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ABSTRACT

We present a novel method for identifying candidate high-redshift quasars (HzQs; (z & 5.5)) —which are unique probes of super-
massive black hole growth in the early Universe— from large-area optical and infrared photometric surveys. Using Gaussian mixture
models (GMMs) to construct likelihoods and incorporate informed priors based on population statistics, our method uses a Bayesian
framework to assign posterior probabilities that differentiate between HzQs and contaminating sources. We additionally include deep
radio data to obtain informed priors. Using existing HzQ data in the literature, we set a posterior threshold that accepts ∼90% of
known HzQs while rejecting > 99% of contaminants such as dwarf stars or lower redshift galaxies. Running the probability selection
on test samples of simulated HzQs and contaminants, we find that the efficacy of the probability method is higher than traditional
colour cuts, decreasing the fraction of accepted contaminants by 86% while retaining a similar fraction of HzQs. As a test, we apply
our method to the Pan-STARRS Data Release 1 (PS1) source catalogue within the HETDEX Spring field area on the sky, covering
400 sq. deg. and coinciding with deep radio data from the LOFAR Two-metre Sky Survey Data Release 1 (LoTSS DR1). From an
initial sample of ∼5 × 105 sources in PS1, our selection shortlists 251 candidate HzQs, which are further reduced to 63 after visual
inspection. Shallow spectroscopic follow-up of 13 high-probability HzQs resulted in the confirmation of a previously undiscovered
quasar at z = 5.66 with photometric colours i − z = 1.4, lying outside the typically probed regions when selecting HzQs based on
colours. This discovery demonstrates the efficacy of our probabilistic HzQ selection method in selecting more complete HzQ samples,
which holds promise when employed on large existing and upcoming photometric data sets.
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1. Introduction

Studying large statistical samples of high-redshift quasars
(HzQs) is essential for understanding the formation and evolu-
tion of super-massive black holes (SMBHs) in the early Uni-
verse. The presence of Gunn-Peterson (GP) troughs (Gunn &
Peterson 1965) in the spectra of HzQs at z ∼ 6, which are
caused by near-complete absorption of Lyα photons by the in-
creasingly neutral intergalactic medium (IGM) along the line of
sight, make them crucial probes of cosmic reionisation (EoR;
Fan 2006; Becker et al. 2015). These GP troughs can in turn be
used to photometrically identify large samples of HzQs, and the
proliferation of wide-area multi-band photometric surveys at op-
tical wavelengths, such as the Sloan Digital Sky Survey (SDSS;
Abazajian et al. 2003) and the Panoramic Survey Telescope and
Rapid Response System surveys (Pan-STARRS; Chambers et al.
2016), has enabled the discovery of statistically significant sam-
ples of bright quasars at high redshifts, with now over 500 con-
firmed HzQs at z > 5 (see Ross & Cross 2020, for a compila-
tion).

For HzQs at z ∼ 6, towards the end of the EoR, the GP
trough falls between the i- and z-band filters. Therefore, in the
context of the SDSS and Pan-STARRS surveys (carried out us-
ing the u, g, r, i, z, and y filters), quasars at z ∼ 6 may be identi-
fied through pin-pointing ‘i-dropout’ sources, that show extreme
i−z colours. Searches for HzQs using photometric dropout tech-

niques over large areas of the sky often employ linear cuts in
magnitude and colours (e.g. Bañados et al. 2015, 2016). For ex-
ample, a colour cut of i− z > 1.5 to 2.5 is typically implemented
in addition to magnitude cuts to ensure a balance between the se-
lection of robustly detected HzQs and the exclusion of as many
contaminating foreground sources as possible, which are often
M-, L-, and T-type brown dwarf stars in the Milky Way (Fan
et al. 2001; Willott et al. 2005; Bañados et al. 2016; Jiang et al.
2016).

A radio detection can considerably aid in removing fore-
ground contaminants such as dwarf stars that do not emit per-
sistent radio continuum emission at the sensitivity of current ob-
servations (e.g. Burningham et al. 2016), as around 10% of HzQs
are seen to be ‘radio-loud’ (radio loudness being defined as the
ratio between rest frame radio and optical flux density) even out
to high redshifts (e.g. Bañados et al. 2015). However, overlap-
ping deep radio data are often not available for the large sky ar-
eas covered by optical surveys from which candidate HzQs are
selected. Deep radio continuum surveys of large sky areas, such
as the Low-Frequency Array (LOFAR) Two Metre Sky Survey
(LoTSS; Shimwell et al. 2019), can therefore potentially provide
valuable additional information that could help improve HzQ se-
lection and minimise the probability of contaminants.

While selection based on optical and infrared colours from
large-area surveys has been highly successful in identifying
some of the most distant HzQs currently known (e.g. Fan et al.
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2001; Willott et al. 2010; Bañados et al. 2016; Matsuoka et al.
2016, 2018; Pipien et al. 2018; Reed et al. 2019), the use of linear
cuts may lead to potential biases in the samples of HzQ candi-
dates. A binary cut in colour and magnitude may inevitably lead
to a loss of promising HzQ candidates. Additionally, Mortlock
et al. (2012) argued that linear cuts result in uniform grouping
of high-S/N candidates with more marginal ones that lie near
the edges of the selection region, possibly making spectroscopic
follow-up harder to prioritise. Finally, HzQs lying close to the
limits of the redshift ranges probed by colour selections may be
missed due to the GP trough not being fully sampled by the rele-
vant broadband filters used for dropout selection. For example, at
redshifts of z ∼ 5.5, the i-dropout selection may result in certain
sources being missed, possibly presenting a gap in our under-
standing of SMBH evolution and/or the later stages of cosmic
reionisation (Yang et al. 2017).

Additionally, binary selection criteria are often unable to
properly account for the observational uncertainties in the ob-
served properties for either individual sources or the popula-
tion of sources being targeted. To overcome these limitations
specifically in the case of identifying HzQs, a probabilistic se-
lection as opposed to a binary selection may represent a better
way to both obtain more complete samples of HzQs and assign
higher probabilities for spectroscopic follow-up to more promis-
ing candidates. Bovy et al. (2011) introduced an implementation
of Gaussian mixture modelling (GMM) that assumes and then
deconvolves a model of the underlying population of sources
from data, leading to a robust estimate of probability distribution
of sources such as HzQs even from noisy measurements. Such
an approach has been successfully employed to assign proba-
bilities and better select low- and intermediate-redshift quasar
candidates from SDSS data (e.g. Bovy et al. 2011, but see also
Bailer-Jones et al. 2008; Richards et al. 2009).

Further complexities can be introduced in these models to
improve the probability assignment, for example by also tak-
ing into account the respective prior probabilities of the different
contaminants – particularly dwarf stars in the Galaxy – based
on their spatial distribution and number densities on the sky.
Such an approach was implemented by Mortlock et al. (2012)
for HzQs where prior information about populations that exhibit
HzQ-like colours was used to assign a contamination (and as a
result HzQ) probability and reduce the number of contaminants,
leading to the discovery of a quasar at z = 7.1 (Mortlock et al.
2011). However, the initial selection of HzQ candidates in the
probabilistic approach of Mortlock et al. (2012) still relied on
linear colour cuts, and could potentially suffer from the same
incompleteness issues as faced by other colour-based HzQ se-
lections.

Therefore, there remains room for improvement in proba-
bilistic HzQ selection methods, namely by more accurately con-
straining the luminosity and sky distributions of possible con-
taminants to obtain more complete samples of HzQs. In this
work, we build upon the probabilistic approach of selecting
HzQs based on posterior probability estimation using informed
priors and likelihood estimation utilising GMMs. We also we
make use of deep radio observations of the HETDEX spring
field taken as part of the LoTSS first data release (LoTSS DR1;
Shimwell et al. 2017), using radio detection as an additional
prior to minimise foreground contamination. With the combina-
tion of multi-wavelength data and a probabilistic approach, we
aim to develop a selection technique capable of uncovering more
complete samples of HzQs from large-area surveys while min-
imising the number of contaminating sources present in them.

This paper is organised as follows. In Section 2 we describe
the data sets that are used, and our HzQ selection method is de-
scribed Section 3. In Section 4 we apply our selection method
to the data sets, obtaining probabilistically selected HzQ can-
didates. In Section 5 we present spectroscopic follow-up for a
handful of identified high-priority HzQ candidates, and report
the discovery of a previously undiscovered quasar at z ∼ 5.7. In
Section 6, we discuss the performance of our selection method,
application to incoming large sky survey data sets, and the possi-
ble implications of the discovery of P144+50. Finally, in Section
7 we summarise the findings of this study.

Throughout the paper, we assume a Planck 2015 cosmology
(Planck Collaboration 2015), with H0 = 67.8 km s−1 Mpc−1,
ΩM = 0.308, and ΩΛ = 0.692. All magnitudes are given in the
AB system (Oke & Gunn 1983) unless otherwise stated.

2. Data

2.1. Pan-STARRS

The primary data set used to identify HzQ candidates in this
study is Pan-STARRS Data Release 1 (PS1). The PS1 survey
covers 3π steradian of the sky, including the entire northern
hemisphere (Chambers et al. 2016), reaching 5σ depths of 23.3,
23.2, 23.1, 22.3, and 21.3 AB in the g, r, i, z, and y optical filters,
respectively.

We first retrieve a sample of sources from the PS1 data
archive1, and although no colour cuts are made for the initial se-
lection, a number of other criteria are applied to reduce the full
PS1 sample down to the appropriate parameter space and more
manageable numbers. As we are primarily interested in HzQs,
we require a nondetection in the g and r filters while requiring
a robust detection in the i, z, and y filters. The nondetections are
attributed to magnitudes fainter than the 5σ limiting magnitudes
in the photometric filters published by the PS1 team, or values
of −999 as this value is the magnitude assigned in case of a non-
detection in a particular band.

As a proof of concept, we also restrict our analysis to the
sky area corresponding to the HETDEX Spring field, which is
advantageously covered by deep radio data at 150 MHz from
LoTSS DR1 (see Section 2.2). The selection criteria for obtain-
ing an initial sample from the PS1 catalogue can be summarised
as follows:

160◦ < R.A. < 232◦

42◦ < Dec. < 62◦

rP1 > 23.2 OR rP1 = −999
gP1 > 23.2 OR gP1 = −999
iP1 > 0, zP1 > 0, yP1 > 0.

Furthermore, objects with flags from the PS1 processing pipeline
indicating poor or low-quality detections are excluded to remove
sources that have poor photometric data, following Table 6 of
Bañados et al. (2014). From these criteria, a sample of ∼5 × 105

sources with complete photometric data is retrieved.

2.2. Radio data

The radio data used in this study are taken from LoTSS DR1
(Shimwell et al. 2017), which is a low-frequency radio con-
tinuum survey covering over 424 sq.deg of the northern hemi-
sphere that reaches a median sensitivity of 71µJy beam−1. Con-
sequently, radio sources that are considered are based on the 5σ
1 https://panstarrs.stsci.edu
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LoTSS DR1 catalogues and have a flux density of at least 350
µJy. Full details about the data reduction, processing, final im-
ages, and source catalogue creation are presented in Shimwell
et al. (2019), with robust optical cross identifications presented
in Williams et al. (2019) and accompanying photometric red-
shifts in Duncan et al. (2019). We additionally make use of early
LOFAR ‘deep-fields’ data in the Boötes field (Williams et al.
2018), which coincides with the HETDEX Spring field sky area.

Visual inspection of the radio and optical images of initial
HzQ candidate samples drawn from PS1 demonstrated that dusty
red galaxies at intermediate redshifts (0 . z . 3) represented an
additional potential contaminant population that could also emit
significant radio continuum emission. The Boötes deep field data
from Williams et al. (2018) therefore acts as a primary reference
for those sources where the high-quality optical data enable ro-
bust photometric redshifts.

2.3. Ancillary data

Several other data sets are utilised for training, testing, or val-
idation of the GMM algorithms implemented in this work, or
in accurate construction of priors. As a validation sample for
HzQs, we use the sample of confirmed HzQs compiled by Baña-
dos et al. (2016) containing all z > 5.6 quasars known up to
March 2016.

As a reference data set for dwarf stars in the Milky Way, we
use a catalogue of brown dwarfs observed in PanSTARRS by
Best et al. (2017). From the same work we use data on the mean
absolute magnitudes of different dwarf types in PS1, which are
also used for constructing their sky densities.

3. High-redshift quasar selection

Having outlined the data sets used to implement our new HzQ
selection, in this section we describe the ingredients that go into
the construction and implementation of our GMM-based HzQ
selection method.

Our HzQ selection method builds upon probabilistic selec-
tion of HzQs using a Bayesian framework presented by Mortlock
et al. (2012), which does not rely on binary colour–magnitude
cuts and incorporates additional prior knowledge about quasars
and other contaminants to predict the likelihood of a source se-
lected from a large area survey being a HzQ. For HzQs at z & 5.6,
therefore, a flexible algorithm can be constructed that can com-
pute the probability for any given source based on its iP1, zP1,
and yP1 magnitudes.

We begin by first defining the posterior distributions for the
classes of objects that are likely to occupy the photometric pa-
rameter spaces typically occupied by HzQs. We recall that the
posterior probability of a source being part of any particular pop-
ulation can be calculated using Bayes’ theorem:

P(Ck |X) =
P(Ck)L(X|Ck)∑N
i=1 P(Ci)P(X|Ci)

, (1)

where P(Ck) is the prior probability of an object belonging to
class k, and L(X|Ck) is the likelihood of the given source being
part of class k, normalised over all N possible classes and their
associated probabilities.

In reality, when considering the measurements of astronom-
ical objects, additional factors related to both the distribution of
sources on the sky and the survey limitations must be accounted
for when deriving probability estimates. More generally, consid-
ering these additional factors and the features f = { f1, f2, ..., fn}

of a source that differentiate it from other sources in the data, the
prior probability of sources belonging to class k with parameters
θk is calculated as:

P(Ck |f, det) =

∫
ρ(θk)P(det|θk,Ck)dθk , (2)

where ρ(θk) is the sky density, and P(det|θk,Ck) is the probability
that the source is detected in the survey.

For sources detected in a flux-limited survey, the parame-
ters θk most relevant to the probability are the magnitudes of
the source classes in different filters, described by mk. In this
case the features, f, would describe the observed magnitudes
of a given source in different filters, m̂. Therefore, to calculate
the prior we marginalise over the relevant magnitude space. The
prior is then combined with the likelihood in the ‘weighted evi-
dence’ term, describing the evidence that the source in question
belongs to a given class:

Wk(m̂, det) =

∫
ρ(mk)P(det|mk,Ck)L(m̂|mk,Ck)dmk , (3)

where L(m̂|mk,Ck) is the likelihood of the features of a source
belonging to an object of class k. With this, Eq. 1 can be rewritten
as

P(Ck |m̂, det) =
Wk(m̂, det)∑N
i=1 Wi(m̂, det)

. (4)

Having rewritten the equation to calculate the posterior probabil-
ity of any given class of objects detected in a survey in terms of
its apparent magnitude, below we describe the classes of sources
that we consider in our search for complete samples of HzQs.

3.1. Source classes

Successful implementation of our HzQ selection method re-
quires the proper identification of all classes of sources that are
relevant and overlap with the HzQ parameter spaces. As a result,
not every class of astrophysical source needs to be considered,
which may also be considered as setting the prior of non-relevant
source classes to zero. The relevant classes consist of the target
HzQ population and a set of contaminating populations occupy-
ing the same feature space. Therefore, we identify three relevant
populations: HzQs, dwarf stars within the Milky Way, and dusty
intermediate-redshift galaxies with red observed-frame optical
colours. To model these populations we require data with PS1
magnitudes for each.

As mentioned above, we use the Galactic brown dwarf stars
catalogue from Best et al. (2017) containing photometry of
dwarf stars, and the deep multi-wavelength galaxy catalogues
in the Boötes field from Williams et al. (2018) containing pho-
tometric measurements for dusty intermediate-redshift galaxies.
Both catalogues contain ∼104 sources, which is sufficient to
model the colour space reliably without being biased by scatter
in individual sources.

However, the same is not true for the catalogue contain-
ing approximately 200 confirmed HzQs. Therefore, to model
the distribution of the quasar population in the colour spaces
probed, we simulate the rest-frame UV spectral energy distri-
butions (SEDs) for a population of quasars using a distribution
of power laws, α ∼ N(1.30, 0.38), following the distribution pre-
sented by Cristiani et al. (2016). These power-law SEDs are then
combined with emission lines using the SDSS quasar template
from Vanden Berk et al. (2001).
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To then simulate a population of high-redshift quasars, each
simulated quasar spectrum (continuum + emission lines) is red-
shifted. The redshift is drawn from the the redshift distribu-
tion following the co-moving luminosity functions as defined
in Mortlock et al. (2012), Eq. (13), in the redshift range of
5.6 < z < 6.5. A redshift-dependent IGM absorption from
Madau (1995) is then applied to simulated spectra, and the spec-
tra are then convolved with the Pan-STARRS photometric filters
(using prescriptions built into the smpy python package2). As
we are only interested in obtaining a reasonable distribution in
colour space, the results are not dependent on the absolute flux of
the quasars. This method of generating quasar spectra results in a
reliable distribution of HzQ colours, and to maintain consistency
with the number of contaminants available to model, we simu-
late a total of 104 quasars in this manner. This method of simu-
lating quasars rests on the assumption that both the Vanden Berk
et al. (2001) template spectrum and power-law distribution from
Cristiani et al. (2016) are valid to higher redshifts as well. While
beyond the scope of this paper, more reliable samples of quasars
could be generated using parametric SED modelling, which can
account for intrinsic changes in quasar spectra as a function of
luminosity and redshift (e.g. Temple et al. 2021)

3.2. Likelihoods and Gaussian mixture modeling

In order to estimate the likelihood of a source belonging to a
certain population that is considered in this study, we model
each relevant population in the iP1 − zP1, zP1 − yP1 colour space.
To do this, we use GMMs, which assume that the probability
density of a population can be described by a finite number of
weighted Gaussian functions (Reynolds 2009). Therefore, to ob-
tain a probability density, N Gaussian functions each with mean
µi and variance Σi are given a weight wi, with the condition that
the N weights sum up to unity as follows:

p(x) =

N∑
i=1

wiN(µi,Σi) , (5)

0 ≤ wi ≤ 1,
N∑

i=1

wi = 1 . (6)

The GMM is implemented in a machine learning algorithm,
which optimises the parameters using expectation maximisation
(Dempster et al. 1977). To estimate the number of components
needed to model each population adequately, the Bayesian infor-
mation criterion (BIC) is used (Wit et al. 2012). This use of ma-
chine learning techniques to model various populations in colour
space is a deviation from the method presented in Mortlock et al.
(2012), and this is where the novelty of our method compared to
traditional techniques relying on binary cuts in the colour space
is best highlighted. The resulting likelihood of any given source
belonging to a population follows directly from the GMM:

L(m̂|mk,Ck) =

N∑
i=1

wiN(µi,Σi) . (7)

Furthermore, we use an extension of the classical GMM al-
gorithm which implements extreme deconvolution, XDGMM
(Holoien et al. 2017). This implementation is particularly suited
for noisy data, as it deconvolves the noisy distribution of the pop-
ulation in order to capture the underlying distribution more ac-
curately. This method thus makes use of the uncertainties in the
2 https://github.com/dunkenj/smpy

data, both for deconvolving the models and to assign likelihood
to input data. As the error bars are folded into the covariance ma-
trix of the GMMs, sources with larger uncertainties are assigned
lower likelihood. The GMM algorithm is used to model the pre-
viously defined populations (quasars, dwarf stars, galaxies) in
iP1 − zP1, zP1 − yP1 colour space. The log likelihoods (assuming
a constant error in magnitude) of the resulting GMMs are shown
in Figure 1, along with the sources used to create the models
for each population, in the left plot simulated quasars, and in
the middle and right plots the sources from the reference cata-
logues (Best et al. 2017; Williams et al. 2018, respectively). The
Gaussian components for each mixture model are also shown,
with four components for HzQs, six for dwarf stars, and one for
galaxies. The number of components that minimises the BIC is
chosen for each population separately.

3.3. Detection prior

Many sources in our sample have faint magnitudes, extending
all the way down to the PS1 detection limit. This makes obtain-
ing accurate detection priors necessary not only to differentiate
between real and fake sources, but also to robustly characterise
the various populations of sources considered, especially at the
faintest magnitudes.

As the fraction of real sources detected as a function of
source magnitude in PS1 (Metcalfe et al. 2013) is relatively well
described by a sigmoid function, the detection priors we use for
PS1 detected sources in this study are calculated as:

P(det|mk,Ck) =
[
1 + exp

(
4.84 · (m f ilt − m f ilt,1/2 − 0.4s)

)]−1
,

(8)

where m f ilt is the magnitude of a source in one of the Pan-
STARRS filters, m f ilt,1/2 is the 50% magnitude depth of this fil-
ter, and s is a binary value that depends on the source type:

s =

{
0 if star/point source
1 if galaxy/extended source,

(9)

which is a relevant statistic for differentiating between point
sources and extended sources.

3.4. Radio detection prior

Deep radio continuum data from LoTSS DR1 are used to com-
plement the available optical data from Pan-STARRS, providing
radio detections for a subset of the selected sources. To properly
account for radio-detected sources, we modify the source clas-
sification based on the likelihood of radio detection, which we
implement through the inclusion of an additional radio detection
parameter, fR,k, into the detection prior. Through this radio de-
tection prior, if a radio counterpart in the LoTSS DR1 images
of the input source is present, the radio detection is taken into
consideration when computing the HzQ posterior probability.

For HzQs, roughly 10% of the quasar population (e.g.
Hooper et al. 1995) is ‘radio-loud’. This relation seems to hold
at higher redshifts, as Bañados et al. (2015) reported a radio-
loud fraction of ∼ 10% for z > 5 quasars at 1.4 GHz. Recent
results from deep LOFAR survey data at lower redshifts sug-
gest that there is no dichotomy between radio-loud and radio-
quiet quasars, and that 30% of quasars can be detected by LO-
FAR surveys (Gurkan et al. 2019). Similar fractions are found
in LoTSS DR2 (36% at > 2σ significance; Gloudemans et al.
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Fig. 1. Log likelihood of quasars (left), dwarf stars (middle), and low-redshift galaxies (right) modelled by a Gaussian mixture model in colour
space. The red ellipses indicate the 3-sigma extents of the individual deconvolved Gaussians (four components for quasars, six for dwarf stars, and
one for galaxies). The quasar likelihoods are assigned using photometry from simulated quasar spectra as highlighted in Section 3.1, whereas the
photometry for dwarf stars and low-redshift galaxies are taken from their respective reference catalogues, Best et al. (2017) and Williams et al.
(2018) (black dots). The dashed line in the left panel marks the commonly defined colour cut at i − z = 2.0.

2021) at z & 5.0. A reasonable assumption therefore would be to
set fR,k = 0.3 for HzQs as the radio detection prior.

For stars, including brown dwarf stars, the radio-loud frac-
tion is very low, and Kimball et al. (2009) find that about one in
a million stars can be detected at radio wavelengths. However,
low-frequency radio data combined with unparalleled sensitiv-
ity from LoTSS represents a new parameter space for the detec-
tion of radio signals from stars, as demonstrated by the recent
discovery of polarised radio emission from a cold brown dwarf
(Vedantham et al. 2020). Nevertheless, bright, non-variable radio
continuum emission sufficient to be detected in LoTSS imaging
will be significantly rarer for brown dwarf contaminants than
for luminous quasars or galaxies. Therefore, the probability of
a radio-detected source in our sample being a brown dwarf is
virtually zero, with fR,k = 10−6 for dwarf stars.

For red, dusty galaxies at intermediate redshift, we find from
the deep multi-wavelength catalogues based on deep LOFAR
data in the Boötes field (Williams et al. 2018) that only a small
fraction (∼1%) of these galaxies has a radio detection. There-
fore, we set fR,k = 10−2 for the galaxy population. We note that
these radio detection priors currently represent order of magni-
tude accuracy, and with deeper data collected over larger areas of
the sky by current and future radio surveys, the radio detection
priors can be improved upon to further enhance the probability
assignment method for HzQs.

3.5. Sky densities

The sky densities of the source classes represent a significant
prior, especially given the very rare nature of HzQs that makes
any given source on the sky more likely to be a star or foreground
galaxy. This prior can also differ depending on the apparent mag-
nitude of the source and in this section we describe the calcula-
tion of the sky density priors for source populations considered
in this study.

3.5.1. M-,L-, and T-type dwarfs

Since the dwarf star contaminants are all within the Milky Way,
the number density of dwarf stars at distance d from the Earth

Table 1. Values of the various parameters used in Eq. (10) with errors as
determined by Chen et al. (2001). The Galactic latitude (l) and longitude
(b) used here signify the centre of the HETDEX field.

Parameter Value
R� 8600 ± 200 pc
Z� 27 ± 4 pc
hR 2250 ± 1000 pc
hZ 330 ± 3 pc
l 120 deg.
b 65 deg.

and Galactic latitude (l) and longitude (b) can be estimated as-
suming a Galactic model (e.g. Chen et al. 2001) as

ni(d, l, b) = n0,i exp
(
−

d cos b cos l
hR

)
exp

(
−
|Z�| + d sin b

hZ

)
, (10)

where Z� is the height of the Sun or Earth above the Galac-
tic plane, and hZ and hR are the characteristic height and dis-
tance scales for stars in the Milky Way, respectively (see also
Caballero et al. 2008). The fiducial values of the various param-
eters used to calculate the sky densities of dwarf stars are given
in Table 1.

Given the magnitude range specified, every dwarf type will
have a slightly different heliocentric distance at which it will ap-
pear in the sample. To calculate this, the absolute PS1 magni-
tudes of each dwarf type are used from the Best et al. (2017)
catalogue. We calculate the sky density for each magnitude bin
by integrating the spatial density over the cone covering the sky
area. For a single stellar type, this results in

ρi(mi) =

∫ d2

d1

ni(D)D2dD, (11)

where D is the distance in parsecs. The total sky density of all
contaminating dwarfs is calculated as the sum of the densities ρi
of all stellar dwarf types.
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Fig. 2. Expected number density of the galaxy populations as a function
of apparent magnitude in PS1 i, z, and y bands extrapolated from the
deep multi-wavelength galaxy catalogue in the Boötes field (Williams
et al. 2018).

3.5.2. Galaxies

A significant fraction of sources in the PS1 data described in
Section 2 are identified as faint red galaxies. As mentioned pre-
viously, the information for this population is primarily taken
from the Boötes multi-wavelength photometric catalogue from
Williams et al. (2018), which also contains photometric red-
shifts, allowing us to select such galaxies in the redshift range
0 . z . 3. As this is a less well-defined astrophysical popula-
tion compared to quasars and dwarf stars, we have no luminosity
function to model their observed sky density. Instead, we use the
apparent magnitudes of these galaxies in the PS1 i, z, and y filters
to model their distribution as a function of apparent magnitude in
a given filter. We model the distribution with the Kernel density
estimation (KDE) technique (Silverman 2017), where we use a
bandwidth h = 0.1 to get a smooth and continuous representation
of the data.

This population of galaxies is made up of the population
identified in the Boötes field, selected with the same criteria as
the main PS1 sample (see Section 2.1). The Boötes field covers
an area of S ' 11.6 deg2 on the sky, and we use this to convert
the modelled distribution of galaxies to sky densities. Assuming
that the galaxies are isotropically distributed, these sky densities
are independent of the direction in which we observe, making
the model valid for data in the HETDEX field as well. The re-
sulting sky densities of galaxies detected in the PS1 i, z, and y
band data as a function of AB magnitude are shown in Figure 2.

3.5.3. High-redshift quasars

Density functions of HzQs can be expressed in terms of the lumi-
nosity functions at high redshifts, which are poorly constrained
compared to lower redshifts because of a lack of statistical sam-
ples (e.g. Manti et al. 2017). Using observations of quasars
across redshifts, Mortlock et al. (2012) derived a redshift- and
absolute-magnitude-dependent co-moving luminosity function
for HzQs.

In order to calculate absolute magnitudes from the range of
observed magnitudes in all relevant PS1 filters, K-corrections
to the quasar spectra are calculated. We use the method with
which we simulated quasar magnitude in Section 3.1, applying

redshift-dependent Lyman absorption from the intervening IGM
based on redshift to the quasar SED templates from Vanden Berk
et al. (2001). We note that we do not account for the presence of
ionised proximity zones around the HzQs. The Lyman absorbed
and redshifted spectra are divided by the unaltered SED tem-
plates, and convolved with the relevant PS1 filters to obtain the
K-corrections (following Hogg et al. 2002).

Finally, integrating the redshift- and magnitude-dependent
HzQ luminosity density, Φq(M, z), from Mortlock et al. (2012)
over the observed redshift cone yields the sky density of HzQs

ρq(mq) =

∫ Dco,2

Dco,1

Φq(M, z) D2
co dDco, (12)

where Dco is the co-moving distance in megaparsecs integrated
over the distances (Dco,1, Dco,2) corresponding to the redshift
range probed.

3.6. Full posterior

For the full photometric sample outlined in Section 2 we cal-
culate the evidences for each class using the priors and likeli-
hoods outlined above. The final quasar posterior probability is
then constructed as

Pq(m̂, det) =
Wq(m̂, det)∑N
i=1 Wi(m̂, det)

, (13)

where the weighted evidence is calculated based on the priors
obtained using the i, z, and y magnitudes and likelihoods in the
i − z and z − y colour spaces for each source

Wk(m̂, det) =∫
ρk(i, z, y)P(det|i, z, y,Ck)L(m̂|i − z, z − y,Ck)didydz . (14)

As a result, every source with a measured i, z, and y band
magnitude in the PS1 catalogue can be robustly assigned a prob-
ability of being a HzQ. In the following section, we apply our
HzQ selection method to publicly available photometric data
from PS1 in a bid to identify previously undiscovered HzQs at
z & 5.5.

4. Implementing the quasar selection algorithm

Having defined all the necessary components for our HzQ prob-
ability assignment method, in this section we apply it to data
taken from PS1 as described in Section 2. When provided the
iP1, zP1 and yP1 magnitudes of any source, our method described
above should yield a posterior probability, Pq, that the source is
a HzQ.

4.1. Candidate HzQ samples

As the sky density priors give a much greater weight to non-
quasar likelihoods, we must define a posterior threshold that is
capable of capturing the quasar population while largely reject-
ing other foreground contaminants. Using PS1 photometry of
known quasars at z > 5.5 from Bañados et al. (2016), we find
that a posterior threshold of Pq > 5 × 10−4 accepts ∼90% of the
quasar population. The same threshold also rejects more than
99% of dwarf stars and low-redshift galaxies, as is shown in Fig-
ure 3.

We introduce an additional requirement ensuring a good-
quality detection in PS1 to remove spurious detections, saturated
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Fig. 3. Posterior quasar probabilities of the different populations as-
signed by our HzQ selection method. The chosen posterior threshold of
Pq > 5 × 10−4 is shown using the dashed line, which retains ∼ 90%
of the known quasar population while rejecting > 99% of foreground
contaminant populations.

counts, and other instances resulting in bad photometry in the
catalogue by ensuring that the parameter iQfPerfect > 0.85.
We exclude sources that do not adequately fit any of the mod-
elled populations by removing sources that have low likelihood
scores from all GMMs,

log
∑

k

Lk > −10 . (15)

Having established the adequate posterior threshold that max-
imises the chances of identifying HzQs and minimises the inci-
dence of foreground contaminants, we now proceed to run our
novel HzQ selection method on the photometric data in the i,
z, and y bands queried from PS1. Our initial data set contained
∼5 × 105 sources, out of which 508 sources were selected with
probability above the set threshold. Finally, 263 sources satisfied
the additional good-quality detection requirement, of which 12
sources had an accompanying LOFAR detection.

To investigate the selection function introduced by our algo-
rithm to identify candidate HzQs, in Figure 4 we show the cumu-
lative distribution function (CDF) of zP1 magnitudes of sources
lying above the probability threshold of being HzQs (red line),
along with the CDF of the zP1 magnitudes of all the sources that
were passed through the algorithm (black line). Very clearly, our
algorithm preferentially classifies objects with brighter zP1 mag-
nitudes as candidate HzQs, placing a stronger emphasis on cap-
turing the Lyα break which manifests itself as higher i − z pho-
tometric colours. The brighter zP1 magnitudes also ensure that
sources classified as candidate HzQs are securely detected at
redder wavelengths. The zP1 mag distribution for sources with
high HzQ probabilities peaks at zP1 ≈ 19, with objects fainter
than zP1 > 21 very rarely selected, as it would be impossible to
constrain the Lyα break in objects with the faintest zP1 magni-
tudes. The comparison shown in Figure 4 therefore serves as a
validation for our new HzQ selection algorithm.

The 263 candidate HzQs lying above the posterior thresh-
old of Pq > 5 × 10−4 selected from our method represent a
very small fraction (∼ 0.05%) of the initial data set. Our strict
threshold clearly results in a drastic reduction in the number of
candidate HzQs, which can subsequently be visually inspected,
whereby additional spurious, extended, or otherwise undesired
sources can then be rejected. The main aim of visual inspection

Fig. 4. Cumulative distribution function of zP1 magnitudes of the
sources classified as candidate HzQs (red line) compared with the full
PS1 photometric sample (black line). Our algorithm preferentially as-
signs higher HzQ priorities to sources that are brighter and securely
detected in the zP1 band, ensuring that the Lyα break resulting in higher
i − z colours is securely constrained.

is to identify clearly spurious sources that may have been missed
as such by the quality selection parameter (iQfPerfect). Ex-
amples include contamination by bright stellar spikes, cosmic
ray residuals, and grouped bright pixels. We additionally re-
jected candidates that showed extended morphologies, as HzQs
are highly likely to appear as point sources in PS1 images. The
visual inspection was carried out by JDW, AS, and KJD, with
mutual agreement being required in order to reject a candidate.

As a result, our conservative approach to visual inspection
resulted in a large fraction of HzQ candidates being rejected,
with 65 sources —11 of which have a radio detection— remain-
ing as good HzQ candidates suitable for spectroscopic follow-
up. The entire sample is summarised in Figure 5, where the dis-
criminating power of the posterior calculation can be appreci-
ated. Further details of the sources can be found in Table A.1.
Noteworthy is a cluster of sources around z−y = 1.5, which rep-
resents a subset of the sources that have a detection in LoTSS.
In total, 4417 sources in the full catalogue have a LOFAR coun-
terpart, none of which would be selected if no radio counterpart
was present. The addition of radio data has given higher signif-
icance to these sources, and shows that the method can robustly
take into account the additional information provided by a radio
detection.

4.2. Comparison with colour selection

In this section we test the efficacy of our Bayesian HzQ selection
method compared to the traditional colour- and magnitude-based
selection. We note that ∼30% of sources that were assigned high
HzQ probabilities lie below the traditional i − z > 2 colour cut
(Figure 5), and may potentially be missed by studies relying on
binary colour and magnitude cuts for HzQ searches. To com-
pare results, we apply a colour cut of i − z > 2 on the full PS1
sample, which selects 634 sources. This shows that even though
sources below the colour cut can be above the probability thresh-
old, many sources above the cut are also rejected. To investigate
if these sources are rightfully rejected or accepted, we can run
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Fig. 5. Distribution of sources in the zP1 − yP1 vs iP1 − zP1 diagram of the full PS1 sample (grey points), high-probability HzQs (black circles), and
the candidate HzQs selected for spectroscopic follow-up (red circles) and those with a radio detection (red squares). The traditional colour cut at
i − z = 2 is marked using the black dashed line, demonstrating that our method assigns a high HzQ probability to several sources that lie below
this selection. We also mark P144+50 (red star) in the colour–colour plot, which was discovered using our method at a redshift of z = 5.66, and
with i − z = 1.4 lies below the standard photometric selection employed in other studies.

the algorithm on the data sets described in Section 3.1, and com-
pare them with a i − z > 2 colour cut.

For the HzQ sample, we simulate 104 HzQs using the same
method as described in Section 3.1. We also assign z-band mag-
nitudes to the simulated quasars following a log-normal distri-
bution based on the magnitude distribution of HzQs from Ross
& Cross (2020). From the z-band magnitude, the i- and y-band
magnitudes are automatically assigned based on the colours of
the quasars. The algorithm is run on this sample, and as for
the PS1 sample, only sources above the probability threshold of
Pq = 5 × 10−4 are accepted. Through this we find 7614 (76%)
HzQs above the probability threshold, while 7388 (74%) are
above the i− z > 2 colour cut. Much like in the sample described
above, the probability cut rejects sources above the colour cut
and vice versa, such that an important difference between the
methods is in which parts of colour space are probed.

As both Bayesian selection and colour selection methods re-
turn roughly the same number of HzQ candidates, we test the
efficacy of selection by repeating the same experiment with the
contaminant populations. For the brown dwarf population, we
use the Best et al. (2017) catalogue containing ∼104 sources,
and using the above mentioned probability threshold selection,
our algorithm shortlists 14 (0.15%) known brown dwarfs as can-
didate HzQs. However, the colour selection selects 68 (0.72%)
brown dwarfs as HzQ candidates.

Using the low- and intermediate-redshift galaxy catalogues
from Williams et al. (2018) containing ∼104 sources, our algo-
rithm classifies only one (0.01%) galaxy as a candidate HzQ,

compared to 36 (0.38%) galaxies being classified as HzQ candi-
dates based on colour selection. Overall, we find that our method
rejects a larger percentage of contaminants, while retaining a
similar fraction of HzQs compared to a simple i − z > 2 colour
selection, implying a higher overall efficacy.

We note that in i − z colour-based selections, often an addi-
tional colour criterion of z−y < 0.5 is applied (e.g. Bañados et al.
2014) to further remove contaminants. Applying these i − z > 2
and z − y < 0.5 cuts on our simulated HzQ, brown dwarf, and
galaxy catalogues, we find that all brown dwarfs are eliminated
and 28 galaxies are classified as candidate HzQs. However, these
cuts only retain 58% of HzQs from our simulated sample, clearly
showing that although a large fraction of contaminants are elim-
inated using colour cuts based on i, z, and y band photometry,
several HzQs may also be missed by such a selection.

The possible addition of radio data further improves the ef-
ficacy of HzQ selection, and we consider a sample where all
sources have counterparts in the radio. Using the assumed radio
detection rates in Section 3.4, we see almost all quasars with a
radio detection are accepted (91%). This fraction is purely con-
sidering the number of sources that are above the probability
threshold, which is in addition to the increase in probability for
these quasars across the board. All dwarf stars are eliminated
from the sample, while as before 0.01% of galaxies are retained.
This shows that the addition of radio data can be extremely valu-
able for identifying HzQs, and significantly increases the purity
of the resulting candidate sample.
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In Figure 6, the results of the colour and probability selection
on the test samples of HzQs (left) brown dwarfs (middle), and
galaxies (right) are summarised. Here it is clear that the proba-
bility selection method handily rejects contaminants that occupy
the same colour space as HzQs and would normally be included
in colour selection. We note that, although both methods recover
a similar number of HzQs, different subsets are selected, as the
probability selection recovers a significant fraction of HzQs be-
low the colour cut, while also rejecting a portion of HzQs above
the colour cut that lie close to the colour space of brown dwarfs.
As HzQs with i − z < 2 have generally lower redshifts, this
demonstrates that the probability selection can be especially ef-
fective in recovering HzQs at z ∼ 5.6.

5. Spectroscopic follow-up

To demonstrate the efficacy of our quasar selection method and
confirm the nature of the candidate sources, we obtained spec-
troscopy primarily targeting the Lyα lines for the most promis-
ing HzQs identified by our selection method. Nevertheless, our
final sample of high-quality HzQ candidates still contains an im-
practical number of sources for additional spectroscopic obser-
vations, and therefore we assigned priorities to sources in our
final sample based on available independent ancillary data pri-
marily at infrared wavelengths, which were crucially not used in
the probability assignment using our method.

We first cross-matched our candidate HzQ sample with the
AllWISE Data Release catalogue3, which builds upon the data
collected by the Wide-field Infrared Survey Explorer (WISE;
Wright et al. 2010) mission by additionally including data from
the NEOWISE surveys (Mainzer et al. 2011). The AllWISE data
contain photometry in the WISE W1, W2, W3, and W4 bands,
offering wavelength coverage in the range 3.4 − 22 µm. We ad-
ditionally cross-match our sample with the UKIRT Hemisphere
Survey (UHS, Dye et al. 2018) data release containing deep J-
band imaging and source catalogues over ∼ 12700 deg2 of the
sky.

We used this ancillary data to assign priorities to sources in
our candidate HzQ sample for spectroscopic follow-up. First, we
assigned higher priority to sources with lower |zP1 − yP1| and
|yP1 − J|, which brings us closer to the locus of colours from
known HzQs at z > 5.5. Next, based on the infrared colours
seen in the sample of known HzQs from Bañados et al. (2016),
which was also used as a validation sample for this study, we
assigned higher priorities to sources that satisfied the following
conditions:

W2 −W3 > 0
−0.2 < W1 −W2 < 0.85
−0.7 < yP1 −W1 < 2.2.

Lastly, the brightest sources in our sample were assigned higher
priority, purely to make the process of spectroscopic follow-
up more efficient. Having assigned a priority for spectroscopic
follow-up to each candidate HzQ, we now describe our spectro-
scopic observations below.

5.1. Description of observations

The spectroscopic observations of our candidate HzQs presented
in this work were obtained using the Intermediate Dispersion

3 https://wise2.ipac.caltech.edu/docs/release/allwise/

Spectrograph4 (IDS) on the 2.5m Isaac Newton Telescope (INT,
PI: Wagenveld, Program: N17). The observations were taken
over a period of 6 nights in Spring 2019, during which 13 of
the highest priority candidate HzQs were observed. Three nights
were unfortunately lost due to bad weather, and the remaining
three nights had favourable conditions with an average seeing of
0.5” from 6 to 8 April 2019.

The observations were taken using the R400R grating in the
Red arm of the spectrograph, with a slit width of 1.5 arcseconds
and slit length of 3 arcminutes. Standard afternoon calibrations
were performed with both lamp and sky flats taken before each
observing night. A flux standard was observed at the beginning
and the end of each night. We used CuAr+CuNe lamps for wave-
length calibration, which were observed at the position of each
target before the sky exposure.

The targets were observed in blocks of 1800s, with total in-
tegration times per source ranging from 3600s to 7200s. Due
to telescope limitations and higher priority assigned to brighter
sources, only sources brighter than a z-magnitude of 20.5 were
observed. Blind offsetting was used to acquire faint targets and
standard data-reduction procedures, which includes bias subtrac-
tion, flat-fielding, sky subtraction, wavelength calibration, and
flux calibration, were performed using a custom python-based
data-reduction pipeline written by our team5, which is based on
ccdproc (Craig et al. 2021).

Of the 13 targets observed in this run, 11 could not be con-
clusively classified based on the spectra obtained. In most cases,
only very faint continuum was spotted with potential narrow
lines. Unfortunately, the S/N of the continuum or the emission
lines for these sources was not sufficient to unambiguously de-
termine redshifts or classify the sources as either dwarf stars in
the Milky Way or low-redshift galaxies. Three of the observed
sources had an accompanying radio detection, but did not con-
tain strong emission line features in their spectra. However, the
clear absence of a strong Lyα line or a break blueward of Lyα
in their spectra indicated that these sources were unlikely to be
quasars at z & 5.5.

However, high-S/N spectra were obtained for two sources in
our sample, one of which was conclusively classified as a brown
dwarf star owing to clear, broad absorption features in the con-
tinuum arising from molecules such as TiO (e.g. Reiners et al.
2007), which often mimic the Lyα break found in the spectra of
HzQs.

The other source, PSO J144128.715+502239.463 (P144+50
hereafter), was convincingly classified as a previously undiscov-
ered, luminous quasar at a redshift of z = 5.66, and in the fol-
lowing section we describe the observed properties of this newly
discovered HzQ.

5.2. P144+50: a luminous quasar at z ≈ 5.7

The most luminous and promising source of the candidate sam-
ple, P144+50, has a very clear point-source-like structure across
the available broad band photometry, as illustrated in Figure 7.
This luminous quasar was most likely missed by earlier searches
owing to its relatively low iP1 − zP1 colour of 1.4, which may
be excluded by traditional binary colour cuts. Although no ra-
dio counterpart for this quasar was identified within the LoTSS
DR1 catalogues, P144+50 was still assigned a probability of
Pq = 0.01 from our method, demonstrating that our novel HzQ
selection method is capable of assigning realistically high prob-

4 http://www.ing.iac.es/astronomy/instruments/ids/
5 https://github.com/aayush3009/INT-IDS-DataReduction
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Fig. 6. Distribution of sources in the zP1 − yP1 vs iP1 − zP1 diagram of the test samples of HzQs (left), brown dwarfs (middle), and galaxies (right).
Sources not selected with any method are marked in grey. Sources selected with i − z > 2 colour cut (dashed line) but rejected by the probability
selection are marked as a diamond shape with a black edge. Notably, the z − y < 0.5 colour cut (dotted line) rejects all brown dwarfs from the test
sample, but also a large portion of the simulated quasar sample.

Fig. 7. P144+50 in optical and infrared bands. In the WISE images, it is blended with the neighbouring galaxy. Given the fact that the quasar is
brighter in those bands while the galaxy drops off, and that its WISE magnitudes are consistent with those of other HzQs, it is likely that most of
the emission in the WISE bands comes from the quasar.

abilities even to non-radio-detected HzQs. In Table 2 we give
the apparent magnitudes of P144+50 in the available optical and
infrared filters.

The 1D spectrum of P144+50 shown in Figure 8 displays
a bright and broad, strong Lyα feature, with a clear break in
the spectrum blueward of the line, showing the Gunn-Peterson
trough. The peak of the Lyα line suggests a redshift of z = 5.66.
No other rest-frame UV emission features are identified, but the
Si ii absorption feature may be present.

We additionally detect a Lyα forest, and faint signs of the
presence of an ionised proximity zone around this QSO. Addi-
tional flux is detected around the rest-frame Lyβ and O iv wave-
lengths. Unfortunately, due to the limited S/N of our INT ob-
servations, any meaningful constraints on either the proximity

zone or the neutrality of the intervening IGM along the line of
sight cannot be derived. Therefore, deeper follow-up observa-
tions with larger telescope facilities are required to draw robust
conclusions.

Demonstrating the merits of the new HzQ selection method
introduced in this paper perfectly, P144+50 is a bright hitherto
undiscovered quasar at z = 5.66. Its rest-frame UV magnitude,
M1450 = −27.22, puts it at the brighter end of the quasar lumi-
nosity function at z ∼ 6 (Manti et al. 2017) and amongst the most
luminous quasars currently known at this redshift. Given that the
sky area covered by our search is ∼1% of the full sky, and the
sensitivity of spectroscopic observations restricting the follow-
up to only those sources with magnitudes brighter than 20.5 AB,
it is not improbable that other such undiscovered quasars ex-
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Fig. 8. 1D spectrum of P144+50 taken using the IDS instrument on the 2.5m INT. The characteristic break blueward of the Lyα line is clearly
visible, unambiguously identifying it as a high-redshift quasar with a redshift of z = 5.66 based on its Lyα emission. Some flux is seen around the
expected Lyβ and O IV features. Apart from Lyα, there are no clear emission lines visible in the spectrum due to the limited sensitivity of the INT.
The orange line indicates the noise level of the spectrum.

Table 2. Observed optical and infrared magnitudes of P144+50 in all
filters relevant to probability calculation and priority assignment.

Filter Magnitude (AB)
PS1 g > 23.2
PS1 r > 23.2
PS1 i 20.71 ± 0.03
PS1 z 19.31 ± 0.02
PS1 y 19.41 ± 0.03
UHS J 19.34 ± 0.06
WISE W1 18.22 ± 0.04
WISE W2 18.21 ± 0.05
WISE W3 17.46 ± 0.28

ist within the large sky surveys that may have been missed in
searches relying on binary colour selection.

Additionally, the P144+50 lies within the redshift range in-
vestigated by Yang et al. (2017), demonstrating that our GMM-
based HzQ selection approach is able to successfully identify
quasars within the so-called ‘redshift gap’ often encountered by
HzQ searches employing optical broadband selection. Thanks to
the increased discriminatory power provided by our algorithm,
GMM-based HzQ searches might provide a powerful method for
more complete samples of HzQs, including those that lie within
the redshift gaps in ground-based optical broadband searches.

6. Future prospects

The Bayesian quasar-selection method presented in this work is
built from priors informed by empirical relations and likelihood
models from machine learning, as opposed to binary cuts in opti-
cal/infrared magnitudes and colours. As a result, this method re-
lies heavily on the accuracy of priors derived for both HzQ pop-
ulations and common contaminants in HzQ searches. Therefore,
the priors can be improved in an iterative fashion by folding in

the results from the ever increasing spectroscopic confirmation
of candidate HzQs selected from photometric surveys.

The inclusion of additional photometric data can also help to
improve the priors, resulting in a more accurate HzQ probabil-
ity assignment. For example, J band and WISE photometry for
known HzQs and contaminants can be used to improve the es-
timation of priors, which for this work have only been used to
shortlist candidate HzQs for spectroscopic follow-up. Expand-
ing the model to include these additional dimensions can fur-
ther increase its precision and reliability thanks to the increased
colour information available, as well as extend its application to
searches for HzQs at even higher redshifts.

The range of redshifts selected for this analysis (5.6 < z <
6.5) was chosen in order to enable validation with known HzQs
that were selected using i − z photometric colours. However,
given that samples of HzQs can be simulated for training and ex-
isting HzQs can be used as validation for our selection method,
other redshift ranges can be probed. For example, searches for
HzQs at z > 6.5 can be readily carried out using our algorithm
by using a handful of known HzQs at these redshifts, selected
based on their z − y colours. The efficacy of the method may
however not be as high for selecting z > 6.5 HzQ candidates ow-
ing to the lower number of HzQs known at these redshifts that
could be used for training and validation. As mentioned earlier,
the inclusion of more photometric data may help to improve the
priors for HzQs at the highest redshifts.

As the method should be extendable to larger datasets, one
potential bottleneck will be excising the remaining unwanted
sources after assigning probability. For the sample described in
this paper, this final step was done through visual inspection of
263 high-probability candidates. For a much larger initial sam-
ple size, this method is no longer feasible. From the visual in-
spection we performed, most of these unwanted sources were
rejected on the grounds of either being spurious, having incor-
rect magnitude, or appearing extended. Spurious sources are
essentially removed if we force all sources to have a counter-
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part in WISE and/or UHS. As these magnitudes are used any-
way to assign priority to sources (Section 5), it will be doubly
advantageous to implement such a selection. Incorrect magni-
tudes can be corrected by performing photometry directly on the
Pan-STARRS images. Finally, there is clear need to differenti-
ate between point sources and extended sources. There are sev-
eral ways to do this with the Pan-STARRS catalogues, such as
comparing the PSFs and Kron magnitudes of sources6 (Farrow
et al. 2013). However, these methods of differentiating between
point sources and extended sources become less reliable towards
lower magnitudes, where we expect more quasars. We note here
that efforts are currently underway to use machine learning tech-
niques to morphologically classify radio sources (e.g. Mostert
et al. 2021), which could suitably be extended to morphological
classification of candidate HzQs from optical images.

Here, we demonstrate the discriminatory power of our HzQ
selection method and show that it is possible to shortlist manage-
able numbers of high-quality HzQ candidates from large photo-
metric data sets. With the aforementioned flexibility and room
for improvement, our algorithm can potentially be applied to
even larger and deeper surveys of the sky enabled by existing
state-of-the-art and upcoming ground- and space-based optical
and infrared observatories such as the Vera C. Rubin Observa-
tory (Ivezić et al. 2019), Euclid (Laureijs et al. 2011), the Nancy
Grace Roman Space Telescope (formerly known as WFIRST;
Spergel et al. 2015), and existing large surveys such as the Kilo-
Degree Survey (KiDS; De Jong et al. 2013) and Dark Energy
Survey (DES; The Dark Energy Survey Collaboration 2005) to
name a few.

Finally, while the z = 5.66 quasar discovered in this analy-
sis is undetected in LoTSS radio continuum imaging, the high
detection fraction of known z > 5 sources within the 5700 deg2

of the forthcoming LoTSS Data Release 2 (36% at > 2σ signifi-
cance; Gloudemans et al. 2021) illustrates that the radio contin-
uum observations can provide valuable additional information
for HzQ selection and remain a powerful tool to crucially ex-
clude contamination from Galactic dwarf stars. Relatively shal-
low but large-area existing radio surveys such as FIRST (Becker
et al. 1995) and NVSS (Condon et al. 1998) carried out with the
Very Large Array (VLA) have led to the discovery of several
radio-loud quasars at z & 5 (e.g. Bañados et al. 2015), and TGSS
Alternative Data Release (Intema et al. 2017) covering ∼ 37000
sq/ deg. of the sky at 150 MHz has already led to the discovery
of the most distant radio-selected galaxy currently known (Sax-
ena et al. 2018). The full LoTSS data release will offer sensitive
radio coverage over very large sky areas in the northern hemi-
sphere, enabling the inclusion of radio priors for a large number
of candidate HzQs. These sky areas and sensitivities will be im-
proved by upcoming ultra-deep radio surveys such as those by
the Square Kilometre Array (SKA; Dewdney et al. 2009) and
its precursors like MeerKAT (Jonas 2016) and ASKAP (Hotan
et al. 2021) enabling even fainter radio detections.

Therefore, the HzQ selection method presented in this work
is flexible, and has room for improvement given the availability
of deep photometric data over large parts of the sky via exist-
ing and future large area sky surveys across wavelengths. Our
method also provides a robust framework within which the addi-
tional radio information can be incorporated to potentially iden-
tify even radio-faint quasars in the early Universe.

6 https://outerspace.stsci.edu/display/PANSTARRS/How+
to+separate+stars+and+galaxies

7. Summary and Conclusions

In this paper we present a novel method for selecting candi-
date high-redshift quasars (HzQs; z & 5) from large photomet-
ric data sets, making use of informed priors and Gaussian mix-
ture models (GMMs) within a Bayesian framework. Our method
attempts to capture the HzQ population more completely com-
pared to traditionally used binary cuts in optical magnitudes and
colours, while minimising the likelihood of contamination from
foreground sources such as dwarf stars in the Milky Way and
lower redshift dusty galaxies.

Our novel selection method builds upon previous works em-
ploying Bayesian selection of HzQ candidates using informed
priors. The novelty of our methods lies in using GMMs to ob-
tain likelihoods in optical colour–colour spaces using photom-
etry of populations of known and simulated HzQs, as well as
common contaminants such as M, L, and T brown dwarf stars
and low-redshift dusty galaxies that often mimic the observed
optical photometric properties of HzQs. Additional priors based
on the security of optical detections, respective sky densities of
the source populations, and a radio detection are used to cal-
culate the probability of a particular source detected in a large
photometric sky survey being a candidate HzQ.

We run our GMM-based HzQ search method on photometric
data from the publicly available Pan-STARRS DR1 (PS1) over a
limited area on the sky, coinciding with deep radio imaging from
LoTSS in the HETDEX Spring field covering ∼ 400 square de-
grees. Using in particular photometry in the PS1 i, z, and y bands,
we assign candidate HzQ probabilities to ∼ 5×105 sources from
PS1. Adopting a HzQ posterior probability threshold that results
in the selection of ∼ 90% of known HzQs at z & 5.5 and the
rejection of & 99% of known foreground contaminants such as
dwarf stars or low-redshift galaxies, we shortlist 263 candidate
HzQs with high probabilities. By visually inspecting these can-
didates to spot any obvious artefacts, we select 63 sources in
the final high-probability candidate HzQ sample, which can sub-
sequently be followed up spectroscopically. To test the efficacy
of the method, we run the probability selection on test samples
of simulated HzQs and previously used samples of dwarfs an
galaxies. We find that the efficacy of the probability method is
higher than traditional colour cuts, decreasing the fraction of ac-
cepted contaminants by 86% while retaining a similar fraction
of HzQs. While more stringent colour cuts decrease the contam-
inant fraction to levels similar to that of the probability selection,
less HzQs are recovered. The efficacy of the probability selec-
tion is increased further once radio data are taken into account,
reducing the fraction of contaminants by 99% compared to the
traditional colour cut at the cost of selecting only quasars that
have a radio detection.

Follow-up spectroscopic observations were then carried out
for the highest priority HzQ candidates from our sample, with
13 candidates targeted with the 2.5m Isaac Newton Telescope.
Although the nature of 11 of these 13 candidates could not be
confirmed owing to low S/Ns in the relatively shallow spectra,
a lack of strong Lyα emission or Lyα absorption present in the
spectrum was used to rule out a very high-redshift nature.

However, the exact nature of two candidates could be es-
tablished, with one being a brown dwarf star and the other be-
ing a previously undiscovered, luminous quasar at z = 5.66
(P144+50). The spectrum of P144+50 shows a strong and broad
Lyα line, with a strong break in the spectrum bluewards of Lyα
indicative of a Gunn-Peterson trough. P144+50 has a rest-frame
UV magnitude of M1450 = −27.22, putting it at the very bright
end of the luminosity function at this redshift. This HzQ was
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likely missed by earlier searches owing to its i − z photometric
colour of 1.4, which falls below the traditional limits requiring
i − z > 1.5.

The discovery of this previously undiscovered, luminous
quasar at z = 5.66 serves as a validation of our novel HzQ se-
lection method, indicating that a probabilistic method of select-
ing HzQs from large photometric surveys may perform better
at returning more complete samples of HzQs as opposed to bi-
nary selections based on cuts in optical and infrared colours or
magnitudes. Our method could be improved by the inclusion of
more photometric data when calculating posterior probabilities,
and as such can be employed on larger incoming sky surveys to
discover new quasars, into the epoch of reionisation.
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Appendix A: HzQ candidates

Table A.1. High probability HzQ candidates

Name iP1 zP1 yP1 LoTSS Flux Pq Observed
(mJy)

PSO J151528.1+421313.8 21.49 ± 0.11 19.58 ± 0.04 20.03 ± 0.18 1.6 × 10−3

PSO J115421.7+421840.7 21.68 ± 0.12 19.32 ± 0.06 20.64 ± 0.17 5.8 × 10−1

PSO J150748.8+422307.8 21.50 ± 0.06 19.45 ± 0.00 19.90 ± 0.26 3.0 × 10−3

PSO J123718.4+422839.6 22.27 ± 0.04 20.09 ± 0.18 20.63 ± 0.16 1.4 × 10−3

PSO J124208.8+423946.4 22.15 ± 0.01 20.04 ± 0.15 20.21 ± 0.13 8.4 × 10−4 Yes
PSO J124911.0+425105.3 22.11 ± 0.05 20.13 ± 0.15 20.98 ± 0.21 8.3 × 10−4

PSO J125047.9+430833.7 22.17 ± 0.01 19.55 ± 0.09 19.66 ± 0.14 1.3 × 10−1

PSO J123203.0+432745.0 21.94 ± 0.14 19.64 ± 0.17 20.47 ± 0.15 4.4 × 10−3

PSO J124221.7+434033.2 21.70 ± 0.06 20.27 ± 0.00 20.65 ± 0.11 1.4 × 10−3

PSO J122900.5+441359.8 21.61 ± 0.05 19.39 ± 0.16 20.24 ± 0.17 8.8 × 10−3

PSO J121800.4+453150.9 21.78 ± 0.17 19.38 ± 0.10 20.53 ± 0.15 5.2 × 10−2

PSO J120837.0+454149.4 22.15 ± 0.17 19.79 ± 0.16 20.55 ± 0.17 2.9 × 10−3

PSO J114519.9+454428.0 21.63 ± 0.04 19.93 ± 0.00 20.80 ± 0.17 2.1 × 10−2

PSO J112111.5+461150.9 21.47 ± 0.17 19.55 ± 0.11 20.87 ± 0.19 1.5 × 10−3

PSO J142738.5+473727.4 21.24 ± 0.11 20.70 ± 0.02 21.38 ± 0.00 1.1 × 10−2

PSO J150321.1+480022.9 21.84 ± 0.07 17.61 ± 0.01 20.50 ± 0.19 1.0
PSO J151021.5+490023.1 21.69 ± 0.27 18.21 ± 0.02 20.70 ± 0.18 1.0
PSO J144128.7+502239.4 20.71 ± 0.03 19.31 ± 0.02 19.41 ± 0.03 1.1 × 10−2 Yes
PSO J112418.7+504151.3 21.78 ± 0.05 20.08 ± 0.00 20.73 ± 0.18 4.7 × 10−3

PSO J152639.5+520303.0 21.44 ± 0.02 17.29 ± 0.01 19.90 ± 0.16 1.0
PSO J144047.0+520934.6 21.00 ± 0.10 18.95 ± 0.04 20.44 ± 0.17 8.3 × 10−1

PSO J121906.9+524229.8 21.35 ± 0.03 19.90 ± 0.02 19.81 ± 0.06 5.2 × 10−4 Yes
PSO J120853.9+540651.1 21.37 ± 0.05 19.92 ± 0.00 20.53 ± 0.19 8.2 × 10−4

PSO J110945.2+574348.4 21.62 ± 0.04 17.88 ± 0.01 19.73 ± 0.17 1.0
PSO J112328.2+595614.9 21.42 ± 0.08 18.70 ± 0.00 20.52 ± 0.18 1.0
PSO J135335.3+600430.6 21.51 ± 0.04 20.73 ± 0.04 21.69 ± 0.00 2.5 × 10−3

PSO J152721.9+610352.3 21.08 ± 0.14 18.79 ± 0.01 18.19 ± 0.01 7.3 × 10−3 Yes
PSO J141715.5+615224.3 22.00 ± 0.16 19.52 ± 0.15 20.54 ± 0.17 1.7 × 10−2

PSO J112052.2+472605.0 21.36 ± 0.07 19.99 ± 0.12 20.71 ± 0.16 1.10 ± 0.10 3.4 × 10−3

PSO J141837.2+474852.2 22.65 ± 0.35 21.32 ± 0.11 20.43 ± 0.19 3.29 ± 0.11 7.2 × 10−4

PSO J113104.0+475003.9 21.64 ± 0.17 19.67 ± 0.12 19.86 ± 0.15 0.44 ± 0.10 2.8 × 10−2 Yes
PSO J123823.6+475933.1 21.13 ± 0.05 19.91 ± 0.18 20.41 ± 0.15 0.69 ± 0.15 2.1 × 10−3

PSO J131244.6+495724.5 21.62 ± 0.22 20.28 ± 0.16 20.23 ± 0.19 0.43 ± 0.09 7.8 × 10−4 Yes
PSO J123626.6+501036.9 21.51 ± 0.08 20.16 ± 0.20 20.97 ± 0.41 0.64 ± 0.09 2.3 × 10−3

PSO J124654.9+501623.7 21.71 ± 0.19 20.65 ± 0.13 19.35 ± 0.00 0.67 ± 0.11 1.2 × 10−3

PSO J112037.6+502404.9 21.82 ± 0.20 20.81 ± 0.16 19.44 ± 0.22 0.45 ± 0.12 6.7 × 10−4

PSO J134157.7+512952.2 21.96 ± 0.19 20.93 ± 0.12 19.49 ± 0.16 31.89 ± 0.16 7.8 × 10−4

PSO J130926.4+525922.1 21.82 ± 0.20 20.70 ± 0.17 19.50 ± 0.17 0.97 ± 0.10 8.0 × 10−4

PSO J113311.2+420443.2 21.50 ± 0.04 19.68 ± 0.00 20.17 ± 0.11 1.4 × 10−3

PSO J123740.1+420851.0 22.06 ± 0.14 20.13 ± 0.19 20.63 ± 0.16 7.3 × 10−4

PSO J151948.4+423446.7 21.99 ± 0.17 19.96 ± 0.00 19.88 ± 0.18 2.1 × 10−3 Yes
PSO J124059.8+431019.5 22.14 ± 0.18 20.26 ± 0.17 20.74 ± 0.17 7.0 × 10−4

PSO J140022.9+433822.2 22.11 ± 0.30 19.56 ± 0.02 18.40 ± 0.02 1.2 × 10−3

PSO J145612.6+442417.2 21.71 ± 0.01 20.12 ± 0.20 20.12 ± 0.10 5.4 × 10−4 Yes
PSO J114416.9+443451.0 21.36 ± 0.05 19.50 ± 0.15 19.70 ± 0.15 2.5 × 10−3 Yes
PSO J135622.5+453320.5 21.83 ± 0.18 19.88 ± 0.00 19.99 ± 0.18 1.5 × 10−3

PSO J123757.3+465507.2 21.73 ± 0.20 20.25 ± 0.04 20.61 ± 0.16 5.7 × 10−4

PSO J124016.5+473737.9 21.58 ± 0.03 19.55 ± 0.10 20.39 ± 0.24 1.7 × 10−3

PSO J124300.0+481418.3 22.81 ± 0.28 20.96 ± 0.29 20.47 ± 0.17 7.4 × 10−4

PSO J124203.1+495354.1 21.44 ± 0.05 19.91 ± 0.20 20.62 ± 0.18 6.3 × 10−4

PSO J124656.0+503223.3 21.47 ± 0.04 19.96 ± 0.17 20.63 ± 0.16 6.2 × 10−4

PSO J131523.9+513827.7 21.57 ± 0.07 18.58 ± 0.02 19.99 ± 0.14 2.7 × 10−3

PSO J143229.1+534741.1 21.94 ± 0.18 20.18 ± 0.00 20.68 ± 0.20 7.4 × 10−4

PSO J124450.2+585817.8 21.37 ± 0.09 19.73 ± 0.13 20.33 ± 0.08 9.4 × 10−4

PSO J144448.1+600520.3 21.46 ± 0.08 20.04 ± 0.17 20.46 ± 0.20 6.1 × 10−4
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Table A.1. continued

Name iP1 zP1 yP1 LoTSS Flux Pq Observed
(mJy)

PSO J131842.1+600706.5 21.67 ± 0.08 19.67 ± 0.00 20.45 ± 0.19 1.7 × 10−3

PSO J133347.7+603212.6 21.62 ± 0.08 20.01 ± 0.33 19.99 ± 0.04 6.1 × 10−4 Yes
PSO J132006.7+605705.4 21.92 ± 0.18 19.81 ± 0.13 20.12 ± 0.14 2.6 × 10−3

PSO J131356.0+614833.6 21.65 ± 0.11 20.12 ± 0.17 20.33 ± 0.17 5.7 × 10−4

PSO J120732.9+492944.0 21.50 ± 0.07 20.63 ± 0.42 19.16 ± 0.05 1.16 ± 0.10 5.6 × 10−4 Yes
PSO J115605.5+444105.3 21.68 ± 0.05 19.33 ± 0.21 20.76 ± 0.18 8.2 × 10−4

PSO J105545.9+445655.8 21.69 ± 0.11 19.77 ± 0.26 19.71 ± 0.06 2.6 × 10−3 Yes
PSO J130519.1+464845.5 21.86 ± 0.20 20.22 ± 0.18 20.59 ± 0.17 5.7 × 10−4

PSO J124059.4+483522.9 21.70 ± 0.18 19.71 ± 0.23 19.92 ± 0.18 3.0 × 10−3 Yes
PSO J150531.3+610408.5 21.74 ± 0.10 20.02 ± 0.13 19.70 ± 0.20 7.5 × 10−4
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