which can each hold any number of growth curves and associated replicate measurements, all stored as data objects (example within 
dashed box for one growth curve). The data manager also stores an optional calibration curve and controls the data processing. (b) 
The data processing flow used in ADA for a single growth curve and corresponding condition data with three replicates. The three 
lines represent the replicate data sets which are combined into one curve in the averaging step. Each step is optional and 
customizable, but the order is strictly preserved. The result of the data processing is initially plotted so that any issues can be 
identified and then analysis tools can be applied to the displayed data.
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2.3. Data processing tools

The data processing tools configured through the GUI are 
used to prepare the growth data for producing plots or 
batch-processing the data by applying transformations, 
reducing statistical noise and removing outliers in the 
data from systematic errors in the PBRs. If a calibration/ 
standard curve is provided (i.e., a mapping of OD to 
calibrated optical density (CD)), the calibration is applied 
by taking the measured OD and interpolating between 
the two closest data points in the standard curve to find 
the corresponding CD. If the OD is below or above the 
range of the standard curve, a one-degree polynomial fit 
of the first or last two standard curve points is used to 
estimate the CD.

Measurement and PBR calibration errors can result in 
the misalignment of multiple growth curves in terms of 
time and/or OD. These offsets can be corrected by shift
ing all of the readings by t0i ¼ ti � t0 where t0 is the first 
time point in the growth curve and OD0i ¼ ODi � OD0 þ

ODstart where ODstart is the user defined starting OD. 
Comparisons of growth rates at different phases are facili
tated by the ability to align different curves in time at 
specific OD readings, X, by shifting the time points 
by t0i ¼ ti � tOD¼X.

The next step in the pipeline is the removal of outliers 
from erroneous PRB readings which can affect noise 
filtering and model fitting. An algorithm was developed 
for the automatic removal of measurement errors that 
are seen as large spikes in the data. The mean difference 
between data points is calculated as 

D ¼
PN� 1

i¼0 jODi � ODiþ1j

N � 1 

where N is the total number of data points. A point is 
removed if the difference from the previous data point is 
greater than X · D, where X is a threshold multiplier with 
a default value of 20 that can be modified by the user. It is 
also possible to remove any points in unphysical regions, 
such as OD < 0, by specifying minimum and maximum 
OD values.

It is also possible to reduce the statistical noise in the 
data by applying a Savitsky-Golay filter (Savitzky & 
Golay, 1964). This filter works by fitting an N degree 
polynomial to a given time window around each data 
point and then replacing the data point with the fit 
result at that time. The default values for the degree of 
the polynomial and size of the time window in ADA 
have been shown to work well on microalgal growth 
data, but they are also configurable in the application.

When replicate measurements are added, the data are 
averaged and the resultant means and standard deviations 
are calculated for each time point. If the sampling rate or 
time offset differs between replicates, the time points of 
the first curve are used and the equivalent replicate points 
are obtained by interpolating the replicate data at that 
time. It is also possible to average both the growth and 
condition data over a given time window for single and 
replicate measurements. In this case, both the mean time 
and Y reading are calculated along with the standard 
deviation of the Y readings in each window.

After calibration, statistical and systematic uncertainty 
reduction, and averaging, it is also possible to transform 
the OD readings to lnðOD=OD0Þ in order to visually 
compare the exponential growth phase of different curves. 
In the case where the data have been averaged, the stan
dard deviations are transformed by σ0OD ¼ σOD=OD.

2.4. Data analysis tools

There are a number of data analysis tools that can be 
applied to either the raw or processed data to extract 
growth model parameters. An interactive cursor tool 
allows users to inspect the exact (ti, Yi) coordinates 
and measure gradients, m, along the growth curves as 
m ¼ Y1 � Y0ð Þ= t1 � t0ð Þ. The cursor can also be used to 
display annotated data events on the curves.

Growth models can be fitted to the curves using the 
SciPy curve_fit (Virtanen et al., 2020) function. The cur
rently supported growth models are:

● Linear: OD ¼ p1 � t þ p0
● Quadratic: OD ¼ p2 � t2 þ p1 � t þ p0
● Exponential: OD ¼ p0 � exp p1 � tð Þ

● Zwietering, Jongenburger, Rombouts, & Van’t Riet 
(1990): OD ¼ OD0 þ

A� OD0
1þexp 4�μ=Að Þ� λ� tð Þþ2ð Þ

, where 
OD0 is the starting absorbance, A is the biomass 
yield, μ is the maximum growth rate and λ is the lag 
time.

A generic growth model object is used to interface with 
the data manager which makes it trivial to add new 
models as they are needed.

The growth parameters extracted from fits can be 
used to identify correlations with changes in growth 
conditions. When multiple curves are loaded with 
their corresponding varied condition data, the user can 
select the fit parameter and condition to study, as well as 
the time range over which to perform the fit. The para
meters will be calculated for each curve along with the 
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average of the condition measurements over the same 
range. The Pearson correlation coefficient between the 
parameter, X, and the condition, Y, is then calculated as 

ρ ¼
covðX;YÞ

σX � σY 

where cov X;Yð Þ is the covariance between X and Y, 
and the σX=Y are the standard deviations of X and Y.

3. Usage and applications of ADA

3.1. The user interface

The ADA user interface is separated into several tabs for 
ease of access to various configuration options without 
crowding the window with information. The first win
dow shown to the user is the “Plotting” tab (Fig 2). This 
is where data is uploaded, plotted and saved. This win
dow also contains tools for conducting data analysis. 
The user can then begin editing the raw plot by switch
ing to the tabs at the top labelled “Axis”, “Data”, 
“Legend”, “Style”, “Stats” and “Advanced”.

ADA’s functionality can be split into two compo
nents, data processing and data analysis. The data pro
cessing tools enable the user to rapidly plot the raw 
output from the PBR and create graphs to a high stan
dard ready for publication. The data analysis tools can 
be used to extract quantitative information from the 
growth curve/s loaded into the software. The following 
sections showcase the processing and analysis functions.

3.2. Displaying data with ADA

3.2.1. Loading data
Currently ADA can support data from commercial 
PBRs produced by Algenuity, Industrial Plankton 
and Photon System Instruments. Each of these data
sets can be uploaded separately, or in parallel if the 
user wants to show growth curves from different 
PBRs on the same graph. Alternatively, if the user 
has growth data which was recorded manually using 
a laboratory spectrophotometer, they can download 
a template Comma Separated Variable (CSV) file 
directly from ADA and use spreadsheet software to 
input the readings before uploading them to ADA. 
This template also allows the user to add additional 
growth condition data such as light intensity, pH, 
etc., which can then be uploaded to ADA to produce 
a plot consistent with the other PBR growth curves. 
The Algem Pro and Algem HT24 PBRs produced by 
Algenuity contain separate files for OD readings and 
condition data. These can be uploaded into ADA 
separately or simultaneously. Data from the PBRs 
made by Industrial Plankton and Photon System 
Instruments is assimilated into single CSV and 
OpenDocument Spreadsheet Document (ODS) files, 
respectively. When these files are loaded to ADA the 
user can quickly separate out the optical density data 
from the condition data if they wish to produce plots 
showing only one of these datasets. Datasets from 
different PBRs can be uploaded and displayed 
together on the same plot for comparison.

Figure 2. ADA’s main window used for uploading datasets, plotting and saving graphs with additional tools for analysis.

20 L. J. MAPSTONE ET AL.



3.2.2. Loading standard curves for data calibration
An issue of using OD as a measurement of growth in 
PBRs is the non-linearity of readings based on light 
scattering as algal cultures reach high cell densities. 
Here, almost all of the actinic light used for measure
ment in the spectrophotometer can be blocked by the 
sample resulting in marginal increases in OD values as 
the density increases further. Consequently, a culture 
in late exponential phase of growth might give an 
OD750 reading of 4.0, but a subsequent doubling of 
the cell density might give a new reading of 4.2, rather 
than the expected value of 8.0 as illustrated in Fig 3a. 
Some PBRs combat this by enabling the user to set up 
a standard curve; during the first growth experiment 
the user takes samples and either takes note of the cell 
count or dilutes the culture and records the reading on 

a laboratory spectrophotometer. These can then be 
recorded next to the OD reading from the PBR spec
trophotometer and therefore allow adjustment of the 
OD to the actual culture density.

If the user has however conducted growth experi
ments without previously setting up a standard curve, 
or the first standard curve they produced was not accu
rate, or the PBR does not have a capacity to compute 
a standard curve, the growth data will be unreliable 
when the microalgal culture reaches the late exponential 
or stationary growth phase. ADA makes it possible for 
the user to retrospectively add a standard curve to the 
loaded data to address this potential problem (Fig 3). 
ADA will accept a .CSV file which contains one column 
for the cells/mL and the next column containing the 
associated OD reading from the PBR.

Figure 3. Standard curves can be produced by the user and loaded into ADA. (a) an example of a standard curve table which can be 
uploaded into ADA and has been plotted. (b) An example of raw OD data (left) and the same data when it has been calibrated with the 
standard curve (right).

Figure 4. Steps the user can take to clean noisy data. (a) PBR data can occasionally contain outliers. (b) Outliers can be removed by 
selecting ADA’s automatic removal function (in this example) or manually setting a range. (c) Data can also be smoothed by using the 
Savitzky–Golay smoothing filter.
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3.2.3. Cleaning data
PBR data can often contain outliers due to a lack of 
homogeneity in a cell culture or a technical glitch 
during recording of a data point (Fig 4a). The for
mer is a particular problem with filamentous or 
colonial species of microalgae, but can also arise 
due to cell clumping within cultures or stochastic 
variations in the degree of cell settlement (if mixing 
of the culture is paused when taking a reading). The 
user can either apply the “auto-remove outliers” 
algorithm (Section 2.3) or specify the OD range 
where they know outliers will fall (Fig 4b). To 
reduce the statistical noise in datasets the user can 
apply the Savitzsky–Golay smoothing filter (Savitzky 
& Golay, 1964), also described in Section 2.3 
(Fig 4c).

3.2.4. Loading replicate datasets
Manually combining replicate data can be time consum
ing and error prone. ADA allows the user to rapidly 
combine data set replicates either from PBRs designed 
to take replicates (such as Algenuity’s Algem HT24) or 
from separate runs of individual reactors. ADA uses 
standard deviation as the default for showing variation 
between the datasets, and the user can switch to show 
standard error of the mean. The user can choose to 

display the variation between replicates in two ways: 
either by continually shading the area around the 
mean (Fig 5a), or by using error bars.

3.2.5. Condition data
One of the primary goals of automated PBRs is to 
investigate growth under carefully controlled abiotic 
conditions, such as light intensity, temperature and 
pH. Therefore, the output of PBRs often 
contains readings of the set conditions during each 
run. Whatever the condition data variable, the PBR 
records can be loaded onto the Y2 axis, which will 
appear in a drop-down menu allowing the user to 
rapidly produce plots for each parameter as illustrated 
in Fig 5b. In cases where the condition data is noisy (e.g., 
pH or temperature readings), the user can specify a time 
window over which to average the condition data. For 
example, if 10 is selected, ADA will take the average of 
the condition readings every ten hours and display the 
mean with standard deviation error bars (Fig 5b).

3.2.6. Axes configuration
Plot and axis titles and unit labels are set automatically 
from the input files but can be changed by the user with 
full support of special characters using LaTeX com
mands. In circumstances where the user wants to plot 

Figure 5. Examples of data processing features in ADA applied to microalgal growth data. (a) Replicates can be merged and variation 
between datasets shown as standard deviation (as in this example) or standard error. (b) Example of how axes can be altered; a condition 
(Y2) axis can be added with the data averaged over specified time points and the growth axis can be converted to a log scale. (c) X and 
Y axis can be rapidly changed at the beginning of runs for situations where the PBR software has malfunctioned. In this example the OD 
was adjusted to start at 0 for each growth curve. (d) The style of each plot can be altered. In this example the colour-blind palette was 
used with the user then changing one line to aqua using a “dashed-dot” line style with a larger font displayed for the labels.
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a specific section of the growth curve, they enter the 
value range of interest for that particular axis. It can also 
be helpful to identify the exponential phase in micro
algal growth experiments. To do this the user can apply 
a logarithmic scale to the OD data, and the linear region 
will correspond to this phase (Fig 5b).

In some cases, PBR software can mis-align growth 
plots, either showing parallel growth curves starting at 
different times, or curves with different starting ODs as 
a result of measuring errors from starting cultures that 
are very dilute. ADA allows the user to quickly rectify 
these mis-alignments by selecting to either align the 
X (time) axis to 0 or choosing a unit on the Y (growth) 
axis which was the known starting OD for each of the 
reactors (Fig 5c). Finally, the X axis units can be quickly 
changed to show seconds, minutes, hours or days.

3.2.7. Final changes to plot style
Legends for the growth (OD) and condition axis are 
configured in the Legends window. Some PBR files 
include extra information such as the date, reactor 
name and the specified growth conditions (profile) to 
each dataset. This can be chosen to be part of the legend 
by selecting which information is required from a drop- 
down menu by the user. All components of the plot style 

(legend/title fonts, text size, line colour, line style and 
grid overlay) are readily customizable, enabling produc
tion of publication standard graphs (Fig 5d).

3.3. ADA’s data analysis tools

3.3.1. Analysis of individual growth curves
ADA allows the user to fit individual growth curves 
between two user-specified time points using the various 
growth models described in Section 2.4. Starting predic
tions and upper and lower bounds for the model para
meters can be specified by the user to improve the 
performance of the fits. The fit result will be overlaid on 
the growth curve plot and the fitted parameters can be 
displayed on the plot with their corresponding uncertain
ties. When replicates are used the standard deviations 
between measurements are included in the fit to improve 
the parameter estimation.

In addition to the standard mathematical functions 
(linear, quadratic and exponential), the user can choose 
to fit the logarithmic Zweitering model to their data 
(Zwietering et al., 1990). This is a standard model used 
to compare microbial growth in batch cultures and con
siders the entire sigmoidal curve to calculate growth rate 
and predict biomass. Cultures of the unicellular 

Figure 6. Examples of data analysis possible with ADA. (a) Data can be fitted to line or growth models. Here, the Zweitering growth 
model (Zwietering et al., 1990) for Synechocystis sp PCC 6803 is fitted to an averaged triplicate growth curve and the fit parameters 
displayed. (b) Gradients can be measured by the user on individual growth curves. (c) Example dataset analysed to produce Table 1. 
(d) Example of a correlation plot, showing the maximum growth rate calculated from the Zweitering model against temperature, 
demonstrating a strong correlation of increased growth rate to increased temperature for Arthrospira platensis.
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cyanobacterium Synechocystis sp. PCC 6803 were found 
have a good fit to the Zweitering model (Fig 6a). The 
authors have also recorded good fits from growth curves 
of the unicellular green algae Chlorella sorokiniana and 
Chlamydomonas reinhardtii, and the filamentous cyano
bacterium Arthrospira platensis, demonstrating ADA’s 
applicability to modelling a wide variety of microalgal 
species (Supplementary materials, page 12).

Individual growth curves can also be annotated to 
display the gradient between two time points. This 
draws a line between the points chosen on the curve, 
with the gradient indicated on the plot (Fig 6b).

3.3.2. Taking readings from multiple growth datasets
ADA can perform batch processing and analysis of 
multiple plotted growth curves by producing a table 
displaying multiple measurements (Table 1, Fig 6c) 
which can be exported as a .CSV file. The fields available 
for batch processing are:

(1) The reactor name.
(2) Growth profile title.
(3) The time for a sample to reach to a user specified 

OD.
(4) The average of a condition variable (e.g., pH) 

between two user-specified time points.
(5) The exact value of condition data at a user- 

specified time point.
(6) The fitted parameters and associated uncertain

ties of a growth model between two user- 
specified time points.

3.3.3. Creating correlation plots
To determine whether a condition variable is influencing 
microalgal growth, it is helpful to examine whether 
a correlation exists between them. Once the user has 
determined the best model to fit to their growth datasets, 
they can use this model to determine the effect of 
a condition variable which has been changed across mul
tiple runs. For example, if the Zweitering model has been 
shown to fit well, the user can choose to then plot one of 
the parameters of the model (such as the maximum 
growth rate, µ) against the variable of interest (such as 

temperature). The Pearson correlation coefficient can 
then be calculated and displayed to identify potential 
effects the variable might have on growth (Fig. 6d).

3.4. Using ADA in microalgal research

The overall aim of ADA is to make analysis of the large 
datasets produced in these PBR systems rapid and uni
form. To date, there is no open-source software which 
can plot and analyse microalgal growth data to achieve 
these aims. Rapid analysis is currently difficult to 
achieve because some PBRs do not contain any plotting 
software, relying on the user to analyse plots using 
spreadsheet software. This requires significant data 
manipulation each time a run is conducted to display 
plots, and features such as reducing noise, adjusting 
starting OD and fitting models take a significant length 
of time to implement. Although some PBRs do come 
with plotting software, new users need to learn it each 
time and the software may not come with all the features 
available in ADA, such as producing correlation plots. 
In situations where multiple PBRs have been used – for 
example if a researcher has gone from using a small- 
scale Algem system to the larger Industrial Plankton 
PBRs – using uniform plots for publication allows read
ers to compare the presented results. Currently, uniform 
analysis comparison between PBRs is difficult as each 
system displays the raw data differently, relying on the 
user to manually standardize the dataset if they want to 
display the same style plot or make comparisons 
between systems. ADA allows users to quickly make 
plots of the same style using different PBR data and, if 
required, plot the same growth curve from each PBR 
onto the same graph.

There are other commercially available lab-scale PBR 
systems which are not yet compatible with ADA. These 
include the systems produced by Phenometrics, 
Xanthella and Infors. In addition, handmade PBRs 
with data capture capabilities have been developed in 
many algal groups (e.g., Díaz, Inostroza, & Acién 
Fernández, 2019; Khichi, Rohith, Gehlot, Dutta, & 
Ghosh, 2019) and there is an ongoing effort to develop 

Table 1. ADA generated table displaying information specified by the user for graph shown in Fig 3c.
File 1 2 3 4

Profile Flashing 60 Hz-50DC Flashing 60 Hz-25DC Flashing 60 Hz-10DC Constant Light
Reactor 13134A 14486B 14486A 12982A
Gradient of CD at between 0.2 and 0.6 0.019 0.015 0.007 None
Gradient of OD at between 0.4 and 0.6 0.023 0.029 0.016 0.017
Time (h) to OD of 0.6 33 29.5 41.5 36.5
Average temperature between 25 and 75 h 30.16 29.91 29.95 35.72
Average total light between 100 and 150 h 4900 4900 4900 4900
Zweitering fit of OD between 0 and 175 h,  

parameter: maximum growth rate (µ)
0.029 0.019 0.008 0.003
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specialist PBR systems as part of regenerative life sup
port systems for human space exploration (Fahrion, 
Mastroleo, Dussap, & Leys, 2021). If example datasets 
for these systems are provided to the authors, compat
ibility can be easily built into later ADA versions. 
Features of ADA can also be expanded by request, and 
such requests should be submitted via the ADA GitHub 
page (Brooks, 2021).

4. Conclusions

Automated lab-scale PBRs are proving to be critical for 
characterizing new microalgal strains and optimizing 
their cultivation for both basic research and industrial 
applications. Various PBR systems are commercially 
available – from small-scale analytical systems to large- 
scale production systems – and more are in development. 
Standardizing the method of presenting and analysing 
outputs from PBRs will enable the microalgal community 
to reach their findings and share new information more 
quickly, as well as lowering the barriers to entry for those 
new to the field. ADA is a free and open-source software 
package which will enable this standardization, allowing 
users to easily master data analysis and produce publica
tion-ready plots from multiple PBRs. New versions of 
this software can be produced to provide support for new 
PBR data formats and add new processing and analysis 
tools when requested by researchers. Details on how to 
download ADA, together with tutorials on using the 
software, can be found in the supplementary materials.
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