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 46 

KEY MESSAGES BOX 47 

1. Systematic reviews with network meta-analysis (NMA) that ignore potential dose effects 48 

may limit the applicability and validity of review findings. 49 

2. Hierarchical random effects NMA models incorporating dose effects assume dose level 50 

consistency and that dose effects are equal (model 1), separate (model 2), or 51 

exchangeable (model 3). These NMA models do not make assumptions about the shape 52 

of dose response relationships. 53 

3. While researchers should first consider clinical and pharmacological factors when 54 

selecting the most appropriate NMA model for their clinical question, statistical and 55 

methodological considerations such as between study and between dose heterogeneity, 56 

consistency across treatment and dose effects, and model fit are also important. 57 

4. Clinicians and other knowledge users should appraise the applicability and validity of 58 

NMA modelling assumptions, including explanations of the model selection process and 59 

biological plausibility for incorporating (or not incorporating) dose effects.  60 

 61 
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Dr. Jennifer Watt is a geriatrician with experience in applying network meta-analysis models. 63 
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Dr. Dan Jackson, and Dr. Dimitris Mavridis are statisticians with expertise in developing and 66 

applying network meta-analysis models. Dr. Andrea Tricco is a methodologist and Dr. 67 

Sharon Straus is a geriatrician – both have expertise and experience in conducting systematic 68 

reviews with network meta-analysis to support clinical and policy decision-making. They 69 
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contributed to the study design and provided manuscript feedback.  Dr. Areti-Angeliki 70 

Veroniki is a statistician with network meta-analysis expertise. She is co-Convenor of the 71 

Cochrane Statistical Methods Group. She conceived the study idea, developed model codes, 72 

completed analyses, drafted the initial manuscript, and provided manuscript feedback. We 73 

used data from two published systematic reviews and network meta-analyses.1 2 74 

STANDFIRST 75 

Systematic reviews with network meta-analysis (NMA) that ignore potential dose effects may 76 

limit the applicability and validity of review findings; here, we help content experts (e.g., 77 

clinicians), methodologists, and statisticians better understand how to incorporate dose 78 

effects in network meta-analysis by (1) describing three network meta-analysis models that 79 

make different clinical and statistical assumptions about how to model dose effects, (2) 80 

illustrating the importance of dose effects in understanding the potential risk of harm in 81 

people with dementia from  cerebrovascular events associated with atypical antipsychotic use 82 

(i.e., quetiapine, olanzapine, and risperidone) and nausea and headache associated with 83 

cholinesterase inhibitor use (i.e., donepezil, galantamine, and rivastigmine), and (3) 84 

discussing important considerations when choosing between different network meta-analysis 85 

models incorporating dose effects. 86 

 87 

  88 
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INTRODUCTION 89 

In contrast to pairwise meta-analysis, which directly compares one treatment’s efficacy or 90 

safety to another based on head-to-head data, network meta-analysis (NMA) simultaneously 91 

compares and ranks multiple treatments that are either directly compared through head-to-92 

head data, indirectly compared through a common treatment comparator, or both (i.e., a 93 

mixed treatment comparison composed of direct and indirect evidence).3 If a researcher 94 

wants to compare the efficacy or safety of multiple treatments, NMA can better answer this 95 

question than pairwise meta-analysis. The ability of NMA to simultaneously compare the 96 

efficacy and safety of multiple treatments has led to a sharp rise in the number of published 97 

NMAs and research to improve their methodological rigor.4  98 

NMAs improve decision making by filling knowledge gaps where no head-to-head 99 

comparative treatment data exist, but an absence of NMA results concerning treatment dose 100 

effects could limit their applicability and validity. For example, although it is helpful to know 101 

that donepezil, galantamine, and rivastigmine (medications used to improve symptoms of 102 

Alzheimer disease) are associated with an increased risk of nausea, clinicians could better 103 

support tailored decision making if they know which medication doses are associated with 104 

this risk.2 A lack of methodological guidance for researchers on how to incorporate treatment 105 

dose effects into systematic reviews with NMAs is contributing to this critical omission. Our 106 

objective is to present three hierarchical NMA models that researchers can implement to 107 

incorporate dose effects into systematic reviews with NMA, even in the absence of prior 108 

knowledge of how to model a dose-response relationship; give practical guidance on how to 109 

conduct these analyses; provide empirical examples so readers can appreciate the importance 110 

of modelling dose effects; describe considerations for evaluating the appropriateness of NMA 111 

models incorporating dose effects; discuss considerations in appraising the applicability and 112 

validity of systematic reviews with NMA incorporating dose effects; and highlight 113 
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challenges, limitations, and future research directions related to selection of NMA models 114 

incorporating dose effects. Our empirical examples describe the dose effect association 115 

between (1) atypical antipsychotic use and risk of cerebrovascular events in people with 116 

dementia and (2) cholinesterase inhibitor use and risk of nausea or headache in people with 117 

Alzheimer disease, but the NMA models incorporating dose effects that we describe could be 118 

applied to examples in any medical discipline.1 2 119 

MODIFYING HIERARCHICAL NMA MODELS TO INCORPORATE DOSE 120 

EFFECTS 121 

In the standard NMA model, consistency is assumed, random treatment effects are modelled, 122 

and effect estimates (e.g., odds ratios, mean differences) are derived on the treatment level; 123 

dose effects are not explicitly modelled.3 In this current paper, we show how this hierarchical 124 

NMA model can be modified to incorporate dose effects. 125 

Let us consider a hypothetical network of five treatments T=(a, b, c, d, e) and 11 different 126 

doses indexed with 𝑡𝑖
𝑇, i=1,…,11. In Figure 1a, treatment ‘a’ is the network reference node, 127 

which is a treatment with a single or no dose (e.g., placebo), and other nodes represent 128 

treatments ‘b’, ‘c’, ‘d’, and ‘e’; in Figure 1b, we see that treatments are composed of doses. 129 

Here, we present three hierarchical random effects NMA models incorporating dose effects 130 

(see also Supplement File 1), which differ based on: (1) if they assume consistency on the 131 

treatment level (i.e., between direct and indirect comparisons); (2) the number of variance 132 

components; (3) if they account for the relationship between dose and parent treatment;  and 133 

(4) whether effect estimates are derived on the treatment level, dose level, or both (Table 1).5 134 

None of these NMA models assume a parametric dose response relationship. 135 

Table 1. Properties of three hierarchical network meta-analysis dose effects models 136 

Characteristic 

Equal  

dose effects  

(model 1) 

Separate  

dose effects  

(model 2) 

Exchangeable  

dose effects  

(model 3) 
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Accounts for within study variation Yes Yes Yes 

Accounts for between study variation at 

the dose level by incorporating random 

dose effects 

Yes Yes Yes 

Accounts for between dose within 

treatments variation using a variance 

component  

No No Yes 

Assumes consistency on treatment level Yes No No+ 

Assumes consistency on dose level Yes* Yes Yes 

Exchangeability of dose-effects within 

treatments/includes between dose 

variance component 

No‡ No++ Yes** 

Accounts for the treatment dose 

relationship 
Yes†† No Yes 

Produces effect estimates on the 

treatment level 
Yes No Yes 

Produces effect estimates on the dose 

level 
No Yes Yes 

+ Consistency is assumed on the dose level, and treatment effects are assumed to be exchangeable within 137 
doses. This does not imply treatment-effect consistency in the conventional sense.  138 
* Consistency is assumed on the dose-level, and since all doses within the same treatment are assumed to be 139 
equally effective, consistency is also assumed at the treatment level. 140 
‡ Average dose effects are identical within treatments, a stronger assumption than exchangeable dose effects 141 
within treatments.  142 
++ Doses are considered unrelated with respect to their parent treatment. Model 2 is equivalent to the 143 
conventional consistency model for network meta-analysis, where each treatment-dose combination is treated 144 
as a different group.  145 
** Doses are related and exchangeable within their parent treatment.  146 
†† Model 1 accounts for the treatment dose relationship in a simple way; whereby all average dose effects are 147 
the same in the same parent treatment. 148 

There are three main sources of variation in hierarchical random effects NMA dose effects 149 

models (Table 1 and Figure 2): within study, between study, and between dose within 150 

treatments. The first level of variation is within studies (i.e., the variability across study 151 

participants), which is modelled in a conventional way whereby each study has its own study 152 

specific baseline.3 The second level of variation is between studies: the variability in true 153 

effects across studies within each treatment dose comparison.6 In contrast to the standard 154 

NMA model, where between study variation is modelled at the treatment level, hierarchical 155 

NMA dose effects models incorporate between study variation at the dose level.3  In a 156 

random effects model, each study specific true effect size is part of a distribution of all true 157 

effect sizes and the variance of this distribution represents the between study variance. There 158 
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is also a third level of variation: the between dose variation within treatments. This refers to 159 

the variability of dose effects within each treatment category, assuming that each dose 160 

corresponds to a specific treatment category. All three hierarchical NMA dose effects models 161 

incorporate within and between study variation in the same way; however, only the 162 

exchangeable NMA dose effects model (model 3) incorporates variance components for all 163 

three potential sources of variation. 164 

Equal dose effects (model 1) 165 

The simplest NMA model incorporates equal average dose effects (Table 1 and Figure 3a). 166 

This approach can only be considered for research questions targeted at assessing treatment 167 

effects, as it assumes that different doses of the same treatment are fixed and equally effective 168 

or safe within the same treatment group. This NMA model may include studies with data on 169 

multiple doses for the same treatment, but the dose effects are fixed and equal to the broader 170 

treatment effect. Data from study arms where the relative effects are assumed equal to zero 171 

contribute to the between study variance estimation. An equal dose effects NMA model 172 

accounts for within study and between study variation, assumes consistency on the treatment 173 

and dose levels, and produces effect estimates (e.g., log-odds ratio) on the treatment level.  174 

Separate dose effects (model 2) 175 

This NMA model incorporates separate average dose effects (Table 1 and Figure 3b). It is 176 

appropriate for research questions assessing the effects of specific treatment doses, as it 177 

accounts for different dose effects. This NMA model assumes that average dose effects are 178 

unrelated with respect to their parent treatment and each other, and each node in the network 179 

is a separate treatment dose; therefore, the treatment dose relationship is not considered. The 180 

separate dose effects NMA model accounts for within study and between study variation, 181 

assumes consistency on the dose level only, and produces effect estimates on the dose level. 182 
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Exchangeable dose effects (model 3) 183 

This NMA model assumes that the average dose effects are related and exchangeable within 184 

their parent treatment (also known as ‘exchangeable sub-nodes’; Table 1 and Figure 3c).7 185 

This NMA model accounts for the treatment dose relationship, distinguishes between 186 

different treatment doses, and assumes that average dose effects within the same treatment 187 

come from a common distribution. It accounts for within study, between study, and between 188 

dose variation within treatments using variance components; assumes consistency on the dose 189 

level only; and produces effect estimates on both the treatment and dose levels. Because this 190 

model does not require additional assumptions about how to model the shape of the dose 191 

response relationship (like models 1 and 2); accounts for the treatment dose relationship (like 192 

model 1); distinguishes between different treatment doses (like model 2); explicitly models 193 

within study, between study, and between dose variation within treatments using variance 194 

components; and produces effect estimates on both the treatment and dose levels, the 195 

exchangeable dose effects NMA model is a preferred NMA model for understanding 196 

different treatment doses if statistical and methodological considerations are valid (e.g., dose 197 

level consistency and transitivity) (Boxes 1 and 2). When the between dose variance is 198 

estimated as zero, this model simplifies to the equal dose effects NMA model (i.e., model 1). 199 

Box 1. Considerations in choosing network meta-analysis models incorporating treatment and 200 

dose effects 201 

1. Anticipated clinical significance of treatment and dose effects (i.e., network meta-

analysis results should incorporate clinically relevant dose effects) 

2. Between study and between dose heterogeneity 

3. Appropriateness of assuming transitivity and consistency on the treatment level, dose 

level, or both 

4. Model fit and parsimony  

5. Network geometry, connectedness (i.e., avoidance of disconnected network 

components), and sparsity 

 202 

Box 2. Advantages to implementing hierarchical network meta-analysis models incorporating 203 

random dose effects within treatments (model 3) 204 

1. Considers the treatment dose relationship 
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2. Does not make any parametric assumptions about potential dose response relationships 

3. Facilitates borrowing of strength within treatment classes when different doses are 

available 

4. Allows for the inclusion of studies comparing only multiple doses of the same 

treatment  

5. Facilitates the simultaneous identification of the best treatment and dose 

6. Can increase power compared to carrying out several independent subgroup analyses or 

extreme splitting approaches (i.e., model 2) 

 205 

ILLUSTRATIVE EXAMPLES 206 

We illustrate the aforementioned NMA models with three empirical examples, which are 207 

presented below.1 2  For each example, we present: (1) network plots; (2) transitivity tables; 208 

(3) model fit statistics (i.e., deviance information criterion [DIC]); (4) between study and 209 

between dose heterogeneity estimates; (5) global (i.e., design-by-treatment interaction model) 210 

and local (i.e., loop-specific approach) inconsistency estimates at the treatment and dose 211 

levels; (6) outcomes as medians with 95% credible intervals (CrIs) and 95% prediction 212 

intervals (PrIs); and (7) rankings according to surface under the cumulative ranking curve 213 

(SUCRA) values (i.e., 100% indicates the best performing treatment and 0% indicates the 214 

worst).5 8-10 We summarized SUCRA values for each outcome across models in a rank heat 215 

plot.11 We performed analyses in OpenBUGS (model fit and estimation methods are 216 

described in Supplement File 2; OpenBUGS model code is available in Supplement File 3; 217 

and all study data, transitivity tables, model fit statistics, heterogeneity estimates, 218 

inconsistency plots, treatment and dose level outcomes, and treatment and dose rankings are 219 

found in Supplement Tables 1 to 12; and Figures 1, 2, and 3).12 220 

Atypical antipsychotics 221 

Dataset 222 

Antipsychotics are prescribed to people with dementia for treating neuropsychiatric 223 

symptoms (e.g., aggression), but they are associated with potential harms in this patient 224 



10 

 

population, including an increased risk of cerebrovascular events.1 13 Our example dataset is a 225 

subset of data describing the risk of cerebrovascular events associated with atypical 226 

antipsychotic use (i.e., quetiapine, olanzapine, or risperidone) in people with dementia, which 227 

was published in a systematic review and NMA describing the comparative safety of 228 

pharmacologic interventions for treating neuropsychiatric symptoms in people with dementia 229 

(Supplement  Table 1).1 Here, we include only those randomized trials that reported a target 230 

or average total daily treatment dose. We categorized treatment doses based on average total 231 

daily dose, where reported; otherwise, we categorized doses using target total daily dose. We 232 

categorized atypical antipsychotic doses as per ranges proposed by Maust et al: low dose 233 

quetiapine (<125mg/day), medium dose quetiapine (125mg/day to 200mg/day), high dose 234 

quetiapine (>200mg/day), low dose olanzapine (<5mg/day), medium dose olanzapine 235 

(5mg/day to <7.5mg/day), high dose olanzapine (≥7.5mg/day), low dose risperidone 236 

(≤1mg/day), medium dose risperidone (>1mg/day to 2mg/day), and high dose risperidone 237 

(>2mg/day).14  238 

Results: Cerebrovascular Events 239 

We included 10 studies (3,079 patients), four treatments, and seven treatment doses in our 240 

hierarchical NMA models incorporating treatment and dose effects (Figure 4a). There were 241 

differences in dementia types and study duration across treatment and dose comparisons 242 

(Supplemental Tables 2 and 3). Small between study heterogeneity was evident in the 243 

network, which did not importantly change across models (Supplement Tables 4a-d). Model 244 

fit was similar across models. We did not identify any global or local inconsistency at the 245 

treatment or dose levels (Supplement Figures 1a and 1b). These results suggest that 246 

researchers could implement model 1, 2, or 3, depending on their clinical or policy question. 247 
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In model 1, olanzapine (OR 3.18, 95% CrI 1.12 to 9.52, 95% PrI 0.97 to 10.75) and 248 

risperidone (OR 3.59, 95% CrI 1.71 to 8.03, 95% PrI 1.42 to 9.43) were associated with 249 

greater odds of cerebrovascular events compared to placebo. In models 2 and 3, medium dose 250 

olanzapine, low dose risperidone, and medium dose risperidone were associated with greater 251 

odds of cerebrovascular events compared to placebo (Figure 5 and Supplement Tables 4a-c). 252 

With respect to treatment rankings (i.e., SUCRA values), model 1 suggested that quetiapine 253 

was the safest and risperidone was the most harmful. With respect to treatment dose rankings, 254 

model 2 suggested that low dose olanzapine was the safest; low and medium dose risperidone 255 

were the most harmful. Model 3 suggested that low and medium dose quetiapine were the 256 

safest; whereas, low and medium dose risperidone were the most harmful (Figure 6a and 257 

Supplement Table 4d). Our results suggest that both low dose olanzapine and low and 258 

medium dose quetiapine are the safest treatment options for people with dementia because 259 

they are not associated with increased odds of cerebrovascular events.   260 

Cholinesterase inhibitors 261 

Datasets 262 

Cholinesterase inhibitors (i.e., donepezil, galantamine, and rivastigmine) are prescribed to 263 

people with dementia to slow cognitive decline. However, they are associated with potential 264 

harms, including nausea and headache.2 Our example datasets are subsets of data describing 265 

the risk of nausea and headache associated with cholinesterase inhibitor use in people with 266 

Alzheimer disease, which were published in a systematic review and NMA describing the 267 

comparative effectiveness and safety of cognitive enhancers in people with Alzheimer 268 

disease (Supplement Tables 5 and 6).2 Here, we include only those randomized trials that 269 

reported a target or average total daily treatment dose. We categorized treatment doses based 270 

on average total daily dose, where reported; otherwise, we categorized treatment doses based 271 
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upon target total daily dose. We categorized cholinesterase inhibitor doses as per ranges 272 

proposed by Lee et al: low dose donepezil (≤5mg/day), high dose donepezil (>5mg/day), low 273 

dose galantamine (<16mg/day), high dose galantamine (≥16mg/day), low dose rivastigmine 274 

(<6mg/day), and high dose rivastigmine (≥6mg/day).15  275 

Results: Nausea 276 

We included 41 studies (10,604 patients), four treatments, and seven treatment doses in our 277 

hierarchical NMA models describing the association between cholinesterase inhibitor use and 278 

nausea (Figure 4b). Study and participant characteristics were similar across treatment and 279 

dose comparisons (Supplement Tables 7 and 8). Moderate between study heterogeneity was 280 

evident in model 1 (0.20, 95% CrI 0.06 to 0.49), which decreased substantially in models 2 281 

and 3 (Supplement Tables 9a-c). Model 1 (DIC=157) fit the data better than models 2 282 

(DIC=167) and 3 (DIC=165). Although no inconsistent network loops were evident at the 283 

treatment level, inconsistency was identified at the dose level for the loop involving placebo, 284 

low dose donepezil, and high dose galantamine (Supplement Figures 2a and 2b). Given the 285 

presence of one inconsistent network loop at the dose level, researchers could cautiously 286 

proceed with implementing models 1, 2, or 3; however, they could consider an alternative 287 

approach (Box 3).3 Lower between study heterogeneity in models 2 and 3 than model 1 288 

suggests that treatment dose explains part of the between study heterogeneity. If researchers 289 

proceed with implementing NMA models that assume consistency on the dose level because 290 

of important clinical considerations, they should implement model 2 or 3, depending on 291 

whether they are interested in dose effects only (i.e., model 2) or treatment and dose effects 292 

(i.e., model 3). 293 

In model 1, donepezil (OR 1.72, 95% CrI 1.24 to 2.45, 95% PrI 0.65 to 4.70), galantamine 294 

(OR 2.98, 95% CrI 2.05 to 4.31, 95% PrI 1.09 to 8.12), and rivastigmine (OR 3.78, 95% CrI 295 
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2.61 to 5.59, 95% PrI 1.4 to 10.44) were associated with greater odds of nausea compared to 296 

placebo. In model 2, high dose rivastigmine was associated with greater odds of nausea than 297 

all other treatments; and high dose galantamine was associated with greater odds of nausea 298 

than high dose donepezil, low dose donepezil, and placebo. In model 3, high dose 299 

rivastigmine was associated with greater odds of nausea compared to all treatments except 300 

high dose galantamine; and high dose galantamine was associated with greater odds of 301 

nausea than high dose donepezil, low dose donepezil, and placebo (Figure 7a and Supplement 302 

Tables 9a-c). With respect to treatment rankings, model 1 suggested that placebo was the 303 

safest and rivastigmine was the most harmful treatment. Models 2 and 3 suggested there was 304 

a dose response across treatment doses (i.e., high treatment doses had the least favorable 305 

treatment dose profiles; Figure 6b and Supplement Table 9d). Our results suggest that high 306 

dose galantamine and high dose rivastigmine are associated with increased odds of nausea in 307 

people with Alzheimer disease and that low rather than high cholinesterase inhibitor doses 308 

are associated with more favorable nausea risk profiles. 309 

Results: Headache 310 

We included 31 studies (8,589 patients), four treatments, and seven treatment doses in our 311 

hierarchical NMA models describing the association between cholinesterase inhibitor use and 312 

headache (Figure 4c). Study and participant characteristics were similar across treatment 313 

comparisons, but there were differences across dose comparisons with regards to study 314 

duration (Supplement Tables 10 and 11). Between study heterogeneity was greatest in model 315 

1 (0.28, 95% CrI 0.07 to 0.76). DICs across models were similar. There was no evidence of 316 

inconsistency at the treatment or dose levels (Supplement Figures 3a and 3b). These findings 317 

suggest that researchers should implement model 2 or 3 because of the lower estimated 318 

between study heterogeneity in these models compared to model 1, depending on whether 319 
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interest lies in deriving dose effects only (i.e., model 2) or both treatment and dose effects 320 

(i.e., model 3). 321 

In model 1, only rivastigmine was associated with increased odds of headache compared to 322 

placebo (OR 2.19, 95% CrI 1.35 to 3.62, 95% PrI 0.65 to 7.57). In model 2, high dose 323 

rivastigmine was associated with increased odds of headache compared to placebo, high dose 324 

donepezil, and low dose rivastigmine. In model 3, only high dose rivastigmine was associated 325 

with increased odds of headache compared to placebo (Figure 7b and Supplement Table 12a-326 

c). With respect to treatment ranking, model 1 suggested that placebo was the safest and 327 

rivastigmine was the most harmful treatment. Models 2 and 3 suggested there was a dose 328 

response across treatment doses (i.e., high treatment doses had the least favorable treatment 329 

dose profiles; Figure 6c and Supplement Table 12d). Our results suggest that high dose 330 

rivastigmine is associated with increased odds of nausea in people with Alzheimer disease 331 

and that low rather than high cholinesterase inhibitor doses are associated with more 332 

favorable headache risk profiles. 333 

DISCUSSION 334 

Clinical importance of modelling both treatment and dose effects  335 

It is important to use NMA models that reflect real life clinical experiences; if studies 336 

incorporate clinically relevant treatment doses, then researchers should use NMA models 337 

incorporating dose effects so that results are responsive to the needs of decision makers 338 

unless there are methodological or statistical considerations that will jeopardize NMA 339 

conclusions (Box 1). For this reason, the equal dose effects model (model 1) is only 340 

recommended when it is plausible to assume that any dose effects are very small or absent 341 

because model 1 ignores possible differences in dose effects within treatments (Box 2 and 342 

Figure 3a). Like model 3, model 2 incorporates both treatment and dose effects, but model 2 343 
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ignores potential treatment dose relationships; derives only dose effects; and does not 344 

explicitly model between dose variation within treatments using variance components. Model 345 

3 is a highly appropriate model in the presence of different dose effects for helping decision 346 

makers to understand the comparative efficacy or safety of multiple treatments and doses 347 

simultaneously. Hierarchical NMA models can also be extended to cases where describing 348 

the effects of treatment formulations (e.g., oral, intravenous) and potential effect modifiers 349 

(i.e., meta-regression) is important. Further, these NMA models could be modified to 350 

incorporate a parametric dose response. .Our examples demonstrate both treatment and dose 351 

effects, which provide decision makers with important information beyond what was 352 

previously available in published medical literature.1 13 16 First, our results showed that 353 

risperidone and medium dose olanzapine were associated with increased odds of 354 

cerebrovascular events, which may prompt clinicians to prescribe quetiapine or low dose 355 

olanzapine to avoid this feared adverse event. Second, we demonstrated a potential treatment 356 

and dose response relationship for the outcome of nausea across cholinesterase inhibitors – 357 

low dose donepezil was the best tolerated and high dose rivastigmine was the worst tolerated. 358 

However, decision makers need to cautiously interpret these findings since we detected local 359 

inconsistency in this NMA model. Lastly, if we had modelled only treatment effects, we 360 

would have assumed all doses of rivastigmine were associated with increased risk of 361 

headache; by incorporating dose effects, we found that this increased risk was associated with 362 

high dose rivastigmine only.  363 

Dose effects as a source of heterogeneity 364 

NMA models should reflect our real-life clinical understanding of treatment doses: we 365 

assume that there is a treatment dose relationship (i.e., doses of one treatment are more 366 

similar than are doses of another treatment) and how we model heterogeneity should reflect 367 

this understanding (Box 1). Further, if the estimated between study variation is sensitive to 368 
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model choice, then reviewers can investigate with subgroup, sensitivity, or meta-regression 369 

analyses to understand if dose variability is an effect modifier or if participant characteristics 370 

vary by treatment dose (Table 1). For example, in our empirical examples involving 371 

cholinesterase inhibitors, the equal dose effects model (model 1) increased estimated between 372 

study heterogeneity compared to the separate (model 2) and exchangeable (model 3) dose 373 

effects models. 374 

Appropriateness of assuming transitivity and consistency on the treatment level, dose 375 

level, or both 376 

Transitivity implies that effect modifiers are balanced across NMA treatment and dose 377 

comparisons; consistency is the statistical quantification of transitivity. Researchers should 378 

evaluate these assumptions on each level that they are assumed (i.e., transitivity and 379 

consistency assumptions must be assessed on both the treatment and dose levels if 380 

researchers apply model 1). In addition to intransitivity or inconsistency related to dose 381 

effects, inconsistency may also be due to an imbalance in the distribution of other effect 382 

modifiers (e.g., participant age, sex, dementia severity). We did not identify any global or 383 

local inconsistency on the treatment level in our examples. On the dose level, we identified 384 

one inconsistent network loop in our example where we described the association between 385 

cholinesterase inhibitor use and risk of nausea; dose effects estimated from direct evidence 386 

were significantly different from dose effects estimated from indirect evidence in the closed 387 

network loop incorporating placebo, low dose donepezil, and high dose galantamine.5 Where 388 

inconsistency or intransitivity is identified on the dose level, it may not be appropriate to 389 

apply a model assuming consistency on the dose level and researchers should consider 390 

alternative approaches (Box 3).3 17 Researchers need to explore a number of factors (e.g., 391 

between-study variance, transitivity, consistency, model fit statistics) before choosing 392 

between models (Box 1). Fitting multiple models could improve understanding of the data set 393 
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and interpretation of results. Readers and peer reviewers of manuscripts reporting NMAs 394 

incorporating treatment and dose effects should also consider these factors when appraising 395 

the applicability and validity of systematic reviews with NMA (Box 4).  396 

Box 3. Alternative knowledge synthesis approaches when it is potentially inappropriate to 397 

assume consistency on the dose level in NMA models 398 

1. Apply a model that assumes consistency on the treatment level only (i.e., model proposed 399 

by Dias et al.)3 400 

2. Incorporate random inconsistency effects in the dose effects model 401 

3. Explore inconsistency and intransitivity through meta-regression or subgroup analyses 402 

4. Apply pairwise meta-analysis models only 403 

5. Narratively synthesize systematic review findings without performing meta-analysis  404 

 405 

Box 4. Considerations in appraising the applicability and validity of systematic reviews with 406 

NMA incorporating treatment and/or dose effects 407 

1. Is the biological plausibility of incorporating dose effects explained? 408 

2. If authors decide to incorporate dose effects, have they included all clinically relevant 409 

treatment doses?  410 

3. If authors chose a NMA model incorporating dose effects, do they provide a valid 411 

rationale for their model selection process?  412 

4. If NMA models incorporating dose effects assume a dose response relationship, have 413 

authors justified how they chose to model this dose response relationship? 414 

5. If dose effects are not incorporated in NMA models, have authors explained why they 415 

made this decision (e.g., network sparsity, dose level inconsistency, poor model fit, no 416 

biological plausibility, not relevant to the research question)? 417 

 418 

Alternative approaches for incorporating dose effects 419 

Alternative approaches to modelling dose effects in NMAs have been suggested.7 18-20 Del 420 

Giovane et al. proposed a number of other hierarchical NMA models incorporating dose 421 

effects.7 Similar to model 3, reviewers could apply a random dose effects NMA model 422 

without assuming consistency on the dose level; however, this model can only be 423 

implemented in the case where there are no multi-arm studies.7 Del Giovane et al. also 424 

proposed that adjacent treatment doses could be modelled as more similar than non-adjacent 425 

doses with a random walk process or it could be assumed that there is a monotonic dose 426 

response relationship (e.g., higher doses are likely to be more beneficial for clinical 427 

outcomes).7 These alternative hierarchical NMA models incorporating dose effects require 428 
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that researchers make additional modelling assumptions, which should be carefully 429 

considered a priori by a multidisciplinary team (e.g., content experts, methodologists, and 430 

statisticians). Owen et al. proposed a hierarchical NMA model that assumed a monotonic but 431 

nonparametric dose response between nodes representing different doses of the same 432 

treatment.20 Owen et al. implemented ordering constraints (i.e., assumed that higher doses 433 

would be associated with the same or greater clinical benefit).20 Thorlund et al. implemented 434 

a network meta-regression model that assumed a linear dose response on the log-odds scale 435 

and incorporated a three-level categorical covariate for doses at (1) half each drug’s 436 

“common” dose, (2) each drug’s “common dose”, or (3) double each drug’s “common” 437 

dose.19 In this model, assumptions must be made about what each drug’s “common dose” is, 438 

which can vary by study population. Mawdsley et al. proposed a model-based NMA 439 

framework that facilitates estimation and prediction of dose effects for multiple treatments 440 

within a drug class across a range of doses (including those for which study data are not 441 

available), using plausible physiological dose response models.18  442 

Challenges and limitations of applying NMA models incorporating treatment and dose 443 

effects  444 

There are challenges and potential limitations to applying NMA models incorporating dose 445 

effects. First, studies that do not report treatment dosing information cannot be included in 446 

NMA models incorporating treatment and dose effects. Second, performing NMAs that 447 

assume equal average dose effects (model 1) may increase precision of treatment effects, but 448 

there are potential trade-offs: (1) greater heterogeneity and inconsistency if there are 449 

clinically meaningful dose effects that are not included in the NMA model; and (2) NMA 450 

outputs that are potentially less meaningful for decision makers, especially if it is believed 451 

that dose effects are clinically important. In contrast, “splitting” of treatment nodes into 452 

smaller dose-based sub-nodes may decrease precision in effect estimates because there are 453 
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fewer studies informing each NMA dose comparison (model 2), but (1) heterogeneity and 454 

inconsistency may decrease because the effects of dose on heterogeneity are explicitly 455 

modelled and (2) NMA outputs will potentially be more meaningful for decision makers. 456 

Third, “splitting” of nodes to incorporate dose effects may create treatment doses with zero 457 

events or disconnected networks. Fourth, decisions about how to model dose response 458 

relationships in NMA models can be complicated, which is why we present three NMA 459 

models incorporating dose effects that do not require prior knowledge of this dose response 460 

relationship; however, if researchers have confidence in how to model the dose response 461 

relationship for treatments under study then alternative models can be considered, as 462 

proposed by Del Giovane and others.7 18 20  Fifth, given that studies reporting dose effects 463 

may have more than two arms and comparison-adjusted funnel plots assume independence 464 

between effect estimates in multi-arm studies, researchers assessing for publication bias can 465 

instead implement a selection model (e.g., Copas model) and present funnel plots for each 466 

direct treatment comparison.21 22 Most direct treatment comparisons in our NMA models 467 

were informed by fewer than 10 studies so we could not evaluate for publication bias. Lastly, 468 

we implemented NMA models in a Bayesian framework, which may be less familiar to some 469 

researchers, but NMA models incorporating dose effects could alternatively be implemented 470 

in a frequentist framework. A Bayesian framework offers several advantages compared to a 471 

frequentist framework, including modelling flexibility, a simpler way to derive ranking 472 

statistics associated with treatment and dose effects, the ability to implement informative 473 

priors to estimate between-study variance, and a more intuitive interpretation of results for 474 

decision makers. 475 

CONCLUSION 476 

Having the ability to incorporate both treatment and dose effects is important for researchers 477 

whose goal is to produce relevant and clinically meaningful NMA results for decision 478 
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makers. However, implementing NMA models incorporating treatment and dose effects is 479 

complex and requires the skills of a multidisciplinary team (e.g., clinicians, methodologists, 480 

and statisticians). As we have highlighted, clinical and pharmacological considerations 481 

should be considered first, but statistical and methodological considerations are also 482 

important. Further, different approaches and decisions about network structure may generate 483 

important variations in results so, when possible, decisions concerning NMA model 484 

assumptions should be made a priori. Future research to guide selection of NMA models 485 

incorporating dose effects will be critical to developing a consensus-based approach and 486 

advancing knowledge synthesis methods incorporating NMA. 487 

FIGURES 488 

Figure 1. Fictional example with network nodes representing treatments (a) and doses (b) 489 

Figure 2. Graphical representation of sources of variance in dose effects models 490 

Figure 3. Graphical representation of networks according to how dose effects are incorporated into 491 
network meta-analysis models (equal [a], separate [b], and exchangeable [c] dose effects). 492 

Figure 4. Network diagrams depicting network connectedness of treatments and treatment-doses for 493 
three illustrative examples: (a) cerebrovascular events, (b) nausea, and (c) headache. Thickness of 494 
solid lines is proportional to the number of studies included in the group comparison, and node size is 495 
proportional to the number of patients included in the underlying group. Dashed oval lines group 496 
doses of the same treatment. 497 

Figure 5. Forest plot of odds ratios (OR; 95% credible intervals [CrI]) describing the association 498 
between atypical antipsychotic (i.e., olanzapine, quetiapine, and risperidone) treatment doses and odds 499 
of cerebrovascular event compared to placebo. Blue triangles represent the summary dose effects 500 
derived from model 2 and red circles represent the summary dose effects derived from model 3. There 501 
are four treatments and seven treatment doses.  502 
Abbreviations: medium dose olanzapine (OLA-M), medium dose quetiapine (QUET-M), medium 503 
dose risperidone (RIS-M), low dose olanzapine (OLA-L), low dose quetiapine (QUET-L), low dose 504 
risperidone (RIS-L). 505 

Figure 6. Rank-heat plots for the outcomes of (a) cerebrovascular events, (b) nausea, and (c) headache 506 
across treatment and treatment doses. Each model corresponds to a separate ring. Sectors are coloured 507 
according to surface under the cumulative ranking curve (SUCRA) values as per the transformation of 508 
three colours red (0%), yellow (50%), and green (100%). Circles from outside in refer to: 1st, equal 509 
dose effects (model 1); 2nd, separate dose effects (model 2); 3rd, exchangeable dose effects (model 3).  510 
Abbreviations: high dose donepezil (DON-H), high dose galantamine (GAL-H), medium dose 511 
olanzapine (OLA-M), medium dose quetiapine (QUET-M), medium dose risperidone (RIS-M), high 512 
dose rivastigmine (RIV-H), low dose donepezil (DON-L), low dose galantamine (GAL-L), low dose 513 
olanzapine (OLA-L), low dose quetiapine (QUET-L), low dose risperidone (RIS-L), low dose 514 
rivastigmine (RIV-L), and placebo (PLA). 515 

Figure 7. Forest plot of odds ratios (OR; 95% credible intervals [CrI]) describing the association 516 
between cholinesterase inhibitor (i.e., donepezil, galantamine, and rivastigmine) treatment-doses and 517 
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odds of (a) nausea and (b) headache compared with placebo. Blue triangles represent the summary 518 
dose effects derived from model 2 and red circles represent the summary dose effects derived from 519 
model 3. There are four treatments and seven treatment doses.  520 
Abbreviations: high dose donepezil (DON-H), high dose galantamine (GAL-H), high dose 521 
rivastigmine (RIV-H), low dose donepezil (DON-L), low dose galantamine (GAL-L), low dose 522 
rivastigmine (RIV-L). 523 
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