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A B S T R A C T 

We present the calibration of the Dark Energy Surv e y Year 3 (DES Y3) weak lensing (WL) source galaxy redshift distributions 
n ( z) from clustering measurements. In particular, we cross-correlate the WL source galaxies sample with redMaGiC galaxies 
(luminous red galaxies with secure photometric redshifts) and a spectroscopic sample from BOSS/eBOSS to estimate the redshift 
distribution of the DES sources sample. Two distinct methods for using the clustering statistics are described. The first uses 
the clustering information independently to estimate the mean redshift of the source galaxies within a redshift window, as done 
in the DES Y1 analysis. The second method establishes a likelihood of the clustering data as a function of n ( z), which can 

be incorporated into schemes for generating samples of n ( z) subject to combined clustering and photometric constraints. Both 

methods incorporate marginalization o v er various astrophysical systematics, including magnification and redshift-dependent 
galaxy-matter bias. We characterize the uncertainties of the methods in simulations; the first method reco v ers the mean z of 
tomographic bins to RMS (precision) of ∼0.014. Use of the second method is shown to vastly impro v e the accuracy of the shape 
of n ( z) derived from photometric data. The two methods are then applied to the DES Y3 data. 

Key words: galaxies: distances and redshifts – cosmology: observations. 
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 I N T RO D U C T I O N  

he Dark Energy Surv e y (DES) is a photometric surv e y that has
maged 5000 deg 2 of the sky. The DES Y3 ‘3x2’ analysis (DES
ollaboration 2021 ) using data taken during the first three seasons of
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bservations constrains cosmological parameters by combining three 
ifferent measurements of two-point correlation functions: cosmic 
hear (Amon et al. 2021 ; Secco et al. 2021 ), g alaxy–g alaxy lensing
Prat et al. 2020 ), and galaxy clustering (Rodr ́ıguez-Monroy et al.
020 ). The cosmic shear measurement probes the angular correlation 
f more than 100 000 000 galaxy shapes from the weak lensing (WL)
ample (Gatti et al. 2021 ), divided into four tomographic bins. The
ross-correlation of galaxy shapes and the positions of red luminous 
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alaxies identified by the redMaGiC algorithm (Rozo et al. 2016 )
s measured by g alaxy–g alaxy lensing. Lastly, g alaxy clustering
easures the autocorrelation of the positions of redMaGiC galaxies.
 magnitude-limited sample (Porredon et al. 2021 ) will be also
sed as lens sample alternatively to redMaGiC in a second analysis
Porredon et al. 2021 ), with the goal of improving the cosmological
onstraints. 

The correct cosmological interpretation of these measurements
elies on an accurate estimate of the redshift distributions of the
amples, which can otherwise lead to biases in the inferred cosmo-
ogical parameters (e.g. Huterer et al. 2006 ; Hildebrandt et al. 2012 ;
hoi et al. 2016 ; Hoyle et al. 2018 ). Photometric surv e ys hav e been

elying on different methodologies to derive redshift distributions
Hildebrandt et al. 2010 ; S ́anchez et al. 2014 ), mostly based on
alaxies’ multiband photometry (photo- z methods, or PZ). Ho we ver,
hese methods are ultimately limited by the redshift ambiguities
n few-band colours, and the limited and incomplete spectroscopic
amples available to calibrate the colour–redshift relations. 

Clustering- z methods (Newman 2008 ; M ́enard et al. 2013 ; Choi
t al. 2016 ; Davis et al. 2017 ; Johnson et al. 2017 ; Morrison
t al. 2017 ; Gatti et al. 2018 ; van den Busch et al. 2020 ) offer an
lternative to standard photo- z methods to infer redshift distributions.
n short, clustering- z methods exploit the two-point correlation signal
etween a photometric ‘unknown’ sample and a ‘reference’ sample
f high-fidelity redshift galaxies divided into thin bins, to infer the
edshift distributions of the photometric sample. One of the biggest
dvantages of clustering- z methods is that the reference sample does
ot have to be representative of the photometric sample. Clustering- z
ethods (or WZ) have been in the past years successfully applied

o both data (Rahman et al. 2015 , 2016a , b ; Scottez et al. 2016 ;
avis et al. 2017 , 2018 ; Hildebrandt et al. 2017 , 2021 ; Johnson

t al. 2017 ; Cawthon et al. 2018 ; Bates et al. 2019 ; van den Busch
t al. 2020 ) and simulations (McQuinn & White 2013 ; Schmidt et al.
013 ; Scottez et al. 2017 ; Gatti et al. 2018 ), and they represent
ne credible supplement to standard photo- z methods for the new,
pcoming generation of data sets (Scottez et al. 2017 ). 
Clustering- z methods have been used both to provide an inde-

endent redshift distribution estimate and to calibrate distributions
nferred from photo- z methods. In the DES Y1 cosmological anal-
sis, we opted for the latter approach (Davis et al. 2017 ; Hoyle
t al. 2018 ). In particular, we used high-quality photometric redshifts
rovided by redMaGiC galaxies (Rozo et al. 2016 ) to measure the
lustering- z signal with the WL source-galaxy sample. The use of
igh-quality photometric redshifts rather than spectroscopic redshifts
as moti v ated by the higher statistical power of the redMaGiC

ample, owing to the large number of redMaGiC galaxies (650 000
or DES Y1) in the DES footprint. Due to the limited redshift range
f the redMaGiC sample, clustering- z estimates could not have been
sed to determine n ( z) in its entirety on their own, but they have been
sed to calibrate the mean redshift of the distributions measured by
ther DES photo- z methods (with the mean taken o v er the redMaGiC
 bounds). A similar approach has been implemented by the KiDS
eam in their recent cosmological analysis (van den Busch et al.
020 ; Hildebrandt et al. 2021 ), where they used cross-correlation
stimates to calibrate the mean redshifts inferred from other photo- z
ethods. They used a number of different spectroscopic samples as
 reference sample, which guaranteed a greater redshift co v erage but
ess statistical power compared to the use of redMaGiC galaxies. 

The strategy for calibration of the WL redshift distributions for
ES Y3 impro v es in multiple respects on the Y1 strategy outlined in
atti et al. ( 2018 ). From the clustering-redshift side, we e x ecute two
ifferent methods to combine clustering information with redshift
NRAS 510, 1223–1247 (2022) 
istributions from photometry. The first approach is to use clustering-
 to estimate the mean redshift 〈 z〉 wz , and assign a clustering- z
ikelihood to any candidate n ( z) from photo- z techniques based on
he value of its mean 〈 z〉 pz (similar to the DES Y1 analysis). We
ill refer to this as the ‘mean-matching’ approach. The second, new
ethod is to pose both the clustering- z and the photo- z measurements

s probabilities p [ D | n ( z)] of the observational data D given redshift
istributions n ( z); then to sample the full n ( z) from the posterior
 [ n ( z)] implied by multiplying these probabilities. We will refer to
his as the ‘full-shape’ method. 

We furthermore impro v e o v er Y1 in the modelling of the clustering
ignal, accounting for the redshift evolution of the galaxy-matter bias
nd the clustering of the underlying dark matter density field, which
ere neglected in the DES Y1 analysis. In the second method that

alibrates the shape of the redshift distributions, we also marginalize
 v er magnification effects. Finally, we use a combination of two
ifferent reference samples: redMaGiC galaxies with high-quality
hotometric redshifts; and a spectroscopic sample from the com-
ined BOSS (Baryonic Oscillation Spectroscopic Surv e y, Da wson
t al. 2013 ) and eBOSS (extended-Baryon Oscillation Spectroscopic
urv e y, Da wson et al. 2016 ; Ahumada et al. 2020 ; Alam et al. 2021 )
atalogues. Only redMaGiC galaxies were used in DES Y1. On one
and, redMaGiC galaxies span the full DES Y3 footprint (Rodr ́ıguez-
onroy et al. 2020 ) and are characterized by a higher number density

han BOSS/eBOSS galaxies, which co v er only ≈ 17 per cent of the
ES Y3 footprint. On the other hand, the latter sample spans a wider

edshift range and has better redshift estimates, which makes the
ombination of the two samples desirable. 

The fiducial photo- z estimates for the DES Y3 WL sample are
rovided by a self-organizing map-based scheme (hereafter SOMPZ,
uchs et al. 2019 ; Myles et al. 2021 ). The SOMPZ method provides
 means to generate samples of the n ( z) for all tomographic bins
hat encompass the uncertainties in the photometric inference of
he distributions. The mean-matching clustering- z method may be
sed to confirm or adjust the n ( z) samples generated by SOMPZ.
e use the full-shape method as the fiducial method for DES Y3,

enerating samples of n ( z) from the combined SOMPZ and clustering
ikelihoods. In either route, the DES Y3 cosmological analysis is
one by sampling o v er the finite set of realizations generated by
OMPZ + clustering-z. 
We note that there exist other strategies to combine clustering- z

nd photo- z estimates. For example, S ́anchez & Bernstein ( 2019 ) and
larcon et al. ( 2020 ) sho w ho w to combine photo- z and clustering- z

stimates using a hierarchical Bayesian model (Leistedt, Mortlock
 Peiris 2016 ). The application of these methods to DES data is left

or future work. 
This paper is organized as follows. In Section 2, we describe the

wo different methodologies used in DES Y3 to calibrate photo- z
osteriors using clustering- z estimation, and explain how to assign
 likelihood to the cross-correlation information. The simulations
nd the data sets used in this paper are described and compared in
ection 3. In Section 4, we perform extended tests in simulations
ssessing the systematic uncertainty of the methods. The calibration
n DES Y3 data is presented in Section 5, and in Section 6 we discuss
uture prospects for this method and present our conclusions. 

 M E T H O D O L O G Y  

e describe the clustering- z (WZ) methodology as generally as
ossible in this section, deferring to Section 3 the description (and
he choice of the binning) of the particular samples adopted for DES
3. 
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.1 Modelling and measuring the correlation signal 

lustering- z methods rely on the assumption that the cross- 
orrelation between two samples of objects is non-zero only in the 
ase of o v erlap of the distribution of objects in physical space, due
heir mutual gravitational influence. Let us consider two samples: 

(i) An unknown sample, whose redshift distribution n u ( z) has to 
e measured, namely our WL source sample, and 
(ii) A r efer ence sample, whose redshift distribution n r ( z) is known

either from spectroscopic redshifts or from high-precision photo- 
etric redshifts). 

We compute the angular clustering signal w ur as a function of the
eparation angle θ between the unknown sample and the reference 
opulation. Under the assumption of linear biasing and the Limber 
pproximation (Limber 1953 ), the clustering signal can be written as
e.g. Krause et al. 2017 ): 

 ur ( θ ) = 

∫ 

d z ′ n u ( z ′ ) n r ( z ′ ) b u ( z ′ ) b r ( z ′ ) w DM 

( θ, z ′ ) + M( θ ) , (1) 

here n u ( z 
′ 
) and n r ( z 

′ 
) are the unknown- and reference-sample

edshift distributions (normalized to unity o v er the full redshift
nterval), b u ( z 

′ 
) and b r ( z 

′ 
) are the linear galaxy-matter biases of the

wo samples, and w DM 

( θ , z 
′ 
) is the dark-matter two-point angular

orrelation function. The term M ( θ ) refers to the contribution of
ensing magnification effects; description and full expressions for 
he terms w DM 

( θ , z 
′ 
) and M ( θ ) are detailed below (equation 7 and

quation A1). Note that while we acknowledge that the assumption 
f linear biasing is not expected to hold at small scales, we are
evertheless confident to be able to estimate the systematic bias 
ntroduced by this premise, as explained in Section 2.2. We also note
hat the Limber approximation is a standard assumption in clustering- 
 works, and it is expected to have a minimal impact on our results
e.g. McQuinn & White 2013 ). 

Following M ́enard et al. ( 2013 ), the correlation function is mea-
ured as a function of angle, and averaged over angular scales to
roduce a ‘scalar’ value via 

¯  ur = 

∫ θmax 

θmin 

d θ W ( θ ) w ur ( θ ) , (2) 

here W ( θ ) ∝ θ−γ is a weighting function. We adopt γ = 1 to
ield optimal S/N on the scalar in the presence of shot noise. The
ntegration limits in the integral in equation (2) correspond to fixed 
hysical scales. In this work, we choose to span the physical interval
etween 1.5 and 5.0 Mpc (Section 4). We use the Davis & Peebles
 1983 ) estimator for the cross-correlation signal, 

 ur ( θ ) = 

N Rr 

N Dr 

D u D r ( θ ) 

D u R r ( θ ) 
− 1 , (3) 

here D u D r ( θ ) and D u R r ( θ ) are, respectively, data–data and data–
andom pairs. The pairs are properly normalized through N Dr and 
 Rr , corresponding to the total number of galaxies in the reference

ample and in the reference random catalogue. If weights for the 
eference catalogue of galaxies (or for the catalogue of randoms) are 
rovided, N Dr (or N Rr ) is the sum of the weights of the catalogue,
nd D u D r ( θ ) (or D u R r ( θ )) is the weighted number of pairs. Note that
eights can also be assigned to the unknown sample; in that case,

he weighted number of pairs D u D r ( θ ) (or D u R r ( θ )) also accounts
or the weights of the unknown sample. As in Gatti et al. ( 2018 ),
e use the Davis & Peebles estimator rather than the Landy &
zalay ( 1993 ) estimator since the former involves using a catalogue
f random points for just one of the two samples. This allows us
o a v oid creating high-fidelity random catalogues for the DES Y3
ource galaxy sample, whose selection function is very complex and 
on-trivial to replicate, besides being computationally very costly. 
or our analysis, we only rely on random points for the reference
ample, whose selection function and mask are well understood. We 
ote that in the rest of the paper we adopted the Davis & Peebles
stimator even when measuring the autocorrelation of the reference 
amples, but we checked that using the Landy & Szalay estimator
ead to negligible variations. 

Now we assume that the reference sample is divided into redshift
ins centred at z i , each narrow enough that we can approximate
 r , i ( z) ≈ δD ( z − z i ), with δD being Dirac’s delta distribution and the
ntegrands in equation (1) other than n r can be treated as constant.
quations (1) and (2) become: 

¯  ur ( z i ) ≈ n u ( z i ) b u ( z i ) b r ( z i ) ̄w DM 

( z i ) + M̄ ( z i ) , (4) 

here barred quantities indicate the y hav e been averaged over
ngular scales as per equation (2). In what follows we will, for
implicity, drop the bar. The abo v e quantity is al w ays estimated at
he redshift z i of the i -th thin reference sample bin. 

The goal is to use equation (4) to infer n u ( z), the unknown redshift
istribution, from the multiple measures w ur ( z i ). But it is important
o note that this equation follows from a simplifying assumption. 

e assumed the galaxy-matter bias to be described by a single
umber at all scales; this is true at large scales in the linear regime,
ut we do not expect this to hold at the small scales used in this
ork (1.5 to 5.0 Mpc). In the non-linear re gime, ev en the fact

hat the terms inside the integral factorizes into b r ( z i ) b u ( z i ) w DM 

( z i )
s not guaranteed (Bernardeau et al. 2002 ; Desjacques, Jeong &
chmidt 2018 ). The linear-bias assumption introduces a systematic 
ncertainty that depends on the scales adopted and the samples under
tudy and that will be quantified in the following sections. 

The evolution of the quantities b r ( z i ), b u ( z i ), w DM 

( z i ) and M ( z i )
eeds to be characterized to correctly reco v er the redshift distribution
f the unknown sample. We turn now to how to model or estimate
hese terms. 

(i) The galaxy-matter bias evolution of the r efer ence sample 
 r ( z) . As long as the redshifts of the reference sample are accurate
nough, and we assume linear biasing, we can estimate b r ( z)
y measuring the angle-averaged estimate of the autocorrelation 
unction of the reference sample divided into thin redshift bins ( δz 
 0.02) centred at z i : 

 rr ( z i ) = 

∫ 

d z ′ 
[
b r ( z 

′ ) n r, i ( z ′ ) 
]2 

w DM 

( z ′ ) . (5) 

f the bins are suf ficiently narro w so as to consider the biases and
 DM 

constant o v er the distributions, the y can be pulled out of the
bo v e inte grals: 

 rr ( z i ) = b 2 r ( z i ) w DM 

( z i ) 
∫ 

d z ′ n 2 r, i ( z 
′ ) . (6) 

nowledge of the redshift distributions of the narrow bins is then
equired to use equation (6) to estimate b r ( z i ). Lastly, we need to
odel w DM 

( z) to correctly reco v er b r ( z). 
(ii) The galaxy-matter bias evolution of the unknown sample 

 u ( z) . In principle, the autocorrelation of the unknown sample
onstrains this. Ho we ver in our case, n u ( z) is broad and unknown, and
 u likely varies substantially across the sample, so the information on
 u from the autocorrelation is weak and entangled with n u itself. The
e generac y between b u and n u is the fundamental limiting factor
f clustering- z methods. Mitigation schemes exist, based on the 
se of additional information to constrain the evolution of b u : e.g.
MNRAS 510, 1223–1247 (2022) 
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atthews & Newman ( 2010 ) use the additional constraints coming
rom the autocorrelation function of the tomographic bins (without
ividing the samples into thin bins); or the method implemented
n van den Busch et al. ( 2020 ), who use the additional constraint
oming from the normalization of the redshift distribution of the
ull unknown catalogue not divided into tomographic bins. However,
hese methods are not free from shortcomings, so we decided not
o attempt correcting for b u . Since it is difficult to place a priori
onstraints on b u , when forward modelling the clustering signal
e chose to parametrize it in a flexible way (see Section 2.2.2),

f fecti vely treating it as a free function. 
(iii) The dark matter two-point correlation function w DM 

( z) .
his can be modelled assuming a given cosmology and a non-linear
ower spectrum. At fixed z i , this can be written as: 

 DM 

( z i ) = 

∫ 

d θW ( θ ) 
∑ 2 � + 1 

4 π
P � ( cos θ ) 

× 1 

χ ( z i ) 2 H ( z i ) 
P NL 

(
l + 1 / 2 

χ ( z i ) 
, z i 

)
, (7) 

here χ is the comoving distance and H ( z i ) is the Hubble expansion
ate at redshift z i . P � ( x ) is the Legendre polynomial of order � . P NL ( k ,
) is the 3D non-linear matter power spectrum at wavenumber k

which, in the Limber approximation, is set equal to ( l + 1/2)/ χ ( z i ))
nd at the cosmic time associated with redshift z i . We find that the
edshift evolution of w DM 

( z i ) depends little on the particular value
f cosmological parameters, whereas the dependence of the o v erall
mplitude of w DM 

( z i ) with respect to cosmology is absorbed by our
ystematic functions. Based on this, we hold cosmology fixed when
omputing w DM 

( z i ), assuming the values in Planck Collaboration
I ( 2020 ). We then verify a posteriori that this approximation is
alid by repeating our analysis using very different values for the
osmological parameters ( 	m 

= 0.4, σ 8 = 0.7), finding that the
mpact on our conclusions is negligible. Note that some of the

itigation schemes adopted in literature to correct the galaxy-matter
ias evolution of the unknown sample also automatically estimate
 DM 

( z i ) from the data (Matthews & Newman 2010 ; van den Busch
t al. 2020 ), but they are not adopted in this work. 

(iv) Magnification signal M ( z i ) . WL magnification (Narayan
989 ; Villumsen, Freudling & da Costa 1997 ; Moessner & Jain 1998 )
hanges the observed spatial density of galaxies: the enhancement
n the flux of magnified galaxies can locally increase the number
ensity, as more galaxies pass the selection cuts/detection threshold
f the sample; at the same time, the same volume of space appears
o co v er a different solid angle on the sk y, generally causing the
bserved number density to decrease. For a flux-limited sample, the
et effect is driven by the slope of the luminosity function of the
ample, here conveniently parametrized through the parameter α,
nd it has an impact on the measured clustering signal. Formally, the
agnification term depends on the galaxy-matter bias and parameter
of the two samples, as well as on the redshift distribution of

he unknown sample: M ( z i ; αr , αu , b r , b u , n u ). More details about
ur modelling of the magnification effects are given in Appendix A,
lthough we anticipate magnification effects have a negligible impact
n our analysis, due to our analysis choices. To keep our notation
ight, when possible, we will simply indicate magnification effects
s M ( z i ), dropping the dependence on other factors. 

Under the assumption of thin reference bins, linear galaxy-matter
ias, and using the linearized version of the equation describing
agnification effects (Appendix A), equation (4) becomes a linear

ystem of equations, and can be solved to obtain an estimate of n u ( z i ).
his would be similar to standard clustering- z methods which use
NRAS 510, 1223–1247 (2022) 
he cross-correlation signal as a starting point to infer the redshift
istributions of the unknown sample (Newman 2008 ; McQuinn &
hite 2013 ; M ́enard et al. 2013 ; Schmidt et al. 2013 ). 
Alternatively, if an estimate of the n u ( z i ) is provided by e.g. a

hoto- z method, equation (4) can be used to e v aluate the expected
orrelation signal w ur ( z i ) and compare it to the one measured in data,
.e. a forward modelling approach (see e.g. Choi et al. 2016 ). 

This work represents a significant advancement o v er DES Y1,
ecause in the Y1 analysis none of the terms described abo v e were
odelled. We assumed b r ( z i ), b u ( z i ), and w DM 

( z i ) to be constant
ithin each photo- z bin, and used the simulations to estimate the

ystematic error induced by this assumption. In DES Y1 we also did
ot model M ( z i ), but we decided to exclude the redshift range (i.e.
he tails of the redshift distributions) where magnification effects
re expected to have a non-negligible impact. On the contrary, in this
ork we model b r ( z i ), w DM 

( z i ), and, depending on the method, M ( z i ).

.2 Assigning likelihood to the cr oss-corr elation information 

e use the clustering data { w ur ( z i ), w rr ( z i ) } , to place a likelihood
 [ W Z| n u ( z) ] of obtaining the clustering- z data given some estimate
f the true n u ( z). The clustering- z data will be used to e v aluate the
ikelihood of many candidate n u ( z) functions, typically drawn from
ome combination of PZ and spectroscopic data. In the DES Y1
nalysis, such realizations were taken as n u ( z) = n pz ( z + �z), where
 pz ( z) was a single ‘best’ photo- z estimate and �z a free parameter.
he Y3 approach is more general, with many realizations of the

ull function n u ( z) being drawn. In any case we need only to define
 [ W Z| n u ( z) ] . To do so, we make use of two approaches, described
elow. 

.2.1 Mean-matching method 

his method works by compressing the n ( z) functions to a single
tatistic, their mean 〈 z〉 . In this ‘simpler’ method, we do not model
agnification effects, so the mean is taken o v er a restricted range of

, where a reference sample is available and w ur ( z) � M ( z), such
hat we can neglect magnification effects. For this method, cutting the
ails can be preferable even when estimates of magnification effects
n the tails are available. This is due to the fact that small errors in
he magnification estimates in the tails can have a large impact on
he mean of the redshift distribution, lowering the capability of the

ethod to constrain the mean redshift. 
Following the DES Y1 analysis, we choose a fixed interval [ z min ,

 max ] = [ 〈 z 〉 pz − 2 σ pz , 〈 z 〉 pz + 2 σ pz ], where 〈 z〉 pz and σ pz are
he mean and root mean square of a canonical n pz ( z). In case the
xed interval includes a range where there is no reference sample
o v erage, it is further reduced to ensure there are enough galaxies in
he reference sample to provide a meaningful clustering- z estimate
see Section 4.1 for more details). We first create a nominal ‘naive’
stimator ˜ n u ( z) using equation (4) which would be proportional to
n unbiased estimator if linear bias holds and b u ( z) is constant: 

˜  u ( z i ) ∝ 

w ur ( z i ) 

b r ( z i ) w DM 

( z i ) 
, (8) 

hen we define mean redshifts for the clustering- z data and the
roposed n pz ( z) as 

 z〉 wz = 

∫ z max 

z min 
d z z ̃  n u ( z) ∫ z max 

z 
d z ̃  n u ( z) 

(9) 
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 z〉 pz = 

∫ z max 

z min 
d z z n pz ( z) ∫ z max 

z min 
d z n pz ( z) 

(10) 

The likelihood of the WZ data given a proposed n u ( z) is then taken
o be a Gaussian distribution in the 〈 z〉 values: 

 [ WZ | n u ( z) ] ≡ N 

(〈 z 〉 pz − 〈 z 〉 wz , σ〈 z〉 
)

(11) 

The uncertainty σ 〈 z〉 must incorporate the estimated measurement 
oise and also systematic errors from shortcomings of the underlying 
odel. Section 4.1 gives the results of using simulations to set these

ncertainties. The assumption of Gaussianity is a reasonable choice 
ven in absence of systematics, as per the central limit theorem 

the mean redshift compresses the information from many different 
edshifts). Moreo v er, we parametrize the impact of systematics 
ffects in such a way they can be described by a Gaussian likelihood,
nd systematic effects dominate our total error budget. 

.2.2 Full-shape method 

his method dispenses with the mean statistic and 
imply compares the observed w ur ( z i ) data to a model
ˆ  ur [ z i ; n u ( z) , b r ( z) , b u ( z) , αr ( z) , αu ( z) , s ] that incorporates potential
ystematic effects. The model is an alteration of equation (4): 

ˆ  ur ( z i ) = n u ( z i ) b r ( z i ) w DM 

( z i ) × Sys ( z i , s ) + M( z i ) . (12) 

The functions n u ( z ), b r ( z ), and M ( z ) are assumed to be given
eforehand, and w DM 

is calculated from theory as described in equa- 
ion (7). The Sys function multiplies the clustering signal by some 
edshift-dependent value that is parameterized by s = { s 1 , s 2 , . . . }
hat we will marginalize o v er. The role of the Sys function is to
bsorb all uncertainties in b u and its redshift dependence, as well as
ncertainties due to failures in the linear bias model itself, and in the
etermination of b r ( z). The choice of Sys function and the priors on
ts parameters are guided by simulations as described in Section 4.2. 
s a rule of thumb, we expect the Sys function amplitude to slowly
ary across redshift, and to be of the same magnitude of a typical
alaxy-matter bias (i.e. around unity). We note that in principle we 
ould also have absorbed the redshift dependence of w DM 

, or the
agnification contribution M ( z), into the Sys function. We did not

roceed this way since we know how to model these contributions, 
lthough this comes at the expense of a more complex model. Lastly,
e note that formally the magnification contribution also depends 
n the bias b u ; this is marginalized separately, together with the
agnification parameter of the unknown sample αu (more details are 

iven in Appendix A). 
With a model for w ur in hand, we assume that the measurement

rrors in the data are Gaussian and define a likelihood 

 [ WZ | n u ( z ) , b r ( z ) , αr ( z ) , w DM 

( z ) ] 

∝ 

∫ 

d s d p exp 

[
−1 

2 
( w ur − ˆ w ur ) 

T 
 

−1 
w ( w ur − ˆ w ur ) 

]
p ( s ) p ( p ) , 

(13) 

here p = { b u , αu } enters in the modelling of the magnification term.
he data and model for w ur are taken here to be v ectors o v er z i ,
nd 
 w is the covariance matrix of the data (from shot noise and
ample variance). The nuisance parameter sets s and p each have 
heir own priors. It is the extent of these priors that regulates the
evel of systematic error allowed for in the inference of n u ( z) from
he clustering- z data. The systematic function and these priors are 
uantified in Section 4.2. 
The covariance matrix 
 w is estimated from simulated data 
hrough a jackknife (JK) approach, using the following expression 
Quenouille 1949 ; Norberg et al. 2009 ): 

ˆ 
 ( x i , x j ) = 

( N JK − 1) 

N JK 

N JK ∑ 

k= 1 

(
x k i − x̄ i 

) (
x k j − x̄ j 

)
, (14) 

here the sample is divided into N JK = 1000 subregions of roughly
qual area, x i is a measure of the statistic of interest ( = w ur ) in the
 -th bin of the k -th sample, and x̄ i is the mean of the resamplings.
he jackknife regions are safely larger than the maximum scale 
onsidered in our clustering analysis. The correction from Perci v al
t al. ( 2021 ) is implemented when computing the inverse covariance,
lthough it has a modest impact ( ∼10 per cent on the amplitude of
he cov ariance) gi ven the number of jackknife regions and the data
ector length. 

Note that the clustering- z likelihood in equation (13) depends ex-
licitly on the estimated bias and magnification coefficient b r and αr 

f the reference sample, and depends implicitly on the cosmological 
odel through the dark-matter clustering w DM 

. Thus in principle, this
ikelihood and the inferences on n u ( z) must be recalculated for each
hange in cosmological model. We have, ho we ver, tested numerically 
hat the full expression for L [ WZ | n ( z)] has negligible dependence on
he cosmological parameters or the reference-sample properties once 
he marginalization o v er systematic nuisances s and p are done. This
s because the systematic variables have enough freedom to absorb 
he small changes in the model wrought by changes in cosmology.
t is therefore allowable for us to compute equation (13) using a
ducial cosmology and fiducial values of b r and αr , and use the

nferred redshift distributions in a cosmological inference that might 
ary these parameters. 

 DATA  A N D  SIMULATED  DATA  

his section describes the various photometric and spectroscopic 
atalogues that feed into the clustering- z measurements. The full 
nalysis is also conducted on simulated catalogues; for each element 
f the real analysis, we also describe how its simulated counterpart
as generated. 

.1 DES Y3 data 

he DES observed ∼5000 square degrees of the Southern hemisphere 
n five different broad photometric bands ( grizY ) over 6 yr using
he Dark Energy Camera (DECam, Flaugher et al. 2015 ), a 570-

e gapix el camera built by the DES Collaboration and stationed at
he Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco 
elescope. DES will measure the shapes of about 300 million galaxies
p to redshift z ∼ 1.4. In this paper, we focus on the analysis of the
rst 3 yr (Y3) of observations. DES Y3 data span the full area of

he surv e y, 4143 de g 2 after masking for fore grounds and problematic
egions, a major advance over the 1321 deg 2 of DES Y1 ( Drlica-

agner et al. 2018 ; Troxel et al. 2018 ). The complete DES (Y6)
eaches greater depth than Y3 data; furthermore, the data are more
niform in depth.. The total number of objects detected in DES Y3
s ≈ 390 000 000 . Object detection and measurements are described
n Sevilla-Noarbe et al. ( 2021 ). 

.2 Buzzard N -body simulation 

e use one realization of the DES Y3 Buzzard catalogue v2.0
DeRose et al. 2019 ). Initial conditions were generated using 2LPTIC
MNRAS 510, 1223–1247 (2022) 
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Figure 1. Redshift distributions of the redMaGiC samples, binned using the 
redMaGiC photo- z estimates, in data and in simulations. 
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1 We note that the simulated redMaGiC sample spans a slightly wider range in 
redshift; we none the less cut the redshift interval at z = 0.90 to be consistent 
with the data. 
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Crocce, Pueblas & Scoccimarro 2006 ) and the N -body run using
-GADGET2 (Springel 2005 ). Cosmological parameters have been
hosen to be 	m 

= 0.286, σ 8 = 0.82, 	b = 0.047, n s = 0.96, h = 0.7.
ight-cones are generated on the fly starting from three boxes with
ifferent resolutions and size (1050 3 , 2600 3 , and 4000 3 Mpc 3 h −3 

oxes and 1400 3 , 2048 3 , and 2048 3 particles), to accommodate the
eed of a larger box at high redshift. Haloes are identified using the
ublic code ROCKSTAR (Behroozi, Wechsler & Wu 2013 ) and they
re populated with galaxies using ADDGALS (DeRose et al. 2019 ).
alaxies are assigned magnitudes and positions based on the relation
etween redshift, r -band absolute magnitude, and large-scale density
ound in a subhalo abundance matching model (Conroy, Wechsler &
ravtsov 2006 ; Lehmann et al. 2017 ) in higher resolution N -body

imulations. SEDs are assigned to galaxies from the SDSS DR7
alue Added galaxy catalog (Blanton et al. 2005 ) by imposing the
atching with the SED–luminosity–density relationship measured

n the SDSS data. SEDs are K -corrected and inte grated o v er the DES
lter bands to generate DES grizY magnitudes. Lensing effects are
alculated using the multiple plane ray-tracing algorithm CACLENS

Becker 2013 ), which provides weak-lensing shear, magnification,
nd lensed galaxy positions for the light-cone outputs. 

.3 Reference sample 1: redMaGiC galaxies 

he first reference sample used in this clustering- z analysis consists
f DES redMaGiC galaxies. The redMaGiC algorithm selects red
uminous galaxies with high-quality photometric redshift estimates
Rozo et al. 2016 ). This is achieved by fitting each galaxy to a
ed sequence template; galaxies are then selected only if they pass a
oodness of fit and luminosity threshold. In DES, redMaGiC galaxies
re used as lens sample in the g alaxy–g alaxy lensing analysis and
n the clustering analysis (Prat et al. 2020 ; Rodr ́ıguez-Monroy et al.
020 ). Two samples are selected with different number density by
eans of two distinct luminosity thresholds: a first sample called

high density’ selected with a cut L/L ∗ > 0.5 and a sample called
high luminosity’ selected with a cut L/L ∗ > 1. A combined sample
s then obtained by joining these two samples, using the high-density
ample for redshifts z < 0.65, the high-luminosity sample for higher
edshifts. 

In simulations, the redMaGiC sample is selected with the same
lgorithm used in the data. A comparison between the redshift
istributions for the redMaGiC samples in data and in simulations
s shown in Fig. 1 , illustrating the good agreement between the two.
NRAS 510, 1223–1247 (2022) 
mall differences are due to small discrepancies in the evolution
f the red-sequence between the simulation and the data. Both in
imulations and in data, the redMaGiC sample is divided into 40
ins of width �z = 0.02 spanning the 0.14 < z < 0.94 range
f the redMaGiC catalogue. 1 The particular choice of the bin
idth is not expected to impact our conclusions, as long as bins

re small enough compared to the typical variation scales of the
L n ( z) and the galaxy-matter biases of the two samples. The

otal number of redMaGiC galaxies is 3041 935 in the data, and
594 036 in the simulation. The difference in the number density
s due to the aforementioned discrepancy in the evolution of the
ed-sequence between data and simulations. This implies that the
tatistical uncertainties of the clustering- z estimates obtained using
he redMaGiC sample are larger in simulations compared to data. We
o not expect this to be important, as we show in Section 4.1 that the
lustering- z methodology is dominated by systematic uncertainties,
nd the statistical uncertainties are negligible. 

We compare the typical redMaGiC photo- z scatter and bias found
n data versus in simulations in Fig. 2 . Since only a portion of the
ata have spec-z information, we reweight the magnitude distribution
f the spectroscopic sample such that it matches the magnitude
istribution of the redMaGiC galaxies before computing the statistics
hown in Fig. 2 . This reweighting is performed separately for each
edshift bin. Note that the typical scatter of redMaGiC photo- z is
imilar to our bin width, which might call into question the choice of
in width for redMaGiC galaxies. Ho we v er, we v erify in Section 4.1
hat even with this set-up, redMaGiC photo- z uncertainties are not a
ominant source of systematic error for our methodology. Therefore,
e decided that using a larger bin width for redMaGiC galaxies was
ot necessary. 
Using cross-correlation techniques, Cawthon et al. ( 2020 ) noted

hat photo- z uncertainties in redMaGiC galaxies at z > 0.8 might
e underestimated. We do not think this constitutes a problem
or the current analysis, as redMaGiC photo- z uncertainties are
 subdominant systematic in our methodology (Section 4.1), and
lustering- z constraints at z > 0.8 are driven by the BOSS/eBOSS
ample (Section 4.2.2). 

A catalogue of random points for redMaGiC galaxies is generated
niformly o v er the footprint. Both in data and in simulations, weights
re assigned to redMaGiC galaxies such that spurious correlations
ith observational systematics are cancelled. Note that due to

ow-statistics issues, the weights do not resolve fluctuations on
cales rele v ant for this work, but only capture large-scale spurious
orrelations. The methodology used to assign weights is described
n Rodr ́ıguez-Monroy et al. ( 2020 ), and it is the same for data
nd simulations. The main difference between data and Buzzard
imulations is that the latter only models depth variations across the
ootprint, while data are subject to a larger number of systematics
hich are not modelled in simulations. This should not affect any

onclusion drawn here: the weights remove the spurious dependence
f the number density with respect to an y systematic, re gardless of
heir number, at least at the level needed for two-point correlation
unctions to be unbiased (Rodr ́ıguez-Monroy et al. 2020 ). This of
ourse holds as long as all the systematics affecting the data are
aken into account when producing the weights. 

art/stab3311_f1.eps


Clustering redshifts 1229 

Figure 2. The bias (left) and scatter (right) of z redMaGiC for the simulated redMaGiC sample (solid lines) compared to the data (dashed lines). 

Figure 3. Spatial co v erage of the two reference samples used in this work. 
Purple indicates the co v erage by redMaGiC galaxies, pink indicates the 
co v erage by BOSS and eBOSS galaxies. 
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Table 1. List of the spectroscopic samples from BOSS/eBOSS o v erlapping 
with the DES Y3 footprint used as reference galaxies for clustering- zs in this 
work. 

Spectroscopic samples 

Name Redshifts N gal Area 
LOWZ (BOSS) z ∼ [0.0, 0.5] 45 671 ∼860 deg 2 

CMASS (BOSS) z ∼ [0.35, 0.8] 74 186 ∼860 deg 2 

LRG (eBOSS) z ∈ [0.6, 1.0] 24 404 ∼700 deg 2 

ELG (eBOSS) z ∈ [0.6, 1.1] 89 967 ∼620 deg 2 

QSO (eBOSS) z ∈ [0.8, 1.1] 7759 ∼700 deg 2 
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.4 Reference sample 2: spectroscopic galaxies 

he second reference sample used in this work is a combination of
pectroscopic samples from the Sloan Digital Sky Survey (SDSS, 
unn et al. 2006 ; Eisenstein et al. 2011 ; Blanton et al. 2017 ).

n particular, we combine SDSS galaxies from BOSS (Dawson 
t al. 2013 ; Smee et al. 2013 ) and from eBOSS (Dawson et al.
016 ; Ahumada et al. 2020 ; Alam et al. 2021 ). The BOSS sample
ncludes the LOWZ and CMASS catalogues from the SDSS DR 12, 
ully described in Reid et al. ( 2016 ), while we included the large-
cale structure catalogues from emission-line galaxies (ELGs, see 
aichoor et al. 2017 for the target selection description), luminous 

ed galaxies (LRGs, target selection described in Prakash et al. 2016 ),
nd quasi-stellar objects (QSOs) (Hou et al. 2021 ) from eBOSS, 
hich were provided to DES for clustering- zs usage by agreement 
etween DES and eBOSS. The different samples are stacked together, 
nd used as one single reference sample in this work. Each sample
omes with its own catalogue of random points, which account for
election ef fects. Dif ferent catalogues of random points are stacked 
ogether. We made sure the ratio of the number of randoms with
espect to the number of galaxies was the same for each random
atalogue before combining them. Both in simulations and in data, 
he BOSS/eBOSS sample is divided into 50 bins spanning the 0.1 <
 < 1.1 range of the catalogue (width �z ∼ 0.02). The area co v erage
s smaller compared to redMaGiC galaxies, as shown in Fig. 3 . The
edshift distribution of the samples is shown in Fig. 4 , and the area
o v erage and number of objects of each sample are summarized in
able 1 . Note that some of the galaxies in the BOSS/eBOSS sample
re also in the redMaGiC catalogue: ∼1 per cent of the redMaGiC
alaxies are matched to ∼10 per cent of the BOSS/eBOSS galaxies,
ithin 1 arcsec. We did not remo v e these galaxies from the redMaGiC

ample, as they have a negligible impact both on our constraints and
n the covariance between the two samples (as it will be clear in the
ollowing sections, the constraints from both samples are systematic- 
ominated). 
To replicate the spectroscopic BOSS/eBOSS sample in simula- 

ions, we selected bright galaxies with similar sk y co v erage and
edshift distribution as the ones in data. We did not try to further
atch other properties of the sample, e.g. the galaxy-matter bias 

ikely differs from that of the real data. We note that the clustering- z
ethodology corrects for the reference bias, so at no point in the

nalysis of the real data are we assuming that the simulations have
he same bias. 

.5 WL sample 

he WL sample in data is created using the METACALIBRATION 

ipeline, which is fully described in Gatti et al. ( 2021 ). After creation
f the DES Y3 ‘Gold’ catalogue (Sevilla-Noarbe et al. 2021 ), the
ETACALIBRATION pipeline measures the shapes of each detected 
bject. Selection cuts for the sample are described in Gatti et al.
 2021 ) and are chosen from results of tests on both sky data and image
imulations (MacCrann et al. 2022 ), and are designed to minimize
ystematic biases in the shear measurement. Galaxies are weighted 
y the inverse variance of shear measurement, which increases 
he statistical power of the catalogue. The final sample comprises 
00 204 026 objects, for an ef fecti ve number density of n eff = 5.59
al arcmin −2 . Galaxies are further divided into four tomographic 
MNRAS 510, 1223–1247 (2022) 
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Figure 4. Redshift distribution of the BOSS/eBOSS sample in data. 
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ins, and redshift distribution estimates for each of the tomographic
ins are provided by the SOMPZ method (Buchs et al. 2019 ; Myles
t al. 2021 ). The tomographic bins are selected such that the y hav e
oughly equal raw number density. 

The WL sample is reproduced with high fidelity in the Buzzard
imulation by applying flux and size cuts to the simulated galaxies
hat mimic the DES Y3 source selection thresholds. The WL galaxy
ample in Buzzard is selected with the aim of reproducing the same
election applied in DES Y3 data in terms of size, signal-to-noise
atio, and colours. Shape noise has been added to the galaxies to
atch the measured shape noise of the DES Y3 WL sample. 

.5.1 Photo- z estimates: SOMPZ 

he SOMPZ method uses spectroscopic and multiband photometric
nformation, and data from a number of deep fields (Hartley et al.
022 ) where additional photometry in the infrared bands YJKs and
 -band is available, besides the standard 5-band ( grizY ) photometry
vailable in the DES wide field. This additional information is used
o break the degeneracies in the photo- z estimates of the DES wide-
eld galaxies (which have fewer bands available). This is achieved
y creating two Self-Organizing Maps (SOM, Kohonen 1982 ), one
apping the deep/spectroscopic galaxies into a 2D grid of cells using

heir 8-band fluxes, and another mapping the WL sample galaxies
nto a 2D grid using the riz photometry. A probabilistic mapping
rom the wide-field SOM to the deep-field SOM is generated using
he ‘Balrog’ source-injection simulations (Everett et al. 2020 ) and
 map from the deep-field SOM to redshift is estimated using the
pectroscopic data. 

The tomographic bins are constructed as follows: a first set of edge
alues are arbitrarily selected. Each galaxy of the redshift sample is
hen assigned to the tomographic bin in which its redshift estimate
alls. A number of galaxies at this point share the same photometry
ell of the wide-field SOM and same tomographic bin, so the cell in
ts entirety is assigned to the bin to which the majority of its galaxies
ive. The initial bin edges are adjusted to yield approximately the
ame number of galaxies, and finally the whole procedure is repeated
ith the new bin edges. After completing this procedure, the final
in edges are [0.0, 0.358, 0.631, 0.872, 2.0] for the Y3 WL source
atalogue. 

The full Y3 SOMPZ procedure is described in Myles et al.
 2021 ). A number of factors contribute to the error budget of the
ethod: (1) shot noise (i.e. the limited number of galaxy redshifts

v ailable); (2) sample v ariance (i.e. the fact that the spectroscopic and
eep fields span a limited area); (3) systematic uncertainties in the
pectroscopic/multiband photometry samples; (4) uncertainty in the
ethodology in general; (5) photometric calibration uncertainties in

he Y3 deep fields, i.e. the uncertainty on the zero-point calibration
n each band. 

The total error budget is dominated by the photometric calibration
ncertainty in the low-redshift bin, while it is dominated by sample
ariance and biases in the spectroscopic/multiband photometric
amples in the high-redshift bins (Myles et al. 2021 ). 

The SOMPZ method incorporates methods for assessing the like-
ihood L [ PZ | n u ( z)] of obtaining the various SOMPZ data elements
SOM cell counts, etc.) given a candidate set of n u ( z) redshift
istributions for the tomographic bins, which account for shot noise
nd sample variance in the various catalogues used by SOMPZ.
he construction of this likelihood and the methods for sampling
andidate n ( z) distributions from it are given by S ́anchez & Bern-
tein ( 2019 ). Potential selection biases in the spectroscopic redshift
NRAS 510, 1223–1247 (2022) 
ssignments are estimated by compiling n ( z) realizations obtained
y calibrating with three different sets of spectroscopic/multiband
hotometric samples. Redshift uncertainties related to the zero-point
alibration are added after the SOMPZ realizations are informed by
he clustering measurements (Myles et al. 2021 ). This is done for
fficiency reasons and it does not affect the main results of this work.

The SOMPZ process is completely reproduced in simulations,
ncluding the creation of spectroscopic catalogues from small-
rea surv e ys, but these simulations do not take into account the
ncertainties related to unknown redshift selection biases in the
pectroscopic/multiband samples. As a result of the slight differences
f the simulated Y3 source sample data equi v alent, the bin edges in
he equi v alent Buzzard catalogue are [0.0, 0.346, 0.628, 0.832, 2.0].
stimates of the n ( z) obtained in simulations are shown in Fig. 5 . 

 RESULTS  O N  SI MULATI ONS  A N D  

YSTEMATIC  E R RO R S  

n this section, we present the results of our two calibration strategies
erformed in simulations. In particular, we aim to e v aluate the sys-
ematic uncertainties of each method, and verify that the calibration
rocedure in simulations works as expected. Note that at no point
re the simulations used to make corrections to the data; rather the
imulations are used to (1) estimate the level of uncertainty to assign
o various systematic errors, and (2) validate that the method yields
esults for n ( z) consistent with truth. 

Before focusing on the details of the two calibration procedures,
e show in Fig. 6 the redshift distributions estimates obtained
sing the clustering- z n u ( z) estimator (following equation 8) on
imulations, compared to the true distributions. The angular scales
onsidered in the clustering measurements have been chosen to span
he physical interval between 1.5 and 5.0 Mpc. These bounds (which
re applied to the data as well) are selected so that the upper bound
s below the range used for the w( θ ) statistics used in cosmological
nalyses, thus allowing the clustering- z likelihoods to be essentially
tatistically independent of cosmology, and permitting us to produce
 ( z) samples in an MCMC chain that runs before, and independent
f, the cosmology. The values of b r in the clustering- z analysis are
ot required to match those used in the cosmological analyses. The
ower bound is chosen to produce high signal-to-noise ratio S / N while

itigating failures of the linear bias model. 
We start with an idealized case: the distributions shown in Fig. 6 are

btained using redMaGiC galaxies as a reference binned using true
edshift. In simulations we also have an accurate estimate of b u ( z),
btained from the autocorrelations of each of the tomographic bins of

art/stab3311_f4.eps
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Figure 5. SOMPZ redshift distributions, as estimated in simulations (upper panels) and in data (lower panels), for the four tomographic bins considered in this 
analysis. The bands represent the 68 per cent confidence interval spanned by the SOMPZ n(z) realizations. 

Figure 6. Sources redshift distributions estimated using clustering- z in simulations for an idealized set-up (see the text in Section 4), compared to the truth 
(black lines). The top panels show the redshift distributions; the middle panels show the ratio between the true n ( z) and the n ( z) estimated using clustering- z; 
and the bottom panels show the mean of the redshift distributions. The red lines represent the clustering- z estimates obtained using the estimator introduced 
by equation (8). The blue lines represent the clustering- z estimated obtained further correcting for the term b u , which is only possible in simulations. The 
four different tomographic bins used in the DES Y3 cosmological analysis are shown. We used redMaGiC galaxies as the reference sample, binned using true 
redshifts. For this plot, we also subtracted from the clustering- z n ( z) estimates the expected magnification contribution in simulations (Appendix A); this has 
only a mild effect at high redshift ( z > 0.6) for the first two bins. The redshift distributions are normalized o v er the same interval. The grey shaded regions 
indicate the interval considered for the mean matching method. The mean of the distributions shown in the bottom panels is computed only considering the grey 
intervals. Error bars only include statistical uncertainties. 
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he unkno wn sample, di vided into thin bins of width �z = 0.02. 2 This
s not possible in data since the precision of the photometric redshift
 In order to measure the autocorrelations, we generated randoms properly 
ccounting for the WL mask. We also created systematic weights for the WL 

ample using the same procedure used for redMaGiC galaxies (although we 
ound they have a negligible impact). 

w  
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A
i
t

022
s not sufficient to divide the sample in bins of adequate width. Fig. 6
hows the impact on the estimated n ( z)’s of assuming we know b u ( z)
ith good accuracy (in cyan), dividing equation (8) by b u ( z). We
ote that correcting for b u drives both the shape of the distributions
nd the mean value closer to the truth, which are otherwise biased.
s we cannot estimate b u in data, this highlights that variation in b u 

ntroduces a systematic uncertainty that has to be quantified. Note 
hat the errors bars in Fig. 6 only include statistical uncertainties . 
MNRAS 510, 1223–1247 (2022) 
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Table 2. Mean-matching method : We display the total systematic error budget on the mean redshift, for the two 
reference samples used in this work. We also report the contribution due to each single source of systematic uncertainty, 
as a function of tomographic bin. As for the redMaGiC systematic, we also report in parentheses the values of the 
uncertainties we would have obtained if we had not included the correction factor in the bias estimation (see Section 4.1). 

Systematic tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4 

methodology: 0.002 ± 0.003 0.001 ± 0.002 0.000 ± 0.001 0.001 ± 0.002 
magnification: 0.004 0.005 0.003 0.004 
WL galaxy bias unc: 0.013 0.013 0.013 0.013 
redMaGiC syst: 0.000 (0.014) 0.001 (0.007) 0.002 (0.000) 0.005 (0.003) 

total systematic redMaGiC : 0.014 0.014 0.014 0.015 
statistical redMaGiC : 0.003 0.002 0.001 0.002 

total systematic BOSS/eBOSS: 0.014 0.014 0.014 0.014 
statistical BOSS/eBOSS: 0.007 0.006 0.004 0.006 
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In the following subsections, we tested the accuracy of our
alibration procedure using the two different approaches outlined
n Section 2, i.e. the mean-matching and the full-shape methods. 

.1 Method 1 (mean-matching): systematic uncertainties 
stimation in simulations 

e test in this section the mean-matching clustering- z photo- z
alibration method. The metric used here to assess the accuracy of
ur methodology is the difference between the mean of the reco v ered
edshift distribution and the true mean, as follows: 

 〈 z〉 ≡ |〈 z〉 true − 〈 z〉 WZ | . (15) 

s described in Section 2.2, 〈 z〉 is calculated o v er a restricted redshift
nterval 〈 z〉 SOMPZ − 2 σ SOMPZ < z < 〈 z〉 SOMPZ + 2 σ SOMPZ to reduce
he impact of magnification 3 . The redshift intervals are of course
lso truncated at the bounds of the reference sample. The same
edshift intervals are used for simulations as for data (see Fig. 6 ).
he intervals used are [0.14,0.62], [0.18,0.80], [0.46, 0.90], [0.48,
.90] for redMaGiC and [0.10,0.62], [0.18,0.80], [0.46, 0.98], [0.48,
.06] for BOSS/eBOSS. 

.1.1 Systematic uncertainties 

e quantify here the systematic uncertainties of the mean matching
ethod. Since the mean-matching method reduces each n ( z) to its
indowed mean 〈 z〉 , the systematic errors will be quantified by the
ncertainties that they imply should be added (in quadrature) to
he σ z values of equation (11). We note that the absolute value of
he terms in equation (8) are irrele v ant for this method, as we are
nly interested in how the y evolv e with redshift. In principle, in
he absence of magnification, assuming perfect reference sample
edshift accuracy (e.g. redMaGiC redshifts to be exact), assuming
hat we are able to successfully estimate all the terms in equation (8),
nd assuming that we know the galaxy-matter bias evolution of
he unknown sample, we should correctly reco v er the mean of the
nknown redshift distributions. The abo v e assumptions might not
old when applying this methodology in data, causing a systematic
 In principle, performing a symmetric cut in comoving distance rather than 
n redshift should reduce the impact of magnification effects more efficiently. 

e followed the DES Y1 prescription, which implements a symmetric cut in 
edshift. We note, ho we ver, that a symmetric cut in distance (rather than in 
edshift) would have changed the location of the interval edges by at most �z 

0.03, hence it would have had a negligible impact on our methodology. 
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2022
ias in the calibration, In particular, � 〈 z〉 can differ from zero because
f the following reasons: 

(i) The approximations that allowed us to factorize the integral
n equation (1) into b r ( z ) b u ( z ) w DM 

( z ) might not hold (e.g. linear
ias model, infinitesimally thin bins), leading to inaccuracies in the
odelling at small scales. We will quote these as methodology

ystematics . This systematic does not depend on the reference
ample used. 

(ii) Magnification contribution. In the mean matching approach,
e do not correct for magnification effects, as we cut the tails of

he redshift distributions. This systematic quantifies how effective
ur cut is. We will refer to this as magnification systematic . This is
 subdominant effect in our total error budget. We defer a detailed
escription of magnification effects and how they are e v aluated to
ppendix A. 
(iii) The clustering- z estimator ignores the redshift evolution of

he galaxy-matter bias of the unknown sample ( WL galaxy bias
ncertainty ). This systematic does not depend on the reference
ample used. 

(iv) The reference sample is binned using photometric redshifts
nd not spectroscopic redshifts. This only applies to the redMaGiC
ase. We will refer to this as redMaGiC systematic . 

e studied the performance of the estimator described in equation (8)
or four cases, starting from an ideal environment free from the effects
f systematics and introducing one uncertainty at the time, leading to
 more complex, realistic case. This allows us to estimate separately
he magnitude of each systematic independently. In the following
ests, we will only use the redMaGiC galaxies as a reference sample
o estimate the systematic uncertainties. Indeed, the BOSS/eBOSS
ample should be affected by the same systematic uncertainties as
he redMaGiC sample, except for the redMaGiC systematic. 

We begin with the most ideal case possible, shown in Fig. 6 , which
e already described at the beginning of this section. Recall that for

his case we used redMaGiC galaxies as a reference binned using
rue redshifts, we corrected for the bias evolution of the unknown and
eference sample, and we corrected for the redshift evolution of the
lustering of dark matter. The � 〈 z〉 mean for this case provides an
stimate of the methodology systematic, and it is reported in the first
ine of Table 2 . This value is compatible with zero within statistical
ncertainty (estimated through jackknife resampling), indicating
hat for the scales considered in this work (1.5–5.0 Mpc), the
pproximation of linear bias model, and infinitesimally thin redshift
ins are good enough for the purpose of calibrating the mean with
lustering information. 
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We next quantify the impact of ignoring the redshift evolution of
he galaxy-matter bias of the unknown sample b u ( z), as this cannot be

easured in data. We estimate the size of this effect in the simulation
y assuming a constant b u for each tomographic bin, and we obtain
he resultant shifts of � 〈 z〉 of (0.010,0.013,0.006,0.001). The effects 
f redshift-dependent b u ( z) on the mean and on the shape of the
lustering- z n ( z) are shown in Fig. 6 : the red and blue values differ
nly in the presence of the b u ( z) term in the latter. Given that the WL
alaxy bias uncertainty is the dominant uncertainty of the clustering- 
 method, we take the conserv ati ve approach of assigning an RMS
ystematic value to every bin that is equal to largest � 〈 z〉 found in
uzzard, i.e. � 〈 z〉 = 0.013 estimated for the second bin. This σ z 

ontribution is listed in the third row of Table 2 . 
Finally, we estimate the systematic uncertainty in 〈 z〉 due to 

naccuracies in the bin-shape integral in equation (6) for redMaGiC 

alaxies when they are placed into thin bins using their photo- 
 estimates. This is done in the simulation by comparing the 〈 z〉
stimates obtained when binning the redMaGiC galaxies using true 
edshifts to estimates obtained when binning using redMaGiC photo- 
. The photo- z accuracies of redMaGiC galaxies are better than those
f the WL sample, but not as good as those of a spectroscopic sample.
his can introduce two kinds of errors in 〈 z〉 : first, if all redMaGiC
hoto- z estimates were biased towards lower redshift, we would infer
 similarly biased n ( z). Second, the change in shape or width of the
 r ( z) because of photo- z errors can cause 

∫ 
dz n r ( z) 2 to be wrong

hich propagates to a shift in 〈 z〉 . 
The shifts � 〈 z〉 that result from binning the redMaGiC galaxies

sing redMaGiC photo- z rather than true redshifts are given in the
ourth row of T able 2 . W e do not report statistical uncertainties, as
he y are ne gligible, since the shifts are computed taking the difference 
f two highly correlated measurements. The shifts are relatively 
mall and unimportant in comparison to the b u uncertainties. We 
lso report in parentheses the errors in 〈 z〉 we would have obtained
ad we not included the correction factor of equation (6) when 
stimating the galaxy-matter bias of redMaGiC galaxies. Given the 
ifference between the two estimates, the correction due to the n 2 r ( z)
ntegral clearly cannot be neglected when applying the methodology 
o data. Lastly, we also estimated the redMaGiC � 〈 z〉 using theory
ata vectors of the cross-correlation signal w ur , and modelling the 
edMaGiC redshift distributions in each reference bin assuming the 
edMaGiC photo- z uncertainties estimated from data (Fig. 2 ), rather 
han the ones from the Buzzard simulation. This test delivered � 〈 z〉
f the same order of magnitude as the ones estimated directly in
uzzard and reported in Table 2 . 
Before reporting the total error budget for the mean matching 
ethod, we validate the assumption that we can assume a fixed 

osmology when calculating the clustering of dark matter, w DM 

( z).
ssuming dif ferent v alues for the cosmological parameters ( 	m 

= 

.4, σ 8 = 0.7) results in a negligible shift, � 〈 z〉 < 10 −3 . 
The total error budget is reported at the end of Table 2 , and is

btained by adding in quadrature all the single sources of errors,
ssuming they are independent. The dominant source of uncertainty 
s the potential redshift evolution of the WL sample, which we do
ot model in the mean-matching analysis of the real data or in the
alidation analyses of the simulations, which are described next. 

.1.2 Application of the method in simulations 

n order to apply the mean matching method in simulations, we 
un our clustering measurements using a realistic set-up, for the 
wo reference samples considered in this work. Fig. 7 compares the 
 ( z) distributions obtained from simulations with redMaGiC and 
OSS/eBOSS as reference samples. In particular, redMaGiC galax- 

es have been binned using the redMaGiC photo- z estimates rather
han the true redshifts and we did not correct for the bias evolution
f the unknown sample. This plot highlights the differences between 
he two samples: redMaGiC has a smaller statistical uncertainty, but 
he BOSS/eBOSS sample has a wider co v erage in redshift, helping
specially at higher z. The distributions are compatible within errors. 
e note that in order to correct for the bias evolution of the reference

ample when using redMaGiC galaxies as a reference, we have to ap-
ly a correction to the width of redMaGiC bins, as described in equa-
ion (6), to account for the broader distributions that redMaGiC bins
ave compared to a top-hat bin. This correction is shown in Fig. 8 . 
Once we have n ( z) clustering- z estimates, we first verify that

he clustering- z windowed mean redshift estimates obtained using 
he two reference samples are both compatible within uncertainties 
including systematic and statistical) with the truth, and with 
OMPZ estimates. This is shown in the lower panel of Fig. 7 .
ote that the clustering- z windowed means are compatible by 

onstruction with the truth, given our modelling of the systematic 
ncertainties of the method. 
We can then proceed combining the clustering- z information 

ith the SOMPZ method. Recall that the SOMPZ method can 
rovide samples of the n u ( z)’s from its posterior distribution. We
an importance-sample these SOMPZ samples by assigning each 
 weight through the likelihood given by equation (11). As we
ave two reference samples, we multiply the likelihoods obtained 
sing the redMaGiC and BOSS/eBOSS samples; we assume the two 
ikelihoods share the WL galaxy bias uncertainty but are otherwise 
onsidered independent, which is a reasonable assumption given the 
act the total error budget of the methodology is systematic dominated
nd the o v erlap between the two sample is minimal. 

Fig. 9 shows, in red, the distributions of 〈 z〉 o v er SOMPZ
ealizations, one panel for each tomographic bin. Note that in this
ase, 〈 z〉 is taken o v er 0 < z < 4, not restricted to narrower
anges where the clustering- z signal is measured and large. The
lue curves show the distributions of 〈 z〉 after having being weighted
y the clustering- z likelihood. The means and standard deviations 
f 〈 z〉 of the SOMPZ realizations are also reported in Table 3 ,
ith and without the importance weighting by mean-matching. The 

mportance-weighted 〈 z〉 values are fully consistent with unweighted 
OMPZ realizations, and with the truth for the simulations. 
The clustering- z information in fact offers little impro v ement in

he constraints from the SOMPZ realization. The systematic errors 
e derive on 〈 z〉 are larger than the statistical errors with DES
3 data (Table 2 ), and also larger than the total errors estimated

or the SOMPZ method (Fig. 7 ). This means that for the DES Y3
nalysis, the mean-matching method can be useful as an independent 
ross-check of the SOMPZ methodology, but it does not significantly 
mpro v e the constraints on the mean of the redshift distributions. 

This is not entirely surprising, because we have seen that the
ominant systematic error in the mean-matching method (indeed for 
lustering- z in general) is the uncertainty in the redshift evolution
f the bias of the unknown sample, b u ( z). Even a simple linear
lope to b u ( z) will be imprinted on the inferred n u ( z) and shift 〈 z〉 ,
eaning that the dominant systematic error has its largest effect on

his lowest order moment of n u ( z). Thus in some sense, 〈 z〉 is the
tatistic for which we should expect clustering- z techniques to be
east informative. On the other hand, we expect b u ( z), and other
ources of systematic error in the clustering- z method, to be smooth,
ow-order functions of z. We will therefore look next into the ability
f clustering- z data to constrain the full shape of n u ( z). 
MNRAS 510, 1223–1247 (2022) 
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Figure 7. Upper panels : the redshift distributions estimated per equation (8) for a realistic set-up (see the text in Section 4), compared to the truth (black lines). 
We show both the redshift distributions obtained using redMaGiC galaxies as a reference sample, binned using their redMaGiC photo- z estimates, and the ones 
obtained using BOSS/eBOSS galaxies as a reference sample. The grey bands show, as a comparison, the 1 σ region encompassed by the SOMPZ realizations. 
The vertical dotted (dashed) lines indicate the intervals where the windowed means of the redMaGiC (BOSS/eBOSS) hav e been computed. Centr al and bottom 

panels : windowed mean of the redshift distributions. The clustering- z estimates are represented by Gaussian histograms with mean equal to 〈 z〉 WZ and σ equal 
to the uncertainty of the method. The error budget of the clustering- z mean redshift estimates includes both statistical and systematic uncertainties (estimated in 
Section 4.1 and reported in Table 2 ), contrary to what was shown in Fig. 6 that only reported statistical uncertainties. 
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.2 Method 2 (full-shape): systematic uncertainty estimation in 

imulations 

n the full-shape likelihood of Section 2.2, we produce a model for
he w( z) signal across the full redshift range co v ered by the reference
amples (i.e. including the tails of the distributions) and produce a
ikelihood for the observed w( z) data. In practice, this allows us to
onstrain the full shape of the redshift distributions, not only the
ean. Here we use the Buzzard simulations to set the priors for the

ystematic-error parameters within this model. 

.2.1 Systematic uncertainty determination 

ecall that in Section 2, specifically equation (12), the cross-
orrelation signal is modelled starting from a proposed value
or n u ( z) (e.g. provided by SOMPZ), the (measurable) reference-
opulation properties b r ( z) and αr ( z), and nuisance parameters
or the (poorly known) bias and magnification properties of the
ource population b u ( z) and αu ( z). We will set these last two
s constant o v er redshift and marginalize o v er broad priors on
NRAS 510, 1223–1247 (2022) 
hese constants, to flexibly model the magnification signal. The
nderlying function w DM 

( z) is estimated assuming a cosmological
odel. 
The final component of the ˆ w ur model is a function Sys ( z, s ) that
ultiplies the true clustering signal and will absorb the systematic

rrors described for the mean-matching method: failures of the
inear-bias model itself; the unknown and redshift-dependent b u ( z);
nd possible errors in the n r ( z) functions for redMaGiC bins. The
arameters s of this systematic function will be marginalized as well,
s per equation (13). 

Our strategy will be to determine what the Sys ( z) function is in
he Buzzard simulation, and then produce a prior on the s parameters
hich allows marginalization o v er a broad family of functions with

imilar form of deviation from unity. The Sys ( z) function is given
ubstantial freedom for low-order, smooth variation with z, as we
xpect from all of the systematic errors, leaving the finer-scale
nformation in w ur ( z) to constrain fine-scale behaviour in n u ( z), i.e.
he shape of n u ( z). 

The blue data points in Fig. 10 plot the Sys ( z) functions observed
n the Buzzard simulations, for both reference samples. Namely they

art/stab3311_f7.eps
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Figure 8. Redshift evolution of the galaxy-matter bias b r of simulated 
redMaGiC galaxies, estimated with different binning. In particular, the black 
line has been obtained binning redMaGiC galaxies using the true redshift, 
and the solid light blue line has been obtained binning redMaGiC galaxies 
using redMaGiC photo- z. The lower amplitude is due to the larger effective 
bin width due to the photometric uncertainties. The light blue dashed lines is 
computed from the light blue solid line after correcting for the larger width 
of the bins, following equation (6). 
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lot 

Sys sim 

( z i ) = 

w ur ( z i ) 

ˆ w ur ( z i )) 
, (16) 

here the model uses the true n u ( z ), b r ( z ), and n r ( z ) values. We
 v aluate and plot this ratio only in the z interval where the w ur signal
s large enough to have good signal-to-noise ratio and subdominant 
agnification contribution. The redMaGiC w ur ( z) uses redMaGiC 

hoto- z’s for binning, just as the real data do. 
The Sys sim 

ratio deviates from unity due to systematic effects, as 
xpected. We quantify this by the RMS of log 

[
Sys sim 

( z) 
]
, which 

re measured to be (0.11, 0.07, 0.07, 0.11) for the redMaGiC
omographic bins and (0.18, 0.15, 0.10, 0.15) for BOSS/eBOSS. 
rom this we conserv ati vely decide that the Sys function needs to
ave the freedom to have RMS (log) fluctuations of ≈0.15 as 1 σ
eviations under its p( s ) function. 
We seek a parametric function Sys ( z; s ) and a prior p( s ) which

ave these desired properties: 

(i) The function and prior yield a good fit to the Sys sim 

measured 
n Buzzard. 

(ii) The prior can be tuned to yield typical RMS variations in 
og 

[
Sys ( z) 

]
at similar level to that seen in Buzzard. 

(iii) The parametric form allows a similar smoothness of variation 
s seen in Buzzard, i.e. similar number of ‘wiggles’ across the 0 < z

 1.2 range where the WL source galaxies lie. 
(iv) The RMS of log 

[
Sys ( z; s ) 

]
as we vary s under the prior p( s )

s a flat function of z. 
(v) The prior on s is simple to construct and to use in a Hamiltonian
onte Carlo chain. 

We chose the Sys ( z , s ) function to be given by: 
og [ Sys ( z, s ) ] = 

M ∑ 

k= 0 

√ 

2 k + 1 

0 . 85 
s k P k ( u ) , (17) 

 ≡ 0 . 85 
z − 0 . 5( z max + z min ) 

( z max − z min ) / 2 
. (18) 

ith P k ( z i ) being the k -th Legendre polynomial, M is the maximum
rder, and the second line linearly remaps the z interval [ z min , z max ]
o [ −0.85, 0.85]. The fraction under the summation makes the basis
unctions close to orthonormal so that the RMS of log ( Sys ) is | s | 2 . The
rior p( s ) is chosen to be a simple diagonal normal distribution with
tandard deviations { σ s 0 , . . . , σ sM 

} and means of zero. Mathematical
etails of this choice for the systematic function and its prior are given 
n Appendix B. 

A distinct set of nuisance parameters q = { p , s } (with p =
 b 

′ 
u , α

′ 
u } ) are assigned to each combination of tomographic bin and

eference sample, and each of these eight sets of w ur measurements
re fit independently. We set [ z min , z max ] to span the full range of
he reference catalogue, [0.14,0.90] for redMaGiC and [0.10,1.06] 
or BOSS/eBOSS. We set M = 5 and we set the σs i to yield an
xpectation value of 0.15 for the RMS of log 

[
Sys ( z) 

]
. The order

 was chosen by finding the value beyond which the RMS residual
topped decreasing for a fit of equation (17) to the Sys ( z) function
ound in the simulated redMaGiC w ur ( z) data. The σs i prior is set
o make the simulated Sys ( z) functions be ≈1 σ fluctuations from a
onstant. Since e s 0 is approximately the mean bias of the unknown
ample, and we expect the mean bias b r to be more uncertain than the
ariation with redshift, we treat the prior on s 0 somewhat differently,
iving it a wide prior σ s 0 = 0.6. The RMS of 0.15 is then allocated
mong the remaining elements k ≥ 1 of s which model redshift-
ependent systematic errors. 
The nuisance parameter b 

′ 
u used in magnification estimation is 

iven a Gaussian prior with ( μ, σ ) = (1., 1.5) (which encompasses
he bias of the WL sample as measured in simulation). The other

agnification nuisance α
′ 
u is given a mean estimated from image- 

njection simulations (Appendix A) and a conserv ati vely large 
ncertainty of σ = 1. 
The dashed curves in Fig. 10 plot the Sys functions obtained 

rom the maximum-posterior fits to the simulations’ w ur ( z) data,
ombining the priors on the nuisance parameters with the likelihood 
f equation (13). In all cases, the best fit models succeed in capturing
he slo wly v arying component of the systematic. In some bins, some
f the rapid variations in redshift are not well captured – this is
xpected, as we truncate the polynomial of the Sys function to order
 = 5. While this could be impro v ed by increasing the maximum

rder M , we find in practice that these small discrepancies cause
o significant bias in the reco v ered redshift distributions when the
ethod is applied in simulations (see below). The fitted functions 

emain well behav ed o v er the full w ur redshift range even though
he fit is done only for redshifts with strong signals. We conclude
hat this formulation of the systematic errors is sufficient to model
he systematic errors in our clustering- z measurement in the Buzzard
imulation, and we assume that marginalization o v er q will allow us
o capture the uncertainties present in the real data as well. 

The grey curves in Fig. 10 show a few examples of Sys ( z; s )
unctions obtained by random sampling of the prior p( s ). This
llustrates the flexibility of our model for the systematic uncertainty, 
hich is able to model a large variety of curves. 
It is useful to ask whether this implementation of systematic 

rrors in the full-shape method is consistent with the systematic 
ncertainties derived for the mean-matching method. This can be 
MNRAS 510, 1223–1247 (2022) 
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Figure 9. Mean redshift posteriors for the four tomographic bins obtained using the mean matching method in simulations. The red histograms represent the 
distribution of the mean redshift of the SOMPZ realizations, whereas the light-blue histograms show the mean redshift posteriors of the SOMPZ realizations 
using the clustering- z likelihood. The mean redshift of the SOMPZ realizations has been computed o v er a wide redshift interval (0 < z < 4), also including the 
redshift range where there is no clustering- z information. 

Table 3. Simulations . The mean redshift estimates of the SOMPZ distributions with and without clustering- z 
information, in simulations. 

Case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4 

True 〈 z〉 : 0.315 0.513 0.743 0.910 
SOMPZ 〈 z〉 : 0.312 ± 0.008 0.505 ± 0.005 0.746 ± 0.003 0.907 ± 0.005 
SOMPZ + WZ (mean-matching) : 0.314 ± 0.008 0.505 ± 0.004 0.745 ± 0.003 0.906 ± 0.005 
SOMPZ + WZ (full-shape) : 0.312 ± 0.009 0.507 ± 0.005 0.747 ± 0.004 0.907 ± 0.005 
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one by drawing many realizations of s from its prior, constructing
 model ˆ w ur data vector using each realization of Sys ( z, s ) , and then
reating this model as data input to the mean-matching method. Each
ealization of s then yields an estimate of � 〈 z〉 with respect to the
rue distribution. We obtained a typical | � 〈 z〉| in the range 0.010–
.015 depending on the tomographic bin, in very good agreement
ith the total systematic uncertainties estimated in Table 2 for the
ean-matching method. 

.2.2 Application of the method in simulations 

nce our family of systematic functions is determined for the full-
hape method, we may proceed to validating the performance of the
ombination of SOMPZ and the full-shape clustering- z method on
he Buzzard simulations. This combination is implemented (both in
imulations and in data) by sampling the n u ( z) functions for all four
omographic bins from a posterior defined by the product of: 

(i) the SOMPZ probability defined by Myles et al. ( 2021 ); 
(ii) the clustering- z probability defined by equation (13) for the
 ur ( z i ) measured against the redMaGiC sample, marginalized o v er
 as described in Appendix B; 
(iii) and likewise, the marginalized clustering- z probability de-

ived for the BOSS/eBOSS sample, marginalized over q as described
n Appendix B; 

he clustering- z probabilities use w ur ( z) o v er the full redshift range of
heir respective reference samples. The reference-sample magnifica-
ion coefficients αr and the cosmology used to derive w DM 

( z) are held
NRAS 510, 1223–1247 (2022) 
xed to nominal values. We verify below that the choices of αr and
osmology have insignificant impact on the outcome of the full-shape
ethod. In this case, contrary to the mean-matching method, we

onsider the redMaGiC and BOSS/eBOSS likelihoods independent,
.e. they do not share the WL galaxy bias uncertainty. We did this
ecause in the full-shape case we did not split our systematic function
nto different source of errors, owing to an increasing complexity in
he modelling. Given the flexibility of Sys ( z, s ) and the conserv ati ve
hoice on the RMS of log 

[
Sys ( z; s ) 

]
, considering the redMaGiC and

OSS/eBOSS likelihoods independent should not be an issue for
he methodology. The sampling of the joint SOMPZ + WZ posterior
s done using a Hamiltonian Monte Carlo method described in
ernstein (in preparation). 
Fig. 11 compares the Buzzard true redshift distribution to the

istributions drawn from only the SOMPZ likelihood and the
istributions drawn from the joint SOMPZ + WZ posterior. The
istributions of the mean redshifts per bin in the lower panels are
ot shown, but it is reported in Table 3 . It shows that the full-shape
lustering- z likelihood adds little information on these mean z’s.
his is as we expect from the results and discussion of the mean-
atching method in Section 4.1.2. The plots in Fig. 11 , ho we ver,

how that the addition of full-shape clustering- z likelihood produces
 remarkable impro v ement in the fidelity of the shape of n u ( z) to
he truth. To better quantify the impro v ement, we also show the
ignal-to-noise ratio (S/N) of the n u ( z) estimates, defined as the ratio
etween the SOMPZ n u ( z) and the 68 per cent confidence interval
f the SOMPZ realizations. The S/N is generally increased by the
nclusion of the clustering- z information; in particular, the S/N is
ncreased up to a factor of 3 in the rele v ant redshift range where n ( z)

art/stab3311_f9.eps
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Figure 10. Systematic uncertainties of the full-shape method as measured in simulations following equation (16), for the four tomographic bins and for the two 
reference samples considered ( redMaGiC upper panels, BOSS/eBOSS, lower panels). The measured systematic uncertainties are represented by the light blue 
lines; the purple dashed lines represent the best fitting model. The grey lines represent 10 random realizations of the systematic uncertainty model assumed for 
the full-shape method and described by equation (17). Note that the rapid upturn of the systematic function in bin 2 in the case of the redMaGiC sample is due 
to a rapid evolution of the galaxy-matter bias of the unknown sample, related to a strong evolution of the properties of the galaxy population. Such an evolution 
is also present in other bins, but it is milder. When the BOSS/eBOSS sample is used, the lower sensitivity does not allow to appreciate this rapid change in the 
slope of the systematic function. 
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s substantially different from 0. In the same S/N panels of Fig. 11 ,
e also show the contribution to the S/N increment due to redMaGiC
alaxies or BOSS/eBOSS galaxies alone. The latter sample mostly 
ontributes in the redshift range 0.8 < z < 1.0, whereas most of the
lustering- z information at lower redshift comes from redMaGiC 

alaxies. 
The SOMPZ method has strong fine-scale fluctuations in n u ( z)

ue to sample variance on the small regions of sky used for its deep
maging and spectroscopy. The clustering- z correlation functions, on 
he other hand, are measured o v er the full DES Y3 footprint and have
igh S / N level. Although the clustering signal has a strong systematic
ncertainty from the unknown WL bias, this systematic is slowly 
arying as a function of redshift and has less fine-scale fluctuations. 
he clustering- z likelihood is thus able to drive the n u ( z) outputs

o a smooth distribution, at least o v er redshifts where clustering- z 
eference samples are available. 

We remind the reader that the clustering information alone cannot 
e used to infer the n u ( z), as the reference samples used in this
ork do not span the whole redshift range rele v ant for the DES Y3
 u ( z). None the less, we can try to understand in simulations if the
ull-shape method would be unbiased independently of the SOMPZ 

nformation. We did this by importance-sampling realizations of the 
rue n u ( z)s shifted around their mean redshift, and by assigning to
ach sample a weight through the likelihood given by equation (13).
his test allowed us to reco v er the true n u ( z) within uncertainties,
ence proving the method to be unbiased; for more details, see 
ppendix B. 
s  
Finally, we verify that the choices of the parameters αr or the
osmology assumed to compute w DM 

do not impact the methodol- 
gy. We find that assuming different values for the cosmological 
arameters ( 	m 

= 0.4, σ 8 = 0.7) results in a shift in � 〈 z〉 <
0 −3 on the calibrated SOMPZ redshift distributions. Concerning 
agnification, in order to roughly asses the impact of the exact

alues of the magnification coefficients αr , we verified that assuming 
alues for αr that are −1 × the fiducial ones resulted in shifts � 〈 z〉
 10 −3 (see Appendix A for more details). We conclude that the

ull-shape lik elihoods, lik e the mean-matching, can be calculated in
dvance of and independent from the cosmology chains. 

 APPLI CATI ON  TO  DATA  

e apply the clustering- z methods to DES Y3 data by first measuring
he angle-averaged w ur ( z i ) (equation 2) of each WL source tomo-
raphic bin sample against the redMaGiC and BOSS/eBOSS samples 
escribed in Section 3. These cross-correlation data are plotted in 
ig. 12 . Note the exceptionally high S / N level of the redMaGiC
ata in particular, even at the rather fine binning of �z = 0.02
hat we use throughout. Bin-by-bin estimates of the reference bias 
 r ( z i ) are obtained using equation (6), with a dark-matter w DM 

( z i )
redicted from theory for nominal cosmological parameters (Planck 
ollaboration VI 2020 ). 
Note that for the redMaGiC galaxies we calculated b r ( z i ) applying

he correction to the galaxy-matter bias of the reference sample de-
cribed by equation (5), using the fraction of the redMaGiC galaxies
MNRAS 510, 1223–1247 (2022) 
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Figure 11. For each tomographic bin, three panels are shown. Upper panels: SOMPZ redshift distributions, as estimated in simulations, with and without 
clustering information (full-shape method). The bands encompass 68 per cent confidence interval of the SOMPZ n ( z) realizations. Central panels: difference 
between the reco v ered n ( z) and the true n ( z) in simulations. Lower panels: S/N, defined as the ratio between the SOMPZ n u ( z) and its 68 per cent confidence 
interval of the SOMPZ realizations, with and without clustering information. The dashed (dotted) line has been obtained only using clustering- z constraints 
from redMaGiC (BOSS/eBOSS) galaxies. 
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hich have a spectroscopic redshift. As redMaGiC galaxies with
pec-z counterparts tend to have brighter magnitudes compared to
he full redMaGiC sample, we have applied a magnitude reweighting
o those galaxies before computing the correction, so as to up-
NRAS 510, 1223–1247 (2022) 
eigh (down-weigh) redMaGiC galaxies under (o v er) represented
n the spec-z subsample. After the reweighting, the spec-z sample
ad the same magnitude distribution of the full redMaGiC sample.
mperfections in this process should be small based on the tests in

art/stab3311_f11.eps
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Figure 12. The measured w ur ( z) for the DES Y3 data are plotted for each of the four tomographic bins, using reference samples from BOSS/eBOSS (blue) and 
redMaGiC (red). 
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revious sections and are included in the systematic uncertainties of 
he two methods. 

Lastly, we note that the redMaGiC estimates show a small, ne gativ e
ail at high redshift, for the first WL tomographic bin. We believe
his is due to a systematic effect not corrected by our lens weights,
ather than magnification, which should be positive at those redshifts, 
ccording to our estimates. The Balrog estimates of the magnification 
oefficients should also include realistic systematic and observational 
iases, which might lead to ne gativ e magnification; the fact that our
stimates are none the less positive indicates that this effect is due to
ome systematic that affects the redMaGiC number density and that 
nticorrelates with the WL density distribution. We know, indeed, 
hat the redMaGiC sample is affected by some residual systematics, 
hich does not affect cosmology (DES Collaboration 2021 ; P ande y

t al. 2021 ), but manifests as a scale-, redshift-, and sky-area-
ndependent phenomenological decorrelation parameter. Given the 
mall amplitude of this effect, the fact that we also have constraints
rom another independent sample (BOSS/eBOSS), and that our 
lustering- z constraints are compatible with SOMPZ and shear-ratio 
S ́anchez et al. 2021 ) prior to combination, we believe this should
ave a negligible impact on our results. 

.1 Mean-matching results 

e use the mean-matching method as an independent check on the 
OMPZ estimates of n u ( z) in each tomographic bins. This begins
y calculating the naive (linear-theory, no-magnification, constant- 
 u ) redshift distribution ˜ n u ( z i ) from equation (8), plotted in Fig. 13 .
e show the distributions obtained with the two reference samples, 

nd, for comparison, the 1 σ region encompassed by the SOMPZ 

ealizations. 
Following the prescription for mean-matching in equation (9), 

e first compute the mean of the redMaGiC and BOSS/eBOSS 

lustering- z distributions in the redshift interval where they overlap, 
lso excluding the tails (as detailed at the beginning of Section 4.1).
e measure differences in 〈 z〉 of ( −0 . 009 ± 0 . 010 , 0 . 006 ±
 . 009 , 0 . 005 ± 0 . 006 , 0 . 022 ± 0 . 014), for the four tomographic
ins. The quoted uncertainties take into account the statistical and 
ystematic uncertainties as reported in Table 2 , except for the WL
alaxy bias uncertainty that is assumed to be shared by the two
amples. The statistical uncertainties are estimated through jackknife 
esampling. Statistical and systematic uncertainties are added in 
uadrature. We then compare the 〈 z〉 values derived for the clustering- 
 with two reference samples and the SOMPZ estimates of n u ( z):
his is shown in the lower panels of Fig. 13 . In this case the
ull systematic mean-matching uncertainty from Table 2 has been 
ncluded in the clustering- z values. The clustering- z values are fully
onsistent with the SOMPZ values in the mean-matching statistic, 
lthough they are weaker. The behaviour is very similar to what was
een in simulations. 

.2 Full-shape results 

ollowing the procedure used on the simulations, we define a full-
hape clustering- z likelihood using equations (12) and (13). We 
ssume fiducial values for the magnification parameters for the 
edMaGiC sample, as estimated using Balrog (Suchyta et al. 2016 ;
verett et al. 2020 ). We do not have an estimate of the magnification
arameters for BOSS/eBOSS galaxies available, so we assumed the 
ame values used for redMaGiC galaxies. We confirm, however, 
hat assuming values for the magnification parameters that are −1 

the fiducial ones resulted in no rele v ant ef fect on the mean of
he resultant redshift distributions. The nuisance-parameter priors 
erived from simulations in Section 4.2 are used, including those 
pecifying the allowed variation with z in b u ( z) and other elements
f the Sys ( z) function. 
Before applying the full-shape method, we checked that the 

ducial ˆ w ur model on data (obtained using SOMPZ n u ( z) as baseline)
as compatible with the measured w ur marginalized o v er the sys-

ematic function Sys(z). This check has been performed separately 
or redMaGiC and BOSS/eBOSS. We then use the Hamiltonian 

onte Carlo method to draw samples from the joint posterior 
istribution of the SOMPZ likelihood and the clustering- z likelihoods 
or both redMaGiC and BOSS/eBOSS data. Fig. 14 shows the 
8 per cent confidence interval of the n u ( z) samples from the
OMPZ + WZ posterior, as well as those from the pure SOMPZ
osterior. At redshifts where clustering- z information is available, 
t greatly reduces the point-by-point uncertainties in n u ( z), just
s in the simulations. The clustering- z full-shape method is thus
ery successful at reducing the impact sample variance on SOMPZ 

stimators. This combined estimator also shows no sign of ne gativ e
ail at high redshift in the first tomographic bin (as seen, instead, in
MNRAS 510, 1223–1247 (2022) 
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Figure 13. Illustration of the agreement among the SOMPZ n ( z) and the clustering- z n ( z) obtained using the naive redshift estimator and redMaGiC and 
BOSS/eBOSS galaxies as a reference sample. Upper panels : the naive redshift distributions estimated per equation (8) using clustering- z in data (i.e. no 
corrections for systematic errors or magnification). That is, these are the distributions employed in the mean-matching method. The redshift distributions 
obtained using redMaGiC galaxies as a reference sample, binned using their redMaGiC photo- z estimates, are in red. Those using BOSS/eBOSS galaxies 
as a reference sample are in blue. The grey bands show the 1 σ region encompassed by the SOMPZ realizations. The vertical dotted (dashed) lines indicate 
the intervals where the windowed means of the redMaGiC (BOSS/eBOSS) have been computed. The lower panels plot the windowed mean redshifts 〈 z〉 for 
each bin, as per equation (9), for the two clustering- z reference samples and for the SOMPZ samples. The clustering- z estimates are represented by Gaussian 
histograms with mean equal to 〈 z〉 WZ and σ equal to the uncertainty of the method. The SOMPZ histograms are obtained from the mean redshift of the SOMPZ 

n ( z) realizations. Good agreement is seen among all three estimators. 
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he clustering measurement, Fig. 12 ). This stresses the importance
f a combined analysis, which is more robust and is able to remo v e
ome of the potential problems or systematics affecting each of the
wo estimators when used individually. 

The averages and standard deviations of the mean- z distributions of
he SOMPZ and SOMPZ + WZ posteriors are listed in Table 4 , along
ith the results of importance-weighting the SOMPZ samples with

he mean-matching likelihood in equation (11). As expected from
he simulations, the clustering- z information does not substantially
lter the bin means derived from photo- z methods, in both the mean-
atching and full-shape methods. The significant impro v ement in

hape accuracy, as seen in Fig. 14 , is the principal product of the
lustering- z method for DES Y3 analyses. 

 C O N C L U S I O N S  

his work describes the use of clustering measurements to constrain
he WL source galaxy redshift distributions for the Dark Energy
 s  

NRAS 510, 1223–1247 (2022) 
urv e y Year 3 (DES Y3) cosmological analyses. We cross-correlate
he WL source galaxies (the ‘unknown’ sample u ) with ‘reference’
amples ( r ) from both the DES Y3 redMaGiC catalogue (LRGs with
ecure photometric redshifts) and BOSS/eBOSS galaxies (with spec-
 estimates). The reference samples are divided into thin redshift bins
entred at { z i } to yield two-point angular cross-correlation measure-
ents w ur ( z i ), for each combination of reference sample and WL

omographic bin, follo wing no w-standard practices for clustering- z
WZ) methods. The w ur ( z i ) measurements are weighted o v er angular
eparation to maximize the o v erall S / N ratio while a v oiding the
arge angular scales used for cosmological measurements, in order
o keep the clustering- z inferences statistically independent of the
osmological data vectors. 

We describe two distinct methods to constrain the redshift distri-
utions n u ( z) of the unknown samples using the w ur ( z i ) data. The
mean-matching’ method focuses on the mean 〈 z〉 of the redshift
istribution o v er a redshift window bounded by the redshift range
f the reference sample and the 2 σ extent of n u ( z). This method,
imilar to what was used in DES Y1 analyses (Davis et al. 2018 ;

art/stab3311_f13.eps
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Figure 14. SOMPZ redshift distributions, as estimated in data, with and without clustering information (full-shape method). The bands encompass the statistical 
and systematic uncertainties of the distributions. 

Table 4. Data . The mean redshift estimates of the SOMPZ distributions with and without clustering- z information. 

Case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4 

SOMPZ 〈 z〉 : 0.318 ± 0.009 0.513 ± 0.006 0.750 ± 0.005 0.942 ± 0.011 
SOMPZ + WZ (mean-matching) : 0.317 ± 0.008 0.514 ± 0.006 0.750 ± 0.005 0.941 ± 0.011 
SOMPZ + WZ (full-shape) : 0.321 ± 0.008 0.517 ± 0.006 0.749 ± 0.005 0.940 ± 0.010 
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atti et al. 2018 ), starts by computing the 〈 z〉 of a naive clustering-
 estimate ˜ n u ( z i ) (per equation 8) that assumes linear biasing with
onstant b u and no magnification. From simulations, we estimate the 
dditional uncertainty on 〈 z〉 that arises from systematic errors in 
he naive estimator, which we conservatively take as 0.014 and are 
ominated by the unknown redshift dependence of b u ( z). Finally, 
e can compare this clustering- z estimate of 〈 z〉 to that of the n u ( z)

nferred from photo- z or some other independent method. For the 
ES Y3 data, we find the mean-matching method indicates full 

onsistency between the SOMPZ photometric estimator and the 
lustering- z estimators, for all combinations of tomographic bin and 
eference sample. 

The systematic errors we derive on 〈 z〉 are larger than the statistical
rrors (estimated through jackknife) with DES Y3 data (Table 2 ), and
lso larger than the total errors estimated for the SOMPZ method 
Fig. 13 ). Thus, this mean-matching approach has reached the limits
f its usefulness, unless future experiments obtain narrower WL 

omographic bins, and/or obtain external information on the relative 
ias of the unknown sample against the reference samples. Indeed the
e generac y between n u ( z) and b u ( z) in the observable w ur ( z) is the
undamental limitation of the clustering- z approach. This does not, 
o we ver, mean that we have exhausted the information available from 

he clustering- z data in general. As discussed at the end of Section 4.1,
he mean z is probably the summary statistic of n u ( z) that is most
egraded by the dominant systematic error, redshift-dependent bias 
 u ( z), because this unmodelled multiplicative contribution to w ur ( z)
s a smooth function of redshift. Higher order moments, or more gen-
rally the detailed shape of n u ( z), are less susceptible to clustering- z
ystematic errors, which are all expected to be smooth functions of z.

To extract this information, we apply the ‘full-shape’ method, 
eveloped in Section 4.2, using w ur ( z) data to inform n u ( z). We allow
ur model ˆ w ur ( z) to incorporate an arbitrary multiplicative function 
MNRAS 510, 1223–1247 (2022) 
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ys ( z, s ) of redshift and nuisance parameters s that will mimic the
ffects of smooth systematic errors, such as b u ( z) and failure of
he linear-bias model at small scales. Using simulations to choose
his function and an appropriately flexible prior on s , we can now
efine a clustering- z likelihood for an arbitrary choice of n u ( z) that
arginalizes o v er these nuisance parameters, as well as nuisances

ssociated with lensing magnification signals that contaminate w ur ( z)
equation 13). 

We note that this method impro v es on previous applications of
lustering- z methods to WL cosmology (e.g. Choi et al. 2016 ; Davis
t al. 2017 ; van den Busch et al. 2020 ), which mostly have used
he former to constrain simple shifts of photo- z-derived redshift
istributions, i.e. n u ( z) = n PZ ( z + �z). These approaches can lead
o biased results if the shape of the photo- z posterior differs from
he truth, or if clustering systematics are not taken into account by
 sufficiently flexible model, as noted by Gatti et al. ( 2018 ) and van
en Busch et al. ( 2020 ). We impro v e on these approaches for DES
3 by defining likelihoods for n u ( z) arising from both SOMPZ and

lustering- z methods, and using Hamiltonian Monte Carlo (HMC)
o sample n u ( z) realizations from the product of these independent
ikelihoods. This also allows us to combine the information of the
edMaGiC and BOSS/eBOSS references into a single inference.
ote that each sample of the chain specifies redshift distributions

or all four tomographic bins, capturing any inter-bin correlations
hat arise from the SOMPZ inference. This SOMPZ + WZ technique
s extremely successful at reducing the point-by-point uncertainty in
 PZ ( z) that arises from sample variance in the small surv e ys typically
sed to calibrate photo- z methods. The results for DES Y3 data
an be seen in Fig. 14 . The addition of the full-shape clustering- z
nformation to SOMPZ yields n u ( z) samples that are much smoother
nd more realistic, taking advantage of the very high S / N that we have
n w ur ( z) from the full footprint of DES Y3. This benefit is present
espite the fact that the full-shape method does little to impro v e the
OMPZ’s estimate of the mean redshift of each bin. 
The final DES Y3 redshift calibration strategy includes a few

dditional minor tweaks to the SOMPZ + WZ samples, not addressed
ere. The n ( z) realizations are modified to account for uncertainties
n the photometric calibration of the SOMPZ inputs, and the z < 0.1
ehaviour (which is not constrained by clustering- z data) is smoothed
o a physically reasonable form. These steps mostly affect the first
omographic bin (Myles et al. 2021 ). An additional correction to
ll the n ( z) realizations is performed to account for the effects
f blending, based on the work on image simulations described
n MacCrann et al. ( 2022 ). Then, ideally, the realizations are
ampled o v er during the cosmological analysis, using the hyperr ank
echnique (Cordero et al. 2021 ). In practice, ho we ver, in our fiducial
osmological run, we decided to parametrize the n ( z) uncertainties
y shifts around their mean with a shift parameter �z. This choice
as dictated by efficiency reasons, and by the fact that we verified in
ordero et al. ( 2021 ) that marginalizing o v er the mean of the redshift
istributions rather than sampling o v er the multiple n ( z) realizations
as sufficient for the DES Y3 analysis. The prior on �z is naturally
rovided by the scatter on the mean of the n ( z) realizations. Finally,
hen sampling the cosmological parameters, further constraints
n the n ( z) are provided by the ‘shear-ratio’ test (S ́anchez et al.
021 ). The shear-ratio test uses small-scale g alaxy–g alaxy lensing
easurements to further inform the shifts �z. In practice, when

unning the cosmological analysis, the shear-ratio likelihood is
imply multiplied by the cosmological likelihood, since the two
re independent. Having combined these sources of information
n n ( z), we find in DES Collaboration ( 2021 ) that its uncertainties
re insignificant contributors to the Y3 cosmological uncertainty,
NRAS 510, 1223–1247 (2022) 
espite these data having the smallest statistical uncertainties of any
hotometric cosmology surv e y to date. 
The techniques used in this paper are applicable to other large

maging surv e ys. Further impro v ements in accurac y could be possi-
le from having a reference sample that has spectroscopic redshifts
ike BOSS/eBOSS (eliminating one systematic error source) but
arge area and very high S / N like the DES Y3 redMaGiC sample.
mpro v ed prior knowledge of the magnification coefficients αu , αr 

ould also be of use. Mitigation schemes to reduce the impact of
he bias evolution of the target sample could also be implemented
Matthe ws & Ne wman 2010 ; v an den Busch et al. 2020 ). Importantly,
he impact of bias evolution on clustering- z measures scales as ( �z) 2 ,
here �z is the rough width of each tomographic source bin, so

mpro v ed binning accuracy from photo- z’s will increase the value of
lustering- zs. Ultimately the scheme of S ́anchez & Bernstein ( 2019 )
nd Alarcon et al. ( 2020 ), where one samples the posterior of the
ctual mass density field, individual source z 

′ 
s , and bias functions

s constrained by the full catalogues, may offer stronger information
han clustering- z methods that reduce the catalogues to the summary
wo-point statistics w ur ( z). But the methods applied to DES Y3 do
ake more complete use of the clustering- z data at summary-statistic

evel than has been done in the past. 
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PPENDIX  A :  MAGNIFICATION  EFFECTS  

e provide in this Appendix more details about the modelling of
agnification effects M ( z i ) in the cross-correlation signal between

he unknown and reference samples. Considering only the dominant
erms (which account for the magnification of the unknown sample by
he reference sample and the magnification of the reference sample by
he unknown sample) and assuming linear bias, this can be written as: 

( z i ) = 

∫ 

d θW ( θ ) 
∫ 

d l l 

2 π
J 0 ( lθ ) 

∫ 

d χ

χ2 

×
[ 
b r αu q 

r 
δq 

u 
κ + b 

′ 
u αr q 

u 
δ q 

r 
κ

] 
P NL 

(
l + 1 / 2 

χ
, z( χ ) 

)
, (A1) 

here the terms q δ and q κ read: 

 δ( χ ) = n [ z( χ ′ )] 
d z 

d χ ′ , (A2) 

 κ ( χ ) = 

3 H 

2 
0 	m 

χ

c 2 a( χ ) 

∫ χ( z=∞ ) 

χ

d χ ′ n ( z( χ ′ )) 
d z 

d χ ′ 
χ ′ − χ

χ ′ . (A3) 

n the abo v e equations, n [ z ( χ )] is either n u ( z ) or n r, i ( z ). Under the
pproximation of thin redshift bins, we can write equation (A1) as
 discrete summation o v er redshift bins of width �χ : 

( z i ) = b r ( z i ) αu ( z i ) 
∑ 

j>i 

[
D ij n u ( z j ) 

] + b 
′ 
u ( z i ) αr ( z i ) 

×
∑ 

j>i 

[
D ij n u ( z i ) 

]
, (A4) 

ith 

 ij = 

3 H 

2 
0 	m 

c 2 
w DM 

( z i ) 
χ ( z i ) 

a( z i ) 

χ ( z j ) − χ ( z i ) 

χ ( z j ) 
�χj . (A5) 
i  
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The magnification coefficient α, for an ideal flux-limited sample,
an be related to the slope s of the cumulative number counts
 v aluated at flux limit: α ≡ 2.5 s − 1, with the slope formally defined
s 

 = 

d 

d m 

log 10 n ( < m ) , (A6) 

here n ( < m ) is the cumulative number count as a function of
agnitude m , and s is to be e v aluated at the flux limit of the sample.
or a sample which is not flux limited, e v aluating the coefficient
 is more complicated, and equation (A6) cannot be used. We use
wo different methods to estimate such coefficients for our samples,
epending on whether we estimate them on data or on simulations
see below for further details). Estimates of α for both the reference
nd unknown samples are needed to properly model magnification
ffects. 

When adopting the mean-matching method, magnifications effects
re not modelled, but the tails of the distributions where magnification
ffects should be relevant are remo v ed. We v erify below that this
ethod is efficient. On the other hand, in the full-shape method
e do model magnification effects, according to equation (A4). In

his latter case, while we absorb the contribution due to b u to the
lustering signal into the Sys function, we leave b 

′ 
u as a free parameter

n the magnification term. We also leave αu as a free parameter,
nd marginalize o v er both parameters analytically when computing
he likelihood. By doing so, we absorb uncertainties not only in
hese values but also in b r , αr , and in the linear-bias model adopted
or magnification. Hence, formally, the b 

′ 
u value appearing in the

agnification is not assumed to equal the b u that might multiply w DM 

.
e do not implement redshift dependence of p = { b u , αu } (although

he formalism would allow it) because magnification signals are
mportant only o v er limited ranges of z (i.e. in the tails, see e.g. Gatti
t al. 2018 ) for a given tomographic bin of the WL sources. 

1 Magnification coefficients estimates 

n order to estimate the magnification coefficients of our samples,
e adopt two different strate gies. F or the coefficients in data we use
alrog image simulations (Suchyta et al. 2016 ; Everett et al. 2020 )

n a process briefly described here. Galaxy profiles are drawn from
he DES deep fields (Hartley et al. 2022 ) and injected into real DES
mages. The full photometry pipeline (Sevilla-Noarbe et al. 2021 ),
he redMaGiC , and WL sample selection are applied to the new
mages to produce simulated redMaGiC and WL samples with the
ame selection effects as the real data. To compute the impact of
agnification, the process is repeated, this time applying a constant
agnification to each injected galaxy. The magnification coefficients

re then derived from the fractional increase in number density
hen magnification is applied. This method captures the impact of
agnification on both the galaxy magnitudes and the galaxy sizes,

ncluding all sample selection effects and potential observational
nd systematic effects. See Everett et al. ( 2020 ) and Elvin-Poole
t al. ( 2021 ) for further details. The coefficients have been estimated
or redMaGiC in five wide redshift bins, centred at z = (0.25,
.425, 0.575, 0.75, 0.9), yielding the magnification coefficients αr 

 (0.3 ± 0.7, −1.5 ± 0.5, −0.7 ± 0.4, 1.2 ± 0.5, 1.0 ± 0.5).
he accuracy of these estimates is limited by the number of Balrog

njections, which are scarce for a sample as bright as redMaGiC .
ince the full-shape matching method formally requires values of the
agnification coefficients for each of the 40 bins of the redMaGiC

ample, we interpolate these values in z using the scipy routine
nterp1d . Although this procedure might not be too accurate
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Figure A1. Simulated clustering amplitude for the four tomographic bins. 
The blue and red coloured bands encompass the 68 confidence interval of 
the clustering measurement, obtained using BOSS/eBOSS and redMaGiC 

galaxies as a reference, respectively. The dashed, dotted, and solid lines 
represent the simulated clustering only signal, magnification only signal, 
and clustering with magnification signal, respectively. The vertical dashed 
lines indicate the 2 σ interval used in the mean matching approach. The four 
small panels show the deviations �w ur from the clustering only signal when 
magnification effects are included. Magnification effects are estimated using 
the values for the magnification coefficients as estimated in simulation. 
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iven the large uncertainties of the values of αr , magnification effects 
re largely negligible, such that the interpolation details should 
ot impact our main results. For the WL sample, using the same
ethodology, we infer αu = ( − 0.4 ± 0.2, −0.21 ± 0.10, 0.00 ± 0.10, 

.31 ± 0.07), for the four tomographic bins, respectively. Note that 
hese values do not have to be interpolated. 

For the values estimated for the samples in simulations we adopt 
 different strategy. In particular, we use the estimated convergence, 
, computed at the location of each galaxy, to apply a small
agnification to the galaxy magnitudes ( � m ), and then select our

amples with and without this � m applied and compute the fractional
hange of objects passing the selection � N / N in 10 equally spaced κ
ins. The gradient of this relation is then related to the magnification
oefficient (Elvin-Poole et al. 2021 ). This method only captures the 
ffect of magnification on the galaxy fluxes, as it is the only effect
xpected in simulations. We estimate αr = (0.2 ± 0.4, 0.05 ± 0.15, 
.00 ± 0.08, 1.11 ± 0.12, 1.18 ± 0.06) for the redMaGiC sample, 
nd αu = ( − 0.365 ± 0.002, −0.655 ± 0.002, −0.447 ± 0.002, 
.836 ± 0.002) for the WL sample. 
Lastly, we note that estimates of the magnification coefficients 

re not available for BOSS/eBOSS galaxies, as we did not try
o reproduce the complex BOSS/eBOSS selection function within 
alrog image simulations. We also did not estimate these coefficients 

or the simulated BOSS/eBOSS sample. This is not a problem, as
e verify below that BOSS/eBOSS does not have the sensitivity 

o measure magnification effects. When formally needed (for the 
ull-shape method), though, we adopted the same coefficients as the 
edMaGiC sample. 

2 Magnification impact on the clustering measurements 

e show the impact of magnification effects on the clustering signal 
n Fig. A1 . The figure has been produced assuming the expected
lustering signal for the redshift distributions adopted in the Buzzard 
imulations, and for the magnification coefficients as computed in 
imulations.The magnification contributions are barely detectable: 
nly for the first two tomographic bins, at high redshift, the deviations 
rom the ‘clustering only’ signal due to magnification are slightly 
arger than the 68 per cent confidence interval of the redMaGiC

easurement. 
Concerning the mean-matching method, it can be noted how the 

ontribution is al w ays smaller than the 68 per cent confidence interval
f the measurement when confined within the 2 σ interval of the 
ean matching method. The impact of magnification effects on 

he windowed mean when using the coefficients estimated for the 
imulations is at most � 〈 z〉 ≈ 0.002. Thus, it is of the same order
f magnitude of the statistical uncertainty of the measurement. To 
e more conserv ati ve, for the mean matching approach we estimated
he impact on � 〈 z〉 if the data had different (and potentially larger)
alues of αr and αu than the ones estimated in simulations. We 
omputed the magnification term M ( θ ) assuming Gaussian priors 
r ∼ N (0 , 2) and αu ∼ N (0 , 2), and measured the resultant scatter in
 〈 z〉 . These priors are rather wide, but even with these broad priors,
agnification is a negligible component of our final error model. 

ndeed, we obtained an RMS scatter on this metric of � 〈 z〉 RMS =
0.004, 0.005, 0.003, 0.004) for the four tomographic bins. We note 
hat these values are up to a factor 10 smaller than what we would
ave obtained by including the tails of the redshift distributions, 
ustifying the 2 σ cut. These values, in the second row of Table 2 , are
aken as the magnification contribution to σ z . 

As for the full-shape method, magnification effects are modelled 
 v er the full range of redshift, using as input the estimated magnifi-
ation coef ficients. Ne vertheless, their impact is strongly reduced by
he combination with the SOMPZ likelihood, which enforces the tails 
f the redshift distributions to have a small amplitude. To roughly
sses the impact of the exact values of the magnification coefficients
r and αu , we performed the following test, both in simulations and
n data: we verified that assuming values for αr or αu that are −1

the fiducial ones resulted in shifts � 〈 z〉 < 10 −3 . This highlights
he importance of combining SOMPZ and clustering information to 
chieve a more robust estimator of the redshift distributions. 

PPENDI X  B:  FULL  ˆ w ur M O D E L  A N D  

N  A LY T I C A L  M A R G I N  A L I Z AT I O N  

e provide here more details about the implementation of the full-
hape method. The method assigns a likelihood (equation 13) of 
he observed w ur ( z i ) given a proposal for the redshift distributions
 n u ( z i ) } along with a set of other rele v ant parameters. The likelihood
ses the model in equation (12). We will assume that the values of
he dark-matter correlation w DM 

( z i ), the reference-sample properties 
MNRAS 510, 1223–1247 (2022) 
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igure B1. Likelihood of the shift of the mean of the redshift distributions
btained using the full shape method in simulations, and using true redshift
istrib utions (b ut shifted around their mean) as proposals distrib utions. 

 r ( z ) and αr ( z ), and the magnification coefficients D ij are provided
long with n u ( z i ). We will consider as nuisance parameters the
roperties of the unknown population, namely the αu ( z) and b u ( z)
sed in magnification terms; plus any parameters s of the Sys ( z)
unction that allows for systematic errors. 

We will assume here that αu and b u are independent of redshift,
hough in principle a more general function, linear in some parame-
ers, can be used without altering any of the methods herein. We note
hat we did not multiply the magnification terms by the systematic
unction: despite the fact that the magnification terms are not immune
o systematic errors, we assumed that it was not necessary to further
odelling those, as the αr , αu , and b̄ u parameters provide enough
exibility to the model and the magnification signal is much smaller

han clustering to start with. We also note that the b u parameter is
sed only in the magnification term, and hence can be independent
f the bias for clustering that is absorbed into the Sys ( z) function.
his allows for the systematic errors in the magnification term to
iffer from those in the clustering term. 
The systematic-error function for clustering is given in the ex-

onentiated polynomial form in equations (17) and (18). Tuning
he order M allows us to adjust the smoothness of the function, and
xponentiation allows us to draw the coefficients s from 1D Gaussian
riors while maintaining positive Sys ( z). Adjusting the σ s values of
hese priors tunes the RMS of the systematic variations, in a way
ade predictable by the orthogonality of the Legendre polynomials.
e wish for independent, uniform Gaussian priors on the s i to

ropagate into RMS variation of log Sys ( z) that is approximately
ndependent of z o v er [ z min , z max ]. The Le gendre polynomials hav e
his property o v er most of their nominal domain u ∈ [ − 1, 1], but
ot near the edges of this range. For this reason we map [ z min , z max ]
 [ − 0.85, 0.85], as indicated by equation (18). 
Equation (13) requires us to marginalize o v er the nuisance-

arameter vector q = { p s } (with p = b u , αu ). Doing so as part of
 Markov chain would be unwieldy, as we would have to introduce
ight free parameters for each of the four tomographic bins times 2
eference samples. It is far better to e x ecute the marginalization on
he fly during sampling if possible. The log-likelihood is not quite
uadratic in q – the exponentiation of the polynomial in Sys ( z; s )
akes the model ˆ w ur non-linear in s . We opt to linearize the model
NRAS 510, 1223–1247 (2022) 
bout its maximum s 0 = { s k, 0 } : 
Sys ( z i , s ) ≈ Sys ( z i , s 0 ) 

×
[ 

1 + 

M ∑ 

k= 0 

√ 

2 k + 1 

0 . 85 
P k ( u ) s k, 0 

(
s k − s k, 0 

)] 

. (B1) 

he deviation of the data from the model can then be rewritten in
inear form, with w ur being a vector over redshifts, as 

 ur − ˆ w ur = c ( q 0 ) − A q , (B2) 

here c is a vector independent of q and A is a matrix composed of
he linear terms in equation (B1) and elements of the magnification
erms. 

If we assume the nuisance parameters we want to marginalize
 v er to have a Gaussian prior q ∼ N ( μq , 
 q ), we can write the full
ikelihood as follows: 

 WZ ≈ | 2 π
 wz | −1 / 2 | 2 π
 p | −1 / 2 

×
∫ 

d q exp 

[
−1 

2 
( c − A q ) T ˆ 
 

−1 
wz ( c − A q ) 

]

× exp 

[
−1 

2 
( q − μq ) 

T ˆ 
 

−1 
q ( q − μq ) 

]
. (B3) 

his is a Gaussian integral that can be reduced to linear algebra. 
In summary, the algorithm for the marginalization in equation (13)

s as follows: 

(i) Find the values q 0 which maximize the integrand. This is done
sing Newton iterations. 
(ii) Evaluate the vector c and matrix A at this value of q 0 . 

(iii) Substitute these and the known 
 wz , μq , and 
 q into the
nalytic result for the Gaussian integral above. 

lthough this marginalization is approximate, it does not actually
eed to be exact, because the chosen functional form for Sys ( z, s ) is
omewhat arbitrary. All that is necessary is that the algorithm yields
 likelihood L of the clustering- z data given a proposed n u ( z) that
ecreases in a meaningful and robust way as the data mo v e a way
rom the naive linear model. We prove that the full-shape method
eco v ers the true n ( z) within uncertainties in Section 4.2.2, assuming
he SOMPZ realizations as n u ( z) proposals. Here, we also show the
esult of a simpler test, performed in simulations, where the n u ( z)
roposals are simply taken to be true redshift distributions shifted
round their mean. This is a useful test because it is shows that the
ethodology is unbiased independently of the SOMPZ information.
e use equation (B3) to assign each true n u ( z)s (shifted around

heir mean) a weight, using the clustering measurement and the
agnification coefficients from the simulations. The key result is

hen the likelihood of the shifts �z, which has to be statistically
ompatible with 0. This is shown in Fig. B1 ; in particular, we
btain �z = 0.002 ± 0.008, −0.013 ± 0.011, −0.016 ± 0.008,
.002 ± 0.008 for the four tomographic bins, which indicates
tatistical compatibility with the truth. The models are a good fit
o the data, with χ2 = 1.29, 0.67, 0.72, 0.63 for the redMaGiC
ample, and χ2 = 1.19, 1.20, 0.58, 0.88 for the BOSS/eBOSS 

ample. 
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