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Summary
Background Air pollution might accelerate cognitive ageing; it is unclear whether large-scale interventions, such as  
China’s Clean Air Act (CCAA), can mitigate cognitive deterioration. We aimed to evaluate the effect of CCAA on 
changes in cognitive function in older adults.

Methods In this population-based, quasi-experimental study, we did a difference-in-differences analysis of the data 
collected during the 2014 and 2018 waves of the Chinese Longitudinal Healthy Longevity Survey (CLHLS). The 
study design used a counterfactual analysis feature by dividing CLHLS participants into two groups. The 
intervention group included participants who lived in areas where the provincial government set a target of reducing 
particulate matter (PM) by at least 5% annually from 2014 onward, whereas the control group consisted of 
individuals who lived in areas without a PM reduction target. Global cognitive function was measured using the 
Mini-Mental State Examination (MMSE). We used fixed-effects models to examine the between-group differences 
in MMSE score changes before and after CCAA implementation. We associated longitudinal changes in MMSE 
scores with changes in concentrations of PM with a diameter of less than 2·5 μm (PM2·5) concentration and other 
regulated pollutants. We used alternative models and sensitivity analyses to evaluate the robustness of the results 
from the main models.

Findings 2812 individuals participated in the 2014 and 2018 surveys (mean age 81·0 years [SD 9·3] in 2014; 1408 [50·1%] 
female and 1404 [49·9%] male). 2251 (80·0%) were included in the intervention group and 561 (20·0%) in the control 
group. After controlling for potential confounders, the intervention group had a significantly smaller decline in 
MMSE scores from 2014 to 2018 compared with the control group: the mean between-group difference was 2·45 points 
(95% CI 1·32–3·57). Interquartile increases in PM2·5 were associated with a significant MMSE score decline of 
0·83 points (95% CI 0·24–1·42); similarly, increases in SO2 were also associated with a significant MMSE score 
decline of 0·80 points (0·32–1·29).

Interpretation Implementing stringent clean air policies might mitigate the risk of air pollutant-associated cognitive 
ageing in older people.
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Introduction 
Poor cognitive function, a key driver of disability, 
contributes profoundly to health, social, and economic 
burdens in ageing populations.1 Global health-care 
expenditure for dementia reached US $1 trillion in 2018 
and is expected to reach $2 trillion by 2030.2 According 
to the 2020 Lancet Commission on dementia prevention, 
around 40% of worldwide dementia cases are attributable 
to 12 modifiable risk factors.3 Of these, air pollution is an 
emerging risk factor.3 Of note, the number of people 
with dementia is rising more rapidly in low-income and 
middle-income countries (LMICs) than in high-income 
countries (HICs) due to more rapid population ageing 
and poor environmental factors.4

The associations between long-term exposure to fine 
particulate matter (PM) less than 2·5μm in diameter 
(PM2·5) and cognitive impairment, dementia, and other 
neurological disorders have been reported in obser
vational studies.5–14 However, a causal inference is 
difficult to draw from observational studies due to 
residual confounding and reverse causation.15 In this 
regard, a quasi-experimental study leveraging air quality 
interventions is advantageous because an association 
between changes in air quality brought by an 
intervention—such as a clean air policy—and 
subsequent changes in a health outcome is more likely 
to be causal. This type of quasi-experimental design 
mimics a randomised clinical trial and therefore 
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strengthens confidence in the putative causality of the 
associations derived from conventional observational 
studies.16,17

To our knowledge, only one study from the USA has 
estimated the effect of air pollution regulation between 
2004 and 2013 on dementia risk.18 However, the long-
term effect of the air pollution policy observed in this 
study might be confounded by time-varying variables, 
such as economic growth, changes in lifestyle, and 
advances in pharmaceuticals and medicines, during 
the long study period (>9 years). Additionally, no 
studies have evaluated the effect of clean air policies on 
cognitive health in LMICs, in which populations are 
ageing rapidly and are exposed to high levels of air 
pollution.

In 2013, the most stringent version of China’s Clean 
Air Act (CCAA) was introduced to address China’s 
widespread and severe air pollution problem.19 The 2014 
and 2018 waves of the Chinese Longitudinal Healthy 
Longevity Survey (CLHLS) were aligned with CCAA. 
This provides a unique quasi-experiment opportunity to 
assess whether the rapid reductions in ambient 
concentrations of PM2·5 and other pollutants brought 
about by CCAA would reduce the risk of cognitive 
deterioration in older adults.

Methods 
Study design and participants 
In this population-based, quasi-experimental study, we 
did a difference-in-differences (DID) analysis of the data 
collected during the 2014 and 2018 waves of the CLHLS, 
which is an ongoing prospective cohort study on the 
determinants of healthy ageing and longevity in members 
of the population aged 60 years and older in China. The 
CLHLS is a nationwide survey on a randomly selected 
sample from half of the counties and cities in 23 of the 
31 provinces of China, covering about 85% of the total 
population (figure 1). Beginning in 1998, the survey has 
been done every 2–3 years. To reduce attrition in numbers 
from death and loss to follow-up, new participants are 
enrolled during each follow-up. Of note, the CLHLS 
oversampled males older than 80 years, which shaped the 
age distribution of the final sample. Trained interviewers 
did the surveys at participants’ homes following a 
structured questionnaire. They collected data on socio
demographic characteristics, lifestyle, cognitive function, 
psychological status, and physical capacity. More details 
on the sampling procedure and assessment of data quality 
can be found in previous publications.20

This quasi-experimental study was based on the effec
tiveness in PM reduction through the implementation of 

Research in context

Evidence before this study
We searched PubMed, Web of Science, and Google Scholar for 
studies in English published from database inception of each 
database until Oct 30, 2020, that examined the associations of 
air pollution or clean air policy with cognitive function. We used 
the combination of search terms: (“PM2·5” OR “fine particulate 
matters” OR “fine particles” OR “air pollution” OR “air 
pollutants”) OR (“clean air” OR “air act” OR “air policy” OR “air 
pollution regulation”) AND (“cognition” OR “cognitive” OR 
“dementia”). To date, published studies have used conventional 
statistical approaches, including cross-sectional and 
longitudinal designs, to study the association between 
exposure to air pollutants and cognitive deterioration in 
humans. One ecological study in the USA has estimated the 
reduction of particulate matter (PM) less than 2·5 μm in 
diameter (PM2·5) resulting from the effect of clean air acts 
during 2004 and 2013 in relation to dementia diagnoses at a 
state level. None of the previous studies have evaluated the 
effect of air pollution reduction interventions—such as the 
Chinese Clean Air Act—on cognitive disorders or cognitive 
function at the individual level. Furthermore, no study to date 
has examined the association between air pollutants and 
cognitive impairment using causal inference approaches with 
quasi-experimental designs.

Added value of this study
To our knowledge, this is the first quasi-experimental study 
done in a nationwide diverse sample of 2812 older adults 

(aged ≥65 years) from 23 provinces across China to study the 
effect of PM-reduction policies on cognitive ageing. We used 
a difference-in-differences analysis to compare longitudinal 
changes in cognitive function between participants who live 
in areas that had PM reductions resulting from policy 
interventions and participants who live in areas with no PM 

reductions. The evidence generated from this study 
strengthens the causal inference of the detrimental effect of 
PM on cognitive function and especially on accelerated 
cognitive ageing. Our results confirmed that air pollution is 
one of the modifiable risk factors for dementia, identified by 
the 2020 Lancet Commission on dementia prevention.

Implications of all the available evidence
Dementia burden is projected to rapidly increase globally and 
especially in low-income and middle-income countries. Taken 
together, the evidence generated from this study suggest 
that long-term exposure to PM2·5 might play a causal role in 
accelerating cognitive decline in older adults. The evidence 
supports the need for implementing adequate clean air 
policies to reduce population and individual exposure to air 
pollutants, especially PM2·5. This need is particularly urgent 
considering the already known global disease burden due to 
air pollution. The policy-oriented interventions offer 
widespread risk reduction with less reliance on conventional 
individual-centred lifestyle modifications.
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CCAA (appendix p 3) by provincial governments. We 
identified 18 provinces with and five provinces without 
an established target of PM2·5 reduction in 2014 
(appendix p 8). The study design used a counterfactual 
analysis by dividing CLHLS participants into two groups. 
We designated CLHLS participants who lived in 
provinces in which the Chinese Government set a target 
of reducing PM concentrations by more than 5% annually 
from 2014 onward into the intervention group and the 
rest of the participants into the control group (figure 1). 
We included participants who took part in both the 2014 
and 2018 waves of the survey (ie, surveyed before and 
after the implementation of CCAA). Because the surveys 
were close in time, the potential confounding from other 
time-varying variables (eg, dietary patterns) was 
minimised. CLHLS was approved by the Biomedical 
Ethics Committee, Peking University, Beijing, China 
(IRB00001052–13074). All participants provided written 
informed consent before participation.

Procedures 
We generated residence-specific ambient concentrations 
of six pollutants (PM2·5, PM10, SO2, NO2, O3, and CO) using 
a previously published database.21 Nationwide monitoring 
network observation is the gold standard for air pollution 
exposure assessment, but they were not available for 
participants who lived a long distance from the monitoring 
sites. Therefore, we used an atmospheric chemical 
transport model that described the physical and chemical 
processes of air pollutants based on emissions and 
meteorological data to estimate spatiotemporally resolved 
pollutant concentrations. The estimates were enhanced by 
combining chemical transport model simulations with 
monitoring data, generating hourly concentrations of the 
six air pollutants in a grid of 15 km by 15 km across China. 
Modelling inputs, algorithm, and data quality details have 
been reported previously.21 We coupled the original 
monthly average concentration data with participants 
survey dates and residential addresses to calculate the 
average concentrations of the six air pollutants during the 
12 months preceding the survey dates. The time-window 
of exposure was determined before data analysis referring 
to previous studies.12 These annual average concentrations 
were regarded as long-term exposure estimates. We also 
obtained participant-specific estimates of land surface 
temperature from a weather-forecast research model.22 
Detailed descriptions of air pollution and weather 
assessment are reported in the appendix (p 3).

Outcomes 
The primary outcome was global cognitive function, 
assessed using the Mini-Mental State Examination 
(MMSE), a screening tool for dementia. The MMSE has 
been frequently used to track changes in cognitive 
function over time because it can reliably detect cognitive 
deterioration.23 The MMSE is especially useful for people 
unable to go through complex clinical diagnostic testing.24 

The global score of MMSE ranges from 0 to 30, with a 
higher score indicating better cognitive function. We 
calculated cognitive decline by subtracting participants’ 
MMSE scores in 2014 from their scores in 2018 
(appendix p 4).

On the basis of data from previous studies, we assessed 
the following factors as covariates: age, sex, education, 
marital status, ethnicity, place of residence (urban vs 
rural), occupation before retirement, survey month, 
alcohol consumption, smoking status, physical activity, 
fruit intake, vegetable intake, water quality, living 
conditions, and income source. Participants were 
encouraged to answer as many questions as possible. No 
proxy, such as assessment of cognitive function and 
physical performance, was used for objective questions.25 
The detailed definition of covariates is reported in the 
appendix (p 4). In addition, we included model-estimated 
ambient temperature as a covariate.

Statistical analysis 
To link MMSE scores with air pollution exposure, we 
used three statistical methods: the DID model to assess 
the effect of the clean air policy (method 1), the DID 
model to regress the changes in MMSE scores against 

See Online for appendix

Figure 1: Map of study areas with changes in annual mean of PM2·5 from 2014 to 2017
The study participants were designated into control and intervention groups according to the pre-established 
target of reduced concentration of PM2·5 after 2014. The intervention group were from areas with a target of 
annual PM2·5 reduction of 5% or more following implementation of CCAA; the control group were from areas 
without reduction target under CCAA. CCAA= China’s Clean Air Act. PM2·5=particulate matter with a diameter of 
less than 2·5 μm.
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the changes in air pollution concentrations (method 2), 
and a cross-sectional model to regress MMSE scores 
against air pollution concentrations (method 3). The 
DID models are the standard methods for a quasi-
experimental design.26,27 The separate cross-sectional 
analyses has been commonly used in previous studies 
and used as a sensitivity analysis to check the robustness 
of our findings.

Method 1 evaluated the effect of CCAA. We calculated 
within-individual differences between the MMSE scores 
in 2014 and 2018. Then we tested the null hypothesis that 
the mean within-individual difference of the intervention 
group (ie, target >5% from 2013 to 2017) was equal to that 
of the control group (ie, target ≤5% from 2013 to 2017). 
The ability to compare the intervention group with the 
control group might be undermined due to the differences 
in baseline demographic characteristics, long-term trends 
of outcome variables, and changes in longitudinal risk 
factors during the study period. To control for these 
differences we applied inverse probability weighting 
(IPW) to match the two groups in terms of baseline 
population characteristics including age, education, sex, 
residence, ethnicity, occupation before retirement, alcohol 
drinking status, smoking status, physical labour, and 
living conditions.28 Weighting was used to allow the 
two groups to be compared in terms of the previously 
highlighted variables (appendix p 10). We used within-
individual MMSE score changes from the 2011 survey to 
the 2014 survey as a variable to approximate the longer-
term individual-level MMSE score trends independent of 
policy-related reductions in pollutants. We then adjusted 
for temporal changes between 2011 and 2014 in the 
longitudinal risk factors for cognitive change, including 
survey month, marital status, alcohol drinking, smoking, 
physical activity, fruit intake, vegetable intake, water 
quality, living conditions, and income source.

Method 2 assessed the association between MMSE 
scores and air pollutant exposure. We used a similar 
approach to the DID analysis used in method 1, in which 
intervention or control was determined by a binary policy 
indicator. In method 2, we replaced the policy indicator 
variable with a continuous variable of changes in exposure 
to a single pollutant. Using PM2·5 changes as an example, 
individuals living in places with smaller PM2·5 reductions 
acted as controls in comparisons with those who lived in 
the places with larger PM2·5 reductions. The DID model 
can be described in a fixed effect regression (equation 1).

i denotes participant index; t denotes index of CLHLS 
survey and is equalled to 0 (the 2014 wave) or 1 
(2018 wave); MMSEi,t denotes the MMSE score for the 
participant in the survey; ei,t  denotes the random error; 
xi,t denotes air pollutant exposure; β is the change in 
MMSE per unit change in exposure; zi,t denotes the 
selected controlled covariates (described previously); γ is 

the coefficient for a specific covariate; ηi denotes the 
participant-specific fixed effect; and ∆t denotes the effect 
of temporal trend. ηi models the effects of all individual 
variables that are invariant between the two surveys. For 
instance, ηi not only controls for MMSE baseline scores 
but also the air pollutant exposure at baseline. Equation 1 
can also be used to express method 1, when replacing xi,t 
by the binary indicator for intervention (equation 2).

To control for seasonal variation in MMSE, we included 
an index of survey month in the main models. We also 
used an alternative approach by replacing the survey 
month with a spline term of monthly temperature 
(three degrees of freedom).

In method 3, we did cross-sectional analyses of the 
2014 or 2018 data, using linear regression models 
controlling for selected covariates. The cross-sectional 
model for the 2014 survey correlated the MMSE baseline 
scores with air pollutant exposure at baseline; the model 
for 2018 survey re-evaluated the correlation after CCAA 
intervention. If all confounders were captured by the 
cross-sectional models, two estimates for the same 
pollutant should be statistically comparable. If the cross-
sectional estimates for the same pollutant were 
inconsistent, they were regarded as unreliable due to 
uncontrolled biases.

We also did sensitivity and effect modification analyses 
for methods 1 and 2. First, we analysed whether cognitive 
decline and PM2·5 exposure had a different linear trend 
in the intervention group versus the control group 
before CCAA implementation using the 2011 and 
2014 CLHLS datasets (appendix p 11). Our data also 
showed that in the control group, the MMSE varied in 
an expected pattern, which could be explained by age-
related changes in cognitive function (appendix p 11). 
Second, we applied different stricter cutoffs of the 
particulate matter reduction targets (10%, 12%, and 15%) 
to define intervention versus control groups. Third, we 
repeated the analysis without IPW and without offsetting 
the longer-term MMSE trend. Fourth, we examined the 
interaction between CCAA indicator pollutant exposure 
and subpopulation indicator to assess whether exposure-
outcome relationships were different between different 
subgroups. Statistical significance of the interaction 
term was evaluated by the Wald test. Fifth, we explored 
the non-linear exposure-response curves by replacing 
the linear term (xi,t) by its penalised then-plate spline 
expansions in equation 1. Finally, we derived two-
pollutant non-linear models by parametrising the 
exposure term using a two-dimensional spline function. 
The two-pollutant exposure-response associations were 
used to explore how temporal variation in a pollutant 
was linked with MMSE score change, given the scenario 
in which the other modelled pollutant was unchanged 
(appendix p 5).

i ∈ intervention: xi,0 = 0, and xi,1 = 1; i ∈ control: xi,t = 0

MMSEi,t = βxi,t + γzi,t + ηi + Δt + ei,t
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All statistical analyses were done using R 
(version 3.3.2). Imputation was done with the mice 
package (version 3.12.0). The linear mixed-effects 
models were inferred using the lme4 package (version 
1.1-23), and fixed-effects models were inferred with the 
plm package (version 2.2-4). IPWs were calculated 
using the IPW package (version 1.0-11). Penalised 
spline functions were parameterised using the mgcv 

package (version 1.8-31), and inference of the non-linear 
mixed-effects models was done with the gamm4 
package (version 1.2-6).

Role of the funding source 
The funder had no role in the study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Total population (n=2812) Control group (n=561) Intervention group (n=2251)

2014 2018 2014 2018 2014 2018

Age (year) 81·0 (9·3) 84·7 (9·4) 81·4 (9·7) 85·3 (9·7) 80·9 (9·2) 84·5 (9·3)

Education (year) 2·8 (3·6) 2·8 (3·6) 2·9 (3·8) 2·9 (3·8) 2·8 (3·6) 2·8 (3·6)

Sex

Female 1408 (50·1%) 1408 (50·1%) 294 (52·4%) 294 (52·4%) 1114 (49·5%) 1114 (49·5%)

Male 1404 (49·9%) 1404 (49·9%) 267 (47·6%) 267 (47·6%) 1137 (50·5%) 1137 (50·5%)

Area of residence

Urban 318 (11·3%) 318 (11·3%) 48 (8·6%) 48 (8·6%) 270 (12·0%) 270 (12·0%)

Suburb 873 (31·0%) 873 (31·0%) 220 (39·2%) 220 (39·2%) 653 (29·0%) 653 (29·0%)

Rural 1621 (57·6%) 1621 (57·6%) 293 (52·2%) 293 (52·2%) 1328 (59·0%) 1328 (59·0%)

Ethnicity

Han 2623 (93·3%) 2623 (93·3%) 502 (89·5%) 502 (89·5%) 2121 (94·2%) 2121 (94·2%)

Other 189 (6·7%) 189 (6·7%) 59 (10·5%) 59 (10·5%) 130 (5·8%) 130 (5·8%)

Occupation before retirement

Agriculture 1115 (39·7%) 1115 (39·7%) 241 (43·0%) 241 (43·0%) 874 (38·8%) 874 (38·8%)

Employee 486 (17·3%) 486 (17·3%) 75 (13·4%) 75 (13·4%) 411 (18·3%) 411 (18·3%)

Other 1211 (43·1%) 1211 (43·1%) 245 (43·7%) 245 (43·7%) 966 (42·9%) 966 (42·9%)

MMSE score 25·8 (5·2) 24·0 (7·1) 26·4 (4·8) 24·3 (6·8) 25·7 (5·3) 23·9 (7·2)

PM2·5, μg/m3 58·2 (14·8) 41·5 (11·3) 42·2 (14·3) 31·3 (8·4) 62·1 (12·0) 44·1 (10·4)

PM10, μg/m3 84·2 (25·7) 70·2 (22·0) 54·6 (15·5) 47·0 (10·8) 91·6 (22·2) 76·0 (20·2)

SO2, μg/m3 25·5 (11·2) 12·8 (3·8) 14·6 (8·0) 10·6 (3·4) 28·2 (10·2) 13·4 (3·6)

NO2, μg/m3 26·6 (11·7) 25·5 (9·6) 14·8 (7·9) 14·6 (6·1) 29·5 (10·6) 28·2 (8·3)

CO, mg/m3 0·86 (0·30) 0·78 (0·17) 0·61 (0·14) 0·66 (0·14) 0·919 (0·30) 0·81 (0·17)

Max 8 hr O3, μg/m3 85·5 (11·2) 94·5 (12·4) 79·7 (15·7) 80·3 (5·5) 86·9 (9·2) 98·0 (11·0)

Temperature, °C 24·6 (5·1) 24·4 (4·7) 24·9 (5·8) 24·7 (6·1) 24·3 (5·4) 24·2 (3·8)

Married and living with spouse 1580 (56·2%) 1376 (48·9%) 344 (61·3%) 321 (57·2%) 1236 (54·9%) 1055 (46·9%)

Regular physical activity 884 (31·4%) 809 (28·8%) 153 (27·3%) 154 (27·5%) 731 (32·5%) 655 (29·1%)

Current alcohol drinker 498 (17·7%) 430 (15·3%) 97 (17·3%) 87 (15·5%) 401 (17·8%) 343 (15·2%)

Current smoker 518 (18·4%) 450 (16·0%) 106 (18·9%) 92 (16·4%) 412 (18·3%) 358 (15·9%)

Fruit intake

Very often* 408 (14·5%) 484 (17·2%) 75 (13·4%) 78 (13·9%) 333 (14·8%) 379 (16·8%)

Often† 835 (29·7%) 720 (25·6%) 161 (28·7%) 176 (31·4%) 674 (29·9%) 590 (26·2%)

Sometimes‡ 950 (33·8%) 904 (32·1%) 197 (35·1%) 194 (34·6%) 753 (33·5%) 714 (31·7%)

Rarely§ 619 (21·9%) 674 (24·0%) 128 (22·8%) 113 (20·1%) 491 (21·8%) 568 (25·2%)

Vegetable intake

Very often* 1701 (60·5%) 1691 (60·1%) 345 (61·5%) 377 (67·2%) 1356 (60·2%) 1314 (58·4%)

Often† 884 (31·4%) 854 (30·4%) 144 (25·7%) 121 (21·6%) 740 (32·9%) 733 (32·6%)

Sometimes‡ 174 (6·2%) 200 (7·1%) 50 (8·9%) 41 (7·3%) 124 (5·5%) 159 (7·1%)

Rarely§ 53 (1·9%) 67 (2·4%) 22 (3·9%) 22 (3·9%) 31 (1·4%) 45 (2·0%)

Water quality

Tap water 1896 (67·4%) 2091 (74·4%) 325 (57·9%) 364 (64·9%) 1571 (69·8%) 1727 (76·7%)

Natural water (eg, stream) 226 (8·1%) 208 (7·4%) 83 (14·8%) 44 (7·8%) 143 (6·4%) 164 (7·3%)

Well water 690 (24·5%) 513 (18·2%) 153 (27·3%) 153 (27·3%) 537 (23·9%) 360 (16·0%)

(Table 1 continues on next page)
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Results 
2812 individuals participated in both the 2014 and 2018 
surveys and were included in our analysis, according to 
several exclusion criteria (appendix p 2). In the 2014 wave, 
the mean age of participants was 81·0 years (SD 9·3). 
1408 (50·1%) were women and 1621 (57·6%) were from 
rural areas (table 1). 2251 (80·0%) participants were in the 
intervention group and 561 (20·0%) were in the control 
group. Participants in the intervention and control groups 
had similar age and sex distributions (table 1). We 
observed significant between-group differences for area 
of residence (p=0·0011) and ethnicity (p<0·0001). 
Therefore, we applied inverse probability weighting to 
control for these differences in our statistical models.

Across all the participants, mean MMSE scores declined 
from 25·8 (SD 5·2) in 2014 to 24·0 (7·1) in 2018 (table 1). 
Mean MMSE scores reduced from 26·4 (4·8) in 2014 to 

24·3 (6·8) in 2018 in the control group and from 25·7 (5·3) 
in 2014 to 23·9 (7·2) in 2018 in the intervention group. 
Long-term exposure to average annual concentrations of 
PM2·5, PM10, SO2, NO2, and CO across all participants was 
lower in 2018 than in 2014 (table 1). By contrast, long-term 
O3 exposure was higher in 2018 than in 2014 (table 1). The 
reduction in PM2·5, PM10, and SO2 or the increase in O3 was 
larger in the intervention group than in the control group; 
no group difference was observed for NO2 or CO 
(appendix p 12)

The effects of CCAA on MMSE scores, estimated in the 
DID models with different covariates, are reported in 
table 2. When unadjusted (method 1), the intervention 
group had a smaller decline in MMSE scores than 
the control group, which suggested that CCAA was 
associated with an incremental improvement in MMSE 
scores of 1·36 (95% CI 0·47–2·25; p=0·0027). In the fully 
adjusted model, the difference in MMSE scores between 
the intervention and control groups was larger (2·45 
[95% CI 1·32–3·57]) compared with the unadjusted model. 
In a sensitivity analysis, excluding the IPW weights and 
the offset of MMSE trend, the estimates were generally 
consistent with results from the fully adjusted models 
(appendix p 17). Additionally, MMSE scores were not 
transformed in the analysis because the residuals were 
normally distributed (appendix p 17). Moreover, statistically 
significant differences between the intervention and 
control groups were consistently robust when the 5% or 
more reduction target was replaced with three larger 
reduction targets. When using the 10% target, 
1027 (35·7%) participants were included in the control 
group and 1785 (63·5%) were included in the intervention 
group; for the 12% target, 1223 (43·5%) participants were 
included in the control group and 1589 (56·5%) were 
included in the intervention group; and for the 15% target, 
1800 (64·0%) participants were included in the control 
group and 1012 (36·0%) were in the intervention group 
(appendix p 13). The estimated effect on improvement of 

Effect estimate (95% CI), 
MMSE score

p value

Target ≥ 5%

Model 1 1·36 (0·47–2·25) 0·0032

Model 2 2·38 (1·25–3·50) <0·0001

Model 3 2·35 (1·22–3·48) <0·0001

Model 4 2·45 (1·32–3·57) <0·0001

Target ≥10%* 1·39 (0·52–2·27) 0·0023

Target ≥12%* 1·27 (0·45–2·09) 0·0031

Target ≥15%* 1·07 (0·22–1·92) 0·014

Model 1 is adjusted for inverse probability weighting from baseline and offset of 
MMSE trend. Model 2 is adjusted for survey month based on model 1. Model 3 is 
adjusted for marital status, alcohol drinking, smoking, and physical activity based 
on model 2. Model 4 is based on model 3, but is also adjusted for intake of fruit 
and vegetables, water quality, living condition, and income source. Effect 
estimates were also provided using different targets of the annual particulate 
matter reduction targets (≥10%, ≥12%, and ≥15%). CCAA=China’s Clean Air Act. 
MMSE=Mini-Mental State Examination. *assessed using model 4. 

Table 2: The estimated effect of the CCAA on changes in MMSE score by 
difference-in-differences models.

Total population (n=2812) Control group (n=561) Intervention group (n=2251)

2014 2018 2014 2018 2014 2018

(Continued from previous page)

Living situation

Living with family members 2159 (76·8%) 2159 (76·8%) 421 (75·0%) 451 (80·4%) 1738 (77·2%) 1708 (75·9%)

Living alone 622 (22·1%) 607 (21·6%) 133 (23·7%) 90 (16·0%) 489 (21·7%) 503 (22·3%)

Residential care home 31 (1·1%) 46 (1·6%) 7 (1·2%) 6 (1·1%) 24 (1·1%) 40 (1·8%)

Income source

Family support 1352 (48·1%) 1422 (50·6%) 317 (56·5%) 314 (56·0%) 1035 (46·0%) 1108 (49·2%)

Retirement pension 608 (21·6%) 620 (22·0%) 113 (20·1%) 113 (20·1%) 495 (22·0%) 507 (22·5%)

Social insurance 235 (8·4%) 244 (8·7%) 71 (12·7%) 59 (10·5%) 164 (7·3%) 185 (8·2%)

Working payment 413 (14·7%) 264 (9·4%) 46 (8·2%) 26 (4·6%) 367 (16·3%) 238 (10·6%)

Other 204 (7·3%) 262 (9·3%) 14 (2·5%) 49 (8·7%) 190 (8·4%) 213 (9·5%)

Data are mean (SD) or n (%), unless otherwise specified. Max 8 h O3=maximum 8 h daily average O3 measurements. MMSE= Mini-Mental State Examination. *Almost everyday. 
†At least once a week. ‡At least once a month. §No habit.

Table 1: Characteristics of study participants
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MMSE scores was slightly lower for the model based on a 
larger reduction target (appendix p 13).

We also examined potential effect modifications 
(appendix p 14). We found that effect estimates were 
modified by age (adjusted MMSE score 3·18 [95% CI 
1·66–4·70] for participants aged 75 years or younger; 
2·97 [1·76–4·17] for 76–85-year-olds; and 1·66 
[0·45–2·88] for participants aged 86 years and older), 
ethnicity (5·33 [3·51–7.16] for participants of non-Han 
ethnicity and 2·26 [1·10–3·35] for people of Han 
ethnicity), education (1·66 [0·47–2·86] for participants 
who had received no education; 2·99 [1·69–4·29] for 
those who had completed elementary school; and 3·41 
[2·09–4·73] for those who completed junior high school 
or higher levels of education), marital status (2·02 
[0·84–3·21] for individuals who were widowed or not 
married and 2·96 [1·75–4·17] for those who were 
married), and physical activity (3·32 [1·99–4.66] for 
those who did regular physical exercise (at least once a 
week) and 2·07 [0·91–3·23] for those who did not take 
regular physical exercise).

Figure 2 shows MMSE score changes associated with 
per unit increase in pollutant exposure, adjusted for all 
longitudinal covariates (marital status, survey month, 
alcohol drinking, smoking, physical activity, fruit intake, 
vegetable intake, water quality, living condition, and 
income source). We found significantly negative 
associations between MMSE score changes and PM2·5 
and SO2 exposures and significantly positive associations 
for O3. The estimates for the other pollutants were not 
significantly different between 2014 and 2018. Adjusting 
for ambient temperature did not change these 
associations (appendix p 15). Additionally, the DID 

analyses for subgroups stratified by age, sex, ethnicity, 
rural versus urban area of residence, marital status, and 
level of education suggest an effect modification similar 
to that found in analysis of pollutant concentrations  
(appendix p 16). Furthermore, pollutant exposure changes 
were also associated with MMSE score changes using 

Figure 2: Changes in MMSE scores associated with an IQR increase in pollutant exposure
(A) 2014 cross-sectional analysis. (B) 2018 cross-sectional analysis. (C) Difference-in-difference analysis. In the cross-sectional analyses, MMSE scores were regressed 
against pollutant exposure across all participants in 2014 and 2018. In the temporal (2018 vs 2014) change analysis, within-person temporal changes in MMSE scores 
were regressed against temporal changes in pollutant exposure. In the difference-in-difference analysis marital status, survey month, alcohol drinking, smoking, 
physical activity, fruit intake, vegetable intake, water quality, living condition, and income source were adjusted for. The cross-sectional analysis was also adjusted for 
the time-invariant covariates (age in 2014, sex, education, ethnicity, place of residence, and occupation before retirement). Error bars are 95% CI. 
Max 8 h O3=maximum 8 h daily average O3 measurements. MMSE=Mini-Mental State Examination. PM2·5= particulate matter with a diameter of less than 2·5 μm. 
PM10=particulate matter with a diameter of less than 10 μm.
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Figure 3: Non-linear estimates for the associations between changes in PM2·5 (A), PM10 (B), SO2 (C), NO2 (D), 
CO (E), and max 8 h O3 (F) and MMSE score changes by difference-in-differences models
Solid lines are fitted estimates of the associations between air pollution changes and MMSE score changes. Shaded 
areas are 95% CI. The boxplots present the distributions of changes in air pollutants before and after the intervention. 
Max 8 h O3=maximum 8 h daily average O3 measurements. MMSE=Mini-Mental State Examination. PM2·5=particulate 
matter with a diameter of less than 2·5 μm. PM10=particulate matter with a diameter of less than 10 μm.
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non-linear models (figure 3), which yielded results similar 
to the effects observed in the linear models. The 
non-linear models consistently showed an inverse 
association of MMSE scores with PM2·5 and SO2 and a 
positive association with O3. The positive association 
between MMSE changes and O3 changes should not be 
interpreted as a protective effect, due to a strong inverse 
correlation between PM2·5 and O3. To illustrate this issue, 
in a sensitivity analysis, we linked MMSE changes with 
PM2·5 and O3 changes jointly. The estimate for O3 was 
statistically non-significant when conditioned on the 
PM2·5 level (appendix p 17). The two-pollutant models also 
suggested SO2 had a significant effect on MMSE change 
after controlling for O3 and PM2·5 on a constant level.

For all pollutants, except O3, Separate cross-sectional 
analyses of the 2014 and the 2018 data (method 3) generated 
results that consistently indicated negative associations 
between MMSE scores and exposure levels according to 
the point-estimates (figure 2). For O3, the general linear 
models show cross-sectional associations in opposite 
directions, suggesting a failure to control for confounders. 
According to the non-linear two-pollutant model 
(appendix pp 7–19), PM2·5 might be the confounder that 
had been ignored by the single pollutant models of O3.

Discussion 
In this quasi-experimental study of a nationwide sample 
of older adults in China, we observed a beneficial effect 
of a national clean air policy on cognitive function. 
Specifically, when adjusted for covariates, the mean 
MMSE score decline from 2014 to 2018 was less in the 
policy intervention group than in the control group. 
Using annual average ambient pollutant concentrations 
at the residence level as exposure estimates, we found 
that increased PM2·5 exposure was associated with 
decreased MMSE scores across all participants in both 
the 2014 and the 2018 waves. Of note, we found that 
smaller MMSE score reductions from 2014 to 2018 were 
associated with larger PM2·5 reductions over the same 
period. Taken together, these findings support a potential 
causal role of PM2·5 in accelerating cognitive decline in 
older adults, contributing to the emerging evidence, 
reported in previous observational studies, that long-
term PM2·5 exposure is a risk factor of cognitive decline.5–13

To the best of our knowledge, our study is the first to 
assess the effectiveness of a national clean air policy 
in attenuating ageing-driven cognitive decline. By 
integrating CCAA targets for PM2·5 between 2013 and 
2017 with the CLHLS survey waves done before the 
policy implementation and after the implementation, 
we had the unique opportunity to design this quasi-
experimental study to evaluate the effect of the clean air 
policy. In our DID analysis approach, we leveraged an 
experimental design consisting of an intervention 
group and control group based on differences in PM2·5 
reduction targets. This allowed us to obtain an 
appropriate counterfactual framework to estimate a 

causal effect. A strength of the DID approach is that an 
individual is compared with themselves at different 
time points; therefore, potential confounders—such as 
genetic factors—are partly controlled. Similar to 
previous DID designs, we controlled for slow-changing, 
individual-level variables, including sociodemographic 
factors (eg, age or marital status), lifestyle (eg, smoking 
status), and socioeconomic status (eg, dietary habits).29,30 
We also controlled for annual temperature, which 
might have varied with time. These adjustments 
reduced potential confounding of the effects of CCAA 
and PM2·5 observed in our study.

The DID analysis approach has been used in environ
mental interventional studies of other health outcomes.16 
Previous studies have focused primarily on mortality 
associated with particulate matter.15,30 In addition, our 
previous studies found that clean air actions in China 
are associated with a decrease in household medical 
expenditures26 and reduced prevalence of depressive 
symptoms.27 However, to date, only one study in the 
USA has assessed and reported the effect of air pollution 
regulations on dementia diagnosis in people older than 
75 years.18 This study investigated the association 
between reductions in annual average PM2·5 concen
trations from 2004 to 2013 and reductions in dementia 
incidence rate in a population-level analysis, but it did 
not control for individual-level data—such as lifestyle, 
socioeconomic status, health conditions, and other 
individual-level factors. These individual-level variables 
might have changed substantially during the 9-year 
evaluation period, which might confound the effect of 
the policy. In our study, we did a series of sensitivity 
analyses that considered individual-level variables and 
their changes, confirming the robustness of the 
beneficial effect on cognitive function of PM2·5 exposure 
reduction brought by CCAA.

A previous study showed that a within-individual 
change in MMSE scores of at least 2–4 points can be 
classified as a true or reliable change in cognitive 
function and a minimum change of at least 1·4 points 
as clinically important. Although our findings refer to 
between-group differences, it might be possible that the 
difference between the intervention and control groups 
over 4 years of 2·45 (95% CI 1·32–3·57) reflects a 
clinically meaningful difference, on the basis of these 
previous findings.31,32 Our finding is consistent with 
previous epidemiological evidence on the detrimental 
effects of air pollutants on brain health.5–13 A meta-
analysis of 31 studies, including cross-sectional and 
longitudinal analyses, provided compelling evidence 
that air pollution exposure is associated with accelerated 
cognitive decline across the life course.23 Our study, 
through a design mimicking a randomised clinical trial, 
strengthens the confidence in the putative causality of 
similar results from existing observational studies.17 
These epidemiological findings are supported by the 
biological mechanisms through which fine particle 
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matter impairs cognitive function. Experimental 
research has shown that fine and especially ultrafine 
particles (both components of PM2·5) can enter the brain 
either via circulation or intranasally by direct 
translocation through the olfactory bulb, leading to 
detrimental and toxic effects in the brain.33 In a post-
mortem study of 19 people aged 34–83 years, who 
had died of non-neurological causes, expression of 
cyclooxygenase-2, an inflammatory mediator, and 
accumulation of the 42-amino acid form of β-amyloid, a 
cause of neuronal dysfunction, were higher in those 
who had lived in severely polluted cities in Mexico than 
in those who had lived in less polluted cities.34 A study 
published in 2020 showed an association between air 
pollution and local gyrification index, a marker of local 
brain atrophy in the ageing brain, suggesting that 
chronic exposure to PM2·5 might influence the 
physiological ageing process of the brain.35

A strength of this study is the quasi-experimental design 
to examine the potential causal link between CCAA and 
cognitive decline, by taking advantage of the rapid 
reduction of air pollution over 4 years. The causal 
inference is strengthened by including a counterfactual 
analysis feature (ie, the intervention group of participants 
who lived in an area with a PM2·5 reduction exceeding a 
target [eg, 5% annually]) compared with the control group 
(people who lived in an area with no target PM2·5 
reduction). A previous study has shown that about 90% of 
PM2·5 variations during 2014 and 2017 in China were 
attributable to CCAA implementation.19 Therefore, PM2·5 
reduction could serve as a discriminative indicator for 
CCAA effectiveness in our DID models. A significant 
intervention effect suggested by our group comparison 
is strengthened by a significant exposure-response 
association between MMSE score change and PM2·5 
change from 2014 to 2018. Another strength is our ability 
to use residence-level air pollution estimates (as opposed 
to city-level or post code-level estimates widely used in 
previous studies) and individual-level sociodemographic 
and behavioural data. Moreover, we did a nationwide, 
prospective cohort study with neuropsychological data 
and individual characteristics in a diverse population in 
China, increasing the generalisability of our findings. 
Because China is one of the largest LMICs in the world, 
our findings might have policy implications for dementia 
prevention in other LMICs.

This study has some limitations. First, its quasi-
experimental design does not eliminate the possibility of 
residual confounding. Although we found improvement 
in cognitive decline after the implementation of CCAA, 
we cannot rule out the possibility that some other changes 
during this time period or lifestyle alterations as a result of 
the policy (eg, more physical activity or social participation 
after the air quality improves) might have slowed or 
delayed cognitive decline. However, our methodology, 
including the use of time-fixed and policy-fixed effects and 
a time-varying variable, helped mitigate this limitation. 

Second, model-based residence-level exposure estimates 
cannot be verified with measured data for all areas, 
although the models have been well validated.36 Third, the 
participants in our control group included those living in 
poorer provinces with a range of other risk factors, such as 
higher rates of cigarette smoking and poverty. We used 
sensitivity analyses to evaluate the effect of some of these 
potential confounding factors; however, we could not 
control the effect of unmeasured potential confounders 
(eg, residual confounding), such as different PM2·5 
compositions between northern and southern provinces. 
Fourth, we were not able to control for some potential 
confounders (eg, indoor air quality) due to a scarcity of 
relevant data. Fifth, a substantial proportion of the 
participants dropped out during the follow-up period 
mainly due to either death or refusal to participate; 
therefore, our results might be affected by selective 
survival bias, which is often the case in longitudinal 
studies of older populations. Finally, the uncertainties 
inherent in estimations of concentrations of air pollutants 
might cause exposure misclassification, which might lead 
to unstable or biased associations. For instance, the 
counterintuitive positive point-estimate for the effect of 
NO2 and CO might be related to the relatively low accuracy 
of the estimated concentrations for these two pollutants.

Findings from this study have public health policy 
implications for ageing societies. Dementia burden is 
projected to rapidly increase globally, especially in LMICs. 
Controlling any preventable risk factors is of paramount 
importance for a healthy ageing society. The evidence 
generated from our study, with a unique strength of 
causal inference, supports the need for implementing 
well designed clean air policies to reduce population and 
individual exposure to air pollutants, especially PM2·5. 
This need is particularly urgent considering the already 
known global disease burden due to air pollution. Policy-
oriented interventions offer widespread protection and 
enhanced health with less reliance on conventional 
individual-centred lifestyle modifications.37 We also found 
that some subpopulations (eg, people from non-Han 
ethnic groups and physically active people) might be 
more susceptible to the effect of air pollution than the 
others. However, whether factors related to sub
populations (eg, environmental factors, lifestyles, or 
genetic susceptibility) might potentially modify the effect 
of air pollution needs to be investigated. One of the 
potential implications for governmental policy could be to 
encourage and support extensive research regarding the 
greater effect of air pollution on cognitive health in people 
from minority ethnic populations in China. Our findings 
can act as preliminary evidence to promote localised 
stringent air quality standards for those areas where 
susceptible individuals are clustered.

In conclusion, this quasi-experimental study adds 
additional evidence that PM2·5 exposure accelerates 
cognitive ageing in older people. Considering the rapid 
population ageing and increasing global disease burden 



Articles

e107	 www.thelancet.com/healthy-longevity   Vol 3   February 2022

of dementia, implementing policy-oriented inter
ventions—such as clean air policies—is of paramount 
importance, especially in LMICs, for heathy brain ageing.
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