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 

Abstract— A systematic review of the literature on statistical 

and machine learning schemes for identifying symptoms of 

developmental stuttering from audio recordings is 

reported. Twenty-seven papers met the quality standards 

that were set. Comparison of results across studies was not 

possible because training and testing data, model 

architecture and feature inputs varied across studies. The 

limitations that were identified for comparison across 

studies included: no indication of application for the work, 

data were selected for training and testing models in ways 

that could lead to biases, studies used different datasets and 

attempted to locate different symptom types, feature inputs 

were reported in different ways and there was no standard 

way of reporting performance statistics. Recommendations 

were made about how these problems can be addressed in 

future work on this topic.   

 
Index Terms— developmental stuttering, automatic speech 

recognition, machine learning, Vapnik–Chervonenkis dimension, 

language diversity. 

 

I. INTRODUCTION 

    Conservative estimates suggest that at least 5% of the 

population will be affected by developmental stuttering at some 

point in their life [1]. Many of the cases begin in childhood but 

approximately 80% of these recover by teenage. Whilst speech 

has to be affected during childhood for stuttering to be 

diagnosed, some adults who stuttered in early life no longer 

have speech symptoms but continue to report anxiety (covert 

stuttering). Automatic speech recognition (ASR) and machine 

learning (ML) procedures applied to the speech of people who 

stutter (PWS) could detect incidence of speech and anxiety for 

clinical and other purposes. They could provide objective and 

reliable biomarkers for PWS, healthcare professionals and 

researchers about status of stuttering at a given time or changes 

that occur over time (whether these happen spontaneously or as 

a result of interventions). The procedures would permit 

extensive screening for the speech symptoms indicative of 

stuttering for all children starting school [2][3], thereby 

allowing early referral of suspected cases of stuttering for 
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speech therapy [4][5]. At present, prosthetic devices that 

improve the fluency of PWS make continuous changes to 

speech. Work on stuttering has called for biofeedback systems 

to be delivered just at moments of stuttering [6][7], and we 

suggest that biofeedback could be controlled by an ASR 

procedure that detects stuttering. Such targeted feedback would 

make the alterations delivered unobtrusive and could 

potentially lead to sustained improvements in fluency [8]. 

Availability of ASR schemes that address stuttering could make 

online platforms designed to recognize fluent speech more 

accessible to PWS. 

    Studies into auto-detection of stuttering began in 1995 [9]. 

Subsequently, a significant stimulus was the provision of 

freely-accessible online audio data with transcriptions and 

associated software [10]. A significant number of articles have 

published details of ASR and ML schemes for recognizing 

stuttering from audio recordings to warrant a systematic review. 

This systematic review focuses symptoms that affect single 

words/syllables rather than those that affect supralexical 

language units [11]. Supralexical dysfluencies were excluded 

as they are not currently regarded as discrete symptoms of 

stuttering [1][12]. ASR procedures have included video, as well 

as audio records [13][14]. Studies using video data were 

excluded in this review because required performance statistics 

were not reported and ethics and data protection procedures do 

not allow use of video recordings in some countries.  

    The systematic review was conducted according to the 

Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) recommendations [15] and the Meta-

Analysis Reporting Standards [16]. A full review of the ML 

methods generally is beyond the scope of the current article, see 

[17] for full description. As such, it is assumed that readers have 

appropriate background in machine learning as a full review of 

the ML methods is beyond the scope of the current article. 

    In this systematic review, searches were made for studies on 

automatic detection of stutters that used either statistical or ML 

approaches applied to speech data from PWS. Intentions were 

to determine best practice for preparing data, document the 

range of approaches adopted and their performance estimates 

(accuracy). Recommendations for reporting studies are made 

that will allow results to be replicated and to permit 

performance to be compared across studies 
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II. METHODS 

    Methods of data extraction, screening and analysis were 

published in advance, and research questions were formulated 

before the data extraction for systematic review began [15][16]. 

The project plan, search terms, exclusion criteria, search results 

and exclusion decisions were published on the Open Science 

Framework [18]. The meta-data from articles selected were 

used to examine the types and sources of available models and 

to index the performance of different modeling approaches. 

Key concepts were identified and generic limitations in the 

studies were noted. Essential next steps that were absent in the 

current evidence-base were documented.  

2.1. Search strategy  

    Medline, Springer, EMBASE, ISI Web of 

Knowledge/Science and the Institute of Electrical and 

Electronics Engineers (IEEE) databases were searched for 

scientific peer-reviewed journal articles, pre-prints, chapters, 

and conference papers.  Reviews and letters to editors were 

excluded. Google Scholar, GitHub, OpenGrey and OpenDOAR 

databases were also searched to allow unpublished work to be 

included. OpenGrey and OpenDOAR also identified ‘Gray 

literature’ [19].  

    Search terms used for examining the title and abstract of 

articles returned from the databases were: “machine OR deep 

learning” AND “stutter* OR stammer* OR *fluencies” AND 

“speech”; “classification OR detection OR recognition” AND 

“stutter* OR stammer* OR *fluencies” AND “speech”. The 

wildcards in “stutter*” and “stammer*” allowed for “-ing” or “-

er” endings. and the one in “*fluencies” allowed “dys-” and 

“dis” spellings to be returned. 

    The search term "UCLASS" (University College London 

Archive of Stuttered Speech) was included when the entire text 

of articles was examined [20]. UCLASS was the only publicly 

available archive of stuttered speech which has stutters 

transcribed and aligned against the audio signal as required 

when training models at the time the review was conducted1. 

2.2. Study selection 

    The search results were automatically screened for duplicates 

and a two-stage manual screening was undertaken: (1) 

Title/Abstract; and (2) Full text. J.H. and L.B. (the primary 

reviewers) independently screened all papers using the 

eligibility criteria for Title/Abstract screening given below. 

Disagreements were resolved by the third author (secondary 

reviewer) who was blind to the primary reviewers' decisions. 

    The full PICOS search strategy was as follows:  

P Population was people who stutter. 

I Intervention was the statistical or ML models used to 

automatically classify stuttered and fluent speech. 

C The Comparisons of interest were the speech features, 

the dataset size and the type of model used for 

classifying stuttered speech.  

 
1 There are three additional databases for stuttered speech that future 

research could use: FluencyBank [21], Sep-28k [22] and LibriStutter [23]. 

FluencyBank was not included as a search term as, this open-access database 
does not have transcriptions timestamps that locate stutters. Thus, researchers 

would need to perform transcriptions themselves. Sep-28k was not included as 

O Outcome was model performance. Various metrics 

were reported including accuracy, precision, recall and 

Area Under the Curve (AUC). Studies had to report at 

least one of these metrics for the model to be 

forwarded to the next stage of the review. 

S The Study (model) design was supervised machine 

learning models classifying stuttered speech from the 

audio signal. 

    The inclusion criteria applied to titles and abstracts of all 

publications identified were that: (1) a form of automatic 

learning model was used; (2) the model was trained on a dataset 

of speech from PWS; (3) Journal articles, chapters, conference 

papers and pre-prints were considered; (4) Studies were 

published up to May 2nd, 2021. No restrictions were placed on 

the language that the article was written in nor the language for 

the speech data itself. The exclusion criteria at this stage were: 

(1) The study was not peer-reviewed; (2) The study used non-

human data (e.g. synthetic speech); (3) The study did not report 

results for a statistical or machine learning model; (4) The 

model was not built on, nor worked with, speech data from 

PWS; (4) The model did not address recognition of stuttered 

speech; (5) Models only used speech data from people who did 

not stutter. There were no constraints on the speech features 

used by the models. 

    Articles that passed the title/abstract review then underwent 

full-text screening. As well as meeting the previous criteria, 

studies had to comply with the following inclusion criteria: (1) 

Only supervised-learning models were considered; (2) Models 

had to provide the sample size of the training and test data sets. 

However, no constraints were set on the size of the sample nor 

its reported type (these varied in terms of length of recordings 

used, and the number of observations for stuttered versus fluent 

events). Studies were excluded if: (1) they were about 

neurogenic stuttering; (2) training and test datasets were not 

independent; (3) No “accuracy” metric was reported; (4) 

Sample size was not specified. 

    References in the selected paper were examined for any 

qualifying papers that had been missed during search-term 

screening. Twelve additional studies were identified at this 

stage. These were evaluated according to the two-stage 

screening procedure (title/abstract and full text review).  

2.3. Data extraction 

    Full-text data were extracted from articles that passed 

title/abstract screening. These data reported accuracy and 

classification outcomes; type of signal pre-processing and 

feature extraction; model architecture, model training protocol, 

dataset size, participant demographics, dataset splits between 

training and test data, validation procedures applied. The 

following meta-data were also recorded on the data extraction 

form; full reference, country where the study was conducted, 

type of publication (journal article, conference proceeding or 

it was released after this study commenced. LibriStutter was not used as, the 

stutters are simulated whereas, in the studies reviewed, the models classify 

actual stuttering from PWS. See section “5.1. Transparency about data used” 
for a discussion about the importance of stuttering definitions. 
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book chapter) and first author’s affiliation. The full data 

extraction form is available at https://osf.io/ctzjk/.  

    When studies reported on more than one model, all data from 

the models were extracted but only the one with best 

performance was included in the quantitative analysis. For 

studies that reported outcome accuracies for separate stutter 

types (e.g., repetitions, prolongations, blocks), specific inputs 

to the model, model types and dataset size were extracted 

separately. 

    If data were missing from any papers, a request was made to 

authors to provide the missing data. If the requested data were 

not received, the paper was excluded as it lacked at least one 

inclusion criterion. The full-text data extracted independently 

by the first and second authors were compared and any residual 

disagreements were resolved by the secondary reviewer (third 

author).  

2.4. Data extraction procedure 

    Data extraction was performed on Covidence 

(https://www.covidence.org) using a customized template. 

Author J. H. rechecked the final data form and completed 

consensus checks (i.e., rechecked the most appropriate 

response). Data quality was not formally assessed [24][25]. 

III. RESULTS 

4.1. Resultant dataset 

    Of the 1,372 results returned using the original search terms, 

443 were duplicates leaving 929 papers to consider (Figure 1). 

The databases from which the papers were retrieved are 

indicated on the left of Figure 1. The two primary reviewers 

disagreed about 42 papers at the title/abstract stage. These were 

passed on to the secondary reviewer, who made final decisions. 

After title/abstract screening, 58 papers passed the inclusion 

criteria and were forwarded for full-text review. Kappa, a 

measure of inter-rater reliability, for the primary reviewers at 

this stage was 0.65, which is considered “substantial” [26].  

    The 58 selected papers were subjected to full text review. The 

primary reviewers disagreed about seven papers. Altogether, 31 

paper were excluded. The inter-rater reliability between the 

primary reviewers at this stage (k = 0.76) was “substantial” 

[26]. The 27 papers that passed both review stages were 

included in the systematic review. Figure 2 summarizes the data 

selection and extraction procedure, shows points at which 

exclusions arose and the number of papers involved at these 

points. Table 1 provides details about each of the 27 papers 

including in-text citation, publication type, date of publication 

etc. 

4.2. Sources of evidence 

Table 1 gives a breakdown of data from the 27 studies. 

Thirteen of the studies that passed review, were peer-reviewed 

journal articles and book chapters, 12 were from conferences or 

proceedings and two were from ‘Gray Literature’ sources (7%). 

In Table 1 and the text, the 27 studies are indicated by Sn where 

n = 1 to 27 for ease of referral. There was a clear increase in 

published models over the 26-year period beginning with S1. 

Papers published in the last five, and ten, years were 9 (33%) 

and 19 (70%) respectively. Most studies were conducted in 

India (9), followed by Malaysia (6) and Poland (5). Languages 

used in samples were English (19 studiesS1, S2, S5-7, S9-16, S18, S20, 

S24-27), Polish (5 studiesS3, S4, S8, S17, S19), Hindi (one studyS21), 

English and Hindi (one studyS22) and one studyS23 did not state 

explicitly what language was used. 

4.3. Sample details 

    Fourteen studiesS6, S9-16, S18, S20, S24, S25, S27 employed the 

publicly-available UCLASS dataset exclusively and another 

oneS22 from the All India Institute of Speech and Hearing, 

AIISH, used a private dataset and UCLASS (56% overall used 

UCLASS). One study S26 used two other publicly available 

datasets (FluencyBank) and the recently released SEP-28 data 

set. Eleven studiesS1-5, S7, S8, S17, S19, S21, S23 used data that the 

researchers collected themselves. Use of private data sets alone 

prohibits comparison across models, and publicly-available 

datasets need to document reliability and validity of procedures 

used to label stuttering events. Upper and lower ages of the 

speakers were reported in 18 studiesS6, S8-15, S17-24, S27, three 

studiesS1, S2, S7 referred to participants as ‘Adults’ or ‘Children’, 

five studiesS3, S4, S16, S25, S26 did not report age and one studyS5 

only reported mean age of the entire cohort. 

    All the studies reported the amount of speech data that was 

used to build the models. However, there was no consensus 

about how speech-sample size was reported for ASR of 

stuttered speech. Here the studies were classified into four 

descriptors of data size (Figure 3): S - number of speech 

samples, O - number of observations, C - number of recordings, 

and L - length of recordings. Note that the number of recordings 

and/or the length of the recordings provide no information 

about the actual number of stuttered events that the model was 

given. Consequently, the model’s accuracy cannot be weighted 

by the amount of data the model was trained on. Number of 

speech samples provides a better indication in this respect since 

the frequency of each class along with its accuracy can be 

reported. For example, S21 provided the model with 28 fluent 

and 50 dysfluent samples of speech. Even so, this is not fully 

informative because what were actually provided as inputs to 

the model were features extracted from these samples, such as 

Mel-frequency cepstral coefficients, MFCCs. Although the 

window length (25 ms) and step size (10 ms) for feature 

extraction are providedS21, the feature calculation and the results 

derived depend on multiple factors such as the computational 

methods (e.g., padding, smoothing) and the programing 

environment (e.g., Python/MATLAB/R libraries). Hence, it is 

not clear what the actual number of data observations that were 

input to the model was. 

https://osf.io/ctzjk/
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Fig. 1.  PRISMA flow diagram of databases queried (EMBASE, MEDLINER, IEEE, Web of Science and Springer), the total results (1,372) and unique results (929) retrieved from the systematic search. The pie charts at right, 
show the split by database (original at top and after title/abstract screening at the bottom).  
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Fig. 2.  PRISMA flow diagram of the systematic review process from initial search results from the databases as well as results from in-text reference searching, to screening processes at the Title and Abstract and Full-text 
stages through to the resultant dataset yielded by the systematic process (N = 27).  
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Table 1. Model- and Meta-data for all papers included in systematic review in chronological order. 
 

ID1 Source2 Classification 

Outcomes3 

Sample size4 Features5 Model Design6 Accuracy % 

S1 Howell & Sackin, 
1995 [9] 

C/P R, P & O L: 2-min 20 Auto-correlation coefficients, 19 vocoder coefficients & the signal envelope ANN 82 

S2 Howell et al., 1995 

[27] 

PJ R, P, F & DF C: 12 32 features including whole word and part word duration, number of energy 

peaks, mean duration and SD 

ANN 92 

S3 Czyzewski et al., 

2003 [28] 

PJ SG, P, R & F S: 104  Cepstral coefficients, amplitude, frequency from F0-F3 Rough Set & Neural 

Network 

Rough set (SG 91.67, P 97.22, R 

96.67) 

S4 Wisniewski et al., 

2007 [29] 

PB P & R S: 24 20 MFCCs & a distance metric based of these coefficients HMM 70 

S5 Ravikumar et al., 

2008 [30] 

G F & DF S: 251F, 67DF 12 MFCCs ANN 83 

S6 Chee et al., 2009 

[31] 

C/P P & R S: 110 MFCCs kNN, LDA kNN & LDA 90.91 

S7 Ravikumar et al., 

2009 [32] 

G F & DF S: 251F, 67DF 12 MFCCs ANN, SVM SVM 98.3 

S8 Swietlicka et al., 

2009 [33] 

PB F & DF S: 59F, 59DF Winning Neuron of the Self-Organizing Map at each time step ANN (MLP, RBF) MLP 92 

S9 Pálfy, 2011 [34] C/P R & F S: 16F, 40DF 22 MFCCs SVM SVM 98 

S10 Pálfy & Pospíchal, 

2011 [35] 

C/P R & F S: 16F, 40DF 22 MFCCs SVM, ANN (Elman, 

MLP) 

ANN-MLP 96.02, 

SVM with sigmoid kernel 99.05 

S11 Ai et al., 2012 [36] PJ P & R C: 39 21 LPCCs,  

25 MFCCs 

kNN, LDA kNN 92.75 

S12 Hariharan et al., 

2012a [37] 

C/P P & R C: 39 Entropy LS-SVM SVM 96.96 

S13 Hariharan et al., 
2012b [38] 

PJ P & R C: 39 LPC, LPCC and WLPCC kNN, LDA kNN 98.24 

S14 Fook et al., 2013 

[39] 

PJ P & R S: 171 MFCC, LPC, LPCC, wMPCC & PLP kNN, LDA, SVM SVM 96.20 

S15 Hariharan et al., 

2013 [40] 

PJ P & R S: 171 DWT decomposition & Sample entropy kNN, LDA, SVM SVM 96.37 

S16 Pálfy & Pospíchal, 

2013 [41] 

C/P P-Rep & F C: 12 MFCCs, short-time energy, SAX SVM 97.6 

S17 Swietlicka et al., 
2013 [42] 

PJ Bl, S-Rep & P S: 153F, 
153DF 

Winning Neuron of the Self-Organizing Map at each time step ANN (MLP) Bl 96  
S-Rep 84 

P 99 
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S18 Mahesha et al., 
2015 [43] 

PJ S-Rep, WW-
Rep & P 

S: 200 39 features: 12 MFCCs, Energy, and their 1st and 2nd derivatives GMM, GMM-SVM GMM-SVM 98.24 

S19 Kobus et al., 2016 

[44] 

C/P S-Rep & F S: 145F, 

117DF 

15 LPCs, Formants (not specified) Average k-means 

distance 

89 

S20 Mahesha & Vinod 

2016 [45] 

PJ S-Rep, WW-

Rep, I & P 

S: 200 12 MFCCs, 12 delta-MFCCs, 12 delta-delta-MFCCs & Average spectral 

energy 

GMM 96.43 

S21 Savin et al., 2016 

[46] 

C/P R, P & F S: 28F, 50DF 13 MFCCs, F0 and 3 Formants (F1, F2, F3), Maximum, Minimum, Mean & 

Variance of pitch, ZCR and Energy 

ANN 88.29 

S22 Mahesha & Vinod 
2017 [47] 

C/P R, P & I S: 750 39 LH-MFCCs GMM 94.98 

S23 Manjula et al., 

2019 [48] 

C/P R, P & Bl S: 92 MFCC AOANN R 92, P 94, Bl 92 

S24 Gupta et al., 2020 

[49] 

PJ F, P, S-Rep, 

WW-Rep & 
P_Rep 

C: 20 14 WMFCCs (fusion of MFCC, delta and delta-delta) ANN (Bi-LTSM) 96.67 

S25 Kourkounakis et 

al., 2020 [50] 

C/P S-Rep, WW-

Rep, P-Rep, 

Rev, I & P 

S: 800 Spectrograms ANN (Bi-LSTM) 91.15 

S26 Lea et al., 2021 
[22] 

C/P Bl, P, S-Rep, 
Phrase-Rep & I 

O: 32321 40 MFCCs, pitch, delta-pitch, voicing-features, 8 articulatory features of vocal 
tract constriction variables & 41 phoneme probabilities 

ANN (LSTM) 83.6 

S27 Mishra et al., 2021 

[51] 

PJ F & DF O: 17545 39 MFCCs, Root Mean Square ANN 86.67 

Column content and abbreviations as follows: 1) Study ID with numbers, Sn, where n = 1 to 27 in chronological order, along with the study’s text and number citation. 2) Reference type, C/P = Conference/Proceeding, PJ = 

Peer-reviewed journal, PB = Peer-reviewed book chapter, G = Gray literature. 3) Symptoms recognized, R = Repetition (length unspecified), P = Prolongation, O = Other (undefined), F = Fluent, DF = Dysfluent, SG = Stop 

Gaps, P-Rep = Phrase repetition, S-Rep = Syllable Repetition, PW-Rep = Part-Word Repetition, WW-Rep = Whole Word Repetition, I = Interjection, Bl = Block, Rev = Revision. 4) Sample size, L = Length of recordings, C 
= Number of recordings, S = Number of speech samples (F = Fluent, DF = Dysfluent), O = Number of observations. 5) Features extracted, MFCC = Mel-Frequency Cepstral Coefficient, WMFCC = Weighted MFCC, LH-

MFCC = Linear Prediction-Hilbert transform based MFCC, LPC = Linear Prediction Coefficient, LPCC = Linear Prediction Cepstral Co-efficient, F0 = Fundamental Frequency, Fn = Formant Frequency (value of n indicates 

which formant/s), PLP = Perceptual Linear Predictions, DWT = discrete wavelet transform 6) Model type, ANN = Artificial Neural Network, AOANN = Adaptive Optimization based Artificial Neural Network, LSTM = long 
short-term memory, MLP = multi-layer Perceptron, SVM = support vector machine, HMM = Hidden Markov Model, GMM = Gaussian Mixture Model, k-NN = k-Nearest Neighbor, LDA = Linear Discriminant Analysis, 

SAX = Symbolic Aggregate Approximation, RBF = Radial-basis Function. 
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Fig. 3.  Depiction of different ways or reporting sample size categories. Row 
one specifies three speech recordings from UCLASS. Each file contains 

continuous speech from one PWS and the length of these files varies. Row two 

gives the entire waveform of one speech recording (length specified in 

seconds). Note that the recording-length unit can vary between studies. Row 

three shows a 7-second audio snippet, containing three labelled speech samples: 

whole-word repetition (WW-Rep), block (Bl), and fluent speech (F). 
Depending on the segmentation and annotation procedure, length of the speech 

samples varied within, and between, studies. Row four summarizes a 2x11208 

speech feature matrix that could be extracted from the 248-s sample in column 
two. The number in the first column is the frame number (0 – 11207) and rows 

two and three give values of two MFCC coefficients for that frame. The size of 

such matrices depends not only on how many features were computed and the 
length of the speech sample (248s), but also the frame size (25ms) and step size 

(10ms) used during feature extraction, and whether silence was removed from 

the speech recording. 

 

    Of the 27 studies, 18 gave the number of speech samples used 

to train their models, and eight studiesS5, S7-10, S17, S19, S21 indicated 

the number of fluent samples (e.g., S3 reported 104 samples 

overall whereas S5 gave the number of fluent and dysfluent 

samples as 251 and 67 respectively). On average, the studies 

had 179 dysfluent samples (SD = 224, N = 18), irrespective of 

dysfluency type (repetition, prolongation, block etc.). Of those 

reporting the differences between dysfluent/fluent speech, the 

average number of samples was 188 (SD = 122, N = 8) with 74 

(SD = 40, N = 8) dysfluent and 115 (SD = 100, N = 8) fluent 

samples. Only two recent studiesS26, S27 gave the number of 

observations, i.e., the actual length of data matrix for model 

building. However, S26 and S27 did not give a breakdown of 

the observations per classification outcome, therefore it is 

unclear exactly how many fluent and dysfluent samples were 

used to train their models. For the remaining seven studies, 

sixS2, S11-13, S16, S24 reported the number of recordings and oneS1 

gave the length of recording. Full details of sample size in each 

study are summarized in the project’s online deposit 

(https://osf.io/ctzjk/). 

    Note there were also marked differences within each reported 

data type. For example, S3 and S6 had roughly the same number 

of samples (104 and 110, respectively), but it was not clear how 

many actual datapoints or observations each sample contained, 

which prevented comparison. On the other hand, studies S26 

and S27, that used number of observations, had a better standard 

of reporting as they made the length of the data matrix clear, 

allowing the study to be replicated. Seven studiesS1, S2, S11-13, S16, 

S24, only reported the number, or length, of speech recordings. 

    Although it is difficult to gauge the effect of dataset size from 

cross-study comparisons, one studyS26 varied the amount of 

data input to the model and reported the effects on accuracy. 

S26 trained four Convolution Long Short-Term Memory, 

LSTM, on 5,000, 10,000, 20,000 and 28,000 observations. A 

clear increase in F1 score (the harmonic mean of the precision 

and recall of the model) on the test set was reported as the 

number of observations increased (F15k = 71.7; F110k = 72.2; 

F120k = 73.4; F128k = 75.8). This not only indicated that 

performance continued to increase with training set size but also 

that the models had not reached their maximum performance. 

4.4. Machine leaning models 

    StudiesS3, S6, S7, S10, S11, S13-15, S18 reported more than one model 

design. The most popular model design was artificial neural 

network (ANN), which was used to classify stuttered speech in 

13 studiesS1-2, S3, S5, S8, S10, S17, S21, S23-27. Architectures used 

included Multi-layer perceptron (three studiesS8, S10, S17) and 

LSTM (three studiesS24-26). 

    Support vector machines (SVMs) were used in eight 

studiesS7, S9-10, S12, S14, S15-16, S18, k-Nearest Neighbors, (k-NN) 

were used in five studiesS6, S11, S13-15 Linear Discriminant 

Analysis (LDA) was used in five studiesS6, S11, S13-15 and 

Gaussian Mixture Models (GMM) were used in three studiesS18, 

S20, S22. Models that were used in single studies included a 

Hidden Markov ModelS4, a k-Means Distance modelS19 and, a 

Rough Set modelS3. 

    Considering the differences in accuracy with respect to ML 

model design where there is more than one study, on average 

SVMs performed best with an average accuracy of 97.63% (SD 

= 0.9736; N = 8S7, S9-10, S12, S14, S15-16, S18). K-Nearest Neighbor 

models performed poorer on average with an accuracy of 

93.12% (SD = 4.055; N = 5S6, S11, S13-15), Linear Discriminant 

Analysis models had an average accuracy of 92.15% (SD = 

3.387; N = 5S6, S11, S13-15) and Gaussian Mixture Models 

performed on average at 95.07% (SD = 1.321, N = 3S18, S20, S22). 

Artificial Neural Networks had an accuracy of 89.12% (SD = 

6.032; N = 13S1-2, S3, S5, S8, S10, S17, S21, S23-27).  

    Considering the lesser studied models with only one 

publication per model; k-Mean Distance Modelling had an 

accuracy of 89.00%S19, Rough Set Modelling reported 84.63% 

accuracyS3 and a Hidden Markov Model had 70% accuracyS4. 

    It may be surprising that on average Neural Networks 

perform so poorly compared to other types of ML models given 

that of the nine papers published since 2016, six used a form of 

neural network to model stuttering S21, S23-27. This is not due to 

earlier studies that used ANNs pulling the average performance 

down since, when only the most recent neural net studies were 

considered, the average accuracy remained almost the same 

(89.84%, SD = 4.642; N = 6 S21, S23-27). However, the aims of the 

ML model must also be considered. Looking at two ML models 

of the same design that were trained on the same data, oneS27 

attempted to classify dysfluent versus fluent speech from the 

https://osf.io/ctzjk/
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audio signal whereas the otherS21 attempted to classify two 

different types of dysfluent speech as well as fluent speech (e.g., 

prolongation vs. repetition vs. fluent Speech). Since an 

extended number of outcomes was considered in the second 

model, its task-complexity was greater. This arises because the 

two models were set different tasks, despite the design, dataset 

and all other aspects being equivalent, it cannot be said that one 

is better than the other. It is necessary to consider how accuracy 

changes as a function of the various outcomes the models are 

tasked to identify. The field currently does not have an agreed 

baseline whose metrics could be used to determine whether 

performance of new models improves significantly.  

    Furthermore, the models all varied on the feature inputs 

supplied to the models. Some modelsS12, S15 were trained on 

temporal features of the audio signal, othersS5-7 were trained on 

spectral features and others stillS20, S24 used meta-features such 

as delta-derivatives of the spectral features. Since performance 

depends on both model architecture and the feature inputs, their 

impacts cannot be separated. Indeed, in some instances the 

actual architecture of a model may vary as a function of the 

input features. For instance, the number of hyper-planes of an 

SVM model depends on the number of datapoints (features) in 

an observation.  

4.5. Outcome classes 

    Table 1 (column labeled ‘Classification Outcomes’) shows 

that types of stutters identified varied. Out of the 27 studies, 

sevenS4, S6, S11-15 classified prolongations and repetitions, fourS5, 

S7, S8, S27 classified fluent and dysfluent speech, fourS9, S10, S16, S19 

classified repetitions and fluent speech. The remaining 14 

studies all defined different outcome classes.  

    As discussed in the introduction, the symptoms considered as 

stutters at supralexical levels are not universally agreed to be 

stutters. This also applies at the word/syllable level, where some 

researchers included whole-word (WW) repetitions as a 

symptom of stuttering [12] whilst others argue that they are a 

typical dysfluency that occurs in the speech of both PWS and 

fluent speakers [52]. Given the disagreement about whether 

WW repetitions are or are not stutters, more consideration about 

what symptoms ASR and ML models recognize is warranted. 

Twenty-two studiesS1-4, S6, S9-26 explicitly stated that they 

attempted to classify repetitions from the audio signal, with 

variation across studies in what was considered ‘repetition’ 

(syllable/sound, whole word or phrase repetition as summarized 

in Table 2). Fifteen studiesS1-4, S6, S9-15, S21-S23 simply referred to 

‘repetition’ with no indication about the criteria applied for 

classifying repetitions. Of the seven remaining studies, S17 and 

S19 considered only syllable or ‘sound’ repetitions; S16 

classified phrase repetitions alone; S18 and S20 classified both 

syllable/sound-repetitions as well as WW repetitions; S26 

defined both sound/syllable and phrase repetition for use in the 

model; S24 and S25 defined and classified all three forms of 

repetition (syllable/sound-, WW- and phrase-repetitions). Some 

studies simply addressed ‘dysfluency’ as a class which could 

include some or all forms of repetition. 

 

 

   

 

Table 2. Studies which have included repetition in their classification scheme 
split by type/s of repetition. 

 

ID1 Syllable 
Whole 

word 
Phrase General 

S1[9]    X 

S2[27]    X 

S3[28]    X 

S4[29]    X 

S6[31]    X 

S9[34]    X 

S10[35]    X 

S11[36]    X 

S12[37]    X 

S13[38]    X 

S14[39]    X 

S15[40]    X 

S16[41]   X  

S17[42] X    

S18[43] X X   

S19[44] X    

S20[45] X X   

S21[46]    X 

S22[47]    X 

S23[48    X 

S24[49] X X X  

S25[50] X X X  

S26[22] X  X  

1Study ID with numbers, Sn, where n = 1 to 27 in chronological order, along 

with the study’s number citation. 
 

    When studies used different numbers of all symptom 

outcome classes, performance was relatively unaffected (Table 

3). Hence, the number of classes does not seem to degrade the 

performance of ML models for classifying dysfluent speech in 

PWS. 

 
Table 3. Studies split by the number of classes of speech given to the model, 

the number of studies, the average accuracy and the standard deviation are 

given in columns 1-4. 
 

Number of 

Classes 

Number of 

Studies 

Average 

Accuracy (%) 

Standard 

Deviation 

2 15 92.43 7.706 

3 6 92.23 6.012 

4 3 87.78 9.564 

5 2 90.14 9.242 

6 1 91.15 NA 

4.6. Features 

    A full list of features for each of the studies is given in Table 

1, column labeled ‘Features’. Some studies included more than 

one of the features listed in the caption. Many papers (18) 

included MFCCs as inputs to the modelS4-7, S9-11, S13-14, S16, S18, S20-
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24, S26-27. However, the number of MFCCs extracted and their 

frequency bands varied across studies. This applied to studies 

that used raw MFCCs or ones that transformed them, such as 

delta-derivatives and log transforms. The modal number of 

MFCCs extracted was 12 (S5, S7, S18, S20). When considering all 

studies with MFCCs included as inputs to the ML models, the 

average accuracy was 91.98% (SD = 7.476) as compared with 

90.47% (SD=6.586) for models that did not extract MFCCs. 

    Eight studies extracted some form of energy feature from the 

signal such as the signal’s envelopeS1-3, S16, S18, S21, the Root 

Mean Square EnergyS27 or other energy measuresS1-3, S16, S18, S21, 

S27. Studies that used energy of the audio signal had an average 

performance accuracy of 89.92% (SD = 7.470). 

    Three studies extracted Linear Prediction Coefficients 

(LPCs)S13-14, S19 and three extracted Linear Prediction Cepstral 

Coefficients (LPCCs)S11, S13-14. These studies had an average 

accuracy of 94.39% (SD = 4.766) and 94.73% (SD = 4.202) 

respectively. 

    Finally, two papers extracted formant frequenciesS19, 21 and 

two extracted entropyS12, S15. The average accuracy for models 

using formant frequencies was 88.65% (SD = 0.502) and for 

entropy, 96.82% (SD = 0.205). Again, on the basis of these 

pooled averages, one might be inclined to conclude that models 

performed better when entropy was an input. However, many 

exogenous variables differed between studies that make this 

claim violable. 

4.7. Optimization and Validation 

    Most studies (70%) gave the exact training/testing split of 

their data, either in percentagesS2, S6, S7, S9-13, S16, S18, S20-22, S24, 

number of samplesS4, S5, S19, number of observationsS26 or 

number of speakersS1. One studyS23 only gave the number of 

samples for testing. The remaining seven studiesS3, S8, S14, S15, S17, 

S25, S27 did not report any details on data split. 

    Twelve studiesS1, S3, S5-7, S9, S10, S12, S14, S15, S22, S25 reported a clear 

validation split for model assessment. Amongst these, five 

studiesS6, S12, S14, S15, S22 used 10-fold, one study S9 4-fold and one 

studyS10 16-fold cross-validation. Two studiesS5, S7 split the test 

data into two folds for validation, two studiesS3, S25 used leave-

one-out test, and one studyS1 tested the model on speech of the 

same speaker used for training and that of five other speakers 

unfamiliar to the model. Three other studiesS8, S17, S23 reported 

data were split over training, test, and validation, but the size of 

the validation set was unclear. The remaining 12 studiesS2, S4, S11, 

S13, S16, S18-21, S24, S26, S27 did not describe any validation approach 

for assessing the model. 

    Moreover, the studies varied in the way that they optimised 

the model’s performance. Of the 27 studies, only tenS6, S9, S11-13, 

S18-20, S23, S24 reported hyper-parameter tuning for their models. 

Of these three studiesS6, S11, S13 varied the number of neighbors 

(k) for the k-NN model; two studies varied the gamma S12 and C 

S9 parameter in SVM models; two studies changed the mixture 

weightsS18 and model orderS20 of the GMM; one studyS19 varied 

the number of means between clusters; one studyS23 used 

Artificial Fish Swarm Optimization to tune the neural network; 

and one studyS24 used sequential grid search to adjust the 

learning rate, batch size, number of epochs, and number of 

hidden units in its bi-directional LTSM. Among these, two 

studiesS11, S13 described feature optimization by varying the 

frame length, frame overlap, and pre-emphasis used for feature 

extraction. 

IV. DISCUSSION 

    This review showed that there is a developing body of 

research into the automatic classification of stuttered speech. 

One general suggestion is that it would be useful for studies to 

state explicitly what application/s their recognizers address. 

Thus, modeling approaches that have significant, but sub-

optimal, accuracy, that work rapidly, might be appropriate for 

real-time applications. However, they would not be suitable for 

clinical purposes where performance has to be at maximum, but 

results may not be required immediately. 

    The review showed that progress has been made into: (1) 

developing the amount of speech data that is available to 

researchers; (2) enhancing the architectures of the ML models 

to address the complexity of the classification problem faced; 

(3) providing ML models with a range of representative 

symptoms of stuttered speech; and (4) selecting features in the 

speech signal that look promising candidates for separating 

different classes of fluent and dysfluent speech. 

    There are, however, numerous issues that need to be 

addressed: The lack of clear definitions of sample size and 

outcome classes has resulted in models potentially being under-

powered or, of more concern for all applications, classifying 

non-stuttered speech as stuttered. Looking across studies, it was 

not possible to identify which modeling approach performed 

best because studies varied in the dataset used, modeling 

algorithms, features used in the models and because several 

different outcome measures were used to report ‘accuracy’. 

Three main areas emerged from the systematic review where 

attention is needed in future work to facilitate comparison of 

model performance across studies. These are discussed below 

and realistic recommendations are offered for future work.  It 

might not be realistic, for instance, to recommend that only 

publicly-available databases are used where groups are 

developing commercial products.  

5.1. Transparency about data used 

A. Language diversity 

    A general problem is that we know very little about how 

stuttering symptoms vary across languages [53] and even less 

about how this impacts on ASR of stutters. Whilst ASR studies 

have used languages other than English, there is usually only a 

single report for these languages, details such as data set 

descriptions are often incomplete. Collection of data on 

additional languages that meet all recommended standards once 

these are agreed should be encouraged.  

B. Labels 

    Continuous audio data need valid annotation labels 

irrespective of the type of symptoms models are designed to 

recognize. Labels can be, minimally, fluent versus dysfluent or 

involve separate types of symptoms.  Nine of the papersS1-3, S9, 

S10, S16, S20, S25, S26 provided descriptions of what dysfluencies 

were considered but had no indication about efforts made to 

validate the labels provided to the model. The level of fidelity 

that researchers give about models needs to be improved.  

    Mislabeling can lead to ML models learning parameters for 

the wrong category of speech. Incorrect alignment by labelers 
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degrades performance. Similarly, windowing applied to 

recordings degrades classification: For example, a standard 

SVM model that has 12 MFCCs as input with a 30ms moving 

window and 15ms overlap, has overlaps between a fluent 

utterance and a stuttered utterance at some points that make the 

classifier’s task indeterminate.  

    Few studies have reported on whether the manual labels that 

they employ with private datasets are reliable and valid. An 

exception is the extensive SEP-28 dataset used by S26. 

However, the manual annotations that SEP-28 provides are 

limited in several ways: The labels were added manually to 3-

second clips by three non-clinician judges. The length of the 

clips makes the granularity of changes in speech coarse, as 

speech can change in fluency several times within a 3-second 

clip. Additionally, the interval selection method is vulnerable to 

inaccurate and unreliable annotations due to noise levels, type 

of stutter and position of stuttering within the temporal window 

[54]. It is not stated how clips were marked as, for example, 

prolonged (e.g., based on one, two or three of the judges). 

Reliability and validity of annotators was not at an acceptable 

standard (Fleiss’ Kappa for different symptoms varied between 

0.11 and 0.62). 

    Automatic labeling procedures could speed up labeling. 

However, this is problematic. The auto-aligners use fluent 

models and this biases them to work optimally for fluent 

speech. Thus, if these auto-aligners are used, the labels for 

stutters are more compromised than those for fluent speech, 

leading to a perpetual disadvantage for recognizers trained on 

jeopardized stuttered speech sample labels. In support, [55] 

showed that automatic labels were not as accurate as manual 

ones when applied to Huntington’s disease patients’ speech.  

 

C. Sample size considerations 

    There is considerable variation concerning how overall 

sample sizes are reported (Table 1, column five), nor have 

considerations about power adequacy been discussed. Sample 

size affects model performance in two ways: (1) If the dataset 

is small so that there are more features than observations, the 

model fits the data completely merely by allowing a feature to 

code for a given observation and its class. This leads to an 

inflation of the model’s perceived efficacy; (2) The model does 

not have sufficient data to fully ‘learn’ the parameters that 

define a class. This would lead to an under-estimation of the 

model’s ability to classify stuttered and fluent speech. Although 

there is no absolute rule about the required dataset size for a 

given problem, learning graphs can provide insight into whether 

the current models are reaching equilibrium for a given dataset 

or, if more data would continue to improve performance. The 

discussion of S26 in the Sample Detail section provides an 

example where performance had not plateaued over the 

parameter space explored. There is also the problem that what 

looks like studies with similar sized datasets often provide 

insufficient detail to check whether this is the case (e.g., S3 and 

S6 discussed in the Sample Details section). Recordings were 

selected from datasets on occasionsS6, S9-16, S18, S20, S24, S25, S27. 

Selections made of severe cases, by gender, by age etc. all bias 

models in particular ways making them less generally 

applicable.  

 

D. Recommendations 

    Stutters in datasets need to be annotated at word or syllable 

levels and audio data should be made available where possible 

in order that annotation procedures can be checked.  

    When unpublished, or new, samples are used, all annotated 

outcomes should be explicitly defined and meet acceptable 

standards of reliability and validity. 

    A way of comparing new data sets with standard ones, such 

as UCLASS, is required. A recommended approach would be 

to have available a simple ML model, apply it to the standard 

and new datasets and report the results on all datasets for 

comparison. New datasets could include ones that use auto 

alignments. Comparison with the standard would allow reports 

to be made about whether the new data perform better or worse 

than the standard. 

5.2. Symptoms identified 

A. Impact on Classifiers    

 Models vary in the number of dysfluencies they attempt to 

classify, as indicated in the ‘outcome classes’ section and in 

Tables 2 and 3. Most models aim to distinguish prolonged, 

repeated and fluent speech whereas others do not distinguish 

stuttering symptoms (train for binary fluent/stuttered outcomes) 

as shown in Table 2. Whilst aggregated model performance was 

similar across studies that identified different numbers of 

symptoms, any influences of symptom type was masked by 

differences in data set used, model architecture and features 

used as inputs. As noted, there are two positions [12][22] 

concerning whether WW repetitions are or are not stutters. If 

WW repetitions are stutters, then they are a legitimate target 

outcome for recognizers. The recognition outputs for studies 

that target repetitions usually do not distinguish whole-word, 

from part-word, repetitions. Thus, whilst 23 studiesS1-4, S6, S9-26 

targeted repetitions (various classification forms such as 

repetition, phrase-repetition, syllable-repetition), only twoS24, 

S25 distinguished WW from part-word repetition.  Hence, it is 

not known whether grouping types of repetitions affects 

performance adversely. Findings of [56] suggest that whole-

word repetition has different brain activity patterns from that 

which occur for part-word repetitions, prolongations and breaks 

in words which are symptoms which are always considered to 

be stutters. If brain activity differences are preserved in the 

audio signal, then WW repetition and part-word repetition 

should be recognized as separate outcomes for maximum 

performance. This test remains to be made.  

B. Recommendations 

    Symptom outcomes should be clearly defined. In particular, 

reports should be explicit about whether repetitions were sub-

divided into WW and part-word types.  

    Inclusion of different selections of speech symptoms in 

studies is legitimate, but to allow this, a comprehensive set of 

annotations needs to be included in the data. This would allow 

people with different perspectives about symptoms to work 

with the data and to confirm the status (stuttered or not) of 

whatever symptom groups they use [1]. This proposal does not 

restrict investigation to a single set of symptoms.  

5.3. Model architecture and features used 

A. Train/test split 
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    Care also needs to be taken when reporting how data were 

split between training and test sets. The size of the split data is 

frequently under-defined. Often research defines the splits as 

the number of segments in each category (i.e., 50 cases of 

prolongation and 50 cases of repetition, e.g., as in S9). But this 

does not provide an explicit number of observations that are 

input to the model.  

    A confusion matrix along with the shape of the data matrix 

(i.e., number of features or columns and number of observations 

or rows) should be provided. This would allow for full 

investigation of a model’s power given the dataset it was trained 

on to be determined as well as making it possible to weight a 

model by its dataset in cross-study comparisons. 

B. Model architecture 

    Although cross-study comparisons of model design are 

limited because extraneous factors vary between studies, 

within-study comparison of both ML model type and 

architecture is possible. For ANNs, S8 investigated the effect of 

the activation function in the hidden nodes, testing both the 

Multi-layer perceptron (MLP) and Radial-Basis function (RBF) 

approaches. S8 reported a marginal improvement for MLP 

(92% vs. 91% accuracy). However, it was not reported whether 

this difference between models was significant.  

    S25 compared a unidirectional LSTM against a bi-directional 

LSTM and reported an increase in accuracy of 0.09% in 

preference for the bi-directional LSTM. S25 varied hyper 

parameters of the bi-directional LSTM including learning rate, 

batch size and number of epochs and number of hidden units. 

The model that was set to a batch size of 16,100 epochs and 100 

hidden units had the optimal learning rate of 0.01. When 

learning rate was set to 0.01 and epochs and hidden units to 100, 

the optimal batch size was 8. When the optimal learning rate 

and batch size were used with the hidden nodes set to 100, the 

optimal number of epochs was 50. Finally, when the established 

optimal parameters were used and the number of hidden nodes 

was varied, 100 nodes was optimal. By varying these 

parameters, S25 reported differences in accuracy from ~70% up 

to 96.67%. Clearly optimization of these parameters led to 

major changes in the model’s ability to learn what separates the 

various types of speech fluency. Finally, S26 compared a uni-

directional LSTM with a convolution LSTM and again found 

convolution improved performance accuracy by approximately 

1.8%. Again, whether this was a significant increase or not was 

not established. 

    Of the studies that employed SVM models, three compared 

various intra-model and inter-model performancesS10, S14-15. S10 

compared the effect of changing the SVMs kernel (linear and 

RBF kernels). Better performance was reported for the linear 

kernel (98.00%) as compared with the RBF (96.13%). S14 

compared performances of an SVM against k-NN and LDA 

classifiers. SVM outperformed both models in almost all runs 

when feature extraction parameters were varied. On average the 

performances of SVMs was approximately 95% compared to 

the k-NN’s 90% and the LDA’s 90%. The superiority of the 

SVM over the k-NN and LDA was supported by a further study 

from the same group (S15) that reported maximum accuracy of 

96.14% for the SVM, 94.39% for the k-NN and 91.87% for the 

LDA. 

    Although intra-study model comparisons suggest that there 

are differences in ability to accurately classify stutters, 

comparisons across studies are needed to substantiate these 

claims. Although the currently-available data do not permit this, 

future research could employ meta-analytic techniques to 

bridge this knowledge gap (see below). 

C. Features used 

    Currently, the way that performance depends on features 

used is not apparent across the studies in this review. However, 

it is possible to make inferences about feature importance when 

there are intra-study variations of features. The feature inputs to 

the same model, trained on the same dataset with the same 

outcome classes, was done in eight studiesS2, S11-15, S21, S24 for 

various features and parameters.  

    S2 varied features by inputting various combinations of 

features to their ANN and determined which set yielded the 

highest accuracy. Combinations of: (1) Word duration; (2) 

Word-length fragmentation measures; (3) Word-length spectral 

measures; (4) Syllable durations; (5) Syllable-length energy; (6) 

Syllable-length fragmentation measures; and (7) Syllable-

length spectral measures were investigated. Using various 

combinations of these feature groups, a set of feature groups 

that had between two and five features per set yielded the 

greatest overall accuracy (92.00%). The researchers also 

permuted the combinations of feature sets to obtain accuracy 

for all combinations. Considering only the top 10 ANNs, 

feature 4 (syllable durations) was present in nine, feature 5 

(syllable-length energy) was present in eight, and feature 6 

(syllable-length fragmentation measures) was present in six. 

This suggests that features at the syllabic level (~200ms) tended 

to perform better than features extracted at the word level, for 

ANNs at least. The decrease between a model with features 4 

and 5 (Accuracy = 91.04) and a model with features 4, 5 and 7 

(Accuracy = 90.90) was due to the inclusion of the additional 

feature (7).  

    In S2, the researchers varied the feature input size to the 

model. More can be learned about feature importance by tuning 

the feature parameters such as window length and time-step. 

Hariharan’s groupS11-15 has investigated extensively feature-

parameter tuning with respect to MFCCs, LPCs and LPCCs. 

Varying the window length between 10ms and 50ms, S11 

reported that a k-NN and LDA classifier with 25 MFCCs as 

input performed optimally with 20ms and 40ms windows, 

respectively. For a 21-dimensional LPCC, however, the k-NN’s 

optimal performance was with a 30ms window whilst it was 

20ms for the LDA classifier. The study also varied the pre-

emphasis filter cut-off (𝛼), with the LDA performing optimally 

for both MFCCs and LPCCs, with a pre-emphasis of 0.93. 

Whereas the k-NN performed best at 𝛼 = 0.96 and 𝛼 = 0.98 for 

MFCCs and LPCCs, respectively. Finally, the time-step 

between windows or ‘overlap’ was varied. For models trained 

on MFCCs, the optimal overlap was 0 for LDA and 50% for k-

NN. For LPCCs, the optimal overlap was 50% for the LDA, and 

both 33.33% and 75% overlaps performed optimally for the k-

NN. By permuting all parameter values and combinations, 

MFCCs extracted from a 20ms window with a 10ms time-step 

and an 𝛼 =  0.9375 yielded accuracies of 92.55% for the k-

NN and 88.82% for the LDA. In comparison, LPCCs extracted 

from a window of 30ms and a time-step of 7.5ms and an 𝛼 =
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 0.98 resulted in a 94.51% accuracy for the k-NN and a 90.00% 

accuracy for the LDA. S13 also varied these parameters of the 

LPCCs and used k-NN and LDA ML models. However, for the 

k-NN the optimal window length was 20ms not 30ms as in S11. 

Whereas the LDA performed optimally at both 10ms and 30ms 

window lengths, S11 reported an optimum at 20ms. Clearly 

then, the optimal window length, and indeed optimal 

parameters for feature extraction generally, also depend on 

factors such as dataset size, number and types of classes given 

to the model, model architecture etc. As yet, no study has 

attempted to test whether tuning the feature extraction 

parameters leads to significantly better classifiers and how 

robust this is to changes in other aspects of the ML model. 

D. Recommendations 

    The reporting standards for sample size as well as train-test 

splits are often unclear and vary significantly between 

publications. A simple way to resolve this problem is to publish 

the frequency of observations by classes as in an example from 

our work shown Table 4. This would allow a range of accuracy 

measures to be calculated by other researchers. 

 
Table 4. The number and percentage of observations for each class of speech 

(fluent and stuttered). 

Type 
Number of 

Observations 

Percentage of total 

observations 

Fluent 994,912 62.6% 

Stuttered 594,779 37.4% 

Total 1,589,691 100.0% 

 

 

    Clear documentation of the matrix shapes of the dataset is 

required.  

    Given that model architectures and feature inputs vary 

dramatically across studies, it would be desirable to have 

openly-available source code of a standard model available as 

has been done for Huntington’s disease [57] where results for 

the reference data set are known. A logistic regression with 

specified MFCC features as inputs and fluent/stuttered as 

outcomes is one possible standard model. Availability of a 

standard model would provide a basis for comparison when 

other data sets and symptoms, and model architectures and 

features are used. 

 

5.4. Model performances 

    A range of performance measures was used in studies, 

making model comparisons impossible. Model performance 

depends on the complexity of the classification problem as well 

as the complexity of the model being trained. The Vapnik–

Chervonenkis (VC) dimension [58] is one such measure of a 

model’s complexity. Technically, the VC dimension of a model 

is the largest set of points that the model can 'shatter'. The 

power of the dataset is directly related to the VC dimension, 

given by the Equation2: 

𝑁 = 𝐹 (
𝑉𝐶 +  ln

1
𝒹

𝜖
) 

 
2 This provides the bounds of the data required but, for a space of binary 

functions. Alternate formulations of the power of the sample can be calculated 

for other models such as neural networks [59]. 

    Where VC is the VC dimension, d is the probability of failure 

and epsilon is the learning error. As noted in [60], the amount 

of data needed for learning depends on the complexity of the 

model.  

A. Validation and metrics 

    A full description of model comparison as well as null 

hypothesis testing within a ML framework is beyond the scope 

of the current review. For further details see [61] and [62]. 

    Model validation and performance assessment show that 

there are many options to consider. One could report metrics 

such as, accuracy, specificity, precision, recall or sensitivity, 

fallout, or false positive rate (FPR) measures, ROC Area, R2, 

and Root mean square error. One could also report performance 

in terms of model quality such as the Akaike information 

criterion or Bayes information criterion.  

    If a full confusion matrix is given (Table 5), all of the above 

metrics and performance assessments are computable. 

 
Table 5. Confusion matrix for a binary classification model which allows 

several accuracy statistics to be computed. 

Type 

Observation 

Predicted as 

Fluent 

Observation 

Predicted as 

Stuttered 

Total 

Observation 

Labelled as 

Fluent 

700 100 800 

Observation 

Labelled as 

Stuttered 

50 150 200 

Total 750 250 1000 

 
 

    Most studies do not report such data. Instead, they simply 

report a performance metric with no context. There is a distinct 

lack of quantification of the models’ effect sizes, and some 

procedure is required to assess whether one model significantly 

outperforms another. As discussed in the ‘Machine Learning 

Models’ section, although some studies compared different 

models on the same dataset, no tests were implemented to 

assess whether this difference was large enough to conclude 

that one model is better than the other. A method for calculating 

the effect size and its confidence intervals has been proposed 

[63] and this would allow claims about which model performs 

best to be assessed. Adoption of this approach would allow 

results to be accumulated and meta-analytic techniques applied 

to them that, in turn, would allow optimal model design and 

feature importance for the automatic classification of stuttered 

speech to be determined. 

    Choice of the various measures used for assessing 

performance require that different aspects of model 

performance depend on the aims of the model and the 

characteristics of the classification problem. For instance, in the 

classification of a rare disease, a false positive is not as 

detrimental as a false negative. In the case of false positives, 

further tests could be run to support the diagnosis. However, in 

the case of false negatives the patient continues without 
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treatment. In this example Specificity may be preferred over 

Sensitivity for report. 

    Considering stuttering, given that stuttered speech is 

relatively infrequent compared to fluent speech even in PWS, 

missing a stutter (Precision) may be of greater consequence 

than incorrectly predicting a stutter during fluent speech (false 

positive). This relates to a general issue within the field of 

automatic stuttering recognition, given that stuttering occurs on 

approximately 1-5% of words in PWS. Were an ML model to 

predict all speech was fluent, it would be correct 95-99% of the 

time. Clearly, however, this model does not recognize stutters.  

 

B. Recommendations 

    A complete range of performance statistics is required, or 

data in the format of Table 5 that allow all metrics to be 

computed should be supplied. These should also be available 

for any reference model (section 5.3.E) and a standard data set 

(section 5.1.D) for comparison. 

    To determine the expected benefit when a large dataset is 

used, studies should publish either the VC-dimension itself with 

the estimated upper and lower bounds of a dataset needed to 

adequately train the proposed model or provide the information 

necessary to calculate the VC dimension. 

V. SUMMARY 

    This systematic review evaluated models for the automatic 

recognition of stuttered speech. Twenty-seven publications met 

the inclusion criteria. It is clear that although this is a nascent 

field, there is promise that models could improve research and 

therapeutic applications. The issues in current ML models are 

limited because: (1) the current models are constrained and, in 

some cases, biased by what data are employed; (2) it is not 

definitely known what features from the audio signal provide 

the greatest information to separate fluent from dysfluent 

speech and even different forms of dysfluent speech; and (3) it 

is not known which modeling approach is best suited for the 

symptom classifications being made. 

    Work conducted after the closing date of this systematic 

review suggests that deep learning techniques may further 

improve automatic classification of stuttering [23][64]. Further 

work is needed to confirm whether modern deep learning 

methods can allow advances in performance as seen in other 

fields such as computer vision [65]. 

    The systematic review has made some preliminary 

conclusions as well as clear recommendations for future work 

within the field. Furthermore, it is highly recommended that 

researchers consider the generic reporting standards set out in 

[66]. This should prevent further confusion within the field and 

allow future work to consider a meta-analysis of ML studies. 
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