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The WID-BC-index identifies women with primary
poor prognostic breast cancer based on DNA
methylation in cervical samples
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Genetic and non-genetic factors contribute to breast cancer development. An epigenome-
based signature capturing these components in easily accessible samples could identify
women at risk. Here, we analyse the DNA methylome in 2,818 cervical, 357 and 227 matched
buccal and blood samples respectively, and 42 breast tissue samples from women with and
without breast cancer. Utilising cervical liquid-based cytology samples, we develop the DNA
methylation-based Women's risk IDentification for Breast Cancer index (WID-BC-index) that
identifies women with breast cancer with an AUROC (Area Under the Receiver Operator
Characteristic) of 0.84 (95% Cl: 0.80-0.88) and 0.81 (95% ClI: 0.76-0.86) in internal and
external validation sets, respectively. CpGs at progesterone receptor binding sites hypo-
methylated in normal breast tissue of women with breast cancer or in BRCA mutation carriers
are also hypomethylated in cervical samples of women with poor prognostic breast cancer.
Our data indicate that a systemic epigenetic programming defect is highly prevalent in
women who develop breast cancer. Further studies validating the WID-BC-index may enable
clinical implementation for monitoring breast cancer risk.
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reast cancer is by far the most common cancer in females in

general, and a leading cause of death in young women!. To

date, the identification of individuals with primary cancer is
achieved by assessing evidence directly from the tumour (e.g.
imaging® or detection of cancer cell products released into the
system>%). Currently, available early detection strategies, such as
mammography screening, suffer from low performance in young
women, over-diagnosis, and decreasing attendance rates, and its
benefit on mortality reduction has recently been questioned.
High-risk prevention strategies and risk-stratified screening
require high discriminatory accuracy, that can only be achieved
with predictors much stronger than those yet discovered®. Yet the
best predictive models combining non-genetic factors and a
polygenic risk score have only led to a Receiver Operator Char-
acteristic (ROC) Area Under the Curve (AUC) of 0.687. In con-
trast, cervical cancer screening (i.e. assessing cervical samples)
that offers simple non-invasive access to precancerous cells has
reduced the incidence and mortality from cervical cancer by more
than 50%3.

Epigenetic (i.e. DNAme) changes have been identified in
normal breast tissue adjacent to breast cancers” and could
potentially serve as a surrogate for both genetic and non-genetic
factors including lifestyle, reproductive and environmental
exposures contributing to breast cancer development!?, A num-
ber of proof of principle studies, so far exclusively performed in
blood, have demonstrated that certain DNAme changes are
associated with breast cancer predisposition!!-1°. Steroid hor-
mones are essential drivers of breast cancer formation and hence
it is a requirement that surrogate tissue is sufficiently hormone
sensitive. For instance, prolonged!” or higher!® exposure to
progesterone is strongly associated with the formation of poor
prognostic breast cancer!”-22 and the progesterone receptor
antagonist mifepristone effectively prevents breast cancer for-
mation in mice?3.

Sample heterogeneity and the choice of surrogate tissue are
deemed to be among the most important factors for impending
clinical implementation?, Thus, we aimed to assess whether
DNAme profiles derived from cervical liquid-based cytology
samples (i.e. containing hormone-sensitive epithelial cells, which
are capable of recording breast cancer-predisposing factors at the
level of the epigenome?* and can be self-collected), are able to
identify women with primary breast cancer.

Here, we perform an epigenome-wide DNAme analysis in
cervical liquid-based cytology samples from women who had
recently been diagnosed with breast cancer and in matched
controls. We establish the WID-BC test (Women’s risk IDenti-
fication for Breast Cancer index) and validate it in independent
sets of cervical samples. We also carry out further validation in
samples from women with ovarian cancer and a set of matched
cervical, buccal, and blood samples from BRCA mutation carriers
and in archived samples from a population cohort. In addition,
we specifically assess DNAme at progesterone receptor binding
sites (PR-BS) in breast and cervical samples to evaluate whether
systemic factors driving carcinogenesis in the breast can be cap-
tured by assessment of the cervical epigenome.

Results

Sample heterogeneity and differential methylation. For the
discovery set, we collected samples from 329 women with pri-
mary breast cancer with poor prognosis features (defined by
>2cm cancers and/or lymph-node positive and/or hormone-
receptor negative and/or grade 3) from 14 European centres at
the time of diagnosis and before treatment commenced, and
869 women without breast cancer (593 from the general popu-
lation and 276 from women attending hospital for benign

women-specific conditions) (Fig. 1). Epidemiological and clinical
characteristics in the discovery set are presented in Supplemen-
tary Tables 1 and 3. Epigenome-wide DNAme was analysed using
an Illumina Infinium EPIC bead chip array which encompasses
over 850,000 CpG sites2°.

We assessed the level of cell-type heterogeneity in each cervical
sample using EpiDISH?®, an algorithm that infers the relative
proportion of epithelial cells, fibroblasts, and seven subtypes of
immune cells in each sample. Immune cell proportion followed
an approximately uniform distribution in both cancer cases and
controls. There was a significantly greater proportion of epithelial
cells in cancers, and correspondingly fewer immune cells across
all subtypes (specifically pronounced for monocytes) in the
discovery dataset (Fig. 2a). This difference was comparatively
small, however, and absent in the external validation dataset
(Supplementary Fig. 1).

Identifying CpGs with differential methylation between cases
and controls was hampered by sample heterogeneity, since any
differential methylation specific to epithelial cells was greatly
diminished in samples with high immune cell proportion (see
example in Fig. 2b). We therefore used a linear model to estimate
epithelial- and immune-specific differentially methylated CpGs.

Development of discriminatory index. To derive a signature
discriminating between women with breast cancer and those
without based on cervical methylation, the WID-BC-index, we
used ridge and lasso regression to classify individuals as cases
or controls. Classifiers were trained on two-thirds of the discovery
dataset (572 cancer-free controls, 217 breast cancer cases) and
the remaining one-third was used as an internal validation set
(297 controls, 112 cases) (Fig. 1). The internal validation set was
used to determine the optimal number of CpGs used to construct
the index. The AUC was used as a measure of predictive per-
formance. Once the classifier was finalised a completely inde-
pendent external validation set was used to evaluate its
performance.

Predictive performance was evaluated as a function of n, the
number of CpGs used to train the classifier, using the internal
validation dataset (Fig. 2¢c) and optimal performance of 0.84 (95%
CIL: 0.80-0.88) was achieved using 29,000 CpGs with ridge
regression (Fig. 2d). The WID-BC-index was moderately, but
significantly associated with immune cell proportion fraction in
the internal validation set (Fig. 2e, linear regression coefficients of
—0.55, p=0.004 and —0.20, p=0.07 in cases and controls,
respectively).

In samples with an immune cell proportion fraction <0.5 and
immune cell proportion >0.5 the AUC was 0.85 (95% CI:
0.78-0.91) and 0.86 (95% CI: 0.80-0.91), respectively, suggesting
that discriminatory signals are present in both epithelial and
immune cells. We used a statistical model to estimate epithelial-
and immune-specific variability at each of the 29,000 CpGs and
divided them into “epithelial” (18,190 CpGs), “immune” (3,533
CpGs) or “shared” (7,277 CpGs) subsets as shown in Fig. 2f.

Since the WID-BC-index is defined as a weighted sum of
29,000 beta-values the index can be split into three subcompo-
nents by taking the weighted sums corresponding to each of the
three subsets of CpGs (Supplementary Fig. 2a). The epithelial
subcomponent captures an epithelial-specific signal in the
internal validation set, the immune subcomponent corresponds
to an immune-specific signal, whereas the shared subcomponent
captures a signal that is shared across both cell types
(Supplementary Fig. 2b-d). We evaluated the AUC in the
internal validation set after omitting each subcomponent and
observed that the removal of the epithelial component leads to the
greatest reduction in performance suggesting that this component
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Inclusion criteria

Breast cancer: Controls:

* > 2cm cancers and/or * Volunteers from general population

¢ Lymph-node positive and/or *  Women attending hospital for benign women-
¢ Hormone-receptor negative specific conditions

e Grade3

Discovery Set (n=1198)

Cervical DNAme Matched buccal DNAme Matched SNP
Training Set Breast Cancer 217 - 207
Control 572 - 536
Internal Validation Breast Cancer 112 66 107
Control 297 69 280
Total 1198 135 1130
External Validation Set (n=338) Endometrial Cancer Set (n=514)
Cervical DNAme Cervical DNAme
External Validation Breast Cancer 113 Endometrial Cancer 217
Control 225 Control 297
Total 338 Total 514
Ovarian Cancer Set (n=539)
Cervical DNAme
Ovarian Cancer 242
Control 297
Total 539
BRCA Set (n=227)
Cervical DNAme Matched buccal DNAme Matched blood DNAme
BRCALl 57 57 58
BRCA2 53 50 53
Control 114 115 116
Total 224 222 227
Breast Tissue Samples (n=42)
Normal from healthy women 14
Normal from BRCA carriers 14
Normal adjacent to triple negative breast cancer 14
Total 42
Samples from Swedish biobank (n=599)
Cervical smears from healthy women 316

Cervical smears from women diagnosed with breast
cancer | to 5 years after collection

283

Fig. 1 Overview of experimental design and datasets. \We included women with breast cancer who had at least one poor prognostic feature and recruited
both hospital-based controls and controls from the general population. The discovery set was further subdivided into a training set and internal validation
set and was used to derive the WID-BC-index. For a subset of individuals in the internal validation set, matched buccal samples and SNP data were
available. The WID-BC-index was evaluated in the external validation set. Additional datasets for evaluation of the WID-BC-index consisted of cervical
samples from individuals with endometrial or ovarian cancer, or BRCA mutation carriers, as well as breast tissue samples from healthy controls, BRCA
mutation carriers, or normal tissue adjacent to triple-negative breast cancer. Predictive assessment of the WID-BC-index was carried out using samples
from a Swedish Biobank which included cervical smears from healthy controls and women who were diagnosed with breast cancer 1to 5 years after sample

collection. Source data are provided as a Source Data file.

is particularly informative (Supplementary Fig. 2e). We found
that the index was highly depleted of CpG islands and enriched
for open sea regions (Supplementary Fig. 2f).

In addition, we ranked the 29,000 CpGs used to define the
WID-BC-index according to the absolute value of the regression
coefficients from the ridge model. In order to assess how

informative the top CpG sites are we trained sub-classifiers on the
top n sites (Fig. 2g). We observed that AUCs of 0.78 and 0.81 can
be achieved with the top 500 and 1000 CpGs, respectively,
indicating that the top-ranked subsets are particularly informa-
tive. We also trained sub-classifiers after removing the top
n CpGs, and on subsets of 500 CpGs after partitioning the ranked
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Fig. 2 Development of an index discriminating breast cancer cases from controls based on cervical samples. a Distribution of different cell types

in samples of the discovery dataset inferred using the HEpiDISH algorithm (*p <0.05, **p <0.01, ***p < 0.001 in two-sided Wilcoxon signed-ranked test;
n = 869 controls, 329 breast cancer cases). Exact p values: epithelial cells, p = 0.030; neutrophils, p = 0.052; monocytes, p = 0.0009; NK cells, 0.006;
CD4+ T cells, p = 0.0013; B cells, p = 0.002; fibroblasts, p = 0.001; eosinophils, 0.029; CD8+ T cells, 0.475. No adjustment for multiple comparisons was
made. Box plots correspond to standard Tukey representation, with boxes indicating mean and interquartile ranges, and lines indicating smallest and largest
values within 1.5 times of the 25th and 75th percentile, respectively. Dots indicate outlier values. b Example of a CpG with cell-type-specific methylation.
¢ Area under the receiver operating characteristic curve (AUROC) in the internal validation set as a function of the number of CpGs used to train the
classifier. d ROC curves of the WID-BC-index in the internal validation set for samples with an immune cell proportion <0.5 and >0.5. e Distribution of the
WID-BC-index with respect to immune cell proportion in the internal validation set. f Distribution of the estimated variance in epithelial and immune cells
across all CpGs used in the WID-BC-index. g AUC values in the internal validation set after training classifiers on different subsets of the CpGs used in the
WID-BC-index. The top n CpGs were either retained or removed. CpGs were also split into separate bins of size 500. h An index developed using data
extracted from TCGA breast cancer and normal samples (TCGA-BC-index) is able to discriminate cancer cases from controls in breast tissue (n = 44
controls, n = 222 breast cancer samples) but not cervical samples (n = 1094 controls, n = 442 breast cancer cases), prompting the development of a cervix-
specific index reflecting systemic changes in a hormone-sensitive surrogate tissues. Source data are provided as a Source Data file.
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list into bins of size 500. In both cases, we found that a substantial
predictive signal is present.

Performance of a breast cancer tissue signature in cervical
samples. In order to assess whether any breast cancer tissue-
specific changes (e.g. via cell-free DNA) can be detected in the
cervix, we developed a breast cancer-specific epigenetic signature
based on data from the TCGA-BRCA programme by applying
lasso regression on the top differentially methylated CpGs
between normal tissue and primary tumour tissue. This signature,
the TCGA-Breast Cancer index (TCGA-BC-index), consisted of
31 CpGs and was able to discriminate non-cancerous from breast
cancer tissue perfectly in a validation set, but did not discriminate
controls from breast cancer cases in cervical samples (Fig. 2h).
This indicated that the observed WID-BC index does not appear
to be driven by epigenetic changes which are present in the actual
breast cancer itself.

Validation in independent datasets. A separate independent
external validation dataset consisting of 225 controls and 113
breast cancer cases was used to validate the index performance
(Fig. 1, epidemiological and clinical characteristics in Supple-
mentary Tables 2 and 3). The WID-BC-index was computed for
each woman (Fig. 3a) resulting in an AUC of 0.81 (Fig. 3b; 95%

CI: 0.76-0.86). There was no significant dependence on immune
cell proportion.

We next analysed cervical samples from yet unaffected BRCA1I
(n=>57) and BRCA2 (n = 53) mutation carriers (i.e. women who
have not yet developed breast and/or ovarian cancer) and 114
healthy controls. In mutation carriers of BRCAI and BRCA2
(whose breast cancer risk is slightly lower and starts to increase
later than that of BRCAI carriers?’) we observed AUCs of 0.61
(95% CI: 0.52-0.69) and 0.55 (95% CI: 0.46-0.64), respectively
(Supplementary Fig. 3). The inferred cellular composition of these
samples was comparable to the external validation dataset
(Supplementary Fig. 1b-e).

To study the predictive performance of WID-BC-index, we
analysed Karolinska University Laboratory cervical cytology
biobank samples from women who subsequently developed
breast cancer a median of 351 days (range 1-1704 days) after
the cervical sample collection. To assess the impact of the storage
protocol on DNAme (storage time in methanol-containing
PreservCyt at —25 °C ranged from 1,252 to 2,877 days), we
developed a statistical technique to infer the signal-to-noise ratio
of each sample (Supplementary Methods). The biobanked
samples suffered from a lower signal-to-noise ratio compared to
the discovery set (Fig. 3c).

Despite this degradation, in 131 poor prognostic breast cancer
cases (defined as >2cm tumours and lymph node positive;
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Fig. 3 The WID-BC-index discriminates poor-prognostic breast cancer cases from controls in cervical samples but is negatively impacted by sample
degradation in biobanked samples. a The WID-BC-index versus immune cell proportion in the external validation set. b ROC curve in the external
validation set (n = 225 controls, n = 113 breast cancer cases). ¢ Inferred signal-to-noise ratio in the discovery and biobank datasets. Numbers in brackets
indicate sample numbers (n = 1198 in discovery set, 599 in biobank set). ***p < 2.2e-16 in two-sided Wilcoxon signed-rank test. Box plots correspond to
standard Tukey representation, with boxes indicating mean and interquartile range, and lines indicating smallest and largest values within 1.5 times of the
25t and 75th percentile, respectively. Dots indicate outlier values. d The AUC when discriminating between healthy controls and poor-prognostic breast
cancer samples from the Swedish cytology biobank dataset as a function of signal-to-noise cutoff. n = 316 controls, 131 poor prognostic breast cancer
cases. @ AUCs corresponding to non-poor prognostic samples from the biobank dataset. n = 316 controls, n = 152 non-poor prognostic breast cancer
cases. Error bars in d, e indicate upper and lower 95% confidence intervals, respectively. Source data are provided as a Source Data file.
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hormone receptor status and grade were unknown) we estimated
an AUC> 0.7 in samples with the highest signal-to-noise levels
(Fig. 3d; Supplementary Fig. 2g). In 154 cases not classified as
poor prognostic we did not detect any discriminatory signal
(Fig. 3e; Supplementary Fig. 2h).

These findings suggest that the biobanked samples suffered
substantial degradation and that the discriminatory signal may
have been masked by background noise in the lowest quality
samples. We conclude that it is not possible to fully validate the
WID-BC-index in currently available cohort-based long-term
archived samples stored in methanol-based fluid at >—30 °C.

Performance of index in matched buccal and blood samples.
DNAme is highly tissue-specific and specific exposures are
recorded in certain cell subtypes?428:29. The index decomposition
in Fig. 2f implies that the WID-BC-index uses epithelial- and
immune-specific signals as well as a shared component. In order
to assess whether the WID-BC-index (derived from cervical
liquid-based cytology samples) can be extended to other tissue
types we analysed matched buccal and blood samples from the
BRCA dataset above (Fig. 1). Similar to the cervical samples, a
substantial proportion of buccal DNA originates from immune
cells (Supplementary Fig. 1). In BRCAI carriers we found an AUC
of 0.67 (95% CI: 0.59-0.76) in buccal samples, and 0.64 (95% CIL:
0.56-0.72) in blood (Supplementary Fig. 3). In BRCA2 carriers
the AUC was 0.61 (95% CI: 0.52-0.71) in buccal samples and 0.60
(95% CI: 0.51-0.69) in the blood (Supplementary Fig. 3).

We additionally analysed matched buccal samples from a
subset of 135 women in the internal validation set (69 controls
and 66 cases). We found that the discriminatory signal derived
using cervical samples was also present in these matched buccal
samples (Fig. 4a), yielding an AUC of 0.69 (Fig. 4b; 95% CI:
0.60-0.79). There was a correlation of 0.57 (p < 10712) between
the WID-BC-index computed in matched cervical and buccal
samples. The immune and shared subcomponents showed the
greatest discriminatory performance (Supplementary Fig. 4a—c).
We did not observe any differences in inferred cellular
composition between cancer cases and controls in these matched
buccal samples (Supplementary Fig. 1f).

Validation in women with ovarian or endometrial cancer.
Women with breast cancer are also at higher risk for ovarian and
endometrial cancer3: the risk to develop either ovarian and
endometrial cancer is higher in women who develop breast
cancer at an early and later age, respectively3(.

Hence, we additionally analysed 242 and 217 cervical samples
from women with ovarian and endometrial cancer, respectively
(Fig. 1). The clinical and epidemiological characteristics of these
datasets are presented in Supplementary Tables 4-7. Of note,
these samples displayed a slight but significant difference in
inferred cellular composition compared to controls (Supplemen-
tary Fig. 1g, h). We obtained an AUC of 0.69 (95% CI: 0.65-0.74;
Figs. 4c and 3d) and 0.58 (95% CI: 0.53-0.63; Fig. 4e, f) in these
ovarian and endometrial cancer cases, respectively, and the same
297 control samples from the breast cancer internal validation set.
The subcomponents for the ovarian cancer set followed a similar
pattern as the breast cancer cases (Supplementary Fig. 4d, e).

For each of the validation datasets we computed odds ratios
corresponding to quartiles of the WID-BC-index (Table 1).

Association with epidemiological and clinical factors. We
investigated the relationship between the WID-BC-index and
various epidemiological variables using the internal and external
validation datasets (the training dataset was not suitable because
it was used to develop the index). A statistically significant

association was found between the WID-BC-index and age
(Fig. 5a, correlation coefficients of 0.27, p<10~° and 0.33,
p<107% in controls and cases respectively). The Illumina 650k
Infinjum Global Screening Array was used to genotype matched
blood samples from a subset of 314 cases and 816 controls in the
discovery set. We computed a recently published polygenic risk
score (PRS; 303 of the 313 SNPs described3! were used) for breast
cancer prediction. In the 107 cases and 280 controls from the
internal validation set we found a modest but significant corre-
lation of 0.13 (p = 0.03) between the PRS and the WID-BC-index
(Fig. 5b) in controls and no significant correlation in cases
(correlation coefficient —0.03, p =0.7). In all samples of the dis-
covery set for which PRS data were available the AUC was 0.67
(Fig. 5¢; 95% CI: 0.64-0.71). We also assessed whether removal of
recently described methylation quantitative loci (mQTLs) asso-
ciated with breast cancer risk influenced the index. Ho et al.32
assessed 235 of the 313 breast cancer variants®! with minor allele
frequencies higher than 5% and based on this identified 822 cis-
mQTLs of which 704 were present in our analysis set. Interest-
ingly, 78 of these mQTLs were included in the WID-BC-index,
which is more than expected by chance (observed to expected
ratio 2.97 [95%CI 2.32-3.76, p<0.001]); however removal of
these 78 mQTLs from the WID-BC-index did not result in a
significant drop in performance (Fig. 5d). In control samples no
significant association was found between the WID-BC-index and
BMI (Fig. 5e), individuals with 0 and =1 first-degree-relatives
with breast cancer (Fig. 5f), age of menarche (Fig. 5g), or age at
first live birth (Fig. 5h). The index was significantly higher in
postmenopausal women (Fig. 5i, p < 107°) and women who had
not undergone hormone replacement therapy (Fig. 5j, p <0.001).
In breast cancer cases there was no association between the WID-
BC-index and clinico-pathological features of the cancers
(Fig. 5m-o).

No significant association was found between the WID-BC-
index and various technical parameters including the time
between sample collection and processing (Supplementary
Fig. 5a), date of processing, plate number (samples were
processed on 96 sample plates) and sentrix position. No
difference was found between control samples from healthy
volunteers and women presenting at hospitals for benign women-
specific conditions (Supplementary Fig. 5b).

The WID-BC-index is reflective of a fat-cell differentiation. In
order to assess whether the WID-BC-index is reflective of a cell-
specific program, we analysed all ENCODE samples (Supple-
mentary Table 8) for which EPIC array data were available. We
ranked and plotted the WID-BC-index in all primary cell samples
and in vitro differentiated cell samples and found a high WID-
BC-index in nonepithelial cells (Fig. 6a). The majority of tissue
samples contain substantial proportions of fat, as determined by
the EpiDISH algorithm, and hence we have plotted the WID-BC-
index against the fat content of the respective tissue samples
(Fig. 6b). We found a direct correlation (0.34, p value < 0.001)
between the WID-BC-index and the fat content of the sample
irrespective of whether the sample was taken from an epithelial or
nonepithelial organ. These findings indicate that the WID-BC-
index is reflective of a fat cell program.

Cervical epithelial cells mirror breast epithelial tissue. Amongst
the key drivers for poor prognostic breast cancer!”-20, proges-
terone is well known for its lipogenic effect in adipocytes but also
breast cells33-3°. Hence we wanted to assess whether aberrant
DNAme at progesterone receptor binding sites (PR-BS)3%37 in at-
risk breast tissue is mirrored in cervical cells. We assessed the
19,258 PR-BS CpGs which are available on the EPIC array and
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Fig. 4 WID-BC-index performance in buccal samples and in other gynaecological cancer patients. a WID-BC-index versus immune cell proportion in
matched buccal samples from the breast cancer internal validation set (n = 69 controls, n = 66 breast cancer cases). b ROC curve corresponding to
matched buccal samples (n = 69 controls, n = 66 breast cancer cases). ¢ WID-BC-index versus immune cell proportion in ovarian cancer cases and
healthy controls (n = 297 controls, n = 242 ovarian cancer cases). d ROC curve corresponding to the ovarian cancer samples (n = 297 controls, n = 242
ovarian cancer cases). @ WID-BC-index versus immune cell proportion in endometrial cancer cases (n = 297 controls, n = 217 endometrial cancer cases)
and f the corresponding ROC curve (n = 297 controls, n = 217 endometrial cancer cases). Source data are provided as a Source Data file.

Table 1 Odds ratios corresponding to quartiles defined using the internal validation breast cancer dataset.

Quantile Control Cancer OR (unadjusted) OR (adjusted)
Breast cancer internal validation

(-1.53, —0.58) 75 2 1.00 (reference) 1.00 (reference)
(—0.58, —0.28) 74 5 2.42 (0.48,19.25) 2.29 (0.45, 17.15)
(—-0.28, 0.07) 74 17 8.01 (2.17,56.31) 8.47 (2.23, 55.81)
(0.07, 1.62) 74 88 4111 (12.33,274.77) 41.73 (12.2, 262.62)
Breast cancer external validation

(—1.53, —0.58) 58 8 1.00 (reference) 1.00 (reference)
(-0.58, —0.28) 69 8 0.84 (0.29,2.46) 0.89 (0.3, 2.67)
(—-0.28, 0.07) 50 14 2.00 (0.78,5.46) 2.57 (0.95, 7.51)
(0.07, 1.62) 48 83 12.19 (5.62,29.86) 15.67 (6.59, 42.38)
Ovarian cancer

(-1.53, —0.58) 75 30 1.00 (reference) 1.00 (reference)
(—0.58, —0.28) 74 31 1.05 (0.57,1.91) 0.93 (0.48, 1.79)
(—0.28, 0.07) 74 51 1.72 (0.99,3.01) 1.16 (0.61, 2.19)
(0.07, 1.62) 74 130 4.36 (2.64,7.36) 3.27 (1.9, 5.68)
Endometrial cancer

(-1.53, —0.58) 75 39 1.00 (reference) 1.00 (reference)
(—0.58, —0.28) 74 42 1.09 (0.63,1.88) 0.89 (0.46, 1.72)
(—-0.28, 0.07) 74 61 1.58 (0.95,2.66) 0.74 (0.36, 1.49)
(0.07,1.62) 74 75 1.94 (1.18,3.23) 0.80 (0.41, 1.53)

as a Source Data file.

For the breast cancer datasets adjustment was based on a logistic regression model with age, menopausal status, age at menarche, number of first-degree relatives with breast cancer, and BMI included
as covariates. For the ovarian and endometrial cancer datasets age and menopause were included as covariates. Odds ratios were estimated using median-unbiased estimation. Source data are provided
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Fig. 5 Association of the WID-BC-index with clinical and epidemiological parameters. a The WID-BC-index versus age in samples from the internal and
external validation datasets. b Correlation with a polygenic risk score (PRS) based on 303 SNPs in the internal validation dataset. ¢ ROC curve
corresponding to the PRS evaluated in a subset of samples from the discovery set. d ROC curves of the WID-BC-index (black) or the WID-BC-index
without 78 mQTLs previously associated with breast cancer (turquoise). Removal of mQTLs did not significantly influence performance of the WID-BC-
index. e Correlation with body mass index (BMI) in controls. Assessment of the WID-BC-index with f family history, g age at menarche, h age at first live
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were carried out. Source data are provided as a Source Data file.
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computed the differences in mean methylation at PR-BS CpGs in
14 normal breast samples from healthy women and 14 normal
breast samples from women adjacent to their triple-negative
breast cancer. We compared this to the differences in mean
cervical PR-BS methylation between healthy controls and breast
cancers from our discovery set cervical samples and observed a
substantial skew towards PR-BS sites which are hypomethylated

(high breast cancer risk)
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in both cervical and breast tissue in at-risk women with a highly
significant overlap of 2,623 hypo-methylated CpGs (defined as a
methylation difference < —0.02) in both breast and cervical
samples (Fig. 6¢). Analysis of cellular components revealed equal
proportions of epithelial, immune, fat, and fibroblast cells in these
samples, suggesting that alterations in methylation are not pri-
marily driven by changes in cellular composition (Supplementary

NATURE COMMUNICATIONS | (2022)13:449 | https://doi.org/10.1038/s41467-021-27918-w | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Fig. 6 Functional assessment of the WID-BC-index. a The WID-BC-index evaluated in ENCODE primary cells (pc) and in vitro differentiated cells (ivdc).
b The WID-index evaluated in ENCODE tissue samples. Correlation and p value assessed using Pearson’s correlation. ¢ Difference in mean methylation
(AP) at progesterone receptor binding site (PR-BS) CpGs between normal-adjacent and normal tissue in breast samples versus the Ap in breast cancer
cases and controls in cervical samples. CpGs with Ap > 0.02 or AR <0.02 were considered hypo- or hyper-methylated respectively. Observed/expected
values and p values were assessed using Chi-Squared test: hypomethylated CpGs: p < 2.2e-16; hypermethylated CpGs: p = 1.349e-11. d Mean methylation
of the 2,623 hypomethylated PR-BS CpGs in normal breast samples from healthy controls and women with BRCA mutation (*p = 0.019 in two-sided

Wilcoxon signed-rank test). Values in brackets indicate sample numbers (n = 14 healthy controls, 14 BRCA mutation carriers). Box plots correspond to
standard Tukey representation, with boxes indicating mean and interquartile range, and lines indicating smallest and largest values within 1.5 times of the
25t and 75t percentile, respectively. Dots indicate outlier values. e Schematic illustration created using Biorender. Hypomethylation at PR-BS CpGs is
associated with an increased breast cancer risk and can be detected in breast tissue at risk and in cervical samples. Source data are provided as a Source

Data file.

Fig. 1i). Furthermore, we observed a significantly lower mean
methylation at these 2,623 hypo-methylated PR-BS CpGs in 14
normal breast tissue samples from women with a BRCA mutation
compared to the 14 normal breast tissue samples (Fig. 6d).

Progesterone is known to be a major factor driving ER/PR-
negative breast cancer by stimulating the secretion of RANKL and
other factors in ER+/PR+ luminal mature cells which activate the
expansion of ER—/PR— luminal progenitor cells eventually
leading to highly aggressive cancer. Hence, the fact that we see
a substantial overlap of PR-BSs in cervical samples from women
with breast cancer and in normal breast tissue from women with
a BRCA mutation is perfectly aligned with the view that overall
higher (lifetime) levels of progesterone in women at risk lead to a
reduction of methylation in both surrogate (i.e. cervical) and at-
risk (i.e. breast tissue and here likely cells like luminal mature
cells) which eventually triggers breast cancer (Fig. 6e).

Discussion

We have identified a cervical DNAme signature, the WID-BC-index,
which provides an opportunity to identify women with a poor
prognostic primary breast cancer based on a sample, which has no
direct anatomical link to the diseased organ. Women in the top
quartile of the WID-BC-index have a 15.7 fold increased risk for
breast cancer independent of any other risk factors (Table 1).

Our findings suggest that the alterations to the cervical epi-
genome which are quantified by the index reflect cancer predis-
position in other hormone-sensitive tissues of the body rather
than the presence of an established breast cancer. Besides the
anatomical distance to the cervix which precludes direct detection
of tumour by-products, the index works independently of tumour
size or nodal metastasis. Hypomethylation of progesterone
receptor binding sites in the cervical samples of women with
breast cancer mirrored a similar pattern of hypomethylation in
at-risk breast tissue (i.e. in normal breast tissue adjacent to triple-
negative breast cancer and in normal tissue from women with a
BRCA mutation) (Fig. 6e). Progesterone is a well-established
driver of poor prognostic breast cancers!’, and its lipogenic
effects are consistent with the view that the index reflects a fat cell
epigenetic program.

The notion of predisposition is further supported by the fact that
the index also identifies women with ovarian (and to some extent
endometrial) cancer and those women who have a very high risk of
developing both breast and ovarian cancer (ie. due to a BRCAI
mutation)—likely at least in part due to cell-nonautonomous
factors®®. The fact that the WID-BC-index is able to identify
women who have a BRCAI mutation is quite unexpected because the
inclusion criteria that we have chosen for this set (i.e. women without
risk-reducing surgery and who had not developed a cancer yet) were
biased against those carriers with the highest risk.

The lack of evidence for association with stage and nodal status
supports the view that the WID-BC-index is not a marker for the
advanced disease but rather a surrogate marker associated with

the development/presence of breast cancers with poor prognostic
features.

Although in the discovery set the proportion of immune cells
in the cervical samples of the breast cancer cases was significantly
lower and specifically pronounced for monocytes (consistent with
observations in peripheral blood samples from women with
incident breast cancers?), this effect was not essential for the
discriminatory capacity of the WID-BC-index, evidenced by the
fact that in the validation set no cell-type difference existed
between cases and controls. Moreover, by decomposing the index
into tissue-specific components we were able to show that the
dominant signal is present in epithelial cells, and is also partly
present in immune cells. The validation in matched buccal and
blood samples confirm the systemic nature of the DNAme signal,
although further prospective studies will be required to confirm
whether the WID-BC-index can be used as a biomarker of breast
cancer risk. Due to the current study design, disease effects
cannot entirely be ruled out.

Our findings described here are consistent with data published
more than 30 years ago showing that patients with hereditary
breast cancer and their first-degree relatives harbour a differ-
entiation defect?0, We speculate that at least part of this differ-
entiation defect might be triggered by aberrant exposure to
progesterone. Progesterone levels fluctuate (i.e. menstrual cycle,
pregnancies, oral contraceptive pill use, hormone replacement
therapy) and hence for practical reasons it is impossible to
quantify progesterone exposure over time using conventional
technologies (i.e. serum analysis); DNAme at those DNA sites
which are bound by the progesterone receptor might act as a good
surrogate marker for overall exposure and thereby reflects breast
cancer predisposition.

Considerable effort in the past has shown that by combining
SNPs, mammographic density, and epidemiologic risk factors the
AUC corresponding to breast cancer prediction can be increased
up to 0.68%. Due to the inherently fixed nature of the genome and
the plastic nature of the epigenome, it is not possible at this time
to state whether DNAme in a cervical liquid-based cytology
sample truly outperforms the currently available (largely SNP-
based) risk-predicting algorithms and how long in advance of
breast cancer diagnosis the cancer risk can accurately be
predicted.

We have demonstrated that long-term storage of cervical
samples in the methanol-based fluid is associated with a sub-
stantial decrease in sample quality and thereby a dramatic
decrease in the signal-to-noise ratio. Nevertheless, we have
demonstrated that despite this technical limitation some of the
signal is retained in the higher quality samples and does not seem
to vary depending on the time between sample donation and
cancer diagnosis.

Side-by-side comparisons assessing various predictors of risk
using the same population will be required in the future. Studying
sequential population-based cervical liquid-based cytology

10 | (2022)13:449 | https://doi.org/10.1038/s41467-021-27918-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

samples (in which the DNA has been isolated or the cell pellet
stored at —80 °C within a few weeks after sample collection) from
women who develop a breast cancer several years later will (i) be a
prerequisite for assessing whether the actual risk-predictive nat-
ure of the WID-BC-index will truly outperform current breast
cancer predictive algorithms and (ii) determine whether the index
should be implemented in a clinical setting in order to guide
preventive and early detective measures. The WID-BC-index has
been developed and validated in the European population; the
test also needs to be further validated in non-European popula-
tions. Whether DNAme profiles assessed in cervical cytology
samples, and/or in breast tissue samples, can also act as surrogates
for monitoring breast cancer preventive measures will need to be
assessed in large-scale prospective clinical trials.

Methods

Study design and epidemiological data acquisition. The case-control study
presented in this manuscript is a sub-study of the FORECEE (4 C) programme
which was conducted as part of a multicentre study involving several recruitment
sites in 5 European countries (i.e. the UK, Czech Republic, Italy, Norway, Ger-
many) (Supplementary Table 9) and has ethical approval from UK Health Research
Authority (REC 14/LO/1633) and all contributing centres, including the NRES
Committee London (UK), Ethics Committee of the General University Hospital,
Prague (Czech Republic), Comitato Etico degli IRCSS Instituto Europeo di
Oncologia e Centro Cardiologico Monzino (Itality), Regionale Komiteer for
Medisinsk og Helsefaglig Forskningsetikk (Norway), and Ethikkommission bei der
LMU Miinchen (Germany). Participants were aged >18 years. Prior to taking part,
each prospective study volunteer was given a Participant Information Sheet, as well
as a Consent Form and the rationale for the study was explained. Additional
resources, including an explanatory video and further online resources, were also
made available. Women diagnosed with breast or ovarian cancer (case) or a non-
malignant benign gynaecological condition (control) were approached during
outpatient hospital clinics, while women recruited as BRCA mutation carriers or
healthy volunteers from the general population (control) were approached via
outreach campaigns, public engagement in the UK.

It was necessary for us to consider only pre-treatment samples as an essential
part of breast cancer treatment is chemotherapy, Gn-RH-analoga or selective
estrogen receptor modulators (e.g. Tamoxifen or aromatase inhibitors).
Interference at the level of steroid hormones (i.e. even chemotherapy interferes
with hormonal regulation as a large proportion of pre-menopausal women stop
menstruating during chemotherapy) leads to a substantial change in DNAme*! and
therefore it is not appropriate to assess DNAme as a risk-predictive factor after
breast cancer treatment.

After signing an informed consent, participants completed an epidemiological
questionnaire, as well as a feedback form after their participation.

The epidemiological survey was administered via the Qualtrics application on
dedicated iPads. The survey contained questions relating to health habits, relevant
risk factors, and also made enquiries as to historical health habits, as well as
obtaining a thorough medical and obstetric history. Cervical samples were collected
at appropriate clinical venues by trained staff and the collection of cervical liquid-
based cytology were carried out by a small group of research midwives or
physicians with a view to establishing a standard practice. Buccal samples were
collected using Copan 4N6FLOQ Swabs, Thermofisher Scientific. Participants were
not compensated for participation.

Biological samples were given an anonymous Participant ID Number, which
was assigned to the person’s name in a securely stored link file. Women with a
current diagnosis of (a) primary breast cancer with poor prognosis features (Grade
III and/or T2/3 and/or N1/2 and/or hormone receptor positive) or (b) malignant
invasive epithelial ovarian or endometrial cancer and recruited prior to receiving
any systemic treatment (chemo- or endocrine or trastuzumab, etc.) or surgery or
radiotherapy were eligible as breast, ovarian or endometrial cancer cases
respectively. Clinical and epidemiological characteristics of the discovery and
external validation sets are presented in Supplementary Tables 1-3.

For the FORECEE discovery set controls were initially matched one-to-one with
cases based on menopausal status, age (5 year age ranges where possible), and
recruitment centre/country. However, due to an imbalance in the recruitment of
cases and controls at some centres, a number of cases were matched on age and
menopausal status alone. Cancer histological data was collected post-recruitment
either by clinicians directly involved in the diagnosis/treatment of the cancer cases
or by a nominated data manager with access to the in-house hospital systems.

Cervical liquid-based cytology sample collection. Cervical samples were taken at
collaborating hospitals and recruitment centres using the ThinPrep system
(Hologic Inc., cat #70098-002). Cervical cells were sampled from the cervix using a
cervix brush (Rovers Medical Devices, cat #70671-001) which was rotated 5 times
through 360 degrees whilst in contact with the cervix to maximise cell sampling.
The brush was removed from the vagina and immersed in a ThinPrep vial

containing Preserve-cyt fluid and then pushed against the bottom of the vial 10
times to facilitate the release of the cells from the brush into the solution. The
sample vial was sealed and stored locally at room temperature. Buccal cells were
collected using two Copan 4N6FLOQ Buccal Swabs (Copan Medical Diagnostics,
cat #4504 C) by firmly brushing the swab head 5-6 times against the buccal mucosa
of each cheek. The swabs were re-capped and left to dry out at room temperature
within the sampling tube which contains a drying desiccant. 2.5 ml of venous whole
blood was collected in PAX gene blood DNA tubes (BD Biosciences #761165) and
stored locally at 4 “C. All samples were shipped to UCL at ambient temperature.

Clinical cytology biobank archival samples. The Clinical Cytology biobank at the
Karolinska University Laboratory, Karolinska University Hospital, systematically
stores a compacted aliquot of all ThinPrep liquid-based cytology samples taken as
part of the organised cervical screening programme in the Stockholm-Gotland
capital region*>43. This biobank has ethical approval from the Regionala etik-
provingsnimnden i Stockholm. The biobank also stores an aliquot from all samples
taken on clinical indication in the region’s gynaecological clinics and the catchment
area constitutes ~20% of the entire nation. Women who participate in screening are
informed in the invitation letter that their sample will be stored, and potentially
used for ethically approved research. Information is given on how to opt out of this
procedure, should the woman wish not to have her sample stored. Very few women
opt out. We linked all LBC samples in the biobank from years 2011 to 2015 to the
Swedish National Cancer Registry, to identify all cases of breast cancer that had
occurred among women who had at least one sample stored in the biobank
(n=1325). We used the same register to identify all women who had not been
diagnosed with breast cancer within the study period, and from these sampled a 1:1
control set of healthy women frequency-matched on age and sample year (n = 351,
for a total of 676 samples). From each vial, 100 pL of biobanked ThinPrep material
was retrieved and submitted to UCL for extraction and methylation analyses.
Ultimately, 599 samples passed QC and had sufficient phenotypic information
available and were used as a further external validation set.

Breast tissue samples. We have analysed an independent set of breast tissue
samples containing a total of 42 breast samples from premenopausal women aged
19-54 years (Supplementary information): normal breast tissue from 14 women
who underwent cosmetic breast operations, normal breast tissue from women who
underwent prophylactic mastectomies due to a BRCA1 (n=9) or a BRCA2 (n=5)
mutation (Supplementary Table 10), and 14 normal samples from women who
underwent surgery for triple-negative breast cancer (tissue adjacent to the cancer
was collected). All samples were collected fresh from theatre and samples processed
within 1 hr of surgical excision. Fresh samples were frozen rapidly in Liquid
Nitrogen and stored at —80 °C. Ethical approval was obtained from the NRES
Committee East of England (reference number 15/EE/0192). All patients provided
written informed consent.

Sample processing and DNA extraction. When preparing for sample storage in
the laboratory, cervical samples were poured into 50 ml Falcon tubes and left to
sediment at room temperature for 2 h. One mL wide bore tips were then used to
transfer the enriched cellular sediment into a 2 mL vial. The cervical sediments
were washed twice with PBS, lysed, and stored temporarily at —20 °C ahead of
extraction. The Copan 4N6FLOQ Buccal Swabs were cut and lysed sequentially in
the same aliquot of lysis buffer prior to temporary storage at —20 °C ahead of
extraction. Whole blood samples were simply held transiently at —20 °C until
DNA extraction. DNA was extracted from whole blood, cervical and buccal tissue
lysates on a Hamilton Star liquid handling platform using the Nucleo-Mag Blood
200ul kit (Macherey Nagel, cat #744501.4) with prior modifications for optimal
lysis of cervical cell pellets and paired buccal swabs. For breast tissues, DNA was
extracted from up to 40 mg of tissue using the Lipid Tissue kit from Macherey
Nagel (cat # 740471.50), and the manufacturer’s instructions were followed. DNA
concentration and quality absorbance ratios were measured using Nanodrop-8000,
Thermoscientific Inc. Extracted DNA was stored at —80 °C until further analysis.

DNA methylation array analysis. Cervical, buccal and breast tissue DNA was
normalised to 25 ng/uL and 500 ng total DNA was bisulfite modified using the EZ-
96 DNA Methylation-Lightning kit (Zymo Research Corp, cat #D5047) on the
Hamilton Star Liquid handling platform. Eight uL of modified DNA was subjected
to methylation analysis on the Illumina InfinitumMethylation EPIC BeadChip
(Illumina, CA, USA) at UCL Genomics according to the manufacturer’s standard
protocol.

Methylation analysis. All methylation microarray data were processed through
the same standardised pipeline. Raw data was loaded using the R package minfi,
version 1.36.0. Any samples with median methylated and unmethylated intensities
<9.5 were removed. Any probes with a detection p value > 0.01 were regarded as
failed. Any samples with >10% failed probes, and any probes with >10% failure rate
were removed from the dataset. Beta values from failed probes (approximately
0.001% of the dataset) were imputed using the impute.knn function as part of the
impute R package, version 1.62.0.
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Non-CpG probes (2932), SNP-related probes as identified by Zhou et al.44
(82,108), and chrY probes were removed from the dataset. An additional 6102
previously identified probes that followed a trimodal methylation pattern
characteristic of an underlying SNP were removed.

Background intensity correction and dye bias correction was performed using
the minfi single sample preprocessNoob function. Probe bias correction was
performed using the beta mixture quantile normalisation (BMIQ) algorithm in the
ChAMP package, version 2.18.3.

The fraction of immune cell contamination, and the relative proportions of
different immune cell subtypes in each sample, were estimated using the EpiDISH
package, version 2.6.1, using the epithelial, fibroblast and immune cell reference
dataset. The top 1000 most variable probes (ranked by standard deviation) were
used in a principal component analysis. Statistical tests were performed in order to
identify any anomalous associations between plate, sentrix position, date of array
processing, date of DNA creation, study centre, immune contamination fraction,
age, type (case versus control) and the top ten principal components. Finally, two-
thirds of the discovery dataset was randomly selected for use as the training dataset
and the remaining third was allocated to the internal validation dataset. This split
was carried out once, and the same training and validation sets were used in all
subsequent analyses.

A total of 113 samples were downloaded from the ENCODE database (https://
www.encodeproject.org/; see Supplementary Table 8). BMIQ was applied to these
samples after using minfi to extract beta values.

Statistical analyses. All statistical analyses were carried out in R 4.0.2 and all
significance testing was conducted two-sided. Areas under the curve of the receiver
operating characteristic (AUROCs) and corresponding 95% confidence intervals
were calculated using the pROC R package, version 1.18.0.

Classifier development. Contamination by immune cells presented a challenge
with respect to the identification of differentially methylated positions (DMPs) as
differential methylation that occurred solely in epithelial cells was diminished in
samples with high immune cell proportion and vice versa. In order to overcome
this, we linearly regressed the beta values on immune cell proportion for each CpG
site, the linear models being fitted to cases and controls separately. The intercept
points at immune cell proportion = 0 were used as estimates of mean beta values in
cases and controls in a pure epithelial cell population. The difference between these
intercept points provided a delta-beta estimate in epithelial cells. The difference
between intercept points at immune cell proportion = 1 provided immune cell
delta-beta estimates. A list of ranked CpGs was produced according to delta-beta
estimates in epithelial cells. Age was included as an additional variable when lin-
early regressing on immune cell proportion.

The R package glmnet, version 2.0-18, was used to train classifiers with a
mixing parameter value of alpha = 0 (ridge penalty) and alpha = 1 (lasso penalty)
with binomial response type. Data from the training dataset were used to fit the
classifiers. A ranked list of CpGs was generated by taking the CpG with the largest
epithelial delta-beta, followed by the CpG with the largest immune delta-beta,
followed by the next largest epithelial delta-beta and so forth (any duplicates were
removed). The top n CpGs from the list of ranked CpGs were used as inputs to the
classifier. Ten-fold cross-validation was used inside the training set by the
cv.glmnet function in order to determine the optimal value of the regularisation
parameter lambda. The AUC was used as a metric of classifier performance which
was evaluated on the internal validation dataset as a function of n, the number of
CpGs used as inputs during training. The maximum value of n was 30,000.

The optimal classifier was selected based on the highest AUC obtained in the
internal validation dataset. Once the optimal number of inputs was determined, the
training and internal validation datasets were combined and the classifier was
refitted using the entire discovery dataset with alpha and lambda fixed to their
optimal values. This finalised classifier was then applied to the external validation
dataset and the corresponding AUC was computed.

Denoting the top n CpGs as B, ... , B, and the regression coefficients from the
trained classifier as wy, ... ,w, then WID-BC-index = X"\, (w,;; — ) /0 where p
and o are defined as the mean and standard deviation of the quantity > w,f; in
the training dataset (that is, the index is scaled to have zero mean and unit standard
deviation in the training dataset).

The cv.glmnet function in the glmnet R function was used to compute an
estimate of the pseudo-R? (using the dev.ratio quantity). The Brier score was
computed using the brier.score function in the iterativeBMA R package,
version 1.42.

A calibration curve was generated using the val.prob function in the rms R
package, version 6.1-1 (Supplementary Note 1). The internal validation set was
used to recalibrate the index before computing the calibration curve corresponding
to the recalibrated index in the independent external validation dataset.
Recalibration was done by using the internal validation dataset to fit the following

logistic model Y = « + B * index, where Y = log(%) and p = 2o is the

Temdes
probability of being a case. The parameters a and B are termed the calibration
intercept and slope respectively. The index is rescaled by multiplying by the
calibration slope and then adding the calibration intercept as described by Van
Calster et al®>.

Development of the TCGA-BC-index. Illumina 450 K Array Methylation data
from primary tumours (n = 791) and normal tissue (n = 96) was downloaded
from TCGA using the TCGAbiolinks R package, version 2.16.4, extracting all
primary tumour and normal tissue samples in the TCGA-BRCA project [https://
portal.gdc.cancer.gov/projects/TCGA-BRCA] for which Illumina 450k Methylation
Data was available. The data were randomly split into a training and a testing set
(70—30%). The TCGA-BC-index was developed by identifying the top differen-
tially methylated CpGs and classifier development as outlined above. The final
TCGA-BC-index consisted of 31 CpGs and was assessed in the testing set as well as
the 3 C discovery and validation set.

Decomposition of index. We aimed to estimate how much variability across the
29,000 CpGs in the WID-BC-index could be attributed to epithelial cells or
immune cells. An example of a CpG with high variability in epithelial cells and low
variability in immune cells is given in Fig. 2c. For each CpG we applied the
following model. We assumed that the epithelial beta values follow a beta dis-
tribution Beta(f|a,, b,) with shape parameters a, > 0 and by > 0, and that immune
beta values followed Beta(f|a,, b;) with shape parameters a; > 0 and b; > 0. We
assumed that each sample is a combination of epithelial and immune cells and that
p; €[0,1] is the proportion of immune cells in sample i,i =1, ... ,N. The
quantities p; were obtained from the EpiDISH algorithm. The following log like-
lihood function (1) was numerically optimised with respect to a,, by, a,,b;:

1N
L(ag, by, ay,by) = _Ngll‘)g[(l = py)Beta(B;lag, by) + p;Beta(Bilay, b)) (1)

and the variance of the epithelial and immune beta distributions were used as
estimates of epithelial and immune variance. CpGs were classified as epithelial,
shared, or immune as shown in Fig. 2g. This resulted in the following decom-
position formula of the index (2):

WID-BC-index= ¥ WPTH, v mBizH, o

wib; —u
iel, o i€l O iel 4

@

epithelial immune

where the coefficients w; and the quantities u and o are the same as defined above.

Definition of PR-BS CpGs. Progesterone receptor binding site (PR-BS) CpGs were
defined based on published progesterone receptor ChIP-Seq datasets identified as high
quality from the Cistrome Database3%37. Filtered progesterone binding site (GSE40724
[https://www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE40724])37 or raw data
(GSE68355 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68355])3¢ were
accessed from GEO using the GEOquery R package, version 2.58.0. Raw data were
preprocessed to filter for fold change enrichment >10 and FDR < 5% (using the
“fold_enrichment” and “FDR (%)” variables in the raw data files), and consensus
binding sites were defined as occurring in two out of three replicates. CpGs in these
ChIP-Seq peaks were identified using the Illumina EPIC array Probe manifest. PR-BS
CpGs were defined as CpGs detected in both PR ChIP-Seq datasets (n = 19,258).

Analysis of PR-BS CpGs in breast and cervical samples. For each of the 19,258
PR-BS CpGs we defined AP as the difference in mean beta value between breast
cancer cases and controls (in cervical tissue) and normal-adjacent and normal
tissue (in breast tissue). We then counted the number of observed CpGs with A < -
0.02 in both breast and cervical datasets (2,623 in total) and similarly the number
with AP>0.02 in both datasets (31 in total). The threshold of 0.02 was prespecified
based on typical observed differences in cervical samples, although the main focus
of this analysis was to assess the common directionality of methylation in cervical
samples and breast tissue rather than compare absolute methylation differences. To
test whether we observed significantly more overlapping CpGs than expected, a
contingency table of PR-BS CpGs either hypo- (defined as AP < —0.02) or hyper-
methylated (defined as AP > 0.02) in one or both datasets was created and p-values
were generated using the Chi-Squared test. The expected proportion of overlapping
CpGs was calculated as the proportion of PR-BS CpGs hypomethylated in cervical
samples multiplied by the proportion of PR-BS CpGs hypomethylated in breast
samples. The same approach was applied to hypermethylated PR-BS CpGs.

We calculated the mean beta values of the 2,623 overlapping hypomethylated
CpGs in 14 normal breast tissue samples from healthy controls and 14 BRCA
mutation carriers. Statistical analysis was carried out using Wilcoxon tests (paired
for before-after comparison). Figure 6e was created with BioRender.

Methylation quantitative loci analysis. mQTL data was obtained from the
supplementary information of a recent publication by Ho et al.>2. The 822 probes
at loci associated with breast cancer risk were extracted and those present in the
WID-BC-index (n = 78) were removed from the WID-BC-index for assessment of
their influence on the performance.

SNP genotyping, QC and imputation. In total, 318 breast cancer case subjects and
850 controls from the discovery set (Table 1) were taken forward for genotyping
using an Illumina 650k Infinjum Global Screening Array (GSA). Whole blood
DNA was normalised to 75 ng/uL and a total of 300 ng applied to the Infinium
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Global Screening Array - 24 V2 (Illumina, CA, USA) at UCL Genomics according
to the manufacturer’s standard protocol.

One control subject from this cohort failed to genotype. Genotype calling was
performed using GenomeStudio, with genetic variants found to be clustering
poorly being removed from further analyses. For duplicate genetic variant pairs, the
variant within each pair with the lowest calling and clustering score was excluded.
Autosomal SNPs were used in subsequent QC and PRS analyses (except for checks
for sex mismatches, where the X chromosome was used to infer sex).

General subject and single nucleotide polymorphism (SNP) quality control
(QC) was performed using PLINK version 1.9%6. Three breast cancer cases and
eight controls with a call rate less than 95% were excluded. One breast cancer case
and three controls were further removed due to genetically inferred sex not being
female. Genetic variants with a missing genotype rate greater than 5%, minor allele
frequency (MAF) less than 1% or a significant departure from Hardy-Weinberg
equilibrium (p value < 5 x1076) were excluded.

KING?, a relatedness inference algorithm, was used to identify duplicate/
monozygotic twin or first-degree relative pairs. One control subject pair was
identified as being a duplicate/monozygotic twin pair, and nine control pairs were
inferred to be first-degree relatives. The subject within each related pair with the
lowest call rate was excluded. After performing QC, 314 breast cancer case subjects,
816 controls and 479,105 variants were retained in the SNP discovery sample.

Non-European subjects were identified by plotting the top two principal
components, generated using GCTA version 1.26.0, for the SNP discovery samples
and 270 HapMap phase II release 23 samples (CEU, YRI, JPT and CHB
individuals) downloaded in PLINK-formatted binary files from http://
zzz.bwh harvard.edu/plink/res.shtml. Subjects found not to cluster around
HapMap European samples were excluded from further analyses. After excluding
non-European subjects, 305 breast cancer cases and 754 controls were retained in
the SNP discovery sample.

Using the Michigan Imputation Server*® and 1000 Genomes Phase 3 reference
panel, the SNP discovery dataset went through further QC before being phased
(Eagle2) and imputed. Variants where strand, allele, genetic position, or allele
frequencies were not concordant with the 1000 Genomes Phase 3 reference panel
were removed before phasing and imputation using Strand Tools.

After imputation, exclusion of variants with imputation R? < 0.5 and removal of
variants observed to have three or more alleles, 303 of the 313 SNPs used by
Mavaddat et al.3! to develop a 313 SNP breast cancer polygenic risk score (PRS)
were successfully imputed. We constructed a breast cancer PRS for each subject in
the discovery set, such that the PRS is equal to (3):

303

PRS; = El Bixi (3)
where, B,‘ is the log odds ratio for the i-th SNP taken from publicly available
Oncoarray summary association results*® (combined Oncoarray, iCOGs and
BCAC overall breast cancer beta values) and x;; is the number of copies of the effect
allele present in each discovery set subject subjected to genotyping. Scores were
generated using PLINK version 1.9.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Previously published data were accessed from ENCODE (accession codes listed in
Supplementary Table 3), GEO (GSE40724) and GSE68355), and TCGA (TCGA-BRCA
project [https://portal.gdc.cancer.gov/projects/TCGA-BRCA]). Raw DNAme and SNP data
generated in this study have been deposited in the European Genome-phenome Archive
(EGA) database under the study accession codes EGAS00001005055 (breast cancer cervical
and buccal methylation methylation and PRS SNP data), EGAS00001005070 (breast tissue
methylation), EGAS00001005045 (ovarian cancer cervical methylation), EGAS00001005033
(endometrial cancer cervical methylation data), and EGAS00001005626 (matched
methylation data from cervical, buccal, and blood samples from controls and BRCA1/2
mutation carriers). The raw data are available under restricted access due to patient
confidentiality and privacy laws. Access can be obtained by formal application to the
relevant Data Access Committee via EGA and signing of a Data Access Agreement. Source
data for this paper are provided under https://github.com/chiaraherzog/WID-BC-source-
data or available alongside this manuscript. Source data are provided with this paper.

Code availability

The code to calculate the WID-BC-index is available as an R package under Github
repository https://github.com/chiaraherzog/WID.BC. Use of this code is permitted for
research use only.
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