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Abstract1

Deep Learning (DL) semantic image segmentation is a technique used in several fields of2

research. The present paper analyses semantic crack segmentation as a case study to review3

the up to date research on semantic segmentation in the presence of fine structures and the4

effectiveness of established approaches to address the inherent class imbalance issue. The5

established UNet architecture is tested against networks consisting exclusively of stacked con-6

volution without pooling layers (straight networks), with regard to the resolution of their7

segmentation results. Dice and Focal losses are also compared against each other to evaluate8

their effectiveness on highly imbalanced data. With the same aim, dropout and data augmen-9

tation approaches are tested, as additional regularizing mechanisms, to address the uneven10

distribution of the dataset.11

The experiments show that the good selection of the loss function has more impact in12

handling the class imbalance and boosting the detection performance than all the other regu-13

larizers with regards to segmentation resolution. Moreover, UNet, the architecture considered14

as reference, clearly outperforms the networks with no pooling layers both in performance and15

training time.16

The authors argue that UNet architectures, compared to the networks with no pooling17

layers, achieve high detection performance at a very low cost in terms of training time. There-18

fore, the authors consider such architecture as the state of the art for semantic segmentation19

of cracks. On the other hand, once computational cost is not an issue anymore thanks to con-20

stant improvements of technology, the application of networks without pooling layers might21

become attractive again because of their simplicity of and high performance.22

23
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1 Introduction26

The desire to teach computers how to perform tasks without explicit programming is not new.27

The birth of Artificial Intelligence (AI) as a discipline is often attributed to the "Dartmouth28

Summer Research Project on Artificial Intelligence" in 1956. However, 6 years earlier Turing29

already introduced the concept of Artificial Intelligence with the famous Turing Test [1]. Between30

1966 and 1997 AI experienced what is defined as AI Winter. It is a sudden interruption of research31

in this field in part caused by a limit in computing power available at the time. In 1997, the32

chess-playing computer reopened the way to a seemingly never ending growth of Machine Learning33

(ML) applications in research as well as industrial projects. Since early 2010s, with the publication34

of ImageNet [2] and thanks to increasing computational power, Deep Learning (DL) has attracted35

more research as well as industry applications.36

In civil engineering there are many asset management and infrastructure inspection tasks that37

are potential applications for ML. Focusing on image based visual inspections, there are several38

DL approaches to perform defect detection such as image classification, object detection and se-39

mantic segmentation. The first one consists in recognising the main defect category in the image40

and classifying the whole image with a single label. Instead, object detection gives the possibility41
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of detecting and locating multiple defects within the same image performing thousands of classi-42

fications on the same image. Finally, semantic segmentation represents the last evolution in the43

progression from coarse to fine inference, providing the user with a per pixel classification of the44

images starting from a localised classification. The level of automation, the detection accuracy45

and the information’s granularity obtainable with ML techniques is strongly influenced by the46

employed strategy.47

1.1 Motivation48

To keep infrastructure in serviceable condition, regular inspections are needed to assess its level49

of degradation both at structural and material level [3]. To date, the most common approach to50

perform visual inspection of large infrastructures is still dominated by manual input [4]. In the51

last decades a large number of researchers have aimed to automate asset management pipelines.52

A distinct sub-group of ML-based asset management applications is crack detection. This53

considers cracks to be one of the first symptoms of structural damage [5, 6, 7, 8, 9, 10, 11]. Early54

crack detection solutions applying ML are [12, 13, 14]. Since then, the number of proposal for55

crack detection using ML has grown year by year. The first crack detection attempts are based56

on the combination of image processing & ML regression tasks [12, 15, 16, 17]. Other researchers57

address the topic performing crack detection using DL crack classification [7, 18, 8, 19, 14, 20] or58

semantic segmentation of cracks [21, 22, 6, 23].59

The aim of the present paper is to investigate the applicability of DL to perform semantic60

segmentation of road pavement cracks. This is a a subject of active research because of the61

challenge to achieve both high precision and recall. In fact, for civil engineering problems it is62

very important to detect cracks with a high level of precision, to avoid false alarms, and, at the63

same time, very high recall scores, to avoid unforeseen incidents. Moreover, datasets with images64

of cracks are often scarce and characterized by high class imbalance. All of these issues, together65

with the high interest of the construction industry in automating the inspection process, make this66

both a demanding and in-demand research area.67

1.2 Contributions68

The present paper studies semantic segmentation of road cracks. This problem is representative of69

more general tasks like extracting fine linear structures from cluttered background with semantic70

segmentation approaches. We contribute to the scientific community by providing key insights to71

help with the design or selection of effective neural architectures to perform such tasks.72

We experimentally verify and quantify the benefits of adopting DL approaches to perform73

semantic segmentation of cracks against the traditional manual approaches. The analysis, see74

Table 2 and Figure 4, takes into consideration the segmentation performance as well as the time75

needed to achieve the final result comparing manual and automated approaches.76

We review the effectiveness of the state-of-the-art in solving problems requiring very fine infer-77

ence as well as learning from highly imbalanced dataset. Multiple versions of UNet [24] and bespoke78

networks with no pooling layers are trained. The analysis of the segmentation performance on the79

test dataset allows us to evaluate:80

• The effects of pooling layers on the overall segmentation performance: the canonical UNet81

(UNet64) architecture is compared with the results of the same architecture when the skip-82

connections are removed (UNet64_NOSC).83

• The importance of the model size (in terms of trainable parameters): varying exclusively84

the number of filters per each block of convolution, three different sizes of UNet are trained85

(UNet64, UNet32 and UNet16).86

• The beneficial impact of a loss function specifically designed for class imbalance (UNet64 VS87

UNet64_FLxxxx and NoPoolNet-DILC VS NoPoolNet-DILCFL).88

• The importance of the receptive field when the pooling layers are removed (NoPoolNet series89

2 and 3)90

• The benefits of replacing traditional convolution blocks (convolution layers + pooling layers)91

with dilated convolution operations.92
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Finally, we evaluate the effectiveness of transfer learning, given the difficulty in retrieving data93

for civil engineering application (see. 2.2). To do so, the performance in segmenting cracks of the94

trained models will be tested on new datasets not used during the training process.95

1.3 Paper structure96

The rest of the paper is structured as follows:97

• Chapter 2. After an extensive literature review of modern Convolutional Neural Network98

(CNN) architectures, the data related challenges are investigated. This includes the effec-99

tiveness of well known regularization approaches to address them. The chapter will critically100

review the research on semantic segmentation of cracks.101

• Chapter 3. We present a set of experiments to study learning in case of imbalanced data102

and the resolution of inference respectively.103

• Chapter 4. We give a summary and analysis of the experimental results.104

• Chapter 5. We conclude the paper arguing our outcomes and highlighting the topics for105

future research.106

2 Literature Review107

2.1 CNNs for semantic segmentation108

One of the simplest DL architecture is represented by Artificial Neural Networks (ANN). They109

consist of the serialization of artificial neurons in layers where, at each layer, the input to the ith110

neuron is forwarded as number and the output is the result of a specific activation function on the111

weighted sum of the input itself (Equation (1)).112

x = (x0, x1, · · · , xN ), w =

w0

...
wN

 (1a)

z = x · w + b (1b)

y = f(z) =

{
0, if z < t

1, otherwise
(1c)

When it comes to image understanding, the traditional ANN structure has two main limi-113

tations. The first limitation is related to the number of parameters (a 28x28 grey scale image114

has already 784 input parameters) and to the depth of the network potentially exhausting the115

available computational power. A second limitation is the lack of spatial information, essential in116

image understanding, since all the neurons are fully connected [25]. To overcome these problems,117

modern architectures are based on a succession of convolutional and pooling layers. Convolution118

operations (Figure 1 top) give the possibility to optimize memory consumption and perform agile119

feature extraction without having to hard code any image processing pipeline. This is achieved120

thanks to three main properties of convolution operations. Sparse connectivity gives the possibility121

to reduce memory consumption and compute the output with fewer operations using a kernel size122

smaller than the input size. Doing so, it is possible to detect small and meaningful features storing123

fewer parameters compared with traditional ANN’s [26]. Parameter sharing allows the network to124

learn the response of the input to a specific set of operations rather than having several separate125

sets of parameters. Finally, the equivariant representation property is arguably the reason of the126

effectiveness of data augmentation. These three properties give CNNs the ability to efficiently han-127

dle multidimensional data (BxHxWxD in the case of a B batch of images H high, W wide and128

with D number of channels) reducing memory requirements and improving statistical efficiency.129

Pooling layers (Figure 1 bottom), often used in combination with convolutional layers, can130

improve the efficiency and the performances of a neural network in several ways. First of all, they131

reduce the dimensionality of the convolutional output. This translates into reduced computational132
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Figure 1: : Example of (top) convolution operation [k = 3×3, stride=1] and (bottom) max pooling
operation [k=2x2, stride=2].

needs and into better statistical performance. Moreover, it gives the possibility to learn scale133

invariant features [26].134

The networks to perform image semantic segmentation typically consist of two parts, the first135

is an encoder, often pre-trained, performing feature extraction. This is followed by the decoder136

performing dense pixel classification by projecting the discriminative features from the encoder to137

the pixel space. The architectures to perform semantic segmentation are numerous but, in most138

cases, they are modifications of popular architectures given below:139

• Fully Convolutional Networks (FCNs): released in 2015 [27], are usually based on VGG-16140

[28], a network previously developed by the Visual Geometry Group for ILSVRC classification141

(2014). In a departure from the original VGG-16, the final fully connected layers, previously142

used for the classification task, are removed only leaving convolutional layers, hence the name143

’fully convolutional’. The final up-sampling blocks consist of a set of addition and transposed144

convolutions (FCN_16 and FCN_8) in order to obtain a finer inference compared with the145

coarse FCN_32’s output [27]. This architecture has been implemented in [29]. [9] also use146

this up-sampling method, but they adopt a 12 layer pre-trained residual network as encoder147

rather then VGG16. One year later, [21] perform a comparative study analysing the results148

of multiple architectures as encoding part of FCN_8 architectures.149

• U-Net [24], is one of the architectures inspired by FCN [25] and is still one of the most popular150

for semantic segmentation. Its encoder can based on different architecture types. Unlike FCN,151

its decoder mirrors the encoder architecture, hence the name of the network. The u-shaped152

architecture enables a gradual up-sampling granting a finer resolution of the outputs. The153

architecture proposed in [24] presents skip-connections via concatenating corresponding levels154

of encoding and decoding blocks. The use of long skip-connections recovers high-resolution155

spatial information [30], fundamental for semantic segmentation. SegNet [31] can be seen156

as an evolution of U-Net. Its encoder part is based on VGG-16 and it is connected with157

its symmetrical decoder with skip-connections. Differently from U-Net, the skip-connections158

forward to the decoding layers the indices of pooling layers’ maximum values to improve159

the decoding accuracy of the segmentation. [22] implements such architecture for crack160

segmentation. Another example of U-Net inspired network applied for crack segmentation is161

[11]. In this paper the loss is calculated at each level of the network to create a multi-scale162

fusion map optimising the resolution of the pixel-wise prediction.163

Above, we described some solutions for performing per pixel classification. Even if they are different164

from each other, they all share the principle of reducing the spatial dimensionality introducing165

pooling layers to be able to design networks that are deeper and deeper. A direct consequence of166

that is the possibility to train a higher number of parameters increasing the non-linearity of the167

model [32]. However, analysing all the networks for semantic segmentation described so far, it is168
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evident that the low-level features, extracted on the highest resolution, are crucial for improving169

the performance of the model. Confirming this, [11] argue in their work that all the scales of170

their network add to the final loss but the higher scales, the ones with same resolution as the171

input, show heavier contribution to pixel classification robustness. In a similar fashion, the model172

proposed in [33] evaluates the loss at each scale. However, the novelty of this paper sits in the173

bottleneck, consisting in a block of dilated convolutions organised both in series and in parallel.174

Arguably, the authors claim that this helps them to increase the number of features learned.175

[34] and [35] agree on the idea and add that, if on one side the adoption of pooling layers gives176

the possibility to increase the number of trainable parameters, on the other side it decreases the177

resolution of the inference stating that pooling layers might cause loss of information between178

consecutive convolutional blocks. So, while [34] identify the necessity of residual connections179

between consecutive convolutional blocks to counteract the loss of information other than to avoid180

gradients’ vanishing, [34] address this issue removing completely the pooling layers.181

2.2 Data scarcity and class imbalance182

The robustness of a ML algorithm in general, and of CNN architectures in particular, depends on183

the amount of data fed to the machine to extract information [36, 37, 38]. The need of large training184

datasets can be reconnected to the curse of dimensionality concept introduced in [39] explaining the185

exponential growth of learning complexity with the linear growth of dimensionality in classification186

approaches. Especially in civil engineering ML applications, this growth is not reflected by the187

volume of available datasets which, are often limited by confidentiality issues with the client. One188

of the possible consequences of small training dataset is overfitting. It means that the statistical189

model contains more parameters than can be justified by the data. Even if in specific circumstances190

the overfitting phenomena doesn’t negatively affect or even increases the prediction performance191

of the algorithm [40], it will result in a poor prediction ability of the network in more general cases.192

Data augmentation [41, 42, 43] is the most common approach to tackle the issue of small datasets.193

It consists in minor geometric and/or appearance alteration of the images. The benefit is that,194

applying the same geometric alterations to the target mask, the data volume enlarges without any195

extra work. Dropout [44] is one of the regularization methods to avoid overfitting. Sometimes,196

it is also seen as an additional augmentation approach [24]. The value of its hyperparameter ρ,197

representing the probability of disconnecting neurons at each training step, is usually set to 0.5 for198

crack detection [45, 18, 21, 8]. Another very popular approach for the same problem is so called199

transfer learning. It represents the possibility to apply to the target task knowledge leveraged200

from a source task [46]. Avoiding overtraining with a cross validation approach [26] or avoiding201

overfitting by undercomputing [47] are two other solutions to face this problem. Finally, a less202

popular approach to reduce the risk of overfitting is ensemble learning. This approach consists203

in combining predictions from two or more models with statistics approaches [32, 48, 49]. The204

drawback of such an approach, especially for semantic segmentation, is the higher computational205

power required for both training and prediction phases.206

Apart from small datasets, another detrimental data related performance issue is class imbal-207

ance [50, 51, 52]. With this term we refer to the case when the number of samples belonging to208

one class (minority class) are outnumbered by the samples of another class (majority class). Even209

if this terminology seems to refer exclusively to a binary classification case, like the one taken into210

consideration in the present paper, it can be adopted for multi-class classification cases, too [51].211

Because of class imbalance, the performance of a trained neural network plummets proportional212

to the severity of the imbalance [53]. This effect can reduce the accuracy on the minority class up213

to 10% [50, 54]. There are numerous approaches to perform imbalance learning and they can be214

classified in techniques acting on data [55], methods applying cost functions to the loss [56] and hy-215

brid approaches [57, 58, 56]. [59] report the effects of class imbalance for DL algorithms explaining216

why such occurrence causes poor performances of the network. [60] in their review of approaches217

to address class imbalance categorize the approaches into data, algorithm and hybrid approaches.218

From the review it emerges that the methods applied for machine learning are extendable to DL219

with success. However, no conclusive argument is given on which approach is preferable. Moreover,220

it does not analyse the specific case of semantic segmentation. For semantic segmentation, one of221

the most common approach for class balancing is to weight the cost function of each class with the222

inverse of the class frequency multiplied by the median value of all class frequencies [31]. Another223

possibility is weighting posterior prediction with prior class probabilities at pixel level [61]. While224
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the first approach increases the intersection over union (IoU) to the cost of reduction of the overall225

accuracy, the second reports noticeable increase in precision and recall.226

The combination of data imbalance and small volume of datasets is still a matter of active227

research [61, 60] and it is a relevant issue in many domains as described in the following section.228

2.3 Semantic segmentation of cracks: a case of data scarcity and class229

imbalance230

Given the importance of crack detection for the structural assessment of structures and infras-231

tructure [62, 63], the ideal case scenario would be the highest accuracy on both background and232

foreground to avoid unnecessary alarms or unforeseen catastrophes. Against such result, data233

scarcity and class imbalance play an important role.234

The severity of class imbalance in crack image datasets can vary and so can the methods to235

deal with it, depending on which approach of image classification, object detection or semantic236

segmentation is implemented. For example, consider the case of crack detection based on image237

classification as performed in [5, 8]. In cases like this, the original class imbalance could be moderate238

to nil if data sampling is performed correctly. In the case of object detection we have what is referred239

as relative imbalance meaning that the dataset is strongly imbalanced but, increasing the overall240

dataset volume, the minority class will have sufficient samples to perform fairly well. Instead,241

in the case of semantic segmentation of cracks, the positive samples (pixels depicting cracks) are242

consistently heavily outnumbered by the negative ones (background). In this case we can talk of243

extreme absolute imbalance, where the term absolute refers to the instance rarity [64] such as the244

very low absolute number of crack pixels in the image space. [11] test the performance of a weighted245

loss function to mitigate class imbalance (see Equation 2) against the unweighted one applied to246

crack segmentation. Several experiments show that the best performance is achieved with α=β=1247

(leading to a total loss function reported in equation 2b) although the class distribution was not248

balanced. This result contrasts some theories about the weighted loss as an effective approach to249

mitigate class imbalance. The authors argue their results saying that applying larger weights to250

the class with smaller occurrence [65, 66] will penalise false negatives resulting in a bigger number251

of false positives with the potential of undermining the network’s performance.252

l(Fi;W ) =

{
2α
α+β · log(1 − P (Fi;W )), if yi=0
2β
α+β · log(P (Fi;W )), otherwise

(2a)

L =

I∑
i=1

(

K∑
k=1

l(F
(k)
i : W ) + l(F fusei ;W )) (2b)

with:253

F i: pixel-wise feature map254

W : set of standard parameter set255

P (F ): sigmoid function256

α, β: weights of background and foreground, respectively257

[8] in a comment related to data scarcity, demonstrate with a parametric study that the min-258

imum number of images needed to obtain reasonable classification performances is 10K. Unfor-259

tunately, crack detection is one of the cases where abundance of data is an issue for three main260

reasons:261

• given a surface, whether it is a road pavement or a tunnel lining, we expect the cracked areas262

to be a small percentage of the total inspected surface.263

• in some specific cases like tunnel lining defect detection [5], confidentiality arrangements264

between the infrastructure’s owner and the surveying company may limit the volume of data265

available, or the possibility to out- or crowd-source the task.266

• for crack segmentation a precise per-pixel ground-truth labelling is needed. This manual267

operation is highly time consuming and very costly if performed by specialised workers [21].268
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To address this issue, the most adopted approach is data augmentation. [11] and [67] perform an269

aggressive augmentation consisting of cropping the original image in smaller patches and rotating,270

flipping and adjusting contrast and brightness the patches. The original datasets, 260 and 250271

images respectively, grew to 31,590 and 44,000 images respectively. Finally, [8] noticed the need of272

samples with different complexity and lighting conditions to obtain a better generalisation.273

The benefits of transfer learning applied to address the data scarcity for crack detection, are274

analysed and quantified in [9, 21]. Instead, [11] demonstrates that a network trained from scratch275

performs better at crack segmentation compared to the same network initialized with pretrained276

weights. They argue that natural images, like the Pascal VOC2012 dataset [68], heavily differ from277

crack images in terms of colours and noise level.278

3 Methodology and Experimental Design279

The main objective of the experiments is to review the performance of state-of-the-art approaches280

for the task of semantic segmentation of fine and linear elements with clutter background. The281

analysis considers both the resolution of the inference and the networks’ ability to handle data282

related challenges.283

A first set of experiments consists in training multiple versions of UNet architectures and284

investigates the effects of pooling layers on the learning process (UNet64 VS UNet64_NOSC), the285

importance of model sizes (UNet64 VS UNet32 VS UNet16), as well as the impact of the loss286

function on the learned features (UNet64 VS UNet64_FLxxxxx).287

A second set of experiments considers architectures without pooling layers (NoPoolNet). The288

importance of the receptive field when the pooling layers are removed is quantified (NoPoolNet289

series 2 and 3). Moreover the benefits of replacing traditional convolution blocks with dilated290

convolutions is also evaluated.291

The comparison between the first set of experiments and the second one gives the possibility to292

test and in case quantify the benefits of adopting straight architectures (NoPoolNet’s) in contrast293

with the state-of-the-art. Such comparison takes in account not only the performance on the294

test dataset, but also the transfer learning ability to different datasets. The training time is also295

considered in the comparison.296

3.1 Hyperparameters297

To set a baseline we perform a hyperparameter optimization for the UNet architecture. For compa-298

rability the best performing set of hyperparameters is applied to the straight network architecture299

wherever possible. The parameters we analyse are the following:300

• Total number of trainable parameters. Due to computational power limitation, the largest301

straight network has 1.55 M trainable parameters (in the case of 2D convolutions, 5.33 in the302

case of 2D dilated convolutions). For a fair comparison, two more UNet architectures will be303

trained other than the canonical one (UNet64): UNet32 (7.48 M) and UNet16 (1.87 M).304

• Skip-connections. The benefits of having skip-connections is evaluated comparing UNet64305

with its counterpart with no such connections (UNet64_NOSC). The results of the latter306

architecture will also be used as comparison with the UnPoolNet architectures.307

• Dropout. It is a regularizer to avoid overfitting at algorithmic level [44, 26]. It creates a set308

of sub-networks randomly deactivating connections of the base network with a probability309

commonly ranging between 0.1 and 0.5. In this way it forces the network to learn robust and310

concurrent features. In the experiments drop out is applied as per [24] (ρ = 0.2 at the last311

two deconvolution blocks, ρ = 0.3 for the classification blocks) or not applied.312

• Learning rate. Two initial learning rates are tested: 1E-03 and 1E-04. For all the experiments313

the initial learning rate is reduced with a factor of 0.1 if the validation loss does not decrease314

for 8 consecutive epochs (Reduce on Plateau) with a minimum delta of 0.001 (0.0001 for315

models with Focal Loss), up to a minimum learning rate of 1E-08.316

The effectiveness of two different loss functions in mitigating data imbalance is analysed. The
first one is the Dice Loss. Introduced by [69] for binary volumetric medical image segmentation it is
often used for tasks where high inference resolution is needed [25]. Equation (3) describes the Dice
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Figure 2: : Mosaic augmentation example: RGB mosaic (left) and related binary labels (right)

loss and highlights the similarities between Dice Loss and Intersection over Union metric. Such
formulation grants learning being less affected by class imbalance. The second is the Sigmoid Focal
Loss (see Equation (4)) described in [56] as an effective solution for pronounced class imbalance in
dense object detection tasks.

D = 1 −
2
∑
pixels ytrueypred∑

pixels y
2true +

∑
pixels y

2pred
(3)

CE(pt) = −αtlog(pt) (4)

For all models He Normal [70] is used as kernel initializer of the convolutions, while Adam317

Optimizer [71] is the selected optimizer (with β1 = 0.9, β2 = 0.999, ε = 1E − 07). The maximum318

number of epochs is set to 300 but the training will stop when the validation loss does not improve319

more than a ∆min for N consecutive epochs, as it means that the model is fully trained and further320

iterations would only result in overfitting. This approach takes the name of Early Stopping. ∆min321

and N are fixed to 0.001 (0.0001 when Focal Loss is used) and 16, respectively.322

The metric to evaluate the performance on the test dataset is the average precision calculated as323

the integration of the precision-recall curve (AUC_PR). Because of its sensitivity, a small difference324

in the value might represent important variations of the respective curve.325

A mini batch of two images is set due to the memory limitation of the GPUs.326

3.2 Cracks image datasets327

Labelled image data for semantic segmentation of cracks is often limited (see. 2.2). Here we use a328

publicly available dataset of road cracks (CrackTree2601, [72]) for training and testing purposes.329

In this instance, data scarcity is due to the cost of accurate manual labelling. Two different330

data augmentation approaches are adopted resulting in the same number of images to test the331

effectiveness of each approach. In the first scenario the augmentation proposed by [11] is applied.332

Before augmentation a 90% 8% 2% split ratio is performed to divide the dataset in training,333

validation and test sets respectively. Cracks are identified by one pixel centre line labels. To334

emphasise class imbalance, no tolerance is considered in the evaluation of the performances both335

in training and validation phases. Data augmentation consists of nine image rotations (0-90◦@10◦),336

vertical and horizontal flipping per each rotated image and 5 cropped patches 512x512 pixels per337

each flipped/rotated image, one per each corner plus one in the centre [11]. The final number of338

image patches is 31590, 2700 and 810 for training, validation and test respectively. A different339

data augmentation scenario consists in implementing the mosaic augmentation approach [73] to340

the already augmented training and validation data (see Figure 2). For the given dataset, the341

imbalance for foreground (crack) is 0.5% versus background.342

To evaluate the transfer learning ability of the networks, four additional datasets are selected343

(see section 4).344

1CrackTree260 dataset and GT: https://1drv.ms/f/s!AittnGm6vRKLyiQUk3ViLu8L9Wzb
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3.3 Network architectures345

As mentioned above, UNet2 is the selected network to represent the current research in seman-346

tic segmentation. The canonical architecture (UNet64 ) consists of a 4-layer encoder and 4-layer347

decoder followed by 3 final convolutions representing the classifier. The the last convolution of348

the classifier has a 1 × 1 kernel and 2 filters. Each of the convolution blocks in the encoder is349

a stack of 2 convolutions (k = 3 × 3) each followed by batch normalization and activated with350

LeakyReLU [74, 70]. After every encoding block, a maxpooling operation is performed, to reduce351

the spatial dimensionality of data, and the number of convolutional filters is doubled from the352

initial value of 64 up to a max of 512. After the encoder, an extra convolution block is used as353

bottleneck. The de-convolution blocks consist of one convolution and one transposed convolution354

each activated with LeakyReLU after batch normalization. Skip-connections connect the output355

of every encoding block with a corresponding mirrored block in the decoder. Dropout (ρ = 0.2)356

is applied at each de-convolution block and after the first two convolutions of the classifier block357

(ρ = 0.3). The initial learning rate for this network is 1E-04 and it is reduced as described in the358

previous section.359

The impact of the learning rate is evaluated via the comparison of UNet64 with an identical360

network trained with higher initial learning rate (UNet64-03 ). In contrast, comparing the canonical361

architecture with its counterpart without dropout (UNet64_NODO) quantifies the impact of the362

dropout on the overall ability to segment cracks.363

Two smaller UNet models (UNet32 and UNet16 ) are trained. Their architecture is the same364

as UNet64 but with 32 and 16 initial parameters respectively. The total number of trainable365

parameters for UNet32 is 7.48 M while UNet16 results in a total of 1.87 M trainable parameters.366

UNet64_NOSC ’s architecture is derived from UNet64 by removing the skip-connections. This367

exposes the detrimental effects of the pooling operations on inference resolution. It also helps to368

show the positive effects of skip-connections on preventing gradient vanishing and information loss.369

Three more UNet experiments are trained to identify the effectiveness of the Sigmoid Focal370

Loss. For all networks the same value of γ = 2.0 is chosen as recommended in [56]. Three different371

values for the balancing factor alpha have been considered. The first α = 0.25 is producing the372

best results in the reference paper. The values α = 0.01 and α = 0.99 represent the frequency of373

foreground pixels and its inverse. These models are named UNet64_FL02520, UNet64_FL00120374

and UNet64_FL09920.375

For the straight networks multiple architectures are proposed to evaluate the effects of model376

depth, kernel size and type of convolution (dilated or not). All the networks can be divided into 5377

subgroups.378

• NoPoolNet-8L128k3 it is a straight network made of 8 identical convolution blocks with 128379

filters, each convolution with kernel_size = 3.380

• NoPoolNet2 series has the intent to analyse the effect of having a bigger receptive field381

for every convolution and demonstrate the importance of context surrounding the pixels of382

interest for the task of semantic segmentation. Similarly to NoPoolNet-8L128k3 they are383

straight networks with constant kernel size and number of filters. Because of the bigger384

kernel size a the architecture is limited to 6 layers and to a smaller number of filters per385

convolution. This results in a 70% reduction of the total number of trainable parameters386

compared with NoPoolNet-8L128k3.387

• NoPoolNet3 series aims to analyse the benefit of reproducing a pyramid effect increasing388

the kernel size rather than introducing the pooling layers. Starting from a network similar389

to the NoPoolNet2 series (6layers and 32 filters) it increases the kernel size of 2 after every390

second convolution. This also gives the possibility to test deeper networks compared to the391

NoPoolNet2 series with kernel size equal to 9 or 11.392

• NoPoolNet4 series resembles the network proposed in [75]. In that paper the authors argue393

that the number of filters per convolution is less important compared to the network’s depth.394

To validate this theory two similar networks are tested, a deeper one with less filters per395

convolution (NoPoolNet4-10L8 : 10 layers with 8 filters per layer, kernel_size = 9) and396

2The original implementation by [24] is based on caffe. In the present paper we adopt the tensorflow-based
implementation from [25] https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-TensorFlow-
2/blob/master/Chapter06/unet.py
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Table 1: : Overview of network parameters

Model Train Var. Loss F Lr Dropout Skipps K. Size

UNet16 1.87 M Dice 1E-04 Yes Yes 3
UNet32 7.48 M Dice 1E-04 Yes Yes 3
UNet64 12.73 M Dice 1E-04 Yes Yes 3
UNet64-03 12.73 M Dice 1E-03 Yes Yes 3
UNet64_NODO 12.73 M Dice 1E-04 No Yes 3
UNet32_L1 7.48 M Dice 1E-04 Yes Yes 3
UNet32_L2 7.48 M Dice 1E-04 Yes Yes 3
UNet32_L1L2 7.48 M Dice 1E-04 Yes Yes 3
UNet64_L2 12.73 M Dice 1E-04 Yes Yes 3
UNet64_NOSC 11.88 M Dice 1E-04 Yes No 3
UNet64_FL00120 12.73 M Focal 1E-04 Yes Yes 3
UNet64_FL02520 12.73 M Focal 1E-04 Yes Yes 3
UNet64_FL09920 12.73 M Focal 1E-04 Yes Yes 3
UNet64_mosaic 12.73 M Dice 1E-04 Yes Yes 3

NoPoolNet-8L128k3 1.20M Dice 1E-04 Yes Yes 3
NoPoolNet2-6L32k7-03 0.36 M Dice 1E-03 Yes Yes 7
NoPoolNet2-6L32k7 0.36 M Dice 1E-04 Yes Yes 7
NoPoolNet2-6L32k9 0.59 M Dice 1E-04 Yes Yes 9
NoPoolNet2-6L32k11 0.88 M Dice 1E-04 Yes Yes 11
NoPoolNet3-6L32k7 0.64 M Dice 1E-04 Yes Yes 7++
NoPoolNet3-6L32k9 0.94 M Dice 1E-04 Yes Yes 9++
NoPoolNet3NODO-10L32k7plus 1.55 M Dice 1E-04 No No 7++
NoPoolNet3-10L32k7plus 1.55 M Dice 1E-04 Yes Yes 7++
NoPoolNet4-10L8 0.15 M Dice 1E-04 Yes Yes 9,15,36
NoPoolNet4-6L16 0.50 M Dice 1E-04 Yes Yes 9,15,36
NoPoolNet_DILC3 4.29 M Dice 1E-04 Yes No 3
NoPoolNet_DILC 5.33 M Dice 1E-04 Yes No 3, 7, 15
NoPoolNet_DILC_clip 5.33 M Dice 1E-04 Yes No 3, 7, 15
NoPoolNet_DILCFL 5.33 M Focal 1E-04 Yes No 3, 7, 15

NoPoolNet_DILC_clip has the same architecture as NoPoolNet_DILC but the gradients have
been clipped as per [76]
column K. size:

• "++" indicates the kernel size increases by 2 after each convolution block.

• three numbers indicate a constant kernel size (first number) except for the last two convolution
blocks (second and third number).

a shallower one (NoPoolNet4-6L16 : 6 layers with 16 filters per layer, kernel_size = 9).397

Both of them end with the same classifier consisting of 3 convolution (kernel_size = 15,398

kernel_size = 36, kernel_size = 1 respectively).399

• NoPoolNet_DILC series is needed to compare the benefits of dilated convolution (kernel400

size=3, dilation rate=2 strides=1) against the other networks. NoPoolNet_DILC3 is ob-401

tained from UNet64 by removing the skip-connections and pooling layers and replacing the402

convolutions with a dilated convolution. NoPoolNet_DILC and NoPoolNet_DILCFL have403

larger kernel sizes at first and second convolution of the classifier block to connect each pixel404

with a larger visual receptive field [75]. NoPoolNet_DILCFL replaces the Dice Loss with the405

Sigmoid Focal Loss406

Table 1 summarizes the main parameters of each network.407
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Table 2: : Manual labelling baseline
Image Manual DL Recall Precision Precision (± 2pix) AUC_PR

1 6min 0.038sec

72.5% 33.6% 94.4% 24.9%

2 11min 0.040sec
3 7min 0.040sec
4 35min 0.039sec
5 6min 0.038sec
6 21min 0.041sec

Performance metrics in this table compare manual labelling performed by the authors against the
GT of the benchmark dataset.

4 Results408

This section of the paper summarizes the results of the experiments described in 3. It starts with409

the comparison between manual and automated segmentation of cracks. After that, it continues410

with the analysis of UNet architectures’ results. In this phase we interpret the effects of skip-411

connection and other hyperparameters on the networks’ performance. The effectiveness of different412

data augmentation strategies addressing data scarcity is also summarized. Finally, we critically413

analyse the straight architectures’ results comparing them with the UNet models’ performance.414

4.1 Comparison with manual image annotation415

Figure 3: : Comparison between ground truth and manual labelling for the input image (leftmost)

The analysis of the results starts by comparing manual annotations made by the authors to the416

benchmark’s ground truth (GT). This sets the baseline acceptance level for automated segmenta-417

tion. Comparing time spent on manual labelling with compute time for automated segmentation418

allows for a cost-benefit analysis. Moreover, this comparison underlines the subjectivity of manual419

labels and the lack of repeatability of approaches based on manual input (see Figure 3). Consider-420

ing this subjectivity, we analyse the comparison between manual and automated segmentation of421

cracks with and without ± 2 pixels tolerance (Figure 4).422

If from Table 2 we appreciate the economic benefits, expressed in time spent on the task,423

of automated detection over the manual labelling, Figure 4 demonstrates how DL semantic seg-424

mentation of cracks widely outperforms manual labelling also in the overall performance in finely425

segmenting cracks. For this analysis, the recall of manual labelling is considered as target and the426

respective precision is calculated for both manual labelling and DL predictions. The tolerance on427

the test dataset means that if a False Positive (FP) pixel is within 2 pixels radius from a ground428

truth (GT) positive pixel it will considered as True Positive (TP).429

4.2 UNet performance analysis430

In the present paragraph the UNet-inspired models’ performance will be interpreted to understand431

the effects of the skip-connection and hyperparameters. The importance of skip-connections for432
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Figure 4: : Precision at manual recall strict and with tolerance.

U-shaped architectures is evident form Figure 4. AUC_PR and precision@recall(0.73) plummet433

to 64% and 90% respectively when such connections are removed. This seems to validate that434

pooling layers lead to loss of information, if not supported by skip-connections.435

Another hyperparameter strongly impacting the performances of the networks is the initial436

learning rate for both architecture types. In fact, both U-shaped and straight networks suffer a437

significant reduction (approximately 14%) of the performances when larger initial learning rate is438

applied.439

The implementation of dropout to address data scarcity is also considered. The difference be-440

tween the results with (UNet64) and without (Unet64_NODO) dropout layers is barely noticeable441

and slightly in favour of the case without dropout.442

The relation between the number of trainable parameters and the overall performance of the443

networks is then analysed. The apparent monotonous trend of such relation from Figure 4 is444

disproved in Figure 5 were UNet16 performs better than UNet32 and almost as well as Unet64445

in terms of AUC_PR. This means that having more parameters increases the confidence of the446

(per-pixel) classification resulting in higher precision when results at lower confidence thresholds447

are investigated.448

Related to data scarcity, the impact of different augmentation techniques is studied. As de-449

scribed in the previous sections, data augmentation performed as per [11] is compared with mosaic450

data augmentation, both enlarging the original dataset from 260 images to over 30K samples. The451

results of UNet64_mosaic are compared against UNet64, trained on the dataset obtained with the452

first augmentation approach. Considering Figure 5, can be noticed that the difference in perfor-453

mance is almost imperceptible. Instead, the difference in precision@recall(0.73) is more evident454

and in favour of the first approach (Figure 4). The reason for the difference in precision can be455

researched in the dataset specific characteristics. Mosaic augmentation is designed to make the456

network context invariant, meaning that the networks learns to detect features also in complex457

scenarios. However, none of the images of the given set of images depicts any content other than458

cracked tarmac.459

Finally, about imbalance learning, from Figure 6 it is evident that, while the validation loss has460

a positive gradient, the validation AUC_PR is not decreasing. This means that the models are not461

yet overfitting and suggests that the metric to monitor to activate the early stopping should not462

be the validation loss but the validation AUC_PR. Such conclusion is confirmed by the networks463

performance on the test dataset: the models trained with the Focal Loss (UNet64_FLxxxxx)464

largely outperform (+28%) all the other networks (see Figure 5).465
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Figure 5: : Multi-parameter analysis.

4.3 UNet versus NoPoolNet466

The comparison between UNet and NoPoolNet architectures’ performance is in favour of U-shaped467

ones. However, some further considerations can be made.468

As well as the U-shaped architectures, the straight networks suffer of a noticeable performance469

reduction (approximately 15%) when larger initial learning rate is adopted (NoPoolNet2-6L32k7-470

03 V NoPoolNet2-6L32k7). With regard to the effectiveness of Sigmoid Focal Loss on handling471

the class imbalance, similar consideration to the previous paragraph can be made. We noticed a472

remarkable improvement (+38%) in the segmentation performance when Focal Loss was used even473

if the validation loss gradient is positive.474

Instead, the relation trainable parameters-performance does not follow the same trend as anal-475

ysed for the UNet architectures. Infact, it can be noticed that the increase in trainable parameters476

seems counterproductive to the segmentation performance (NoPoolNet2-6L32k7 VS NoPoolNet2-477

6L32k9 VS NoPoolNet2-6L32k11 and NoPoolnet series 3). However, while in UNet networks the478

variation of trainable parameters is given by the variation of the number of filters per each con-479

volution, for the straight networks if is related to the dimensions of the receptive field of each480

convolution. Such difference keeps this topic still open for future research.481

For the straight networks, we also test the effectiveness of adaptive clip gradients [76] in avoiding482

vanishing gradients (NoPoolNet_DILC V NoPoolNet_DILC_clip). The results show a slight483

advantage when using gradient clipping, justifying its use (Figures 4 and 5 and Table 3).484

After the performance analysis on the test dataset, the transfer learning ability of each network485

is tested. To do so, four more datasets are selected so that they differ from the test dataset486

(CrackTree260) in terms of lighting, resolution and GT:487

• AIGLE_RN3: includes 38 road pavement images captured at traffic speed using the AIGLE-488

RN system [77]. Labels are the fusion of the manual segmentation performed by four indi-489

viduals to counter the lack of repeatability and reliability of human input [78].490

• ESAR4: contains 15 fully annotated images [79].491

• CRKWH1005: consists of 100 road pavement images captured by a line array camera and492

under visible-light illumination [11].493

3AIGLE_RN dataset and GT: https://www.irit.fr/~Sylvie.Chambon/Crack_Detection_Database.html
4ESAR dataset and GT: https://www.irit.fr/~Sylvie.Chambon/Crack_Detection_Database.html
5CRKWH100 dataset: https://1drv.ms/f/s!AittnGm6vRKLtylBkxVXw5arGn6R

CRKWH100 GT: https://1drv.ms/f/s!AittnGm6vRKLglyfiCw_C6BDeFsP
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Figure 6: : Models with focal loss: validation performances

Table 3: : Transfer learning performance (AUC_PR). Models trained on CrackTree260.
Label Train. Var. CrackTree260 AIGLE_RN ESAR CRKWH100 CrackLS3150

UNet64_mosaic 12.73 M 0.6614 0.8882 0.9876 0.6114 0.2279
UNet64_NOSC 11.88 M 0.2360 0.8894 0.9843 0.1215 0.2556
UNet64_NODO 12.73 M 0.6650 0.8884 0.9874 0.6711 0.2265
UNet64_FL09920 12.73 M 0.8419 0.9268 0.9814 0.7933 0.3730
UNet64_FL02520 12.73 M 0.8406 0.9277 0.9813 0.7865 0.3646
UNet64_FL00120 12.73 M 0.8416 0.9321 0.9814 0.7897 0.3794
UNet64-03 12.73 M 0.5668 0.8895 0.9875 0.4819 0.2512
UNet64 12.73 M 0.6561 0.8888 0.9876 0.6214 0.2409
UNet32 7.48 M 0.6014 0.8900 0.9888 0.4946 0.2040
UNet16 1.87 M 0.6371 0.8883 0.9875 0.5590 0.2355
NoPoolNet4-6L16 0.50 M 0.5195 0.8903 0.9866 0.3307 0.2604
NoPoolNet4-10L8 0.15 M 0.4313 0.8869 0.9853 0.3359 0.3084
NoPoolNet3-6L32k9 0.94 M 0.5593 0.8895 0.9877 0.5161 0.2261
NoPoolNet3-6L32k7 0.64 M 0.6107 0.8889 0.9874 0.4085 0.2114
NoPoolNet3-10L32 1.55 M 0.5261 0.8884 0.9872 0.5092 0.2624
NoPoolNet2-6L32k9 0.59 M 0.6056 0.8883 0.9874 0.4069 0.2143
NoPoolNet2-6L32k7-03 0.36 M 0.5115 0.8896 0.9879 0.1974 0.2876
NoPoolNet2-6L32k7 0.36 M 0.6002 0.8881 0.9878 0.3073 0.2044
NoPoolNet2-6L32k11 0.88 M 0.5985 0.8885 0.9875 0.4005 0.2484
NoPoolNet-DILC_clip 5.33 M 0.6080 0.8890 0.9877 0.3561 0.2160
NoPoolNet-DILCFL 5.33 M 0.8379 0.9263 0.9814 0.7145 0.3895
NoPoolNet-DILC3 4.29 M 0.5820 0.8898 0.9874 0.4344 0.2178
NoPoolNet-DILC 5.33 M 0.6031 0.8892 0.9876 0.2413 0.2092
NoPoolNet-8L128k3 1.20 M 0.5252 0.8894 0.9882 0.2427 0.1986
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• CrackLS3156: consists of 315 road pavement images captured with line array camera but494

under laser illumination [11].495

In Figure 7 the reader can closer inspect the differences between the datasets both in terms of raw496

images and GT. In the same images are also reported the outputs of the two networks with best497

performance, one trained with dice loss and the other with the sigmoid focal loss.498

Table 3 summarizes the results in terms of AUC_PR without any tolerance per each network499

and dataset. As expected, the performance on CrackLS315 and CRKWH100 datasets are sig-500

nificantly lower than the one on the test proportion of the CrackTree260 dataset. However, on501

CRKWH100 and AIGLE_RN datasets, transfer learning produces results unrealistically higher502

compared with the test dataset. This is explained looking at the respective GTs. While the anno-503

tations for CrackTree260, CrackLS315 and CRKWH100 are 1 pixel wide (Figures 7(e) and 7(g)), in504

the case of AIGLE_RN and Esar the GT looks much wider (Figures 7(f) and 7(h)). In accordance505

with what noticed for CrackTree260, for all dataset the networks with Focal Loss perform bet-506

ter than the others, with exception of ESAR dataset where UNet32 slightly outperforms UNet64.507

Interestingly, on CrackLS315 dataset NoPoolNet-DILCFL performs considerably better than all508

other networks, including UNet64 and UNet64_FLxxxxx.509

5 Conclusions and Future Research510

In civil engineering, accurate crack detection is important to assist asset managers in their day-511

to-day job. Information on the exact location, orientation and severity of the cracks is essential512

for repair and maintenance prioritization of the most critical areas. To that end DL can support513

the automation of visual inspection. However, even the best networks are currently limited to514

about 0.8 considering the area under the precision recall curve on the larger datasets (see Table 3515

third column). Furthermore, the training and test datasets are still limited in size. Therefore516

generalization to real world uses cases is still ongoing research. With those limitations in mind, DL517

algorithms for semantic segmentation of cracks represent a fast, reliable and repeatable approach to518

automate visual inspection of large infrastructure. As we noticed in chapter 4, deep learning based519

segmentation outperforms manual labelling both in speed and quality. Moreover, the possibility520

to transfer learning to similar tasks with decent outcomes has been demonstrated.521

From the critical analysis of the results reported in chapter 4, we argue that:522

• Data augmentation to enlarge the dataset was successful as the networks were able to learn523

general features that enabled them to perform the same task on multiple datasets. However,524

the discussion on which augmentation approach performs better is still open.525

• The detrimental effect of the pooling layers has been confirmed by the analysis of UNet64_NOSC’s526

performances. However, this effect is compensated by the adoption of skip-connection. Such527

combination results in better performance of the UNet-inspired networks compared with all528

the straight networks. In the case of straight networks, the gradient clipping approach to529

avoid gradient vanishing is successful and produces a slight performance improvement (circa530

1%) in terms of AUC_PR. However, even with such an approach the straight networks are531

not able to outperform the UNet-like architectures.532

• The expected direct proportionality between the number of trainable parameters and per-533

formance (for the same network architecture) has not been confirmed. This might affect534

future approaches for designing new network architectures especially when training time is a535

concern. In fact, Figure 5 depicts how UNet16 performs almost as well as UNet64 but with536

much lower number of G-FLOPS and therefore much faster training. The same has been537

noticed for the straight networks.538

• It is possible to successfully address class imbalance if an appropriate loss function is selected.539

The improvement in AUC_PR when the focal loss function is applied is noticeable (Figures540

4 and 5).541

In conclusion, the UNet architecture is considered by the authors as state of the art for semantic542

segmentation of cracks as it outperforms straight architectures both in performance and training543

time (see Figure 5).544

6CrackLS315 dataset: https://1drv.ms/f/s!AittnGm6vRKLtylBkxVXw5arGn6R
CrackLS315 GT: https://1drv.ms/u/s!AittnGm6vRKLg0HrFfJNhP2Ne1L5?e=WYbPvF
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(a) CrackLS315 Image (b) AIGLE_RN Image (c) CRKWH100 Image (d) ESAR Image

(e) GT (f) GT (g) GT (h) GT

(i) UNet64 (j) UNet64 (k) UNet64 (l) UNet64

(m) UNet64_FL09920 (n) UNet64_FL09920 (o) UNet64_FL09920 (p) UNet64_FL09920

Figure 7: Examples of the dataset used for testing purposes only. Examples of the two best models’
output are reported, too.
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One of the main limitations for the straight networks is computational power. Because of that, it545

was not possible to train large enough networks or the training time was excessively high. However,546

it can be said that technology is showing an exponential improvement in terms of computational547

power. The authors believe that future research on straight networks will provide the tools to548

produce networks for fine inference. The detailed results of our investigation can be used as a549

starting point for a targeted hyperparameter optimizations for new application scenarios. We550

hope that this furthers adopting existing or developing new architectures in the area of semantic551

segmentation for engineering applications.552
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