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A B S T R A C T   

Continued urban population expansion will be a defining challenge for climate change mitigation, and global 
sustainability more generally, over the coming decades. In this context, an important but underexplored issue 
concerns the relationship between the scale of urban areas and their carbon emissions. This paper employs the 
urban Kaya relation and Reduced Major Axis regression to look at urban emission patterns in China from 2000 to 
2016. Our results reveal that larger cities tend to have lower per capita emissions. Thus, population agglom
eration may be able to contribute to climate change mitigation and a wider transition to sustainability. The 
inverse-U shape between carbon emissions and population size is found. In addition, we observe unique scaling 
patterns in different regions, revealing how the relationship between emissions and population can be influenced 
by economic geography. City consumption weakens the role of population agglomeration in reducing carbon 
emissions in the East region, therefore it should be placed top priority in carbon emissions mitigation. These 
findings are important for China which looks to achieve carbon neutrality by 2060 against the backdrop of 
intertwined interplay between population agglomeration and city consumption.   

1. Introduction 

The concentration of individuals in urban areas brings both oppor
tunities and challenges for sustainable development. Although 
agglomeration makes economies of scale in infrastructure possible and 
facilitates the provision of services, it can also lead to unprecedented 
increases in urban greenhouse gases (GHGs) emissions and energy 
consumption and produces urban challenges related to climate change, 
such as the urban heat island effect (Bettencourt et al., 2007a, 2007b; 
Meerow, 2017; Mi et al., 2018). With the rural to urban shift showing no 
signs of slowing down, nearly 70% of the population is projected to live 
in urban areas by the middle of this century (United Nations, 2019). 
Given this inexorable shift, global sustainability and climate change 
mitigation will depend significantly on our capacity to understand and 
manage the complexity and dynamism of urban systems (North et al., 
2017; Meirelles et al., 2021). 

Cities are complex systems with interacting material, social and 
institutional aspects (Meirelles et al., 2021). Therefore, cities display 
sophisticated nonlinear changes in elements as they grow in size, giving 
rise to the development of the science of cities which looks into under
lying regularities in urban systems, in cases of distinct geographical 

constraints and historical trajectories. Urban scaling laws, as a central 
part of city science, explore how variations in social organization and 
dynamics caused by expanding urban population sizes impact the in
teractions between natural and societal systems (Bettencourt et al., 
2007a, 2007b). The demographic scale of changes in social organization 
and patterns of human behavior are unprecedented, which will lead to 
important, although as of yet poorly understood, impacts on the global 
environment (Bettencourt et al., 2007a, 2007b; United Nations, 2019). 
This puzzle is meaningful to explore as the quantitative understanding of 
human social organization and dynamics in cities is a major piece of the 
puzzle toward successfully navigating a transition to sustainability 
(Bettencourt et al., 2007a, 2007b; Rybski et al., 2017). This puzzle 
especially matters to China, which pledges to achieve carbon neutrality 
by 2060, against the backdrop of ongoing industrialization and urban 
population expansion (Mi et al., 2019). 

Substantial research on the application of the urban scaling law has 
been undertaken. This work can be categorized into two streams. The 
first stream focuses on socioeconomic variables, such as gross domestic 
product (Bettencourt and Lobo, 2016), number of patents (Bettencourt 
et al., 2007a, 2007b) and crimes committed (Anand and Luís, 2019). The 
latter addresses infrastructure performance in urban areas, including 
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street networks (Louf and Barthelemy, 2014a; Emanuele et al., 2017), 
cable networks (Kühnert et al., 2006) and petrol supply networks 
(Christian et al., 2006). Urban scaling laws postulate a power-law as
sociation between urban population and urban variables. A sub-linear 
scaling (a scaling exponent < 1) indicates economies of scale while a 
super-linear scaling (a scaling exponent > 1) indicates diseconomies of 
scale. A linear scaling (a scaling exponent = 1) indicates proportionality. 

Recent research on urban scaling has been extended to environ
mental indicators, including carbon emissions. These research shed light 
on the intricacy of urban emission patterns. Nevertheless, no scientific 
consensus has yet been reached on urban emission patterns (Louf and 
Barthelemy, 2014b). For instance, Oliveira et al. (2015) employed a 
bottom-up approach to find a super-linear association between emis
sions and population for 2281 clusters in the United States, while 
Ribeiro et al. (2019) found a sub-linear scaling between CO2 emissions 
and urban population size across more than 3000 U.S. urban units. A 
similar study on German cities depict a sub-linear scaling (Gill and 
Moeller, 2018). Furthermore, underlying systematic dynamics that 
govern such scaling properties remain underexplored (Gudipudi et al., 
2019a, 2019b). Therefore, Gudipudi et al. (2019a, 2019b) unprece
dentedly combined Kaya identity and urban scaling law generating 
urban Kaya relation and applied it to 61 cities from 12 countries to look 
at urban emission scaling properties worldwide in 2005. The Kaya 
identity is an equation that relates the level of carbon emissions to 
population growth, economic growth, energy intensity and carbon in
tensity per unit of energy consumed. It is a concrete form of the more 
general I = PAT equation relating factors that determine the level of 
human impact on climate. By applying the urban Kaya relation, this 
paper found a sub-linear scaling for cities in Annex 1 regions and a 
super-linear scaling for cities in the Non-Annex 1 regions. Problemati
cally, however, a small number of urban agglomerations from different 
countries are mixed to conduct the scale analysis, which is expected to 
be performed within a single urban system (Meirelles et al., 2021). In 
addition, carbon emissions data comes from four diverse sources with 
varying accounting approaches, leading to comparability issues, 
particularly around the accounting for electricity emissions and as
sumptions about urban boundaries (Cottineau et al., 2019). Also, 
Gudipudi et al. (2019a, 2019b) relied on the cross-sectional data which 
fails to illustrate the dynamics of emission patterns within and across 
cities, an issue of particular importance for China, which is experiencing 
economic development mode shifts and industrial upgrade which may 
cause changes in urban emission patterns. 

To extend the work inaugurated by Gudipudi et al. (2019a, 2019b), 
this paper applies the urban Kaya relation to 50 Chinese cities to look at 
the dynamics of urban emission patterns from 2000 to 2016. The urban 
Kaya relation is utilized respectively among East, Middle and West re
gions, as well as megalopolis, metropolis, large cities and medium and 
small cities (further details in section 2) to identify the heterogeneity of 
urban emission patterns and the impact of city size on GHGs emissions. 
Results indicate that the larger the cities the lower the per capita 
emissions. From this, the inverse-U shape between carbon emissions and 
population size is found. The scaling of emissions with population size 
depends on the economic geography of the region. Specifically, carbon 
emissions reductions in the Middle region can primarily be ascribed to 
energy efficiency improvements, while carbon intensity reductions are 
the key contributing factor in the West and East regions. Considering 
that city consumption has offset the role of population agglomeration in 
reducing carbon emissions in the East region, the East region should be 
the top priority when it comes to reducing carbon emissions. 

2. Method 

2.1. The urban Kaya relation 

This paper looks into the underlying mechanisms among influencing 
factors inducing urban emission patterns based on the Kaya identity, 

which relates carbon emissions per capita to emissions and energy, en
ergy and gross domestic product (GDP), and GDP and population size, as 
shown in formula (1). 

C/P = C/E⋅E/G⋅G/P, (1)  

where C denotes carbon emissions at the city level. This analysis 
respectively utilizes scope 1 and scope 2 emissions to identify the impact 
of different emission accounts on urban emission patterns. P and G 
represent population size and GDP for each corresponding city, and E is 
energy consumption. According to Kaya identity, carbon emissions per 
capita acts as a function of carbon intensity per unit of energy consumed 
(C/E), energy intensity (E/G) and economic activity (G/P). 

Urban scaling laws hold that urban indicators scale with urban 
population. To fully understand the intrinsic factors determining urban 
emission patterns, we postulate each factor in formula (1) exhibit scaling 
properties, i.e. 

C = Pφ (2)  

C = E∂ (3)  

E = Gδ (4)  

G = Pγ (5) 

φ is the value we focused on, as it indicates how carbon emissions 
scale with population, and whether cities get ‘greener’ as they get larger. 
∂ reflects the carbon intensity of energy sources. The value ofδshows the 
technological level, especially energy-related technology.γ is a measure 
of affluence. 

Combining the scaling relations in formulas (2)–(5), we obtain. 

φ = αδγ (6) 

Therefore, by making adjustments we can identify the chain between 
urban carbon emissions and population size and reveal an urban Kaya 
relation with a similar structure to the Kaya identity. In line with for
mula (6), the exponent of urban emissions and population size can be 
obtained by the product of exponents of the other factors. Formula (6) 
allows us to understand the linearity of scaling between emissions and 
urban population based on the potential scaling of carbon intensity, 
energy efficiency and economic activity. 

2.2. Reduced Major Axis regression 

The default method to obtain exponent φ is to transform formula (2) 
into log-log space, then φ can be computed as a regression coefficient of 
the linear regression equation. However, the measurement of power-law 
exponents in urban scaling studies is not as simple as originally thought. 
While a straightforward regression is thought to be robust and sufficient 
(Leitão et al., 2016), more rigorous and appropriate regression ap
proaches are required as φ changes with the application of varying 
regression methods (Gudipudi et al., 2019a, 2019b). 

The vast majority of linear regressions are performed using ordinary 
least squares (OLS) methodology, overlooking assumptions underlying 
this approach. OLS minimizes the sum of squared errors of the vertical 
distance between the dependent values and their corresponding pre
dictions, which postulates independent variables are measured without 
errors. This is an idealized assumption in reality. Reduced Major Axis 
(RMA) regression is specifically formulated to handle errors in both 
dependent and independent variables by minimizing both horizontal 
and vertical distances of data points from the fitting line. Another source 
of concern about OLS is the asymmetry between the OLS regression of Y 
on X and of X on Y. The lack of interchangeability between dependent 
and independent variables is noteworthy for cases where two-way 
causation exists. For example, energy consumption and economic 
growth (formula (4)) and affluence and population (formula (5)). The 
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symmetry of X and Y in RMA regression enables the bivariate relation
ship to hold when variables assigned to X and Y are reversed. This paper 
therefore employs the RMA regression method to explore urban emis
sion patterns across various urban agglomerations and regions. Then we 
employ a nonparametric bootstrap method (999 replications) to test the 
credibility of coefficients obtained from the RMA regression method. 

2.3. Limitations in the method 

This paper has three main limitations which we leave to be addressed 
by future research. Firstly, Kaya identity is a widely used equation to 
determine the level of human impact on carbon emissions by relating the 
carbon emissions to energy use, economic growth and population 
growth. However, it fails to consider some factors that can affects the 
carbon emissions, such as government efficiency, trade and FDI. Future 
research can address this issue by further enriching the form of Kaya 
identity. Furthermore, considering the data availability and the repre
sentativeness of the 50 cities in population size and carbon emissions, 
this paper uses the 50 cities as a sample for analysis, which may lead to 
sample selection bias in the estimation of the parameters. Lastly, this 
paper uses total population data within the city boundary, does not 
distinguish between urban population and rural population, and does 
not deal with the complexity of China’s city size. 

3. Data 

Analysis conducted in this paper is limited to 50 Chinese cities, 
which ensures consistent demarcation and definition of cities; for these 
cities, four types of data are available, namely city-level carbon emis
sions, energy consumption, population size and GDP. To identify the 
impact of emission accounting inventory scopes on urban emission 
patterns, this analysis utilizes scope 1 and scope 2 emissions to assess 
how carbon emissions from fossil fuel combustion and industrial pro
cesses occurring within the city boundary or emissions related to elec
tricity and heating change with city size. This paper draws on emissions 
data from Wang et al. (2019), whose analysis is based on the Intergov
ernmental Panel on Climate Change (IPCC) territorial emissions (IPCC, 
2006). Emissions from agriculture, forestry and other land use, as well as 
waste, have been excluded due to their high uncertainties and relatively 
small influence on urban emissions (Wang et al., 2012). Data on national 
carbon emissions used for prediction comes from CEADS database 
(CEADS, 2019). Data on GDP and population are collected from the 
China City Statistical Yearbook (2001–2017). GDP is converted to pur
chasing power parity (PPP) dollars based on the implied PPP conversion 
rate using the current international dollar from (EconStats, 2019). We 
collect energy consumption of industrial enterprises from the corre
sponding city’s statistical yearbooks (2001–2017) and convert these to 
standard coal equivalents based on conversion factors from China En
ergy Statistical Yearbook (2017). See Supplementary Table 1 for a sta
tistical description of the variables. 

Analysis covers cities in 30 provinces. The contribution of these cities 
to total population is 30% in 2015, while the combined share of the GDP 
and cumulative carbon emissions generated from fossil-fuel combustion 
and industrial production in these cities are 51% and 35% respectively 
(Wang et al., 2019). Due to distinct geographical constraints, resource 
endowments, and historical trajectories, there is remarkable divergence 
among energy mix, city size and affluence across cities. This paper 
classifies the 50 cities into four city groups according to the standard of 
city classification published by the China State Council in 2014 in order 
to explore the impact of city size on urban emission patterns, namely 
megalopolis, metropolis, large cities and middle and small cities. These 
represent the cities with residential population living in the urban dis
tricts more than 10 million, 5–10 million, 1–5 million and less than 1 
million in 2010. The 50 cities are then divided into East, Middle and 
West regions to look at the heterogeneity of urban emission patterns by 
region, as shown in Supplementary Table 2. 

4. Results 

4.1. Carbon emission patterns for all cities 

Carbon emissions for 50 cities increased dramatically between 2000 
and 2016, with scope 1 emissions increasing from 797 Mt. in 2000 to 
1982 Mt. in 2016, and scope 2 emissions reaching 1557 Mt. in 2016 from 
435 Mt. in 2000. Scope 1 emissions grew rapidly at an annual growth 
rate of over 7% before 2008, and stabilized at around 5% for the 
following four years. Between 2012 and 2016, scope 1 emissions basi
cally achieved zero growth, and even negative growth in 2016. The 
scope 2 emissions growth rate then started to decline from 18.51% in 
2004 to 2.71% in 2008, after reaching a peak of 23.32% in 2003. After 
that, scope 2 emissions showed slight growth between 2009 and 2011, 
before bottoming out at − 3.23% in 2013 and gradually plateauing 
(Supplementary Fig. 1). According to the observed time-varying char
acteristics of the carbon emissions trend, we divide the total trend into 
four stages: World Trade Organization (WTO) accession (2000− 2003), 
high economic growth (2004–2008), post financial crisis (2009–2011) 
and the ‘new normal’ (2012–2016), which is characterized by the eco
nomic development mode shifts from extensive growth to intensive 
growth and the economic growth rate slows down. In order to test 
whether emissions modes in these stages are statistically significantly 
different, we perform bootstrapping and a Kolmogorov-Smirnov test. 
The Kolmogorov-Smirnov test (P-value = 0.000) indicates that emission 
modes in the four stages show varying characteristics, as shown in Fig. 1. 

The rapid growth of export trade after joining the WTO was a key 
driving force for China’s economic development in the first stage, which 
was characterized by significant increases in industrial outputs, fossil 
fuel consumption and carbon emissions (Feng and Zou, 2008). The 
scaling exponent of scope 1 emissions increased from 1.45 to 1.49, while 
that of scope 2 emissions rose from 1.37 to 1.53. The Chinese govern
ment gave top priority to economic development from the 1990s to early 
2000s, and as a result China’s rapid economic growth was achieved at 
the cost of significant environmental degradation. Given mounting 
environmental issues, the ‘Scientific Outlook of Development’ was 
proposed in 2003 to seek a balance between economic growth and 
environmental sustainability. In addition, policy makers have developed 
a series of binding policies aimed at energy conservation and emission 
reduction. For example, the Chinese government set an ambitious target 
of decreasing energy consumption per unit of GDP by 20% during the 
11th Five-Year Plan period (from 2006 to 2010), compared with that in 
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Fig. 1. Scaling exponent and urban Kaya relation for all cities. 
Notes: The nonparametric bootstrap method is employed to test the credibility 
of coefficients obtained from the RMA regression method. For each scaling 
exponent, we conducted 999 times random sampling with replacement, and 
then calculated each sample and recorded the results. The results are summa
rized as follows: ++++ represents at least 90% of the replications lead to ex
ponents larger than 1; +++ represents 60%–90% of the estimates are larger 
than 1; ++ represents 30%–60% of the estimates are larger than 1; + represents 
less than 30% are larger than 1. 
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the tenth five-year plan period (during 2001 and 2005). Thus, in the 
second and third stages, although GDP still maintained a relatively high 
growth rate, the scaling exponent of carbon emissions (both scope 1 and 
scope 2) significantly reduced. Under the constraint of total carbon 
emission and energy intensity proposed by the Twelfth Five-Year Plan, 
total carbon emissions and carbon intensity in the ‘new normal’ stage 
are well controlled by energy structure adjustment, characterized by 
emissions shifting from coal-based emissions to gas-based emissions 
through the progress of clean energy power generation (Zheng et al., 
2019). 

4.2. Carbon emission patterns for city groups 

Do emissions scale the same way for cities of all sizes? Or does the 
relationship between scaling and population change as cities get larger? 
To explore this question, the 50 cities in the analysis are divided into 
four city groups according to the standard of city classification in China, 
namely megalopolises, metropolises, large cities and middle and small 
cities, to explore the city size effect on urban emissions, as shown in 
Supplementary Fig. 3 and Supplementary Tables 3–4. Due to quite 
limited numbers of cities in the group of middle and small cities, this 
paper focuses on the analysis of the first three city groups. 

Our results indicate that the megalopolis and the metropolis are 
more energy efficient relative to their population compared to the large 
city. Although per capita energy consumption in megalopolises is similar 
to that of metropolises, it is the more advanced power generation 
technologies employed that typically make its per capita emissions 
lower than that of metropolis. The scaling of scope 2 emissions with 
population scale differs across city groups (Supplementary Fig. 3 and 
Supplementary Tables 3–4). We observe a sub-linear scaling in the 
megalopolis and the metropolis, and a super-linear scaling in the large 
city. In order to test whether these slopes are significantly different, we 
perform bootstrapping and a Kolmogorov-Smirnov test. The 
Kolmogorov-Smirnov distance between these bootstrapped samples is 1 
with a significant P-value (0.000), which confirms that the slopes are 
drawn from different distributions. Furthermore, the scaling of scope 1 
emissions with population scale are smaller for larger cities although 
super-linear scaling is observed in all city groups. Therefore, we find that 
larger cities have lower per capita emissions. 

The scaling of emissions with population size are smaller for larger 
cities, and the scaling exponent of the largest cities is on a downward 
trend over time. These results suggest there may be an inverse-U shape 
between carbon emissions and population size. Thus, here we predict 
when China will reach its peak in carbon emissions, as shown in Sup
plementary Fig. 2. The goodness of fit of up to 97.12% validates the 
inverse-U shape among carbon emissions and population scale. Applying 
a quadratic equation between carbon emissions and population size to 
simulate the peak of carbon emissions based on China’s national his
torical emissions, we project that emissions for China should peak at 
9.04 Gt in 2030, realizing its commitment to peak carbon emissions by 
2030. Our estimation results coincide with the projection of Yuan et al. 
(2014). They projected that China’s carbon emissions would peak in 
2030–2035 at 9.30 Gt or so and may be cut by 0.3 Gt through a cleaner 
energy path. Also, in view of the progress of energy saving technology, 
the adjustment of industrial structure and energy mix unconsidered in 
the fitting equation, it is possible for China to reach its carbon emissions 
peak earlier. 

4.3. The heterogeneity of carbon emission patterns among regions 

There is substantial divergence across the 50 cities in geographic 
location, industrial structure and economic development. For example, 
from less-developed (e.g. per capita GDP of 3,447 PPP dollars in Linfen 
in 2016) to more-developed (e.g. per capita GDP of 116,151 PPP dollars 
in Shenzhen in 2016) in terms of economic development, from heavy- 
industry dominated (e.g. Tangshan) to service-sector oriented (e.g. 

Guangzhou and Beijing) in terms of industrial structure. Considering the 
differences in these city characteristics, this paper divides 50 cities into 
three groups, namely East, Middle and West, to explore the heteroge
neity of carbon emission patterns, as shown in Tables 1-3. The 
Kolmogorov-Smirnov test (P-value = 0.000) confirms that the scaling of 
emissions with the population size is different between these subsets. 
Therefore, the following section will look into the reasons for distinct 
carbon emission patterns in each region. Tables 1-3 also includes the 
absolute difference between the prediction (formula (6)) and the 
measured exponent φ. When using RMA, the deviation of the obtained 
exponent is extremely small. Thus, we recommend using RMA rather 
than OLS when analyzing the urban Kaya relation. 

Compared to energy efficiency, carbon intensity reduction 
contribute more to the carbon emissions mitigation in the East region. In 
specific, the scaling exponent between carbon emissions and energy for 
the East region decreased by 19.3%, much higher than the improvement 
of energy efficiency by 3.23% during the period from 2000 to 2016. The 
improvement of carbon intensity and energy efficiency in the East region 
may be attributed to the strict implementation of environmental pro
tection and emission reduction policies, including industrial low carbon 
transformation and rigid emission-limit standards. Shandong and Hebei 
provinces have made environmental protection a priority as they are 
primary energy-consuming provinces proximate to capital cities, and 
have achieved eye-catching emission reductions. Hebei Province has 
addressed mounting environmental challenges through a steady process 
of industrial green transformation and energy mix adjustment. This has 
specifically been achieved by eliminating excess capacity and prevent
ing outdated capacity from resuming production through remote 
monitoring. In addition, this has been supported through the promotion 
of industrial restructuring by boosting internet based and cloud 
computing businesses (Zheng et al., 2019), and by and replacing coal 
with clean energy in power generation and heating. As a result, carbon 
emissions have decreased (both carbon emissions and per capita emis
sions decline for scope 1 and scope 2) for cities in Hebei province in the 
‘new normal’ stage. An exception is for Tangshan, whose economic 
development relies on heavy industry and abundant coal reserves. 

Similarly, Shandong province has taken various measures to promote 
the low carbon transformation which have contributed to the reduction 
of emissions in Qingdao and Jinan. A building energy network and 
regulatory platform based on big data and cloud computing has helped 
to improve administrative efficiency of both government and enter
prises. In addition, apart from eliminating excess capacity in high carbon 
intensity industries, especially the steel industry and chemical industry, 
Shandong province also controls approvals of high energy consumption 
projects and has accelerated emission-reducing projects (Zheng et al., 
2019). Further, the active promotion of carbon emissions trading and 
encouragement of the development of energy saving and low carbon 
technologies have also contributed. 

First-tier cities, such as Guangzhou, have aggressively pursued 
striking a balance between economic growth and environmental sus
tainability, achieving a carbon emissions level far lower than other cities 
while maintaining high economic growth (Qu et al., 2017; Xiong et al., 
2020). Beijing and Shenzhen have accelerated emission reduction after 
the financial crisis, which has led to the rapid development of the service 
sector in these cities (Mi and Sun, 2021). The worst emission reduction 
performance is seen in Tianjin, where industries that have shifted from 
the capital Beijing have led to increases in emissions over the last 
decade. With advanced science and technology and industrial green 
transformation, cities in Jiangsu and Zhejiang provinces have performed 
above average in emissions reduction. 

The Middle region has achieved a gain in energy efficiency and 
carbon intensity that can be attributed to strategic policies. Among 
them, the improvement of energy efficiency contribute the most to 
carbon emissions reductions in the Middle region, whose scaling expo
nent drops from 2.04 to 1.22. While undertaking technical transfer from 
the East region, the Middle region has actively promoted upgrading of 
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characteristic industries (Zheng et al., 2019). Hubei and Hunan prov
inces, acting as the major energy consumption cities and the trans
portation hub of the Middle region, have focused on low carbon 
economic development. This has included eliminating outdated energy- 
consuming equipment and full monitoring of energy management of 
major energy consumption equipment and diversified financing support 
for key energy conservation and emission reduction projects. Hubei has 
also been one of the seven nationwide pilots for carbon emissions 
trading markets. 

Considering environmental issues caused by industrial structure and 
outdated technologies, reducing carbon emissions and improving energy 
efficiency in Changchun and Harbin represent huge opportunities (Dong 
et al., 2007). However, the challenges faced by state-owned enterprises 
and the continued dominance of coal in the energy-mix will make this 

difficult (Zheng et al., 2019). At the forefront of supply-side reform such 
as de-capacity, Taiyuan has made progress in reducing emissions in
tensity. Similarly, Zhengzhou has achieved a gain in energy conserva
tion and reductions in emissions through a supervision system aimed at 
improving the transparency of projects review. 

The reduction of carbon intensity is the key contributing factor to 
carbon emission mitigation in the West region. The scaling exponent 
between carbon emissions and energy for the West region decreased by 
27.7% during the period from 2000 to 2016, which was two times higher 
than that of energy efficiency improvement (12.9%). The reduction of 
carbon intensity and energy intensity contribute to emission reductions 
in the West region that can be primarily attributed to new patterns of 
sustainable development and the application of environmentally- 
friendly technologies (Zheng et al., 2019), including a shift from coal 

Table 1 
Scaling exponent and urban Kaya relation for the East region.   

scope1i

populationi
φ1 ++++

scope1i

energyi
α1 +++

scope2i

populationi
φ2 ++++

scope2i

energyi
α2 +

energyi
GDPi

δ + GDPi

populationi
γ ++++

φ1 − ∂1δγ or φ2 − ∂2δγ  

2000 1.579 0.841 1.392 0.741 1.762 1.066 0.000 
2001 1.604 0.916 1.416 0.809 1.594 1.098 0.000 
2002 1.616 0.912 1.448 0.817 1.575 1.126 0.000 
2003 1.793 1.002 1.753 0.980 1.335 1.340 0.000 
2004 1.946 0.921 1.711 0.810 1.542 1.370 0.000 
2005 2.019 0.845 1.790 0.749 1.603 1.490 0.000 
2006 2.119 0.926 1.772 0.774 1.468 1.559 0.000 
2007 2.094 0.870 1.746 0.725 1.569 1.534 0.000 
2008 1.995 0.812 1.734 0.706 1.608 1.527 0.000 
2009 1.874 0.829 1.582 0.700 1.626 1.391 0.000 
2010 1.879 0.842 1.581 0.708 1.623 1.376 0.000 
2011 1.883 0.833 1.509 0.668 1.650 1.369 0.000 
2012 1.894 0.841 1.470 0.653 1.654 1.362 0.000 
2013 1.872 0.815 1.446 0.629 1.666 1.379 0.000 
2014 1.894 0.826 1.425 0.622 1.683 1.362 0.000 
2015 1.911 0.822 1.412 0.607 1.689 1.377 0.000 
2016 1.903 0.799 1.424 0.598 1.705 1.396 0.000 

Notes: a) The nonparametric bootstrap method is employed to test the credibility of coefficients obtained from the RMA regression method. For each scaling exponent, 
we conducted 999 times random sampling with replacement, and then calculated each sample and recorded the results. The results are summarized as follows: ++++

represents at least 90% of the replications lead to exponents larger than 1; +++ represents 60%–90% of the estimates are larger than 1; ++ represents 30%–60% of the 
estimates are larger than 1; + represents less than 30% are larger than 1; b) For readability, only three decimal places are reserved for the results in the table. The 
original results obtained by the RMA regression method are available from the corresponding author upon reasonable request; c) The results in the last column are 
calculated based on the original results. 

Table 2 
Scaling exponent and urban Kaya relation for the Middle region.   

scope1i

populationi
φ1 ++++

scope1i

energyi
α1 +++

scope2i

populationi
φ2 ++++

scope2i

energyi
α2 +

energyi
GDPi

δ + GDPi

populationi
γ ++++

φ1 − ∂1δγ or φ2 − ∂2δγ  

2000 2.310 0.717 2.230 0.692 2.045 1.576 0.000 
2001 2.051 0.666 2.091 0.679 1.921 1.603 0.000 
2002 2.261 0.718 2.061 0.655 1.969 1.599 0.000 
2003 1.749 0.574 1.684 0.553 2.174 1.402 0.000 
2004 2.008 0.734 1.993 0.728 1.793 1.527 0.000 
2005 1.804 0.712 1.533 0.605 2.038 1.243 0.000 
2006 1.896 0.774 1.877 0.767 1.705 1.437 0.000 
2007 1.819 0.759 1.407 0.587 1.608 1.491 0.000 
2008 1.782 0.676 1.404 0.532 1.694 1.557 0.000 
2009 2.102 0.824 1.337 0.524 1.562 1.633 0.000 
2010 1.860 0.849 1.199 0.548 1.439 1.522 0.000 
2011 1.669 0.787 1.114 0.525 1.449 1.464 0.000 
2012 1.543 0.747 1.103 0.534 1.417 1.457 0.000 
2013 1.633 0.722 1.088 0.481 1.379 1.642 0.000 
2014 1.495 0.657 1.116 0.491 1.326 1.716 0.000 
2015 1.567 0.659 1.156 0.486 1.260 1.887 0.000 
2016 1.974 0.845 1.054 0.451 1.221 1.912 0.000 

Notes: a) The nonparametric bootstrap method is employed to test the credibility of coefficients obtained from the RMA regression method. For each scaling exponent, 
we conducted 999 times random sampling with replacement, and then calculated each sample and recorded the results. The results are summarized as follows: ++++

represents at least 90% of the replications lead to exponents larger than 1; +++ represents 60%–90% of the estimates are larger than 1; ++ represents 30%–60% of the 
estimates are larger than 1; + represents less than 30% are larger than 1; b) For readability, only three decimal places are reserved for the results in the table. The 
original results obtained by the RMA regression method are available from the corresponding author upon reasonable request; c) The results in the last column are 
calculated based on the original results. 
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to gas and oil in some industrial processes. Guizhou province has 
explored new modes of low carbon development to balance economic 
prosperity and the environment, including the creation of pilot areas for 
new technologies, low carbon parks and the building of low carbon 
communities. Tourism in Nanning and Kunming, and cloud computing 
and big data in Chongqing and Chengdu, have also played a role in 
reducing the dependence on heavy industry. 

4.4. The comparison of emissions scaling among regions 

We separately regress logarithmic carbon emissions on logarithmic 
population size for all cities and three regions (East, Middle and West 
regions) to look into the complexity of the scaling exponent φ, as shown 
in Fig. 2. We found that population growth in the East region contributes 
the most to carbon emissions increase. Specifically, every additional 
person will bring about another 6.30 tons of scope 1 emissions, which is 
much higher than that of city-average level (4.98 tons/person) and that 
of other regions (4.14 tons/person for the West region and 3.36 tons/ 
person for the Middle region) (Fig. 2A), and the marginal effect of 
population growth on scope 2 emissions in the East region is also above- 
average (Fig. 2B). This might be attributed to the relatively higher levels 
of consumption of goods and services for individuals in the East region 
due to their higher income (e.g. per capita GDP of 29,050 PPP dollars in 
the East region in 2016 vs per capita GDP of 14,842 PPP dollars in the 
West region in 2016). Their consumption draws on resources for their 
fabrication, distribution, sale and use which cause the emission of GHGs 
(Satterthwaite, 2009; Duan et al., 2018). Furthermore, due to the dif
ferences in openness, urban distribution density and natural geograph
ical conditions, China has formed an uneven spatial distribution pattern 
of population. The densely populated areas are mostly distributed in the 
East region, whose population accounts for 40% or so of the total pop
ulation with an average annual growth rate of approximately 1%, higher 
than the national average (National Bureau of Statistics, 2020). There
fore, the East region should be regarded as the top priority for carbon 
emission mitigation. 

5. Conclusion 

If continued urban population growth is a cause of rising GHGs 
emissions, could it also contribute to a solution? Understanding the 

impact of urban population expansion on energy consumption and 
carbon emissions is of great importance for climate change mitigation 
and sustainable development. This paper applies an urban Kaya relation 
to explore the role of urban size in contributing to GHGs emissions using 
an RMA regression method performed within a single urban system and 
across a 17-year time period. This paper has two main findings. First, 
population agglomeration may be able to contribute to climate change 
mitigation and a wider transition to sustainability. China is still in the 
rapid development phase of urban population expansion. From 1978 to 
2013, China’s urban population ratio rises from 17.9% to 53.7%, with 
an average annual growth rate of 1.02%. The traditional extensive city 
development model has brought about a series of issues, including slow 
industrial upgrading, environmental deterioration and increased social 
conflicts, risking the process of sustainable development in the long run. 
Transferring to a new type of city development path highlighting 
intensive production and environmental protection with the focus shift 
to the quality of development is a feasible way to give full play to the 
role of population agglomeration in reducing emissions. For central 
cities, it is necessary to accelerate industrial upgrading and set up 
complete modern industrial systems to exert their scale effects and 
driving effects, thereby promoting the extension of industrial chains and 
service chains to the periphery, realizing the joint development of cen
tral cities and surrounding cities. Meanwhile, speeding up the popula
tion agglomeration of small and medium-sized cities should become the 
focus in the following city development process: a) small and medium- 
sized cities should accelerate the construction of comprehensive urban 
transportation networks and public service facilities so as to enhance 
their ability to support population gathering; b) it is also necessary to 
cultivate characteristic urban industrial systems on the basis of urban 
environmental carrying capacity, factor endowments and comparative 
advantages; and c) enhancing the undertaking capacity of industrial 
transfer of small and medium-sized cities is the key to realize specialized 
division of labor among cities and create an industrial development 
pattern with complementary advantages. 

Second, city consumption will weaken the role of population 
agglomeration in reducing carbon emissions. In the East region with 
high population density, population agglomeration has the minimal role 
on reducing emissions as city consumption has a more significant impact 
on carbon emissions. Specifically, urban population expansion brings 
about changes to economic production, lifestyles and land use types, 

Table 3 
Scaling exponent and urban Kaya relation for the West region.   

scope1i

populationi
φ1 ++++

scope1i

energyi
α1 ++++

scope2i

populationi
φ2 +

scope2i

energyi
α2 +

energyi
GDPi

δ + GDPi

populationi
γ ++++

φ1 − ∂1δγ or φ2 − ∂2δγ  

2000 0.916 0.857 0.923 0.863 1.260 0.849 0.000 
2001 0.867 0.810 0.766 0.716 1.254 0.853 0.000 
2002 0.907 0.798 0.689 0.606 1.357 0.838 0.000 
2003 0.906 0.942 0.772 0.803 1.156 0.832 0.000 
2004 0.808 0.885 0.695 0.762 1.101 0.829 0.000 
2005 0.768 0.911 0.666 0.790 0.963 0.875 0.000 
2006 0.721 0.872 0.653 0.789 0.947 0.874 0.000 
2007 0.692 0.818 0.647 0.766 0.955 0.886 0.000 
2008 0.747 0.878 0.627 0.738 0.964 0.882 0.000 
2009 0.758 0.878 0.576 0.667 0.957 0.902 0.000 
2010 0.719 0.778 0.583 0.631 1.028 0.899 0.000 
2011 0.729 0.771 0.618 0.653 1.047 0.904 0.000 
2012 0.716 0.803 0.602 0.676 0.995 0.895 0.000 
2013 0.652 0.733 0.627 0.705 0.986 0.903 0.000 
2014 0.727 0.749 0.672 0.693 1.070 0.906 0.000 
2015 0.740 0.759 0.626 0.642 1.098 0.888 0.000 
2016 0.744 0.757 0.613 0.624 1.097 0.896 0.000 

Notes: a) The nonparametric bootstrap method is employed to test the credibility of coefficients obtained from the RMA regression method. For each scaling exponent, 
we conducted 999 times random sampling with replacement, and then calculated each sample and recorded the results. The results are summarized as follows: ++++

represents at least 90% of the replications lead to exponents larger than 1; +++ represents 60%–90% of the estimates are larger than 1; ++ represents 30%–60% of the 
estimates are larger than 1; + represents less than 30% are larger than 1; b) For readability, only three decimal places are reserved for the results in the table. The 
original results obtained by the RMA regression method are available from the corresponding author upon reasonable request; c) The results in the last column are 
calculated based on the original results. 
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which affect the carbon emissions in varying extent. Urban population 
agglomeration involves a process whereby large numbers of people 
migrate into the urban areas from the countryside and agricultural ac
tivities shift to non-agricultural activities. Continuously increased 
human consumption levels and ongoing industrialization results in 
increasing energy consumption during urban population expansion, 
these lead to more carbon emissions. In the process of interactive 
development of population, economy and society, the proportion of the 
population in the East region has been continuously increasing from 
31.4% in 2000 to 41.8% in 2019, while a downward trend and a U- 
shaped curve are observed in the Middle and West regions respectively. 
This dynamic process of population spatial distribution will not only 
exacerbate the imbalance of regional development, but also increase the 
pressure on emission mitigation. Therefore, for the East region, the focus 
should be on improving the ecological environment efficiency of urban 
development, including improving energy efficiency and optimizing 

industrial structure. The Middle and West regions will be important 
growth poles in the future urban development, which need to increase 
opening up and improve infrastructure on the basis of protecting the 
ecological environment to undertake industrial and technical transfer 
from the East region, thereby forming economically vibrant and eco- 
friendly city clusters. 
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Fig. 2. Comparisons of scaling between carbon emissions and population. (A) 
Trajectory of scope 1 emissions and population size for all cities and three re
gions from 2000 to 2016; (B) Trajectory of scope 2 emissions and population 
size for all cities and three regions from 2000 to 2016. 
Notes: The average population and average emissions data for three regions and 
for all cities are utilized in Fig. 2. Each dot is a year’s average data with the 
horizontal axis represents the average population in logarithmic form for that 
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mic form. 
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Mi, Z., Guan, D., Liu, Z., Liu, J., Viguié, V., Fromer, N., Wang, Y., 2018. Cities, the core of 
climate change mitigation. J. Clean. Prod. 207, 582–589. https://doi.org/10.1016/j. 
jclepro.2018.10.034. 

National Bureau of Statistics, 2020. National Bureau of Statistics, Beijing, China. http: 
//www.stats.gov.cn/. 

North, P., Nurse, A., Barker, T., 2017. The neoliberalisation of climate? Progressing 
climate policy under austerity urbanism. Environ. Plan. A 49 (8), 1797–1815. 
https://doi.org/10.1177/0308518X16686353. 

Oliveira, E., Andrade, J., Makse, H., 2015. Large cities are less green. Sci. Rep. 4, 4235. 
https://doi.org/10.1038/srep04235. 

Qu, J., Meng, J., Zheng, J., Mi, Z., Bian, Y., Yu, X., Liu, J., Guan, D., 2017. Demand- 
driven air pollutant emissions for a fast-developing region in China. Appl. Energy 
204, 131–142. https://doi.org/10.1016/j.apenergy.2017.06.112. 

Ribeiro, H.V., Rybski, D., Kropp, J., 2019. Effects of changing population or density on 
urban carbon dioxide emissions. Nat. Commun. 10, 1–9. https://doi.org/10.1038/ 
s41467-019-11184-y. 

Rybski, D., Reusser, D.E., Winz, A., Fichtner, C., Sterzel, T., Kropp, J.P., 2017. Cities as 
nuclei of sustainability? Environ. Plan B Urban Anal. City Sci. 44 (3), 425–440. 
https://doi.org/10.1177/0265813516638340. 

Satterthwaite, D., 2009. The implications of population growth and urbanization for 
climate change. Environ. Urban. 21 (2), 545–567. https://doi.org/10.1177/ 
0956247809344361. 

United Nations, 2019. World Urbanization Prospects the 2018 Revision. United Nations, 
New York, United states. https://population.un.org/wup/Publications/Files/ 
WUP2018-Report.pdf.  

Wang, H., Zhang, R., Liu, M., Bi, J., 2012. The carbon emissions of Chinese cities. Atmos. 
Chem. Phys. 12 (6197–6206), 2012. https://doi.org/10.5194/acp-12-6197-2012. 

Wang, H., Lu, X., Deng, Y., Sun, Y., Nielsen, C., Liu, Y., Zhu, G., Bu, M., Bi, J., 
McElroy, M., 2019. China’s CO2 peak before 2030 implied from characteristics and 
growth of cities. Nat. Sustain. 2, 748–754. https://doi.org/10.1038/s41893-019- 
0339-6. 

Xiong, W., Liu, Z., Wang, S., Li, Y., 2020. Visualizing the evolution of per capita carbon 
emissions of Chinese cities, 2001–2016. Environ. Plan. A 52 (4), 702–706. https:// 
doi.org/10.1177/0308518X19881665. 

Yuan, J., Xu, Y., Hu, Z., Zhao, C., Xiong, M., Guo, J., 2014. Peak energy consumption and 
CO2 emissions in China. Energy Policy 68, 508–523. https://doi.org/10.1016/j. 
enpol.2014.01.019. 

Zheng, J., Mi, Z., Coffman, D., Milcheva, S., Shan, Y., Guan, D., Wang, S., 2019. Regional 
development and carbon emissions in China. Energy Econ. 81, 25–36. https://doi. 
org/10.1016/j.eneco.2019.03.003. 

Interviews made during field work in 2012 

Mi, Z, Sun, X, 2021. Provinces with transitions in industrial structure and energy mix 
performed best in climate change mitigation in China. Commun Earth Environ 2 
(182), 1–12. https://doi.org/10.1038/s43247-021-00258-9. 

Mi, Z, Zheng, J, Meng, J, Zheng, H, Li, X, Coffman, D, Woltjer, J, Wang, S, Guan, D, 2019. 
Carbon emissions of cities from a consumption-based perspective. Appl. Energy 235, 
509–518. https://doi.org/10.1016/j.apenergy.2018.10.137. 

L. Cheng et al.                                                                                                                                                                                                                                   

https://doi.org/10.1177/2399808319825867
https://doi.org/10.1016/j.apenergy.2018.11.054
http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
https://doi.org/10.1016/j.physa.2006.01.058
https://doi.org/10.1098/rsos.150649
https://doi.org/10.1038/srep05561
https://doi.org/10.1068/b4105c
https://doi.org/10.1177/0308518X17723630
https://doi.org/10.3390/su13074028
https://doi.org/10.3390/su13074028
https://doi.org/10.1016/j.jclepro.2018.10.034
https://doi.org/10.1016/j.jclepro.2018.10.034
http://www.stats.gov.cn/
http://www.stats.gov.cn/
https://doi.org/10.1177/0308518X16686353
https://doi.org/10.1038/srep04235
https://doi.org/10.1016/j.apenergy.2017.06.112
https://doi.org/10.1038/s41467-019-11184-y
https://doi.org/10.1038/s41467-019-11184-y
https://doi.org/10.1177/0265813516638340
https://doi.org/10.1177/0956247809344361
https://doi.org/10.1177/0956247809344361
https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
https://doi.org/10.5194/acp-12-6197-2012
https://doi.org/10.1038/s41893-019-0339-6
https://doi.org/10.1038/s41893-019-0339-6
https://doi.org/10.1177/0308518X19881665
https://doi.org/10.1177/0308518X19881665
https://doi.org/10.1016/j.enpol.2014.01.019
https://doi.org/10.1016/j.enpol.2014.01.019
https://doi.org/10.1016/j.eneco.2019.03.003
https://doi.org/10.1016/j.eneco.2019.03.003
https://doi.org/10.1038/s43247-021-00258-9
https://doi.org/10.1016/j.apenergy.2018.10.137

	Bigger cities better climate? Results from an analysis of urban areas in China
	1 Introduction
	2 Method
	2.1 The urban Kaya relation
	2.2 Reduced Major Axis regression
	2.3 Limitations in the method

	3 Data
	4 Results
	4.1 Carbon emission patterns for all cities
	4.2 Carbon emission patterns for city groups
	4.3 The heterogeneity of carbon emission patterns among regions
	4.4 The comparison of emissions scaling among regions

	5 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Supplementary data
	References
	Interviews made during field work in 2012


