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Abstract 

Background: Reduced empathy is a common symptom in frontotemporal dementia (FTD). Although 

empathy deficits have been extensively researched in sporadic cases, few studies have explored the 

differences in familial forms of FTD.  

Methods: Empathy was examined using a modified version of the Interpersonal Reactivity Index (mIRI) 

in 676 participants from the Genetic FTD Initiative: 216 mutation-negative controls, 192 C9orf72 

expansion carriers, 193 GRN mutation carriers and 75 MAPT mutation carriers. Using global scores from 

the CDR plus NACC FTLD, mutation carriers were divided into three groups, asymptomatic (0), very 

mildly symptomatic/prodromal (0.5), or fully symptomatic (1 or more). The mIRI Total score, as well as 

the subscores of Empathic Concern (EC) and Perspective Taking (PT) were assessed. Linear regression 

models with bootstrapping were used to assess empathy ratings across genetic groups, as well as across 

phenotypes in the symptomatic carriers. Neural correlates of empathy deficits were examined using a 

voxel-based morphometry (VBM) analysis. 

Results: All fully symptomatic groups scored lower on the mIRI Total, EC, and PT when compared to 

controls and their asymptomatic or prodromal counterparts (all p < 0.001). Prodromal C9orf72 expansion 

carriers also scored significantly lower than controls on the mIRI Total score (p = 0.046). In the phenotype 

analysis, all groups (behavioural variant FTD, primary progressive aphasia and FTD with amyotrophic 

lateral sclerosis) scored significantly lower than controls (all p<0.007). VBM revealed an overlapping 

neural correlate of the mIRI Total score across genetic groups in the orbitofrontal lobe but with 

additional involvement in the temporal lobe, insula and basal ganglia in both the GRN and MAPT 

groups, and uniquely more posterior regions such as the parietal lobe and thalamus in the GRN group, 

and medial temporal structures in the MAPT group. 

Conclusions: Significant empathy deficits present in genetic FTD, particularly in symptomatic 

individuals and those with a bvFTD phenotype, while prodromal deficits are only seen using the mIRI 

in C9orf72 expansion carriers.  
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1. Introduction 

Frontotemporal dementia (FTD) is a heterogenous group of neurodegenerative disorders, characterised 

by predominant atrophy in the frontal and temporal lobes [1-3]. The disease spectrum encompasses a 

variety of clinical syndromes: behavioural variant FTD (bvFTD), identifiable by altered personality and 

behavioural change, as well as a number of language variants, collectively referred to as primary 

progressive aphasia (PPA), distinguished by progressive deficits in word retrieval, comprehension or 

speech production [2, 4-11]. Overlapping motor syndromes such as FTD with amyotrophic lateral 

sclerosis (FTD-ALS) also occur within the spectrum [11-14]. 

 

FTD is a highly heritable disease with around 20-30% of cases inherited via autosomal dominant 

transmission [1, 12, 15, 16]. Mutations in one of three genes account for the majority of familial FTD: 

microtubule associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame 

72 (C9orf72) [3, 17-19]. Each account for around 5-10% of FTD cases, though geographic variability has 

been described [1, 6, 10, 16, 17]. 

 

Despite various underlying pathologies, contributory genes, and clinical presentations, abnormal 

behaviours and social-emotional dysfunction are central to FTD syndromes, with a diminished capacity 

for empathy presenting as a core clinical symptom [12, 13, 20-25]. Empathy is widely recognised as the 

ability to ‘put oneself in another's shoes’, interpret others’ emotions and appropriately respond to their 

experience [4, 23, 26]. Accordingly, it forms a fundamental aspect of social relatedness, facilitating the 

formation of strong foundations with those in one’s social environment [26-29]. Manifesting as 

interpersonal coldness and a reduced social interest, the empathy deficits seen in people with FTD are 

arguably one of the most distressing behaviours experienced by relatives and caregivers, demonstrating 

the need for clinical research [20, 29, 30]. 
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Empathy is conceptualised as a multidimensional construct, regulated by unconscious affective and 

conscious cognitive processes [27, 31, 32]. The Interpersonal Reactivity Index [31] is a psychometric 

measure, developed to reliably quantify this multifaceted construct. Given that limited self-awareness 

and a loss of insight into one’s social functioning is commonplace in neurodegenerative diseases [14, 29, 

33-35], a modified version of the index (hereafter referred to as the mIRI) was developed and used in 

the present study. The modified index ensures that a more accurate reflection of real-life empathic 

behaviours can be collected, by enabling third-party informants to respond on behalf of participants, 

thus overcoming issues of patient anosognosia [24, 36, 37]. 

 

Though empathy deficits and their neural correlates have been extensively researched in sporadic FTD 

[29, 34, 38], few studies have examined the possible differences between familial FTD groups. In the 

present study therefore, the mIRI was employed alongside a whole-brain voxel-based morphometry 

analysis with the aim of: i) exploring empathy in familial FTD groups; ii) evaluating the use of the mIRI 

as a measure of social cognitive change at different stages of symptom progression; and iii) elucidating 

the neural networks of total, affective, and cognitive empathy in genetic FTD. Due to genetic mutation-

specific neurodegeneration [1, 39], it was hypothesised that each familial group would present with 

divergent but overlapping neural networks associated with empathy. Furthermore, it was predicted 

that empathy would start to diminish as the disease progressed.  

 

2. Methods 

2.1 Participants 

A total of 844 participants were recruited from the fifth data freeze of the Genetic FTD Initiative (GENFI) 

study, incorporating participant data from 27 sites. Of those enlisted, 676 had existing cross-sectional 

mIRI scores as completed by their informant, including 216 mutation-negative healthy controls, 192 

C9orf72 expansion carriers, 193 GRN mutation carriers and 75 MAPT mutation carriers (Table 1). Ethical 

approval was gained locally at each GENFI site and all participants provided informed written consent. 
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Following the standardised GENFI protocol, a clinical examination was conducted on all participants, 

comprising of a physical examination, assessment of family and medical history, the Mini-Mental State 

Examination (MMSE), and the CDR® Dementia Staging Instrument with National Alzheimer 

Coordinating Centre Frontotemporal Lobar Degeneration component (CDR® plus NACC FTLD). The 

CDR® plus NACC FTLD measures functional, cognitive, language, and behavioural domains to 

generate a sum of boxes score (SB) and a global score, reflective of disease severity. Using these CDR® 

plus NACC FTLD global scores, mutation carriers were classified as either asymptomatic, very mildly 

symptomatic/prodromal, or fully symptomatic, corresponding to a value of 0, 0.5, or 1 (1+ i.e. those 

scoring 1, 2 or 3), respectively (Table 1). For inclusion as a healthy control in the analysis, a CDR® plus 

NACC FTLD-SB and global score of zero was required. In the 133 symptomatic participants (CDR 1+), 

clinical diagnoses (as per standard diagnostic criteria [22, 40, 41]) were as follows: C9orf72, bvFTD=48, 

PPA=3, FTD-ALS=7, Other=7; GRN, bvFTD=25, PPA=17, Other=5; MAPT, bvFTD=17, PPA=1, Other=3. 

Demographics of all participants are displayed in Table 1. 

2.2 The modified Interpersonal Reactivity Index 

The modified version of the IRI that we used here is a 14-item questionnaire consisting of two seven-

item subscales that measure separate empathy components [29]. The Perspective Taking (PT) scale 

measures the tendency to spontaneously consider or adopt another person's viewpoint, referred to as a 

cognitive facet of empathy. The Empathic Concern (EC) scale assesses feelings of sympathy and concern 

in response to another person's negative emotional state [36, 38, 42], regarded as an affective facet of 

empathy. Each item in the scale is scored from 1 to 5, with five reverse-oriented questions included to 

deter response bias. Informants provided ratings reflecting participants current behaviour, with a total 

score (namely the mIRI Total, out of 70) and two component subscores (the mIRI EC and mIRI PT, out 

of 35 each) measured. A lower score on the mIRI corresponds to less empathy. 

 

2.3 Statistical analysis 
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All statistical analyses were conducted using Stata/IC (version 16.1). In the healthy control group, 

Spearman rank correlations were conducted to determine the influence of age and years of education 

on the mIRI Total scores, whilst a Mann Whitney-U test was employed to explore the relationship 

between controls’ mIRI Total scores and sex. 

 

The mIRI Total, PT, and EC scores were assessed across the genetic groups using linear regression 

models, with 95% bootstrapped confidence intervals (2000 repetitions) as the data was not normally 

distributed, adjusting for sex.  

 

In addition, bootstrapped linear regression analyses were performed to compare the mIRI Total, EC, 

and PT scores between the symptomatic phenotype groups (bvFTD, PPA and FTD-ALS) and controls, 

adjusting for sex.  

 

Correlation analyses were conducted across the familial groups to determine the relationship between 

mIRI Total score and disease severity (defined using CDR® plus NACC FTLD-SB scores). 

 

2.4 Imaging analysis 

Participants underwent volumetric T1-weighted magnetic resonance imaging (MRI) in a 3T scanner, as 

per the standardized GENFI protocol. Images containing motion or scanning artefacts were removed 

during a quality-control check. Further exclusions from the analysis were made if individuals displayed 

moderate to severe vascular disease or had an incidental space occupying lesion. Subsequently, 370 

scans were included in the analysis (GE (2), Philips Achieva (120), Siemens Prisma (77), Siemens Skyra 

(66), or Siemens Trio (105)): 149 C9orf72 expansion carriers, 161 GRN mutation carriers, and 60 MAPT 

mutation carriers. Control participants were not included in this stage of analysis. 
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Voxel-based morphometry (VBM) analysis was then performed using Statistical Parametric Mapping 

(SPM) 12, version 7219 (www.fil.ion.ucl.ac.uk/spm), running under Matlab R2014b (Mathworks, USA). 

The T1-weighted images were normalised and segmented into tissue type (grey matter, white matter, 

and cerebrospinal fluid) probability maps utilising a standard procedure and a fast-diffeomorphic 

image registration algorithm (DARTEL) [43]. Grey matter segmentations were then normalised to 

Montreal Neurological Institute (MNI) space, smoothed and modulated using a Gaussian kernel with 

6mm full-width at half maximum, followed by application of a mask [44]. Total intracranial volume 

(TIV) was calculated using SPM [45]. 

 

To elucidate the neural correlates of empathy across familial FTD groups, flexible factorial regression 

models were performed, examining the relationship between grey matter volume and each component 

score of empathy (Total, PT, and EC scores). Genetic group and scanner type were used as factors in the 

analysis with age at scan, sex, disease severity (as measured using the CDR plus NACC FTLD SOB 

score) and TIV included as covariates in the statistical model. The Family-Wise Error (FWE) rate for 

multiple comparisons correction was set at 0.05. If there were no findings at that strict level of correction, 

results were reviewed at an uncorrected p value of 0.001.  

 

3. Results 

3.1 Healthy controls 

The mIRI Total scores in healthy controls ranged from 29 to 70 out of a possible maximum of 70. 

Cumulative frequency is displayed in Table S1, with a score of below 38 marking the 5th percentile cut-

off. 

 

No significant correlations were found between the mIRI Total scores and age (rho = 0.10, p = 0.240) or 

education (rho = 0.10, p = 0.245) in the control group. However, the effect of sex was found to be 

significant (p = 0.032) with female controls acquiring higher scores than their male counterparts (n = 129, 
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mean 54.2 (standard deviation 9.3); n = 87, 51.3 (9.7), respectively). Table S2 shows the scores by decade 

in the total group and separately in each sex. 

 

3.2 Mutation carriers 

All three fully symptomatic groups (CDR 1+) scored significantly worse than controls on all measures 

of empathy (mIRI Total, PT and EC scores, all p < 0.001) (Figures 1, 2 and S1, Table 1). In the very mildly 

symptomatic/prodromal mutation carriers (CDR 0.5), only the C9orf72 group showed a difference 

compared to controls with empathy ratings on the mIRI Total score significantly lower (p = 0.046). By 

contrast, when comparing the other prodromal (CDR 0.5) or asymptomatic (CDR 0) genetic groups with 

controls, no significant differences were observed (all p > 0.05). See Table 3 (Total score), Table S4 (EC 

subscore), and Table S5 (PT subscore) for all linear regression results. 

 

Comparisons within genetic groups revealed that symptomatic carriers scored significantly lower than 

both very mildly symptomatic and asymptomatic participants on each empathy score (all p < 0.001) 

(Figure 1 and S1). No differences between the very mildly symptomatic and asymptomatic participants 

were seen within any of the groups (Figure 1 and S1). 

 

No significant differences were observed between the symptomatic mutation carriers between the 

different genetic groups (or across either the very mildly symptomatic or asymptomatic mutation 

carriers). 

 

3.3 Phenotype analysis 

All three phenotypes (bvFTD, PPA and FTD-ALS) scored significantly lower than controls on all 

empathy scores (all p < 0.010) (Table 2 and S6). BvFTD participants scored significantly lower on the 

mIRI Total (p < 0.001), mIRI EC (p = 0.002), and mIRI PT (p < 0.001) scores than the PPA group. 

Jo
urn

al 
Pre-

pro
of



 8 

Furthermore, FTD-ALS participants scored significantly lower than the PPA group on the mIRI Total 

and mIRI PT scores (p = 0.012; p = 0.005 respectively). No other significant differences between the 

phenotype groups were found.   

 

3.4 Correlations with disease severity 

Analyses across the genetic groups revealed negative correlations between disease severity and the 

mIRI Total score (C9orf72: rho = -0.51, p < 0.001; GRN: rho = -0.50, p < 0.001; MAPT: rho = -0.46, p < 0.001), 

the mIRI EC subscore (C9orf72: rho = -0.33, p < 0.001; GRN: rho = -0.33, p < 0.001; MAPT: rho = -0.29, p = 

0.002), and the mIRI PT subscore (C9orf72: rho = -0.52, p < 0.001; GRN: rho = -0.43, p < 0.001; MAPT: rho 

= -0.44, p < 0.001). 

 

3.5 Imaging analysis 

Significant relationships were observed between grey matter volume and the mIRI Total score in each 

of the genetic groups.  

 

For the C9orf72 expansion carriers, although no significant results were found after multiple corrections, 

at an uncorrected p<0.001, the mIRI Total score was positively correlated with left orbitofrontal cortex 

volume (see Table S7 and Figure 3).  

 

For GRN mutation carriers, the mIRI Total scores were positively associated with left frontal lobe 

volume (specifically, superior, middle and orbitofrontal gyri) at p<0.05 corrected for multiple 

comparisons. At the less strict significance level of p<0.001 uncorrected, more widespread involvement 

was seen including bilateral involvement of the frontal lobe (superior, middle and inferior frontal gyri, 

and orbitofrontal cortex), anterior cingulate, insula, temporal lobe, parietal lobe (including precuneus), 

and subcortical structures (caudate and thalamus) in particular (see Table S7 and Figure 3).   
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In MAPT mutation carriers, a positive relationship between mIRI Total scores and grey matter volume 

was seen bilaterally in the temporal cortex (particularly the entorhinal area and temporal pole), and the 

medial temporal lobe (hippocampus and amygdala) as well as the insula and orbitofrontal lobe 

bilaterally after correction for multiple comparisons. At the less strict significance level of p<0.001 

uncorrected, an association with basal ganglia (particularly nucleus accumbens) was also seen (see 

Table S7 and Figure 3). 

 

A very similar set of neuroanatomical associations were seen in each genetic group when correlating 

the mIRI PT subscore with grey matter volume (Table S8 and Figure S2). However, for the EC subscore 

there were no significant findings at p<0.05 corrected for multiple comparisons, but at an uncorrected 

p<0.001, both the GRN and MAPT groups had a relatively similar network of associated regions albeit 

to a lesser extent than in the Total score or PT subscore analysis (Table S9 and Figure S2). In the C9orf72 

group, as well as a similar association with the left orbitofrontal cortex as seen in the other analyses, 

there was also a correlation with bilateral insula and putamen volume. 

 

4. Discussion 

In the present study, we have demonstrated that the mIRI detects empathy deficits in fully symptomatic 

(CDR 1+) familial FTD, as well as in very mildly symptomatic/prodromal (CDR 0.5) C9orf72 expansion 

carriers, although it does not distinguish impaired empathy when comparing other prodromal or 

asymptomatic individuals. Neural correlates of empathy varied between genetic groups: scores were 

associated with the left orbitofrontal cortex in all three groups, but additionally more widespread 

cortical and subcortical regions for GRN mutation carriers, and the anteromedial temporal lobe and 

insula for MAPT mutation carriers. 
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Investigation of mutation negative healthy controls in the GENFI cohort has enabled study of the mIRI 

in a large group of healthy individuals, generating normative data which can be utilised in future 

research. We found there to be no effect of age or years spent in education on mIRI Total scores. By 

contrast, a significant effect of sex was observed, with females scoring higher than their male 

counterparts, a finding consistently described across the empathy literature [46-48], and, more 

specifically, on all subscales of the IRI [26, 31, 49, 50].  

 

Fully symptomatic mutation carriers in all genetic groups scored worse on all three measures of 

empathy than controls, as well as when compared with their prodromal and asymptomatic 

counterparts. Such a finding is consistent with previous work in sporadic FTD, in which empathy is 

significantly reduced in patients relative to controls [20, 23, 29, 38, 42, 51]. Results indicate that the mIRI 

is effective at detecting empathy-based behavioural changes during the symptomatic period of FTD. 

 

Reduced empathy is more commonly observed in C9orf72 mutation carriers, relative to other genetic 

mutations [14]. Notably in this study, very mildly symptomatic/prodromal C9orf72 expansion carriers 

scored significantly lower than controls on the mIRI Total score. Similar findings of social cognitive 

deficits have been observed in a recent GENFI study [52], in which presymptomatic C9orf72 mutation 

carriers in proximity to symptom onset were observed to have impairment of facial emotion recognition. 

The question remains as to whether empathy deficits only present in later stages of disease progression 

(after full symptom onset in GRN and MAPT mutations and during the prodromal stage in C9orf72 

expansions) or whether the mIRI is an insensitive psychometric measure of such changes. Future work 

employing novel social cognitive tasks in presymptomatic FTD cohorts is essential to uncouple these 

possibilities.   

 

Although altered social conduct and personality changes manifest in PPA and FTD-ALS [4, 11, 13, 21-

25, 38], the syndromes are predominantly characterised by progressive language and speech difficulties, 
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or by impaired motor functioning, respectively [4, 14, 22, 23]. The empathy literature for FTD-ALS is 

limited, whilst inconsistent findings have been reported in regards to which components of empathy 

are affected in PPA, e.g. Rankin and colleagues (2005) [38] noted a diminished capacity for empathy in 

both cognitive and affective facets of empathy, whilst Calabria and colleagues (2009) [4] found only 

cognitive domains were impacted. In contrast, studies investigating bvFTD have consistently reported 

impaired empathy [14, 20, 34, 36, 42] with such deficits forming a core aspect of the diagnostic criteria 

for this condition [11, 20, 40, 53]. Our study adds to this literature, revealing that bvFTD participants 

scored significantly lower on the mIRI relative to the PPA phenotype group and controls, as has been 

previously described [29, 34]. Notably, however, the FTD-ALS group also scored significantly lower on 

the mIRI relative to PPA participants, whilst both PPA and FTD-ALS groups also scored comparatively 

worse than controls on each component measure of empathy, therefore contributing to the limited FTD-

ALS empathy literature and supporting the previous findings of Rankin and colleagues (2005) [38].  

 

Empathy was observed to decrease with increasing disease severity (as determined by scores on the 

CDR® plus NACC FTLD-SB) - a finding previously described in people within the FTD spectrum [24]. 

As progressive regional atrophy correlates with increasing disease severity [54], it is to be expected that 

symptoms become increasingly prominent with deterioration of the disease [55]. Our finding is 

therefore supportive of prior research. 

 

Impairment on tasks of empathy are likely to involve the breakdown of a number of processes within 

the brain. Consistent with this, a network of regions was found to be associated with mIRI Total score 

in the present study, with distinct but overlapping regions in the different genetic groups.   

 

The one region that overlapped in the VBM findings of all three groups was the orbitofrontal cortex, a 

region that evaluates the reward-value and punishment-potential of a stimulus [29, 56], and by 

extension therefore plays an important role in empathic responsivity, through interpretation of stimulus 
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emotional salience [21, 25, 42]. This association of orbitofrontal cortex degeneration and defective 

empathy has been previously described in healthy controls [57] as well as in people with sporadic FTD 

[29, 38].  

 

In the GRN mutation carriers, neural correlates were more widespread included the frontal cortex, 

anterior insula and anterior cingulate, namely the salience network. This neural network plays an 

important role in social cognition through allocation of attentional resources upon detection of 

emotionally salient stimuli [8, 58, 59]. Integrity of this network has been implicated with social-

emotional functioning in healthy controls [60], as well as in clinical subpopulations [61]. Importantly, 

the neural network is selectively degenerated in FTD [1, 35, 37, 39, 42, 54, 58], likely underlying the 

diseases’ characteristic behavioural disturbances.  

 

The anterior cingulate has been associated with memory retrieval, which is critical for attentional 

processes [62, 63], contributes to empathy to pain as a component of the pain matrix [60, 64], and is 

suggested to facilitate motor response to salient stimuli due to functional connectivity with motor areas 

[56, 61]. Critically, grey matter volume of the cingulate has been directly linked to ratings on empathy 

tasks previously [29, 60, 65] and was correlated with GRN mutation carriers’ mIRI scores in the present 

study. 

 

The insula is a functionally heterogeneous brain region, responsible for autonomic regulation and 

somatosensory processing [61]. It mediates emotion comprehension and expression, particularly for 

stimuli with a negative valence [29, 37, 66, 67], through the integration of somatosensory experience 

(anterior insula) with homeostatic signals and physiological states (posterior insula) and recruitment of 

attentional resources [23, 61]. A subjective awareness of one’s emotional state is produced in this 

process, which in turn may heighten affective empathic response [68, 69]. Critically, this region is one 

of the earliest to be affected in genetic FTD patients, with cortical atrophy observed around 10 years 
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prior to symptom onset [1, 39, 54], suggesting this region is an early pathological target in FTD. 

Supporting this, in our study, involvement of the insula was associated with both GRN and MAPT 

mutation carriers’ mIRI scores as well as the C9orf72 EC subscore. Together, the fronto-insula network 

is responsible for processing socially significant cues [42].  

 

Regions specifically associated with MAPT mutation carriers’ scores included the hippocampus, 

amygdala, and entorhinal area. These structures form part of the limbic system and are subsequently 

critical in generating and processing emotions [68, 69]. Notably, fronto-limbic structures have been 

implicated in the lower scores of people with bvFTD on the PT and EC subscales [34] and, more 

specifically, the amygdala was found to be responsible for discrete emotion processing in sporadic FTD 

[28]. Grey matter volume of the entorhinal area has been linked with affect sharing [65] and the 

hippocampus mediates autobiographical memory retrieval. The anatomical findings of the present 

study are therefore consistent with the previous research evaluating the neural correlates of empathy 

and provide support for the role of such structures in mediating empathic abilities of genetic FTD 

patients. 

 

The temporal poles were also associated with MAPT mutation carriers’ scores. They are described as 

multimodal epicentres that integrate sensory information with limbic inputs to form personalized 

representations of emotional input [29, 70, 71]. The left temporal pole is involved in linguistic processes 

such as contriving sentence meaning [72], as well as autobiographical memory retrieval tasks [66, 67, 

73]. Lesions to the left temporal pole are associated with an impaired ability to comprehend lies [71] 

and sarcasm [70], and poor performance on theory of mind [37] and emotion attribution tasks [53]. 

Considering this, Frith and Frith (2003) [74] described the region's role in ‘script’ retrieval; scripts utilise 

semantic and emotional information of repeated experiences to predict the likely sequence of events in 

any given situation. By extension, scripts allow for inferences of others’ likely behaviours, intentions or 

goals to be made [75], all of which contribute to our ability to mentalize. Mentalizing forms an important 
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component of empathy as it enables an understanding of others’ mental states and perceptions, 

following self-other distinction [58]. Script retrieval aids this process of mentalizing by providing a 

situational framework within which the social cognitive process can be applied [70, 74]. The role played 

by the temporal poles in empathy is confirmed by previous observations of bilateral involvement in 

healthy controls [61, 64] and right temporal pole correlations in people with FTD [29]. Findings of our 

study are consistent with prior research, as grey matter volume of the temporal poles were associated 

with MAPT mutation carriers’ scores particularly. By mediating script recruitment, past experiences can 

be utilised to understand salient experiences happening to the self and to others, all of which is required 

to produce empathic understanding.  

 

The putamen was also observed to be associated with scores in the GRN and MAPT groups as well as 

the EC subscore in the C9orf72 group - a region implicated in limbic connectivity, dysfunction of which 

contributes to defective behaviour in sporadic FTD [8]. Interestingly, given the findings in the C9orf72 

expansion carriers the putamen has previously been linked with EC ratings of people with 

neurodegenerative disease, including sporadic FTD [65] i.e. may be a substrate for affective empathy. 

Also implicated in theory of mind and emotion recognition functioning is the caudate [52] - a region 

observed to be associated with GRN and MAPT mutation carriers’ empathy ratings in our study. 

Support for this finding comes from Rankin and colleagues (2006) [29] who observed that right caudate 

volume was correlated with total empathy of people with sporadic FTD, and Shdo and colleagues (2018) 

[65] who implicated the region with prosocial motivation, recognised as an affective component of 

empathy.  

 

Limbic connectivity of the thalamus has also been attributed to aberrant behaviours of sporadic FTD 

patients [8] and was bilaterally correlated with GRN mutation carriers’ empathy scores in the present 

study. In addition, the region has previously been implicated in emotion processing and theory of mind 

tasks of GRN mutation carriers [52] and forms part of the salience network [59].  
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Distinguishing groups based by genetic mutation as opposed to clinical presentation or predominant 

focal atrophy patterns may account for these novel neuroanatomical findings as this methodological 

approach has not formerly been employed. As previously described, each mutation type produces 

distinctive, gene-specific degeneration. Future work is required, comparing sporadic and genetic 

patients with equivalent diagnoses, to understand and identify any differences between groups. 

Moreover, pathological phenotypes are recognised for each gene, however, clinical presentation is 

imperfect and variable [12]. Genetic testing, as used in the present study, ensures certainty regarding 

clinical diagnosis of FTD, though the same cannot be assumed in sporadic cases. Drawing comparisons 

between sporadic and genetic FTD patients should therefore be performed with caution. Finally, a large 

sample size was utilised in the present study. Prior to this, examined cohorts have been smaller, possibly 

contributing to the disparity in results. 

 

When considering the affective and cognitive components of empathy, it has been theorized that distinct 

neuroanatomical regions are responsible for mediating each construct [23, 46, 58, 63], though FTD 

research has been inconclusive about such a proposal. Rankin and colleagues (2006) [29] found 

significant overlap between the neural correlates associated with EC and PT components of empathy, 

with only trends of differences. In contrast, Eslinger and colleagues (2011) [34] observed distinct neural 

correlates mediating each component. In the present study, no major differences were observed between 

the PT and EC subscales and their associated clusters, as identified by VBM analysis, between familial 

groups except in the C9orf72 group where additional insula and putamen involvement was seen. A 

possible explanation for such a finding comes from Rankin and colleagues’ (2006) [29] proposal of 

overlapping anatomical regions as a result of highly correlated subscale scores. Following this, it is 

possible the same is true in our study. A second interpretation comes from McCreary, Marchant and 

Davis (2018) [69] who suggested that a suitable empathic response is mediated by balanced, 

simultaneous activation of both component networks of empathy and, by extension, similar anatomical 
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areas are engaged. Therefore, though separate brain regions underpin the respective components of 

empathy, rendering the networks dissociable, social experiences requiring an empathic response are 

likely to activate and evoke both [58, 63]. These theories provide support for our study by elucidating 

how the identified neural networks are engaged in real-life empathic experiences, following the logic 

that both are fundamental in mediating this process. 

 

The first limitation of the study is the use of a caregiver-report questionnaire. Though observer-based 

measures are more ecologically valid and have yielded valuable data previously [38], they are 

nevertheless limited by their dependence on informants varying reliability [42]. Despite this, they have 

an advantage of capturing real-life empathic behaviour, independent of patients’ anosognosia [21, 65] 

and social desirability effects [61]. Furthermore, the measure is considered reliable, reasonably easy to 

complete and reproducible [27]. Secondly, although a large cohort of participants were recruited, once 

stratified there were relatively small numbers in some of the groups. To overcome this issue, further 

data collection as part of GENFI and similar studies is required. Lastly, the majority of patients with the 

PPA phenotype had the nonfluent variant and therefore it was not possible to analyse PPA subtypes 

further in the current study. 

 

Going forward, refinement of the mIRI or development of novel social cognition empathy tasks that are 

sensitive to presymptomatic changes is essential. The assessment of empathy deficits in presymptomatic 

clinical populations is a prerequisite to a comprehensive picture of symptom progression and disease 

trajectory of FTD. Additionally required is a future longitudinal study, assessing the progressive 

changes in empathy and its neural substrates in people with familial FTD, particularly in individuals 

who phenoconvert, in order to further the current understanding of emerging deficits and their 

evolution. Such knowledge is beneficial for researchers as it will enable the identification of individuals 

suitable for clinical trials, indicate the appropriate time to implement therapies, and allow patient 

response to such therapies to be tracked [1, 16, 17], but also for caregivers and family members of at-
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risk individuals. Defective empathy is a highly burdensome symptom of FTD [13, 21, 30], exacerbated 

by patients’ anosognosia for their declining emotional responsivity, which renders them unaware of 

their behavioural changes [7, 14, 29, 33-35, 42]. Accordingly, caregiver distress is reportedly much higher 

in FTD, relative to other neurodegenerative diseases [3, 23, 24]. Greater comprehension of clinical 

trajectory and the presymptomatic stages of disease may therefore help to reduce caregiver burden by 

ensuring better environmental management and forward planning can be implemented, focused on 

symptom alleviation [57], whilst simultaneously furthering the field of research. 

  

5. Conclusion: 

We have provided clear evidence of impaired empathy in symptomatic participants in all three genetic 

groups, as well as prodromal C9orf72 expansion carriers, finding that empathic abilities decrease with 

increasing disease severity. Additionally, we have demonstrated that mutation-specific 

neurodegeneration is correlated with informant ratings of participant empathy. Our results delineate 

the neural correlates of empathy in genetic FTD, emphasising the role played by the orbitofrontal lobe. 

Together, these findings contribute to the current understanding of this complex, multifaceted 

construct, foundational to human social-emotional interaction. We conclude that whilst the mIRI is 

beneficial for the study of symptomatic FTD participants, its use in future clinical trials targeting 

presymptomatic individuals may be of limited value. More sensitive measures and a greater 

understanding of longitudinal changes in empathy over time are therefore vital next steps.   
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Table 1: Participant demographics including mean and standard deviation scores for age at visit, years spent in education, as well as 

Mini-Mental State Examination (MMSE), CDR plus NACC FTLD sum of boxes (SB), and the modified Interpersonal Reactivity Index (mIRI) 

scores (Total, EC = Empathic Concern, PT = Perspective Taking). N equals the number of participants. Significant differences for sex 

(chi-squared test), age (linear regression) and education (linear regression) are shown in the table where a * indicates a p-value of less 

than 0.05 comparing the disease group and controls. 

 

 
CDR plus 

NACC FTLD 
- global 

N 
% 

Male 
Age Education MMSE 

CDR plus 
NACC 

FTLD-SB 
mIRI Total mIRI EC mIRI PT 

Controls 0 216 40 45.7 13.0 14.3 3.3 29.3 1.1 0.0 0.0 53.0 9.5 27.6 5.2 25.4 5.4 

C9orf72 

0 94 41 43.9* 11.6 14.3 3.0 29.1 1.2 0.0 0.0 50.7 10.0 26.3 5.9 24.4 5.5 

0.5 33 45 49.9 11.3 13.9 2.7 28.4 2.2 1.1 0.7 48.5 12.4 25.6 6.2 22.8 7.7 

1+ 65 66* 62.9* 9.5 13.0* 3.6 23.2 6.8 11.1 5.6 36.7 10.5 21.3 6.4 15.4 5.3 

GRN 

0 121 33 45.9 12.1 14.7 3.4 29.5 0.8 0.0 0.0 53.0 8.1 27.3 5.1 25.7 4.8 

0.5 25 44 51.4* 13.6 14.0 4.2 28.6 2.3 1.0 0.8 51.1 12.8 27.0 6.6 24.1 7.4 

1+ 47 47 63.0* 7.4 11.7* 3.4 20.1 7.7 9.8 6.2 38.3 11.4 21.3 6.1 17.0 6.1 

MAPT 

0 41 39 38.6 11.2 14.5 3.3 29.5 0.8 0.0 0.0 50.9 10.5 26.6 5.5 24.3 6.1 

0.5 13 31 46.4 12.8 13.6 2.5 28.1 2.3 1.1 0.8 53.7 10.5 28.3 6.1 25.4 6.0 

1+ 21 57 58.9* 9.4 13.6 4.0 21.9 8.1 10.3 6.0 34.6 13.7 20.0 8.3 14.6 6.8 
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Table 2: Mean and standard deviation (SD) mIRI Total, Empathic Concern (EC), and 

Perspective Taking (PT) scores for phenotypic groups (behavioural variant 

frontotemporal dementia, bvFTD, primary progressive aphasia, PPA, frontotemporal 

dementia with amyotrophic lateral sclerosis, FTD-ALS) and controls. 

 mIRI Total mIRI EC mIRI PT 

Diagnosis M SD M SD M SD 

Controls 53.0 9.5 27.6 5.2 25.4  5.4 

bvFTD 33.9 11.0 19.5 6.6 14.4 5.4 

PPA 43.8 9.6 24.2 5.5 19.6 5.8 

FTD-ALS 35.3 5.5 21.9 3.2 13.4 4.5 
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Figure legends 

 

Figure 1: Modified Interpersonal Reactivity Index (mIRI) Total scores in each genetic group 

stratified by CDR plus NACC FTLD (0 = asymptomatic, 0.5 = mildly symptomatic/prodromal, 

1+ = fully symptomatic). Means and standard errors are shown. Significant differences from 

controls and within groups are starred (p<0.05). Lower score corresponds to less empathy. 

 

Figure 2: Modified Interpersonal Reactivity Index (mIRI) mean Total score with standard 

errors shown in each genetic group by CDR plus NACC FTLD global score. 

 

Figure 3: Neural correlates of the modified Interpersonal Reactivity Index (mIRI) Total score. 

Results for all three genetic groups are displayed at p< 0.001 uncorrected. A study-specific 

T1-weighted MRI template in MNI space was used to show results. Green represents the 

MAPT group, yellow for the GRN group, and blue for the C9orf72 group.  
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