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Abstract
Both climate change and rapid urbanization accelerate exposure to heat in the city of Kampala,
Uganda. From a network of low-cost temperature and humidity sensors, operational in 2018–2019,
we derive the daily mean, minimum and maximum Humidex in order to quantify and explain
intra-urban heat stress variation. This temperature-humidity index is shown to be heterogeneously
distributed over the city, with a daily mean intra-urban Humidex Index deviation of 1.2 ◦C on
average. The largest difference between the coolest and the warmest station occurs between 16:00
and 17:00 local time. Averaged over the whole observation period, this daily maximum difference
is 6.4 ◦C between the warmest and coolest stations, and reaches 14.5 ◦C on the most extreme day.
This heat stress heterogeneity also translates to the occurrence of extreme heat, shown in other
parts of the world to put local populations at risk of great discomfort or health danger. One station
in a dense settlement reports a daily maximum Humidex Index of>40 ◦C in 68% of the
observation days, a level which was never reached at the nearby campus of the Makerere University,
and only a few times at the city outskirts. Large intra-urban heat stress differences are explained by
satellite earth observation products. Normalized Difference Vegetation Index has the highest (75%)
power to predict the intra-urban variations in daily mean heat stress, but strong collinearity is
found with other variables like impervious surface fraction and population density. Our results
have implications for urban planning on the one hand, highlighting the importance of urban
greening, and risk management on the other hand, recommending the use of a
temperature-humidity index and accounting for large intra-urban heat stress variations and
heat-prone districts in urban heat action plans for tropical humid cities.

1. Introduction

Heat is a killer hazard with a global reach. Its expos-
ure has been associated with both increased mortal-
ity and morbidity worldwide (Medina-Ramón and

Schwartz 2007, Oudin Åström et al 2011, Fischer et al
2012, Mora et al 2017), raising serious concerns for
human health in a projected warmer future climate
(Kovats and Hajat 2008, Huang et al 2011, Guo et al
2014, Mora et al 2017). Former research on health
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impact of extreme heat concentrates on mid-latitude,
high-income countries of low to medium popula-
tion density (Campbell et al 2018, Green et al 2019,
Otto et al 2020), thereby chronically underreporting
regions that are projected to actually experience the
most extreme heat in the future (Im et al 2017, Mora
et al 2017, Nagendra et al 2018, Harrington and Otto
2020, Saeed et al 2021). For example, Africa is par-
ticularly vulnerable to heat stress (IPCC 2014, Singh
et al 2019). A rapid increase in the intensities and
frequencies of heatwaves during the past decades has
been demonstrated (Ceccherini et al 2017, Amou et al
2021), while simulations project this trend to con-
tinue uninterrupted into the future (Harrington et al
2016, Russo et al 2016, Dosio et al 2018). For instance,
under a higher emission scenario (SSP5-8.5), Africa’s
exposure to extreme heat is projected to be 7–269
times larger than it has been historically (Liu et al
2017, Asefi-Najafabady et al 2018).

Extreme heat is further amplified in cities, which
are shown to be warmer than their natural surround-
ings, because of reduced vegetated areas, increased
release of anthropogenic heat, changes in surface
albedo and trapped radiation within street canyons
(Oke 1982). This urban heat island effect has also
been demonstrated for Sub-Saharan African cities
(Nakamura 1966, Jonsson et al 2004, Roth 2007,
Brousse et al 2020), experiencing rapid population
growth (McGranahan and Satterthwaite 2014, United
Nations 2019) and extensive urbanization (Liu et al
2017, United Nations 2018, Marcotullio et al 2021).
As an example, Kampala, the capital city of Uganda,
is experiencing an uncontrolled urbanization, hav-
ing the fourth highest growth rate (>4% yr−1) of all
African cities (Richmond et al 2018, Kampala Cap-
ital City Authority and Uganda Bureau of Statist-
ics 2019). Like many fast-growing cities, Kampala is
expanding horizontally (Brousse et al 2019, Li et al
2021), demonstrating spatial patterns of urban sprawl
(Vermeiren et al 2016, Hemerijckx et al 2020) and
the formation of informal settlements or slums (Van
Leeuwen et al 2017, Lwasa et al 2018, Richmond et al
2018).

Within the city of Kampala, both morpholo-
gical and socio-economical characteristics largely dif-
fer, distinguishing wealthy districts characterized by
asphalted roads, modern houses and large gardens,
from informal settlements composed of densely built
shacks made of corrugated metal sheets that are only
accessible via small alleys (Vermeiren et al 2012,
Hemerijckx et al 2020). Recently, Brousse et al (2019)
classified these intra-urban variations into Local Cli-
mate Zones (LCZ, Stewart andOke 2012). This classi-
fication includes 7 vegetated and 10 built classes, each
class exemplifying uniform surface cover, structure,
material and human activity that span hundreds of
meters to several kilometers in horizontal scale (Stew-
art 2011). Importantly, LCZs are designed to reflect
the thermal environments as a consequence of their

intra-urban variations. LCZ are thus expected to also
reflect heat stress variations in the city (Kabano et al
2021, Van de Walle et al 2021), similar to the findings
in Nairobi (Kenya), concluding that informal settle-
ments are particularly prone to heat stress (Scott et al
2017).

However, observational studies investigating this
heterogeneity have been depreciated, because of the
characteristic meteorological data scarcity in the
region (Roth 2007). Six weather stations were set up
in Kampala only recently, thanks to the Trans-African
Hydro-Meteorological Observatory (TAHMO, van
de Giesen et al 2014) project, collecting meteor-
ological data from the synoptic station at Maker-
ere university and five instrument shelters placed in
open school gardens, in accordance with the offi-
cial World Meteorological Organization standards
(WMO 1986). Despite this great observational effort,
no stations are placed in more densely built environ-
ments where most of Kampala’s population lives.

To better represent the variations of heat stress
throughout the city of Kampala, including densely
populated areas, this study put in place an obser-
vational network of 45 low-cost iButton sensors.
These sensors recorded near-surface air temperat-
ure and relative humidity for three 42 d periods
between August 2018 and April 2019 (Van de Walle
et al 2021). From these measurements, the Humi-
dex Index is computed, providing a good estimate
for feel-like temperature (Masterton and Richard-
son 1979). High relative humidity decreases a per-
son’s evaporation ability and thereby the effective-
ness of the body’s natural cooling system (Malchaire
et al 2000, Hass et al 2016). Particularly in hot and
humid cities like Kampala, high values of the Humi-
dex Index might cause dangerous health conditions.
We therefore focus on extreme heat recorded at the
different stations, and explain the observed patterns
based on relevant satellite-derived earth observations.
For example, vegetation is known to generally play
a twofold role, decreasing temperature but enhan-
cing humidity by transpiration (Hass et al 2016).
Results are discussed from two different perspect-
ives: insights in spatial heterogeneity of heat in Kam-
pala and occurrences of heat above great discomfort
thresholds among different urban environments.

2. Methods

2.1. iButton observations
The iButton sensor, a product of Maxim Integrated,
is a low-cost sensor containing a temperature and
humidity logging system (Hubbart et al 2005).With a
logging frequency and data accuracy programmed at
15 min and 11 bit respectively, each sensor can store
42 consecutive days of data. Afterwards, a manual
download is required. To protect the sensors from
radiation and splash water, they are shielded by a fol-
ded thin light reflective film (figure S1 available online
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Figure 1. Locations of the different sensors throughout the city of Kampala, with top view of the neighbourhoods around the
stations Namungoona (Ng), Makerere (Mk), Nakasero (Ns), Industrial area (Ia), Nkeere (Nk) and Buziga (Bz). A set of three
sensors is installed per location (at the exact centre of each top view image), reducing the uncertainty due to different installation
conditions. Exact locations of the sensors are listed in table S1. Each top view image is 500× 500 m2, retrieved from Google Earth
imagery. The land surface temperature estimation for the cloud-free day of 27 February 2021 is derived from Landsat 8 and
MODIS remote sensing products via Parastatidis et al (2017), and shows large intra-urban variations of surface temperatures.

at stacks.iop.org/ERL/17/024004/mmedia), designed
and produced by the Maryland Institute College
of Art and Johns Hopkins University. The sensor-
containing shields are zip-tied preferably to a wooden
material, at about 2m height and at a shaded location
(table S1). In this study we reused the material of the
observational campaign by Scott et al (2017) held in
Nairobi, Kenya.

The resulting network of 45 sensors installed
throughout the city of Kampala (figure 1) aimed at
properly representing the city’s surface heterogeneity.
Besides a good spatial coverage of both openly and
densely built environments, the choice of sensors loc-
ation also considered the security of the sensors from
vandalism. Preferred locations thus included schools
or houses of local acquaintances. At each location, a
set of three sensors were installed close together, redu-
cing the uncertainty of the triple-sensor-mean due to
different installation conditions such as attachment
material, shade fraction or ground cover. For each
location, the 15 min resolution triple-sensor-mean
information is reduced to the minimum and max-
imum values per day. In addition, the daily mean is
computed as the average over 24 h. Three download-
ing rounds provided data for 3 periods of 42 d each
between August 2018 and April 2019 (figure S2). For
further analyses, daily minimum and daily maximum
values are computed as the averages over all 3× 42 d,
still referred to as dailyminimumanddailymaximum

values. These periods do not cover a full year, yet we
monitored humidity and temperature for both dry
andwet seasons. The intra-seasonal variations in tem-
perature and humidity are generally rather limited in
the region (figure S3). On a longer timescale, warm
spells can occur, with the start of 2019 as an example.
The second of our observational periods covers that
period (figure S3). Due to a slightly different down-
loading moment, measurement periods may slightly
differ for locations located far from each other. In
addition, some data is missing for the second and
third periods due to technical issues, especially low
battery. At the end of the third period, 32 out of 45
sensors remained active.

In addition, one sensor set was put indoor at the
informal settlement of Acholi Quarters. The build-
ing is a concrete block, no windows, an iron door
and iron roof sheets. Given the fact that it is only one
site, results are qualitatively described in the discus-
sion section.

2.2. Measurement quality
Themanufacturer’s evaluation of the iButtons reports
a thermochron and hygrochron accuracy of 0.5 ◦C
and 5% respectively. This is confirmed by calculat-
ing the mean deviation per sensor triple, explained
and summarized in table S2. In addition, the
triple-sensor-mean is evaluated against the Makerere
automatic weather station data, part of the TAHMO

3
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network (van de Giesen et al 2014). With an overall
temperature bias of 0.10 ◦C, 0.11 ◦C and 0.53 ◦C
in the three periods, and relative humidity bias of
−2.50%, −2.66% and −1.43%, the iButton sensors
tend to slightly overestimate the air temperature
and underestimate humidity. This however varies
throughout the day as observed nighttime temperat-
ures by the iButton sensors are higher than the ones
measured by the automatic weather station, while
observed daytime temperatures are lower (figure S4).
This results in an underestimation of the diurnal
temperature range. Nighttime relative humidity is
underestimated by ∼4%, but daytime observations
compare well to the Makerere automatic weather
station.

2.3. Humidex index
To better estimate the human-experienced heat, the
Humidex Index (hereafter referred to as ‘Humi-
dex’,H) is computed every 15 min from observations
of both temperature (T in ◦C) and relative humid-
ity (RH in %), following Masterton and Richardson
(1979):

H(T,RH) = T+
5

9

(
6.112

RH

100
10

7.5 T
237.7+T − 10

)
.

(1)

The resulting quantity increases non-linearly with
both air temperature and relative humidity, and can
be understood as feel-like temperature in degrees
Celsius. Humidex values above 40 ◦C lead to ‘great
discomfort’, values exceeding 45 ◦C are ‘dangerous’
(Masterton and Richardson 1979). Humidex inform-
ation is reduced to the minimum and maximum val-
ues per day, as well as the dailymeanwhich is the aver-
age over 24 h.

2.4. Explanatory variables
We aim to explain spatial Humidex patterns by com-
paring them against potential explanatory factors,
including distance to the lake, vegetation presence,
built-up fraction, surface elevation, population dens-
ity and surface albedo (figure S5). The choice of each
of these six factors is argued below. First, located next
to Lake Victoria, Kampala is affected by a daytime
lake breeze developing on a daily basis (Thiery et al
2015, 2016, 2017, Brousse et al 2020, Van de Walle
et al 2020, Woodhams et al 2021). The distance of
the sensors to the lake is therefore used to account for
different onsets of cooling. Second, hills can optim-
ally benefit from cooling winds, lower regions cannot.
In addition, these low areas are typically wetlands,
providing opportunities for urban farming, but also
humidifying the air (Kabumbuli and Kiwazi 2009).
Therefore, a digital elevation model at 30 m hori-
zontal resolution is retrieved from the Shuttle Radar
Topography Mission (SRTM, Farr et al 2007) as a
potential explanatory variable. Third, the presence of

vegetation can counteract the urban heat island effect,
for example by evaporative cooling (Oke 1982). The
normalized digital vegetation index (NDVI) ranging
from 0 to 1, is used as a proxy for the fraction of sur-
face covered by vegetation. This product is derived
from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) onboard the Terra satellite with
a horizontal resolution of 250 m. This satellite over-
passes Kampala at 10:30 AM and PM local time. Our
analysis uses the median value of two years, 2018–
2019, overlapping the observation period. No tem-
poral variation is taken into account, assuming little
seasonal variation in this tropical area and keeping
the focus to the spatial heterogeneity. Fourth, due
to the high heat storage capacity of building mater-
ials, densely built areas can largely influence local
temperatures (Oke 1973). As a proxy for this build-
ing density, impervious surface area (ISA) fraction
is retrieved from the Global Man-made Impervious
Surface (GMIS) dataset (De Colstoun et al 2017). For
the target year 2010, the GMIS product analysed all
cloud-free images from Landsat 5 and 7, inheriting
the high horizontal resolution of 30 m. A strong cor-
relation is expected, yet the abundance of bare soil
often challenges satellite instruments to properly rep-
resent ISA (Van deWalle et al 2021). Fifth, anthropo-
genic heat, mainly from domestic and transportation
fuel use, is produced in highly populated areas (Taha
1997, Stewart and Kennedy 2015). The population
density of the greater Kampala region, formally avail-
able per district for the year 2014 (Uganda Bureau of
Statistics 2014, Hemerijckx et al 2020), is translated
to a 30 m resolution grid. Sixth, the MODIS instru-
ment also provides directional hemispherical (black-
sky) near-infrared albedo at 0.7–5.0 µm wavelength
at 500 m horizontal resolution, possibly distinguish-
ing different roofing types within the city of Kampala
(Brest 1987).

If these variables can explain the observed Humi-
dex variations, a simple statistical model could extra-
polate operational weather station data to the entire
city, providing heat stress information about hardly
accessible locations such as informal settlements.
Assuming linear behaviour, a multiple linear regres-
sion technique is applied, expressing the Humidex
(H) in terms of the explanatory variables xi:

H= β0+
N∑
i=1

βixi, (2)

where the Ordinary Least Squares method estim-
ates the best fitting coefficients β̂i based on the
observations. Initially, allN explanatory variables are
included, but a t-test decides on the elimination of the
least significant variable. This backward elimination
continues iteratively until all explanatory variables
are significant at 95% confidence level. Ultimately,
the remaining multiple linear regression model no
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longer suffers from multicollinearity, ensuring its
coefficients to be optimally stable (Halinski and Feldt
1970).

2.5. Local climate zones
In addition to this quantitative approach, locations
are classified based on the building structure, land
cover and human activity according to the LCZ clas-
sification scheme (Stewart and Oke 2012, Brousse
et al 2019, see table S1). The outskirts stations Buloba
(Bl), Kawanda (Kw), Bukerere (Bk) and Buziga (Bz)
are located in open low-rise environments (LCZ 6),
defined by small (3–10 m) buildings with abund-
ant plant cover (Stewart 2011). The campus of the
Makerere University (Mk) is classified as open mid-
rise class (LCZ 5), characterized by open arrange-
ment of 3–9 story buildings and abundant plant
cover. The Industrial Area (Ia) station is located
in a large low-rise (LCZ 8) class, characterized by
extensive paved surfaces between large, low buildings,
often with an industrial or commercial function. The
Nakasero (Ns) station is located in compact mid-rise
(LCZ 2) class, defined by buildings of 10–25 m sep-
arated by narrow streets and inner courtyards, and
with few or no trees. In addition, we classify the sta-
tions in Namungooma (Ng), Bwaise (Bw) and Naj-
janankumbi (Nj) as compact low-rise (LCZ 3) and
Nateete (Nt), Nkeere (Nk) and Acholi Quarters (Aq)
as lightweight low-rise (LCZ 7), often called informal
settlements or slums. Both classes consist of small
buildings tightly packed along narrow streets with no
or little vegetation. Typical for the latter class are the
lightweight building materials (thatch, wood or cor-
rugatedmetal) and often formless arrangement of the
buildings (Stewart 2011).

3. Results

Measurements show clear differences in Humidex
values at the different sensor locations (figures 2(g)–
(i)). For example, the average Humidex varies
between 30.6 ◦C and 32.1 ◦C for the urban stations,
except for theMakerere (Mk) station, located near the
city centre, with a substantially lower average Humi-
dex (29.0 ◦C). Also the city’s outskirts, represented
by Buloba (Bl), Bukerere (Bk) and Kawanda (Kw)
stations, are cooler (29.3 ◦C–29.9 ◦C, figure 2(h)).
At night (figure 2(g)), both the city outskirts and
Makerere are cool, in contrast with high Humidex
values observed nearby central stations. Particularly
the industrial area (Ia), Nakasero (Ns), Namungoona
(Ng) and Nkeere (Nk) experience warm nights, with
differences up to 2.3 ◦C compared to Makerere.
The intra-urban heterogeneity is most pronounced
when comparing daily maximum Humidex values
(figure 2(i)), ranging from 34.1 ◦C at Makerere to
41.6 ◦C at Najjanankumbi.

The observedHumidex heterogeneity is a result of
intra-urban temperature and relative humidity vari-
ations. The latter are considered at times of dailymin-
imum and maximumHumidex (figures 2(a), (d) and
(c), (f) respectively). Around sunrise, when Humi-
dex reaches its minimum, the air temperature almost
entirely determines the Humidex variations between
the sensor sites, with the urban air being clearly
hotter and drier than at the outskirts (figures 2(a),
(d) and (g)). Specific humidity between those sites
is similar (not shown). Around noon, when Humi-
dex reaches its maximum, the situation is differ-
ent. Then, the highest air temperatures are observed
at Nateete (Nt), Nkeere (Nk) and Acholi Quarters
(Aq, figure 2(c)), all classified as lightweight low-rise
LCZ 7. These locations also have the lowest relative
humidity (figure 2(f)). While the temperature at Naj-
janankumbi (Nj, compact low-rise LCZ3) is very sim-
ilar to the temperatures at Nateete or Nkeere, it has
a clearly higher Humidex (figure 2(i)). This can be
explained by Najjanankumbi’s high relative humid-
ity compared to Natalee and Nkeere. We therefore
need both temperature and relative humidity to prop-
erly explain spatial variations in heat. Importantly,
neither Najjanankumbi’s air temperature or relative
humidity is exceptional compared to other stations
such as Nkeere or Makerere: the temperature distri-
bution is similar to the one at Nkeere (figure S6(c)),
and relative humidity values exceeding 70% occur as
frequent at Makerere (figure S6(f)). Instead, it is the
combination of both compound drivers that creates
high maximum Humidex values in Najjanankumbi
(figure S6(i), Zscheischler et al 2018, 2020).

Relating the observed Humidex heterogeneity to
the LCZ classification, the open low-rise (LCZ 6)
environments, together with the open mid-rise
Makerere University campus (LCZ 5), report gen-
erally lowest temperature, highest relative humidity
and lowest Humidex values (figure 2). These cool
environments contrast with the warm compact and
lightweight low-rise classes (LCZ 3 and LCZ 7), as
well as the compact mid-rise central business centre
(LCZ 2). Kampala’s industrial area (Ia, LCZ 8) is
rather warm at night, but shows relatively mild tem-
peratures during daytime. Especially poorly vegetated
and compactly built neighbourhoods in Kampala are
thus more prone to heat stress than the outskirts or
Makerere station.

Intra-urban differences are especially relevant
when considering extreme heat (figure 3). Concretely,
Makerere (Mk) has no single day with the Humidex
exceeding the ‘great discomfort’ threshold of 40 ◦C,
it occurs in 2%–16% of the observed days in the out-
skirts stations Bukerere (Bk), Kawanda (Kw), Buloba
(Bl) and Buziga (Bz), and 14%–67% in the stations
located in densely built areas, in particular in Nkeere
(Nk), Acholi Quarters (Aq) and Najjanankumbi (Nj)
(in 50%–67% of the observed days). Looking at days
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Figure 2. Observed temperature and relative humidity at all locations, as well as the Humidex derived following equation (1). The
left and right columns show observations at daily minimum and maximum Humidex respectively, while the middle column gives
the Humidex averaged over the three observation periods (3× 42 d). The grey contour line indicates the Kampala urban extent,
defined by ISA fraction above 0.1 (figure S5). Different marker symbols correspond to the different LCZ classes obtained from
Brousse et al (2019) and Van de Walle et al (2021).

with maximum Humidex exceeding 45 ◦C, the ‘dan-
gerous’ threshold, Bwaise (Bw), Najjanankumbi (Nj)
and to a lesser extent Nkeere (Nk) stand out, with
occurrences of 17%, 12% and 4% of the observed
days, respectively.

Not only for daily maximum Humidex, also
for daily minimum or average Humidex, Nkeere
(Nk), Acholi Quarters (Aq) and Namungoona (Ng)
show highest exceedance frequencies of all Humi-
dex thresholds (figure S7). When also accounting for
the duration of exceedance by considering the hours
above a certain threshold (figure S8, top), or for the
heat intensity by computing the mean heat-degree-
hours (figure S8, bottom), the densely built environ-
ments often experience extreme heat (1%–10% of the
observed time), especially in Najjanankumbi (Nj).

The intra-urban heterogeneous Humidex values
correlates with six proposed explanatory variables
(figure S9). Strongest correlations are found between
Humidex and NDVI as well as ISA fraction. Moder-
ate negative correlations of −0.5 to −0.65 are found
between Humidex and near-infrared albedo, while
Humidex and population density are positively cor-
related, with values between 0.5 and 0.76. Smaller

correlations are found between Humidex and the
proximity to the lake or elevation. Importantly, the
explanatory variables are not independent from each
other, with high ISA fractions prohibiting abundant
vegetation (correlation of−0.93) while also implying
lower near-infrared albedo due to the strongly mod-
ified land cover (correlation of −0.82, figure S10).
Also population density is not independent from
ISA fraction, NDVI or near-infrared albedo, with
correlations of 0.71, −0.78 and −0.72, respectively.
The elevation shows a moderate correlation of 0.51
with NDVI, probably related to Kampala’s vegetated
hills.

Due to this collinearity between the explanat-
ory variables, the stepwise backward elimination pro-
cedure only retains NDVI as explanatory variable
in the linear regression model for minimum, mean
and maximum Humidex (figure 4). With R2 = 0.79,
the NDVI has a high explanatory power for min-
imum (early morning) Humidex, meaning that 79%
of the the intra-urban Humidex variability can be
explained. This explanatory power is similar for aver-
age (75%), but lower for maximum (midday) Humi-
dex (52%).
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Figure 3. Exposure time to heat stress extremes for each location. Time is given in percentage of observed days out of 3× 42 d at
which the daily maximum Humidex exceeds a certain threshold, defined by the values on the abscissa. Typical thresholds are
indicated, related to ‘some discomfort’ ifHmax > 30 ◦C, to ‘great discomfort’ ifHmax > 40 ◦C and to ‘dangerous’ ifHmax > 45 ◦C.

Figure 4. (b) Dependency of the Humidex averaged over the period of 3× 42 d on vegetation fraction (NDVI) for each location.
Same for dependencies of daily minimum (a) and maximum (c) Humidex. Colours correspond to the LCZ classes assigned based
on their Google Earth top-view images (see figure 1). Linear regression results after a stepwise backward elimination procedure of
other explanatory variables is shown by the full blue line and the corresponding equation, while dashed lines define the 95%
confidence bands. The R2 values provide the explanatory power of the regression models, with R2

adj adjusting for the number of

predictors.

Figure 5. Extrapolation of daily minimum (a), mean (b) and maximum (c) Humidex based on the regression models from
figure 4. In practice, the Humidex is derived from the explanatory variable NDVI available at 250 m resolution (figure S5),
supplemented by and multiplied with two coefficients β0 and β1 (equation (2)) resulting from the linear regression procedure.

The explanatory power of NDVI allows us to
apply the regressionmodel by extrapolating the point
observations of minimum, mean and maximum
Humidex to the greater Kampala region (figure 5).
This map provides information on the spatial hetero-
geneity of heat stress in Kampala.

4. Discussion

With average intra-urban differences of 1.2 ◦C, and an
afternoon difference of 6.4 ◦C on average, the Humi-
dex Index is heterogeneously distributed over the
city of Kampala. These large intra-urban differences
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are also reflected in the number of days exposed to
extreme heat. At some locations, dailymaximumheat
stress exceeds the great discomfort level, defined by
Humidex >40 ◦C, for more than 50% of the 3 ×
42 observation days. In comparison, for the same
period, this level was never reached at the Maker-
ere station and only a few times in the city outskirts.
Moreover, we identified the regions in Kampala that
are most prone to heat, pointed to non-vegetated,
densely built environments using linear regression
and extrapolated the result to the greater Kampala
region. The resulting map could complement remote
sensing products for land surface temperature, adding
information about 2 m temperature and relative
humidity combined in the Humidex Index. Such
map can guide anticipatory action plans that help
reduce the impact of heatwaves, by providing con-
crete information about heat-prone areas. With spe-
cial attention to those heat-prone areas, a heat action
plan commits to public awareness about heat risks
(Singh et al 2019), which has been demonstrated to
be successful in reducing heat-related mortality in
Ahmedabad, India (Knowlton et al 2014, Hess et al
2018, Nastar 2020). In addition, a heat action plan
also accounts for the vulnerability of urban dwell-
ers. In general, densely built and informal settlements
house a large part of the population belonging to the
lower socioeconomic status with income and liveli-
hood insecurity, making them particularly vulnerable
(Vermeiren et al 2012, Lwasa et al 2018, Hemerijckx
et al 2020, Twinomuhangi et al 2021). An import-
ant factor increasing their vulnerability is the hous-
ing infrastructure, not offering any protection to heat.
As a test case, we collected heat observations inside a
building in the informal settlement of Acholi Quar-
ters during the three periods of the observational
campaign. Instead of offering protection against heat,
the house seems to act like a heat trap for even-
ing and nighttime heat, times when people are living
inside. Only heat before and at noon is slightly lower
then outside observations (figure S11). A recent study
in Ghana investigated indoor temperatures and con-
cluded large effects of building materials (Wilby et al
2021).

A second implication concerns urban adaptation
planning, and follows from our finding that Kam-
pala’s intra-urban varying heat is strongly correl-
ated with NDVI, explaining up to 77% of the intra-
urban variability in daily mean Humidex. Despite
their elimination in the regression analysis due to
clear correlations with NDVI, other explanatory vari-
ables, particularly ISA fraction, might also be import-
ant. From a Local Climate Zone perspective (Stew-
art and Oke 2012), the warmest stations were found
in compact LCZ classes, characterized by densely
built environments with little or no vegetation. In
particular, they include compact mid-rise (LCZ 2),
compact low-rise (LCZ 3) and lightweight (LCZ 7)
classes. Cooler environments in Kampala include

open low-rise (LCZ 6) and open mid-rise (LCZ 5)
classes. Overall, sparsely built and highly vegetated
areas thus experience substantially lower heat, with an
observed mean difference of 6.4 ◦C in the afternoon.
This result implies that greening the city could mit-
igate urban heat (Bowler et al 2010, Demuzere et al
2014, Gunawardena et al 2017). Yet, a more detailed
investigation is needed to the overall effects of differ-
ent types of vegetation on human well-being, includ-
ing the effects on local climate, air quality and aes-
thetics (Salmond et al 2016). In fact, the Kampala
City Council Authority (KCCA) announced plans to
plant 0.5million trees inKampala as part of its climate
action strategy, which is developed with stakehold-
ers. Concretely, the strategy has embarked on tak-
ing stock of the trees in the city coupled with map-
ping of natural assets in the city to form the basis
for implementation of the climate strategy. This cli-
mate action strategy is challenging, especially because
most available land is in Kampala’s residential areas
where urban tree canopies are already evident, while
we showed that the need for cooling is most urgent
in densely built environments and informal settle-
ments. Yet, Lwasa et al (2014) claimed the potential
for expansion of tree canopy cover in the city’s densely
built and most vulnerable areas as well. For this,
initiatives from local actors and inhabitants should
be strongly supported, which can only be achieved
by properly informing the inhabitants (Hintz et al
2018), followed by incentive-based mechanisms that
allow the planting, nurturing and taking care of the
trees in dense settlements by the developers. As an
example, some local politicians and influencers chal-
lenged Ugandans via (social) media to commemorate
every marriage, death, birth and graduation by plant-
ing a personal tree.

Five important challenges have to be addressed by
future research. First, besides Humidex, many other
indices can describe heat as a combination of mul-
tiple factors influencing heat stress. To explain human
discomfort, many factors play a role, including air
temperature and humidity (Epstein andMoran 2006,
Barnett et al 2010, Fischer et al 2012, Lange et al
2020), but also wind, radiation, physiological factors,
physical activity and clothing (Quayle and Doehring
1981, Roth 2007, Potchter et al 2018). This study
includes temperature and relative humidity only, with
differences between similar heat measures shown to
be small (Barnett et al 2010). Second, to explain the
observed Humidex values, vegetation is an import-
ant factor with a twofold role. On the one hand,
enhanced transpiration by vegetation implies air tem-
perature cooling, tending to reduce the Humidex.
On the other hand, enhanced transpiration increases
the humidity which contributes to a higher Humi-
dex (Hass et al 2016). By showing a strong negative
correlation between Humidex and vegetation frac-
tion (NDVI), we conclude that the first role dom-
inates. Concretely, adding vegetation might increase
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the relative humidity, the reduction in temperat-
ure is superior. Yet this study did not quantitatively
investigate the interplay between temperature and
humidity in detail. A study in Indiana, US, high-
lighted the importance of different vegetation types
and structures to unravel this interplay (Souch and
Souch 1993). Individual tree species or open grass
areas have the largest cooling effect, street trees the
smallest. Also in Kampala, different vegetation types
could be obtained or derived from detailed land-
cover maps. Even if such land-cover maps would help
the interpretation of the results by further linking
heat to different vegetation types, our study already
integrates the level of greenness and vegetation by
using NDVI and ISA variables. Third, our observa-
tional iButton network was only active for a short 3
× 42 d period, during a warm spell. Results might
therefore slightly overestimate the multi-year situ-
ation. In addition, our network was not complete
to cover all neighbourhoods. Moreover, paper-made
shields might not be sufficient to perfectly protect
the sensor from direct sunlight. However, the role of
irradiation of the sensor shields is not investigated
since the time of the day at which the sensor is sun-
lit/shaded was not inventorized. Deviations between
the sensor triple observations are small, suggesting
that the effect of irradiation is also small. Despite
the good performance of our sensors, we still recom-
mend using a pair or triplet of iButtons per site,
regardless of the reduced number of observational
sites. Besides our iButton network, weather station
observations are increasingly conducted in the region
via the TAHMO project (van de Giesen et al 2014),
yet the meteorological network is still sparse. Besides
TAHMO, the availability of crowd-sourced weather
data has grown worldwide in recent years, offering
possibilities for high-resolution observational urban
heat studies (Muller et al 2015, Chapman et al 2017,
Meier et al 2017, Venter et al 2020, Fenner et al
2021). Unfortunately, no studies have collected and
analysed such data in tropical Africa. Fourth, there
is no common definition of heatwaves (Hintz et al
2018). This study investigated different definitions
including total days/nights or hours with extreme
heat and heat degree hours. Similar to Europe, the
US and Australia, a region-specific heatwave defini-
tion should be derived from mortality and morbid-
ity studies (Kovats and Hajat 2008, Guo et al 2014,
Mora et al 2017, Xu and Tong 2017, Li et al 2020).
Yet such studies are currently completely lacking
for Africa (Harrington and Otto 2020). In addition,
given an appropriate metric, health impact research
should also question whether certain thresholds are
meaningful for different regions of interest based
on more metabolic information on people living in
these regions. In this study we provided the gen-
eral (dis)comfort levels accompanying the Humidex
Index. Yet, experienced heat is expected to depend
on the region of the world (Potchter et al 2018).

In some areas, heat is experienced as ‘great discom-
fort’ below/above the proposed 40 ◦C threshold. Sur-
veys in Dar es Salaam (Tanzania) suggested that the
comfort range was well above the one defined in
temperate climates (Ndetto and Matzarakis 2017).
While concrete information about applicable levels/-
thresholds for Kampala is lacking, this study provi-
sionally explored different thresholds for the Humi-
dex Index, ranging from 30 ◦C to 50 ◦C. Fifth, though
the explanatory power of the regression model is
high (75%), four factors could lead to improvements
of the model. First, it would definitely benefit from
more observations, perhaps supplemented by remote
sensing data. Second, this study explored only six
explanatory variables, but more could be added, for
example providing information about building mor-
phology or materials. Though this information is
implicitly already included in LCZ classes, high resol-
ution material maps will possibly appear in the near
future. Third, future research should investigate the
robustness of the model when adding new observa-
tions. Fourth, we found strong collinearity between
different explanatory factors, challenging the causal-
ity between vegetation fraction and Humidex Index
in our linear regression model.

5. Conclusion

From a network of low-cost temperature and humid-
ity sensors, we compute the Humidex Index, quanti-
fying the heat stress throughout the city. Daily min-
imum,mean, maximum as well as extreme heat stress
are heterogeneously distributed over the city, with
poorly vegetated and densely built-up environments
being the most heat-prone areas. Their inhabitants,
generally vulnerable people due to their socioeco-
nomic status, are often exposed to great discom-
fort or even dangerous heat. Future research should
bridge the gap to indoor heat and its dependence on
house structure and building materials. Two recom-
mendations follow from this study: to mitigate heat
stress, urban greening should be considered in urban
planning strategies, and urban heat action plans
should account for the large intra-urban heat stress
variations.

Data availability statement

The data that support the findings of this study
are openly available at the following URL/DOI:
http://doi.org/10.5281/zenodo.5105570.

Other products are publicly available online: the
TAHMO automatic weather station data at Makerere
University (https://tahmo.org/climate-data/), SRTM
Digital elevation model (https://gee.stac.cloud/6FKB
uAFUoXyYMZCUkttkJ5VuS8cQd?t = bands),
MODIS MYD13Q1 product for NDVI (https://mo
dis.gsfc.nasa.gov/data/dataprod/mod13.php), GMIS
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built-up fraction (https://sedac.ciesin.columbia.edu/
data/set/ulandsat-gmis-v1), Kampala population
density (https://unstats.un.org/unsd/demographic/
sources/census/wphc/Uganda/UGA-2016-05-23.pdf)
and MODIS MCD43A3 v6 albedo product (https://
modis.gsfc.nasa.gov/data/dataprod/mod43.php). In
addition, the land surface temperature is derived from
Landsat 8 and MODIS, and can be retrieved online
via: http://rslab.gr/downloads_LandsatLST.html
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