
Towards the Implementation of
Distributed Systems in Synthetic

Biology

Neythen J. Treloar

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Cell and Developmental Biology

University College London

February 3, 2022

2

I, Neythen J. Treloar, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

The design and construction of engineered biological systems has made great strides

over the last few decades and a growing part of this is the application of mathematical

and computational techniques to problems in synthetic biology. The use of distributed

systems, in which an overall function is divided across multiple populations of cells,

has the potential to increase the complexity of the systems we can build and overcome

metabolic limitations. However, constructing biological distributed systems comes

with its own set of challenges. In this thesis I present new tools for the design

and control of distributed systems in synthetic biology. The first part of this thesis

focuses on biological computers. I develop novel design algorithms for distributed

digital and analogue computers composed of spatial patterns of communicating

bacterial colonies. I prove mathematically that we can program arbitrary digital

functions and develop an algorithm for the automated design of optimal spatial

circuits. Furthermore, I show that bacterial neural networks can be built using our

system and develop efficient design tools to do so. I verify these results using

computational simulations. This work shows that we can build distributed biological

computers using communicating bacterial colonies and different design tools can be

used to program digital and analogue functions. The second part of this thesis utilises

a technique from artificial intelligence, reinforcement learning, in first the control

and then the understanding of biological systems. First, I show the potential utility of

reinforcement learning to control and optimise interacting communities of microbes

that produce a biomolecule. Second, I apply reinforcement learning to the design

of optimal characterisation experiments within synthetic biology. This work shows

that methods utilising reinforcement learning show promise for complex distributed

Abstract 4

bioprocessing in industry and the design of optimal experiments throughout biology.

Impact Statement

The work presented here has the potential to impact both academia and industry.

I have developed new theoretical frameworks for spatially distributed digital and

analogue computing using populations of cells. Furthermore, I have developed and

demonstrated design methods for the construction of digital and analogue computers.

Within academia, this work will have impact in the field of synthetic biocomputing

and could lay foundations for many more advances. More widespread impact could

include advances such as point of care medical diagnostic devices with complex

information processing capabilities.

I have also investigated the use of deep reinforcement learning to control mi-

crobial communities in bioreactors and the design of optimal experiments within

synthetic biology. As the capabilities of synthetic biology increase, there will be

a strong incentive to leverage the capabilities of microbial communities in indus-

trial bioprocessing. Two barriers to adoption is the difficulty of controlling such

communities and the challenge of deriving accurate system models. This work has

tackled both of these problems and opens the door to such approaches in industry.

Furthermore, it will form the basis of future experimental work in academia such as

characterisation experiments using desktop bioreactors or microfluidics.

Acknowledgements

Firstly, I would like to thank Prof. Chris Barnes for the support he has given me

throughout my PhD. I am grateful for all his guidance and for giving me the autonomy

to explore many ideas beyond those presented here. I am very thankful that I got

the opportunity to work in his group exploring such exciting ideas and I am looking

forward to continuing with this work in the near future. I have achieved more in the

last three years than I would’ve thought possible when I started.

I would also like to thank everyone in the Barnes group for creating such a

welcoming environment. Special thanks go to Jack, Luca and Bez for being great

office mates and friends and showing the me best places to buy scones and korean

fried chicken. To Alex Fedorec for all his help and guidance, and to Ke Yan for

bringing some of the theoretical work presented here to life in the lab. I would

also like to thank all the collaborators who took the time to share ideas with me,

especially Brian Ingalls who supported me during my time in his group and made

much of the work in this thesis possible. I would also like to thank the ERC for

funding my research and the Bogue fellowship for awarding me funding to spend a

summer in Canada.

Lastly, I would like to thank my friends and family both in London and at home

who have supported me throughout this time. Especially those who made the times

of national lock down bearable.

Contents

1 Background 15

1.1 Overview of computational concepts 16

1.1.1 Digital computing . 16

1.1.2 Analogue computing with neural networks 16

1.2 Computing in synthetic biological systems 18

1.2.1 Capabilities of realised distributed computers 20

1.3 Distributed bio-processing . 24

1.4 Reinforcement learning . 25

1.4.1 The Markov property . 27

1.4.2 The Bellman equations . 27

1.4.3 Q-learning . 28

1.5 Aims . 30

1.6 Thesis outline . 31

1.7 Contribution to publications . 31

2 Methods 33

2.1 Finite difference simulation of diffusion 33

2.2 Reinforcement learning algorithms 34

2.2.1 Neural Fitted Q-learning algorithm 34

2.2.2 Twin Delayed Deep Deterministic Policy Gradient 37

2.3 Proportional integral derivative control 40

2.4 Model predictive control . 40

Contents 8

3 Distributed digital biocomputation through spatial diffusion and engi-

neered bacteria 42

3.1 Introduction . 42

3.2 The capabilities of a single output colony 45

3.2.1 All two input logic gates can be realised with a single output

colony . 50

3.2.2 Computationally enumerating logic gates 52

3.2.3 Simulation verifies the two input mathematical results . . . 54

3.2.4 One output colony cannot realise all three input digital func-

tions . 55

3.3 The Macchiato algorithm: optimal distributed spatial circuits 56

3.3.1 The relative importance of the activation functions for the

Macchiato algorithm . 62

3.3.2 Upper bound for the number of output colonies 63

3.4 Discussion . 66

4 Distributed analogue biocomputation through spatial diffusion and en-

gineered bacteria 70

4.1 Introduction . 70

4.2 Modelling bacterial communication networks as artificial neural

networks . 72

4.3 Training bacterial neural networks using an evolutionary algorithm . 74

4.3.1 Constraints . 75

4.3.2 Modelling bacterial communication as the forward pass of a

neural network . 75

4.3.3 Evolutionary algorithm . 78

4.4 Bacterial neural networks can approximate a wide range of functions 81

4.5 Application to biosensing . 82

4.6 Discussion . 84

5 Deep reinforcement learning for the control of microbial co-cultures in

Contents 9

bioreactors 87

5.1 Introduction . 87

5.2 A mathematical model of interacting bacterial populations in a

chemostat . 90

5.3 Controlling interacting bacterial populations in a chemostat 92

5.3.1 Minimum inter-sampling period 93

5.3.2 Number of Fitted Q-iterations to avoid over fitting 95

5.3.3 Number of Fitted Q-iterations for value convergence 95

5.3.4 Reinforcement learning can be used to control the bioreactor

system . 97

5.3.5 Reinforcement learning is robust to different initial condi-

tions and targets . 98

5.4 Comparison of reinforcement learning with proportional integral

control . 103

5.4.1 Proportional integral controller tuning 103

5.4.2 Reinforcement learning outperforms proportional integral

control for long inter-sampling periods 104

5.5 A good policy can be learned online using parallel bioreactors . . . 106

5.6 The yield of a community-based product can be directly optimised . 107

5.7 Discussion . 109

6 Deep reinforcement learning for optimal experimental design in syn-

thetic biology 112

6.1 Introduction . 112

6.2 Formulation of the optimal experimental design problem 114

6.3 Fitted Q-learning for optimal experimental design 115

6.3.1 Reinforcement learning for optimal experimental design on

a simple Monod growth system 117

6.3.2 Reinforcement learning for optimal experimental design on

a model of gene transcription 120

6.4 A continuous, recurrent RL controller for OED for bacterial growth 123

Contents 10

6.4.1 Removing the dependence on a priori parameter estimates . 126

6.4.2 Continuous, recurrent reinforcement learning to design ex-

periments . 130

6.4.3 Optimal experimental design for a single auxotroph in a

chemostat . 132

6.4.4 Reinforcement learning can be used to optimise over a pa-

rameter distribution . 135

6.5 Discussion . 141

7 General conclusions 145

Appendices 148

A Reinforcement learning control repeats 148

B Mathematics of optimal experimental design on the Monod system 151

C Parameter identifiability of the single chemostat system 154

Bibliography 157

List of Figures

1.1 Example capabilities of computational communities 22

1.2 The basic reinforcement learning feedback loop 26

3.1 Digital logic by diffusible communication 47

3.2 Programming logic gates by moving colonies 49

3.3 Proving two input digital capabilities 51

3.4 Realisable microstates in the phase space of logic gates 54

3.5 Digital logic patterns . 55

3.6 The Macchiato algorithm . 59

3.7 Complexity of the Macchiato algorithm 63

3.8 Comparison of the complexity of the Macchiato algorithm 66

4.1 Bacterial neurons and neural networks 73

4.2 Activation functions for bacterial neural networks 77

4.3 The, in silico, pipeline for training and simulating a bacterial neural

network. 79

4.4 Summary of neural network results 83

5.1 Reinforcement learning for the control of two auxotrophic species

in a chemostat . 89

5.2 Identifying the minimum timestep above which the chemostat system

behaves effectively as a Markov decision process. 94

5.3 Overfitting of Fitted Q-iteration for different dataset sizes 96

5.4 Convergence of Fitted Q-iteration 96

5.5 Reinforcement learning applied to the bioreactor system 98

List of Figures 12

5.6 Population curves for different initial conditions and targets 100

5.7 Actions for different initial conditions and targets 101

5.8 Average returns for different initial conditions and targets 102

5.9 Simulink diagram . 104

5.10 Comparison of reinforcement learning and proportional integral

controllers . 105

5.11 Learning a policy in twenty four hours 107

5.12 Using reinforcement learning to optimise product output 109

6.1 Reinforcement learning for optimal experimental design 117

6.2 Reinforcement learning for optimal experimental design on a simple

non-linear system . 119

6.3 Analytical derivation of Fisher information 120

6.4 Optimal experimental design for parameter inference on a gene

transcription system . 123

6.5 Training performance of reinforcement learning for optimal experi-

mental design on a gene transcription system 124

6.6 Description of the chemostat system 125

6.7 The performance of agents using three different states to predict

values of the random policy . 129

6.8 The Recurrent T3D algorithm . 131

6.9 Optimal experimental design to infer parameters of a single aux-

otrophic bacteria growing in a chemostat 133

6.10 Training performance of reinforcement learning for optimal experi-

mental design on the chemostat system 134

6.11 Training over a parameter distribution 136

6.12 Training performance of reinforcement learning for optimal experi-

mental design on the chemostat system over a parameter distribution 137

6.13 The experimental designs of the RL controller at different parameter

samples . 140

List of Figures 13

A.1 Episodic Fitted Q-iteration repeats 148

A.2 All population curves from Online Fitted Q-iteration running in parallel149

A.3 Optimising product output repeats 150

List of Tables

3.1 The possible three input logic gates with a single output colony . . . 57

3.2 Number of colonies required to implement three input logic gates . . 64

5.1 Parameters for the double auxotroph system 91

6.1 The intrinsic parameters of the gene transcription system 122

6.2 Summary of the performance metrics of different methods for opti-

mal experimental design on the gene transcription model 122

6.3 Parameters for the single auxotroph system 126

6.4 Summary of the performance metrics of different methods for opti-

mal experimental design on the single auxotroph model 135

6.5 Total parameter error of different methods for optimal experimental

design on the single auxotroph model over a parameter distribution . 136

6.6 Comparison of RL OED controller trained over a parameter distribu-

tion compared with an MPC with perfect system knowledge 139

Chapter 1

Background

Over the last couple of decades advanced DNA manipulation techniques have led

to the emergence of the field of synthetic biology. Synthetic biology aims to apply

engineering principles to the design and construction of biological systems from

the ground up. One of the key challenges is the development and application of

new design and control methodologies. Traditionally, synthetic biology has involved

engineering the genetic reaction networks (GRNs) within single cell populations.

However, just like natural systems such as multi-cellular organisms and bacterial

communities, there are many advantages to having multiple populations of cells

including specialisation and task distribution. Additionally, there are metabolic

limits on the complexity of circuits that can be built into any single bacterial cell.

Due to the complexity of the living cells there are many challenges unique to

engineering within biological systems. These include context dependence of parts,

non-orthogonality of signals, growth dependent effects and potential unintended

consequences of an engineered perturbation to the genome. The complexity of

these problems is compounded when designing and controlling distributed biological

systems, potentially composed of many different cell types. In this thesis I develop

new methods for the design, control and understanding of distributed synthetic

biological systems for use in biological computing and bio-processing. Chapters 3

and 4 are concerned with the design of spatially distributed biological computers,

investigating both digital (Chapter 3) and analogue (Chapter 4) computing. Chapters

5 and 6 use a technique from machine learning called reinforcement learning to

1.1. Overview of computational concepts 16

tackle two problems in synthetic biology. Chapter 5 applies reinforcement learning

to the control of synthetic communities performing distributed bioprocessing and

Chapter 6 uses it for optimal experimental design.

1.1 Overview of computational concepts

1.1.1 Digital computing

A digital function is restricted to operating in the binary domain, mapping inputs

in the form of 0s and 1s to a similarly restricted output. Computing in the purely

digital domain has advantages such as reliability, resistance to noise and easy imple-

mentation using transistors. This has lead to the advent of general purpose digital

computers which continue to have utility in almost every facet of modern life. The

input-output mapping of a digital function is commonly represented using a truth

table, which defines which combinations of inputs are mapped to ON and OFF. Just

like an algebraic equation that can be rearranged and simplified while still expressing

the same relation, for any given truth table there are many equivalent digital func-

tions of varying complexity that encode it. A key consideration when building an

electronic digital circuit is to find the simplest form of a given truth table for physical

implementation. This led to the development of a manual method based on grouping

outputs using a visual representation of a function called a Karnaugh map [1] and

later an automated design algorithm called the Espresso algorithm [2] which is now

ubiquitous in electronic digital circuit design.

1.1.2 Analogue computing with neural networks

Inspired by the networks of biological neurons that form the brain, artificial neural

networks (ANNs) are composed of many artificial neurons connected in a flexible

manner that allows learning. Each artificial neuron receives input, either externally

or from other neurons, and performs a small computation. The neuron then passes

the result onto subsequent neurons or out as the networks output. The strength of

connection between two neurons is dictated by a weight. Inputs to a neural network

are vectors or multidimensional matrices of numbers. Like sensory inputs, these can

represent many things including images, time series data or sound waves. The output

1.1. Overview of computational concepts 17

of the network can represent predictions, classifications or any other function of the

inputs. Neural networks are not restricted to operating in the digital domain and can

therefore be considered as performing analogue computations.

There are multiple architectures of neural network which connect the composite

neurons in different ways. Feedforward networks are composed of multiple layers

of neurons, each neuron receives input from the neurons in the previous layer and

passes its output on to the neurons in the next layer. Convolutional networks are

inspired by biological vision and excel at feature extraction and image classification.

Recurrent networks maintain a persistent internal state meaning they excel at pro-

cessing sequences of inputs, such as sentences or time series data. These different

architectures can be used together and a single network often contains convolutional,

recurrent and feedforward parts.

ANNs are trained on data, usually using a method called backpropagation [3].

First the data is usually split into small groups called mini-batches, the data-points

within a mini-batch are processed simultaneously in parallel. During backpropa-

gation mini-batches of training data are sent through the network to calculate the

predicted output for each data point, this is called the forward pass. The error in the

predicted output is calculated using a loss function, commonly the mean squared

error. Using the chain rule of differentiation, this error is propagated backwards

through the network to find the change in the network’s weights that would reduce

the error over the current mini-batch. The weights are then moved incrementally in

this direction and the size of the change is dictated by a hyper parameter called the

learning rate. If necessary this process can be repeated for many epochs, where each

epoch is a run through the entire training data set, until the network is fully trained

and can predict the targets with low error. Neural networks are proven universal

function approximators when they have at least one hidden layer [4, 5]. They under-

pin the field of deep learning within machine learning and have been instrumental in

many of the recent advancements in artificial intelligence. Their power lies in the

ability to learn complex functions from data and the flexibility to be applied to many

types of problem. They have been applied to image classification [6], non linear

1.2. Computing in synthetic biological systems 18

regression [7] and protein folding prediction [8], and have been used in the field of

deep reinforcement learning to achieve superhuman performance in video [9, 10]

and board [11] games.

1.2 Computing in synthetic biological systems
The unique properties of biological molecules can be exploited by using them as

computational substrates. This could result in superior performance over traditional

computers in certain applications [12]. DNA programming has been used to solve

an NP-complete Hamiltonian path problem [13] and to construct AND, NOT and

XOR logic gates [14]. These logic gates were then combined in the construction of a

molecular half adder [15] and then a full-adder [16]. Further building on this, three

games were designed in which a human can supply input using oligonucleotides

and a fluorescence output is given [15, 17, 18]. DNA computing has even been

used to implement a small neural network of four fully connected neurons [19]. A

non-deterministic universal Turing machine was built out of DNA [20], capable of

solving non-deterministic polynomial (NP) time problems in polynomial time. Like

DNA, RNA can be exploited as a computational substrate. An RNA based circuit

capable of sensing microRNAs and classifying cancer cells was demonstrated for the

selective apoptosis of HeLa cells [21]. A later work also showed that microRNAs

can be used to build logic circuits in mammalian cells and demonstrated the selective

elimination of target cells [22]. RNA based logic has also been demonstrated in E.

coli [23], where circuits including a 12 input digital function were built. Automated

design programs have been developed for the in silico design of RNA based circuits,

including smallRNA based multi-state devices [24] and microRNA based classifiers

[25]. Reactions mediated by enzymes can be seen as logic gates, for example a

reaction of the form A+B→C can be seen as an AND gate with respect to inputs A

and B, with C the output. In similar ways many logic gates have been built, including

AND [26], OR [27], NAND [28], NOR [26], and XOR [26]. These logic gates can

be combined to make logical networks [29]. These have been shown to have medical

applications, for example in the processing on bio-markers related to traumatic brain

1.2. Computing in synthetic biological systems 19

injury and soft tissue injury to give an accurate diagnosis [30]. Another approach

[31] used agents propelled by molecular motors to explore a nano-fabricated network

and solve the NP subset sum problem, here an exponentially growing number of

agents was required in place of exponential time.

The first synthetic biology papers engineered a toggle switch [32], oscillator

[33] and autoregulation [34], which can be used as fundamental components in

engineering a computer [35]: memory, clock and noise filter. Since then, the tools

necessary for engineering microbes for computation have been extensively developed

over the last two decades of synthetic biology research. Consequently engineering

the genetic reaction networks (GRNs) within cells has emerged as another dominant

paradigm of biological computing. Transcriptional networks that implement digital

logic gates have been extensively investigated. An AND gate that integrates the

output of two promoters has been implemented in single cells [36] and later more

complex digital circuits were created by wiring together multiple layers of orthogonal

AND gates [37]. We now have libraries of orthogonal repressor-promoter NOT gates

[38], as well as the ability to produce de novo CRISPR-dCas9 gates [39], that can

be wired together to make complex digital functions [40]. These advances, along

with tools to reduce DNA context effects [41, 42, 43] have enabled the construction

of digital circuits with a great of deal complexity in common lab strains of bacteria

as well as strains relevant to microbiome engineering [44]. This level of circuit

complexity is only achievable through the use of automated design tools, such as

Cello [40], which match the empirical properties of genetic logic gates to ensure

they will function together.

Biological processes in cells, based on the continuous concentration of metabo-

lites and other molecules, are naturally analogue. Analogue computing is more effi-

cient, in terms of the rate of ATP consumption and the number of protein molecules

required, for doing addition with a genetic circuit at the ranges of precision that

are metabolically feasible in single cells [45]. Additionally, it has been shown that

building the equivalent circuit using analogue logic can require orders of magnitude

fewer genetic parts [46, 47]. Analogue sensing, addition, and ratiometric and power

1.2. Computing in synthetic biological systems 20

law computations have been implemented using only three transcription factors [47].

Perceptrons have been implemented using enzymes that transduce different inputs

into a common output molecule, benzoate, and a synthetic actuator circuit that sensed

benzoate [48]. This was used to build a cell based adder and cell free metabolic

perceptrons in which enzyme concentrations acted as weights [48].

1.2.1 Capabilities of realised distributed computers

One of the key engineering principles that synthetic biology strives to adhere to is

modularity, so that biological components can be recombined and interchanged to

build new systems. A successful example within the context of synthetic biological

distributed systems is the decomposition of a complex digital function into multiple

subunits, each engineered within a different population of cells that communicate

with each other (Figure 1.1A). This mirrors a common approach in electronics

where two universal logic gates, for example NOR and NAND, are wired together

to produce any digital function. In this manner all 16 two input logic gates have

been created using bacterial colonies on agar plates, containing genetically engi-

neered NOR gates, and communicating via diffusible molecules [49]. A similar

approach consisted of a community of yeast cells that carried out the functions

AND, NIMPLIES, NOT and IDENTITY [50]. These are chemically wired together

using diffusible communication molecules to produce complex functions. Mathe-

matical work into the optimal design of computational communities implementing

distributed genetic logic gates given realistic constraints on the number of logic gates

possible per cell and the number of orthogonal quorum molecules has been done [51].

Another automated design framework for the construction of user specified functions

using DNA recombinase NOT and IDENTITY gates distributed over multiple cell

types enables the design of a consortium of bacteria to perform the desired digital

computation [52]. This framework was then used to build consortia capable of four

input digital logic [53]. The standard mathematical proof that any Boolean function

can be decomposed into a double summation of IDENTITY and NOT logics was

used to build multicellular circuits encoding the IDENTITY and NOT logic into

cells and then performing sums by mixing cell cultures together [54]. A subsequent

1.2. Computing in synthetic biological systems 21

paper simplified the implementation of digital functions by printing multiple cell

populations onto branched paper devices using ‘cellular ink’ [55]. It was shown that

these devices could be stored for up to ten days and still be effective. Furthermore,

conjugation between bacterial cells has been exploited as a direct message passing

system, and has been used to design, in silico, a community of distributed NOR gates

wired together for a population level XOR gate. Finally, a distributed implementa-

tion of an N-bit counter has been designed, in silico, in which a set of N single bit

counters and connector modules are connected using diffusible molecules [56].

A key component for computation is memory. Quorum sensing has been

combined with a genetic toggle switch, resulting in a population level toggle switch

[57]. A synthetic community composed of E. coli strains has been used to record

the order, duration and timing of chemical events [58]. A bistable switch was built

across two distinct cell types, controllable by two different yeast pheromones, that

switched the community between two states [59]. The simulation of a design for

a flip flop memory device distributed over four populations of cells show that its

function is robust to changes in parameters and that circuit behaviour can be tuned by

changing experimental conditions [60]. Another computational investigation showed

how a co-culture of two bacterial strains could be used to do associative learning,

with both short- and long-term memory [61].

Unlike electronic computers, biological systems are able to change their “hard-

ware” depending on the task at hand by, for example, dynamically controlling the

constituents of a community (Figure 1.1C). Two independent auxotrophic E. coli

populations have been designed so that their growth is tuneable by inducing pro-

duction of amino acids [63]. Using a community of microbes that inhabit slightly

different temperature niches, a temperature cycling scheme is able to dynamically

tune the community [66]. Methods of intrinsic community composition control

can be built into cells genetically. This has been done using self-inhibition using

quorum molecule signalling [67]. Simulation results also show that a population

of cells containing a reconfigurable logic gate that can be switched between NOR

and NAND behaviour [68]. Furthermore, a rock-paper-scissors system of three

1.2. Computing in synthetic biological systems 22

PatterningModularity

Distance

Fl
uo

re
sc

en
ce

Classification

(B)(A)

(C) (D)
Negative input Positive input

ThresholdThreshold

I1

I2
I3

O

I1

I2M2

M1

P
op

ul
at

io
n

Time

Task switching

Reconfigurability

Figure 1.1: Example capabilities of computational communities. A) A complex circuit can
be split into modules, distributed across different populations of cells. Adapted
from [50] . B) Computational methods can be used to find networks capable of
stripe formation, these can be programmed into cells using genetic circuits, the
expressed phenotype of each cell depends on its position relative to a source
of signalling molecule. Adapted from [62]. C) Reconfigurability could be a
key capability of biological computing. Here the composition of a bacterial
community can be controlled through inducers I1 and I2. This capability could
be used to task switch in a computational bacterial community. Adapted from
[63]. D) Bacterial communities are naturally applicable to complex functions
such as ensemble classification. Adapted from [64]. This figure is reproduced
from [65].

1.2. Computing in synthetic biological systems 23

populations of E. coli that cyclically inhibit one another, combined with population

dependent synchronised lysis, shows the capability to cycle the community composi-

tion through the three strains [69]. A further method has been proposed, in silico,

that uses the manipulation of plasmid copy numbers to embed multiple computations

in a population of cells [70].

Classifiers aim to identify which category an observation belongs to. Biological

classifiers have been built to identify cancer cells using miRNA [21, 25]. A key

concept in machine learning is the use of ensemble methods. These combine the

output of many individual weak classifiers, which perform at least slightly better

than random choice, and produce an overall output with much greater accuracy.

This methodology can naturally be applied to a community of cells, where each cell

contains a genetically encoded weak classifier and the overall community output

is computed by combining the individual outputs of all cells (Figure 1.1D). This

approach has been investigated in silico. For each data point in a training data set

a heterogenous population of cells containing weak classifiers vote on the answer

[64]. The community learns as cells are stochastically pruned from the population;

cells that voted incorrectly are removed with a higher probability. A multi-input

classifier composed of a community of cells containing either a linear or a bell-

shaped classifier was simulated and found to be able to represent practically arbitrary

shapes in the input space [64]. Other numerical results on a similar population of

cells showed that complex classification problems could be tackled [71].

Both multicellular organisms and communities of unicellular organisms have

the ability to cooperate to produce spatial structures that allow them to better per-

form complex functions. The prime example of this phenomena is development

in multicellular organisms, in which cells containing identical DNA differentiate

and organise themselves spatially to assemble a complex organism. Harnessing this

capability could mean the realisation of biological computers that can self-assemble

and reproduce in a manner that is not currently possible with silicon systems. The

first step in this direction was taken by engineering E. coli ‘receiver cells’ which

respond to a quorum molecule with a band detect activation [72]. Sources of the

1.3. Distributed bio-processing 24

quorum molecule could then be used to produce different patterns of fluorescence

in a lawn of E. coli. This approach was complemented by the development of

quorum molecule producing ‘sender’ cells [73]. Work has also been undertaken

using senders and receivers to produce 3D patterning of mammalian cells [74]. It

is possible that sender and receiver cells could be combined to produce dynamic

pattern formation in response to environmental changes. The value of using compu-

tational modelling to investigate pattern formation and design spatially structured

synthetic communities has been shown (Figure 1.1B) [62]. Here the space of two

and three-node, stripe forming networks was investigated computationally, and used

to inform wet laboratory experiments. Further computational investigation using

the modelling platform GRO [75, 76] acts as a proof of concept for the design of

bacterial colonies capable of self-assembling into spatial structures including L and

T shapes [77]. It has also been shown that synthetic communities engineered to grow

with a ring shaped pattern show scale invariance, similar to natural systems [78]. An

artificial symmetry breaking mechanism was combined with domain specific cellular

regulation resulting in artificial patterning and cell differentiation reminiscent of

a simple developmental process [79]. Interactions between motile and non-motile

bacteria when grown together in a biofilm have been shown to trigger the emergence

of complex patterns over time [80].

1.3 Distributed bio-processing
The ability to engineer cells at the genetic level has enabled the research community

to make use of biological organisms for many functions, including the production of

biofuels [81, 82, 83], pharmaceuticals [84] and the processing of waste products [85].

Co-cultures consisting of multiple distinct populations of cells have been shown

to be more productive than monocultures at performing processes such as biofuel

production [82, 83, 86] and alleviate the problem of metabolic burden that occurs

when a large pathway is built within a single cell [87]. For these reasons co-cultures

should be fundamental to the advancement of bioprocessing. However, maintaining

a co-culture presents its own set of problems. The competitive exclusion principle

1.4. Reinforcement learning 25

states that if multiple populations are competing for a single resource and there are

no other interactions, a species with an advantage will drive the others to extinction.

An additional challenge is that the interactions between different populations of

bacteria can make long term behaviour in a co-culture difficult to predict [88]; the

higher the number of distinct populations, the greater the challenge becomes to

ensure system stability [89]. Previous methods of co-culture population control have

been engineered into cells genetically. For example, using predator-prey systems

[90], mutualism [87, 91] or amensalism and competitive exclusion [92]. However,

processes such as horizontal gene transfer and mutation make the long term genetic

stability of a population hard to guarantee [88], meaning that genetic control methods

can become less effective over time. Another potential problem is the increased

metabolic load imposed on a cell due to the control genes, which can leave less

resources for growth and the production of useful products [93]. These downsides

can be avoided by exerting control over the environment, which is the dominant

approach in industry. Established techniques are Proportional-Integral-Derivative

controllers [94], Model-Predictive-Controllers [95, 96, 97] or the development of

feedback laws [98, 99, 100, 101]. However in more recent work reinforcement

learning has been used in silico and found to require less system knowledge and

perform favourably under conditions where sampling is difficult [102].

1.4 Reinforcement learning
Reinforcement learning algorithms involve an agent which learns by observing its

environment. Time is discretised and the environment can take on any one of an

arbitrary number of possible states at each discrete time step. At each time step the

agent chooses between an arbitrary number of possible actions, the chosen action

then affects the state of the environment and the agent receives a reward depending

on the result of the chosen action (Figure 1.2). The training of a reinforcement

learning agent is often broken up into episodes. An episode is defined as a temporal

sequence of states and corresponding actions (generated by the agent interacting

with the environment) which progress until a terminal state is reached. The total

1.4. Reinforcement learning 26

reward obtained during an episode is called the return.

Figure 1.2: The basic reinforcement learning feedback loop. At each timestep the agent
chooses an action, which effects its environment. The state of the environment
is observed by the agent and a reward is received depending on the favourability
of the new state. Adapted from [103]

The reward function defines the agents goal. It maps each environmental state

to a scalar reward, communicating the desirability of each state to the agent. Most

reinforcement learning algorithms, and the ones used in this thesis, use the action-

reward loop in Figure 1.2 to estimate a value function. The value of a state V (s) is

defined as the expected return from being in that state. Where the return is defined

as the total discounted future reward Rt = ∑
∞
k=0 γkrt+k+1, where t is the current time-

step, the sum over k is a sum over all future time-steps, r is the reward received at

time-step t + k+1 and γ is a discount factor. The discount factor dictates how much

the prospect of future rewards weigh in on an agent’s decision and the agent’s goal is

to maximise the return. We can also define the value of a state-action pair Q(s,a) in

a similar way, as the expected return after taking action a in state s. The functions

V (s) and Q(s,a) can be learned by the agent through the rewards it receives at each

time step and are the basis of its decision making. The policy π(s) is a mapping of

states to actions, at each timestep the agent will choose an action at = π(st) and the

policy will depend on the agents current value function and how likely the agent

is to take an exploratory action. An exploratory action is taken at random with the

intention of exploring new regions of state-action space. In contrast, an exploitative

action queries the value function and the action that is estimated to have the highest

value is chosen. Both value functions are dependent on the policy π used by the

agent and so can be written as [103]:

1.4. Reinforcement learning 27

Vπ(s) = Eπ{Rt |st = s} (1.1)

Qπ(s,a) = Eπ{Rt |st = s,at = a} (1.2)

1.4.1 The Markov property

An environment is said to have the Markov property if all relevant information

required for decision making at a time point t is contained in the state at t (St). In

other words the historic state transitions are irrelevant, meaning the future is only

dependent on the present, not the past. If the state transitions of the environment

satisfy the Markov property then selecting an action is known as a Markov decision

process. In this case the behaviour can be defined by specifying only [103]:

P{St+1 = S′,rt+1 = r|St ,at} ∀S′,r,St ,at

where St is the state at time t, at is the action taken by the agent at time t, rt+1 is

the reward received at time t +1 and S′ is a possible next state of the system. The

Markov property ensures that the next state and reward can be predicted using only

the current state. Many of the convergence guarantees of reinforcement learning

theory assume Markov decision processes [103].

1.4.2 The Bellman equations

If the Markov property is assumed to hold, then Equation 1.1 can be written as [103]:

Vπ(s) = Eπ{rt+1 +
∞

∑
k=0

γ
krt+k+2|st = s}

= ∑
a

π(s,a)∑
s′

Pa
ss′[R

a
ss′+ γVπ(s′)]

(1.3)

where Pa
ss′ = P{st+1 = s′|st = s,at = a} and Ra

ss′ = E{rt+1|st = s,at = a,st+1 = s′}.

This is the Bellman equation for the policy π . This is a linear system and can be

solved by inversion [103]. The objective of reinforcement learning is to learn the

optimal policy π∗ by finding the solution to the Bellman equation for the optimal

1.4. Reinforcement learning 28

policy:

V∗(s) = max
a

Eπ{rt+1 +
∞

∑
k=0

γ
krt+k+2|st = s}

= max
a ∑

a
π(s,a)∑

s′
Pa

ss′[R
a
ss′+ γV∗(s′)]

(1.4)

This is now non linear and as such cannot be solved directly by inversion. Similarly,

we can define the non linear Bellman equation for the optimal policy with respect to

state-action values:

Q∗(s,a) = ∑
s′

Pa
ss′[R

a
ss′+ γ max

a′
Q∗(s′,a′)] (1.5)

The non linear Bellman equations for V∗ and Q∗ can be solved approximately by

many iterative methods, the main ones being dynamic programming, Monte Carlo

and temporal difference methods [103].

1.4.3 Q-learning

Q-learning [104] is a type of temporal difference method which learns a value

function over state-action pairs, Q(s,a), where the state and the action spaces are

both discrete. The values of each state-action pair are updated at each time step

according to the Q-learning update rule:

Q(st ,at) = (1−α)Q(st ,at)+α(rt + γ max
a

Q(st+1,a)) (1.6)

where α is the learning rate. The term maxa Q(st+1,a) gives an estimate of the

total future reward obtained by entering state st+1. The term (rt + γ maxa Q(st+1,a))

is often referred to as the Q-learning target. Q-learning is an off-policy method,

meaning that the update rule is not dependent on the policy.

A natural way to store the state-action values is a lookup table with an entry for

each state-action pair and this can be updated according to Equation 1.6 at each time

step, this is refereed to as tabular Q-learning. Another option is to use a function

approximator to learn a state-action value function. When doing reinforcement

learning with non-linear function approximators, such neural networks, to represent

1.4. Reinforcement learning 29

the Q-function, the learned Q-values can be unstable or even diverge [9]. There

are two ways to overcome this problem and methods based on both are used in this

thesis. The first way is to reset and completely retrain the neural network as in Fitted

Q-learning [105]. This leads to a very data efficient method, although for large

networks the need to retrain from scratch each episode can be time prohibitive. The

second involves two modifications to the deep Q-learning algorithm that have been

shown to solve this instability. When both modification are applied the network is

known as a deep Q-network (DQN) [9]. The first is the addition of an experience

replay buffer. The buffer stores state transitions experienced by the agent in the

form (st ,at ,rt ,st+1). At each time step experience is randomly sampled from the

buffer to train the agent. This reduces the temporal correlation between subsequent

training observations, a major source of instability. The second modification is the

addition of a target Q-network. A target network is a separate neural network used

to generate the Q-learning targets used for training. The target network’s weights are

only updated periodically, much less frequently than the primary Q-network. This

reduces the correlation of the Q-learning target to the primary Q-network, the other

major source of instability.

Q-learning has been applied to many problems. Video games provide the

perfect training environment for such agents as large amounts of data can easily

be generated. A key paper in the field introduced DQN to learn how to play 49

Atari games [9]. It was found that the DQN architecture outperformed the best

reinforcement learning results at the time in 43 of the games, despite not using any

prior knowledge of the games that had been used in the previous results. The DQN

agent also performed comparably to professional human players, achieving over

75% of the human high score in more than half the games. However they found

that the DQN agent still struggled with games that required long term planning. A

natural method to enable the agent to plan over long timeseries is to use a recurrent

neural network. A DQN agent using a recurrent network containing a long-short-

term-memory (LSTM) cell was recently used to learn how to play DOOM [10].

These results show that DQN agents can be used to learn tasks that are designed to

1.5. Aims 30

be challenging to humans. Reinforcement learning has also been applied to more

practical problems. The control of a multistable system consisting of a periodically

kicked rotor in the presence of noise was achieved with Q-learning [106]. It was

found that the agent could learn to stabilize the system in a selected steady state

even with high noise. Deep reinforcement learning has also been successfully

used to optimize chemical reactions [107]. The agent out performed a current

optimisation algorithm by using 71% fewer steps in simulation and real reactions.

Additionally Fitted Q-learning has been shown to be viable, in silico, for the control

and optimisation of bioreactors containing multiple strains of bacteria [102]. Tabular

Q-learning and many of the early deep Q-learning methods are restricted to discrete

state and action spaces. However the flexibility of neural networks enables methods

such as Fitted Q-learning, which can learn in continuous state but discrete action

spaces [105, 102], and Twin Delayed Deep Deterministic Policy Gradient (T3D)

[108], which learns in continuous state and action spaces.

1.5 Aims
This thesis was concerned with the development of new methodologies for the use

of distributed systems in synthetic biology, specifically in the areas of biocomputing,

industrial bioprocessing and experimental design. The major aims of this thesis were

therefore:

1. Develop new design algorithms for the construction of distributed biologi-

cal computers. These are composed of multiple colonies of bacterial cells

positioned on a 2D plate, where the colonies communicate using diffusible

molecules and respond with different programmable functions

2. Develop a reinforcement learning algorithm for the control of microbial co-

cultures. The co-culture will be composed of two strains of competing bacteria.

The effectiveness of reinforcement learning to optimise a bioprocess should

be demonstrated

3. Develop a reinforcement learning algorithm for optimal experimental design.

1.6. Thesis outline 31

This should enable the model based design of characterisation experiments for

systems described by sets of non linear differential equations.

1.6 Thesis outline
The layout of this thesis is as follows:

Chapter 2: I describe the methods that are used throughout the thesis

Chapter 3: I investigate the design of programmable digital functions. I

develop a mathematical representation of our system and use this to prove statements

about the capabilities of the biological parts and verify these results using simulations.

Building on this I use the representation to design a circuit optimisation algorithm to

encode arbitrary digital functions with minimal biological complexity.

Chapter 4: I explore the possibility of implementing biological neural networks

to encode analogue functions. I develop an algorithm for the design of neural

networks constructed from patterns of bacterial colonies and show some potential

applications. Furthermore, using a computational model of the biological parts I

demonstrate the effectiveness of the design algorithm.

Chapter 5: I apply deep reinforcement learning to the control of microbial

communities. I show its effectiveness compared to an industry standard approach

its ability to optimise a communities’ output with no knowledge of the internal

mechanism.

Chapter 6: I explore the applicability of using deep reinforcement learning in

designing optimal experiments for understanding biological systems. This results in

a general method that could be used to understand many systems across synthetic

biology and the rest of science.

1.7 Contribution to publications
The work in this thesis has so far contributed to the following publications.

Neythen J Treloar, Alex JH Fedorec, Brian Ingalls, and Chris P Barnes. Deep

reinforcement learning for the control of microbial co-cultures in bioreactors. PLoS

computational biology, 16(4):e1007783, 2020.

1.7. Contribution to publications 32

Behzad D Karkaria, Neythen J Treloar, Chris P Barnes, and Alex JH Fedorec.

From microbial communities to distributed computing systems. Frontiers in Bioengi-

neering and Biotechnology, 8:834, 2020.

Chapter 2

Methods

2.1 Finite difference simulation of diffusion
The finite difference method solves a system of differential equations by discretising

the area of interest and, when using the forward Euler approximation, steps forward

through time to simulate dynamics.

The diffusion equation for the concentration of a diffusible molecule A is given

by:
∂A(r, t)

∂ t
= D∇

2A(r, t)+S(r, t)

where r is the position, t is time, D is the diffusion coefficient, ∇2 is the Laplace

operator and S(r, t) is a term that accounts for sources of the molecule. To solve

this, the domain of interest is split into a finite number of discrete grid points and an

approximate solution is calculated for each point on the grid. The finite difference

for a forward time, central space approximation for the diffusion equation in two

dimensions is:

Ai, j,k+1−Ai, j,k

∆t
=D(

Ai−1, j,k−2Ai, j,k +Ai+1, j,k

∆x2 +
Ai, j−1,k−2Ai, j,k +Ai, j+1,k

∆y2)+Si, j,k

where Ai, j,k is the concentration of diffusible molecule at spatial coordinates i, j and

timestep k, ∆x and ∆y are the size of the discrete points in the x and y directions and

∆t is the timestep between successive iterations. This can be written as:

Ak+1 = Ak +∆t(HAk +Sk)

2.2. Reinforcement learning algorithms 34

where Ak and Sk are vectors of the current concentration and source terms at all

the discretisation points at timestep k respectively and H is a matrix which operates

on A to give the central space difference relations. Using this formula we can start

from an initial concentration of diffusible molecule,A0, and iterate through time.

The production of additional molecules by bacterial colonies can be included via the

source term Sk. This method can be used to model the production of and response to

multiple diffusible communication molecules by bacterial colonies.

2.2 Reinforcement learning algorithms
In this thesis two deep RL algorithms were used, Fitted Q-learning [105], and Twin

Delayed Deep Deterministic Policy Gradient (T3D) [108]. Python version 3.6.7 was

used for all reinforcement learning code, available at http://www.python.org.

The neural networks were implemented in Google’s TensorFlow (version 2.7.0)

[109]. Numpy (version 1.121.4) was used throughout [110].

2.2.1 Neural Fitted Q-learning algorithm

In neural Fitted Q-learning [105] a value function is learned which maps state action

pairs to values, Q(s,a). The value function is represented by a neural network. Here,

a state transition is defined as the tuple (st ,at ,rt ,st+1,d) specifying, respectively, the

system state, action taken and reward received at time t, the state of the system at

time t +1 and an indicator that is 1 if the episode terminated at time t +1 otherwise

it is 0. The state can be continuous, but the action is limited to being one of a set of

discrete choices. From a sequence of these state transitions a sequence of Q-learning

targets is created according to:

Q(st ,at)target = rt +(1−d)γ max
a

Q(st+1,a) (2.1)

Here, the term maxa Q(st+1,a), where a is an action that can be taken by the agent,

gives an estimate of the total future reward obtained by entering state st+1. This is

weighted by γ , the discount factor, which dictates how heavily the possible future

rewards weigh in on decisions. The neural network is trained on the set of inputs

http://www.python.org

2.2. Reinforcement learning algorithms 35

{(st ,at)∀t} and targets {Q(st ,at)target ∀t} generated from all training data seen so

far (Algorithm 1). In Episodic Fitted Q-learning this was done after each episode

(Algorithm 2) while in Online Fitted Q-learning this was done after each update

interval (Algorithm 3). I used the Adam optimiser [111] to train the neural network,

because of its ability to dynamically adapt the learning rate, which is favourable

when implementing reinforcement learning with a neural network [112]. The inputs

to the network were scaled to be between 0 and 1 to prevent network instability.

In this thesis I use an ε-greedy policy in which a random action is chosen with

probability ε and the action a = maxa Q(st ,a) is chosen with probability 1− ε . The

explore rate was initially set to ε = 1 and decayed as ε = 1− log10(Ae) where e is

the episode number, starting at 0, and A is a constant that dictates the rate of decay.

A minimum explore rate of ε = 0 was set and was reached by the end of training.

ε-greedy is a widely used policy that has been proven effective [10, 9] and is easy to

implement.

Algorithm 1 Fitted Q-iteration

1: input: {(st ,at ,rt ,st+1) ∀t}
2: hyperparameter: N . number of Fitted Q-iterations
3: for iter in 1 to N do
4: reinitialise Q network
5: inputs = {st ∀t}
6: targets = {rt + γ maxa Qiter(st+1) ∀t}
7: train Q network on (inputs, targets)→ Qiter+1

8: return QN

Algorithm 2 Episodic Fitted Q-learning
1: hyperparameter: E . number of episodes
2: hyperparameter: tmax . number of timesteps in each episode
3: for episode in 1 to E do
4: for i in 1 to tmax do
5: a = π(st,env,QN) . get action based on current policy
6: (st ,at ,rt ,st+1) = env.step(a) . interact with env and observe transition
7: D←D+(st ,at ,rt ,st+1) . add transition to memory
8: QN = Fitted Q iteration(D) . update agent’s policy
9: return QN

2.2. Reinforcement learning algorithms 36

Algorithm 3 Online Fitted Q-learning
input: envs . set of environments to learn from

2: hyperparameter: tmax . number of timesteps
hyperparameter: update frequency . how frequently to update the policy

4: for t in 1 to tmax do
for each env do

6: a = π(st,env,QN) . get action based on current policy
(st ,at ,rt ,st+1) = env.step(a) . interact with env and observe transition

8: D←D+(st ,at ,rt ,st+1) . add transition to memory
if iter%update frequency = 0 then

10: QN = Fitted Q iteration(D) . update agent’s policy
return QN

2.2. Reinforcement learning algorithms 37

2.2.2 Twin Delayed Deep Deterministic Policy Gradient

Twin delayed deep deterministic policy gradient (T3D) [108] is an off-policy algo-

rithm for continuous deep reinforcement learning (Algorithm 4). At its core it is

based on an older algorithm called deep deterministic policy gradient (DDPG) [113],

but introduces a few modifications to improve learning stability. The DDPG algo-

rithm is closely related to Q-learning and can be thought of as Q-learning adapted

for continuous action spaces. Like deep Q-learning, DDPG uses a neural network to

approximate and learn a Q-function Q(s,a) which maps state, action pairs to a value.

In addition to this, DDPG also learns a policy, a = π(s), which is represented by a

second neural network. The policy network maps states to actions and is trained to

choose the action, a, that maximises the value of the state action pair for the given

state, s, according to the value network: a = argmaxa Q(s,a)≈ Q(s,π(s)).

As before a state transition is defined as the tuple (s,a,r,st+1,d) specifying,

respectively, the system state, action taken, and reward received at time t, and the

state of the system at time t +1 and an indicator that is 1 if the episode terminated at

time t +1 otherwise it is 0. As the agent learns it stores observed state transitions

in a replay buffer, D, which can be though of as it’s memory. As is standard in

deep reinforcement learning algorithms two tricks are used to increase stability of

the learning process in DDPG. Firstly, at each update a random sample, B, of past

experience is taken from the replay buffer to reduce the temporal correlation in the

updates. Secondly, target networks Qtarg, πtarg are used to generate the Q-learning

targets, the parameters of these networks update slowly to the parameters of Q and π

by polyak averaging, θtarg = ρθtarg +(1−ρ)θ . This reduces the dependence of the

target on the trained parameters and further increases stability.

There are three further additions to DDPG to get the full T3D algorithm. First,

the policy network updates are delayed by updating half as frequently as the Q-

network. Second, to address a common failure mode of DDPG in which the policy

can exploit incorrect sharp peaks in the Q-function the target policy is smoothed by

2.2. Reinforcement learning algorithms 38

adding random noise to the target actions,

at+1(st+1) = clip(πtarg(st+1)+ clip(ξ ,−c,c),alow,ahigh), ξ ∼N (0,σ)

where c is an upper bound on the absolute value of the noise, alow and ahigh and lower

and upper bounds on the target action respectively and σ is the standard deviation

of the noise. This effectively regularises the algorithm. Finally, as all Q-learning

methods involve maximising over target actions they are prone to overestimate the

Q-function. To reduce this tendency in T3D double Q-learning is used, in which

two Q-functions, Q1 and Q2, are learned and the one that gives the smaller value

is used to calculate the Q-learning target. The full T3D update is as follows. From

a sequence of state transitions, B, sampled from the replay buffer a sequence of

Q-learning targets, y, is created according to:

at+1 = clip(πtarg(st+1)+ clip(ξ ,−c,c),alow,ahigh), ξ ∼N (0,σ)

y(r,st+1,d) = r+ γ(1−d) min
i=1,2

Qi,targ(st+1,at+1) ∀ (s,a,r,st+1,d) ∈ B

The term (1− d)mini=1,2 Qi,targ(st+1,at+1) gives an estimate of the total future

reward obtained after entering state st+1. The networks Q1 and Q2 are trained on the

set of inputs by regressing to the targets with the following losses.

L1(D) = E
B
[(Q1(s,a)− y(r,st+1,d)2]

L2(D) = E
B
[(Q2(s,a)− y(r,st+1,d)2]

Then, every other update, the policy network is updated by training it to maximise

Q1:

max
θ

E
B
[Q1(s,πθ (s))] (2.2)

2.2. Reinforcement learning algorithms 39

Finally, the target networks are updated:

θQ1,targ = ρθQ1,targ +(1−ρ)θQ1

θQ2,targ = ρθQ2,targ +(1−ρ)θQ2

θπtarg = ρθπtarg +(1−ρ)θπ

I use an ε-greedy policy adapted to the continuous action space; a random

action is uniformly chosen between alow and ahigh with probability ε and the action

a = clip(π(s)+N (0,0.2ε),alow,ahigh) is chosen with probability 1−ε . The explore

rate ε was set to decay exponentially as training progressed. The explore rate was

initially set to ε = 1 and decayed as ε = 1− log10(Ae) where e is the episode number,

starting at 0, and A is a constant that dictates the rate of decay. A minimum explore

rate of ε = 0 was set and was reached by the end of training. The Adam optimiser

[111] was used to train the neural networks, because of its ability to dynamically

adapt the learning rate, which is favourable when implementing reinforcement

learning with a neural network [112]. To prevent network instability all quantities

were scaled so that they were approximately in the interval [0,1] before being entered

into the neural network.

Algorithm 4 T3D
for episode in 1 to E do

2: for t in 1 to tmax do
a = π(st) . get action based on current policy

4: (st ,at ,rt ,st+1,d) = env.step(a) . interact with env and observe
transition

D =←D+(st ,at ,rt ,st+1,d) . add transition to memory
6: update count = 0

if iter%update frequency = 0 then
8: B ∼D

a′ = clip(πtarg(s′)+ clip(ξ ,−c,c),alow,ahigh), ξ ∼N (0,σ)
10: y(r,s′,d) = r+ γ(1−d)mini=1,2 Qi,targ(s′,a′) ∀ (s,a,r,s′,d) ∈ B

Train Q1, Q2 networks on y(r,s′,d)
12: if update count % policy delay == 0 then

Train π network to maxθ EB[Q1(s,πθ (s))]
14: θtarg = ρθtarg +(1−ρ)θ . update target networks

return π . return trained policy

2.3. Proportional integral derivative control 40

2.3 Proportional integral derivative control
A proportional integral derivative (PID) controller [114] is a type of controller that

is widely used in industrial control systems. A PID controller attempts to minimise

error, e(t), where the error is the difference between a measured variable and its

target set point. The overall control input u(t) is calculated as the sum of three terms

u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

. (2.3)

Kpe(t) is the proportional term, Ki
∫ t

0 e(τ)dτ is the integral term and Kd
de(t)

dt is the

derivative term. Each of the three terms aims to minimise different aspects of the

error. The proportional term punishes the current error between the set point and

current measured variable. The integral term takes into account past value of the

error by integrating the cumulative historic value of the error. The derivative term is

an estimate of the future error based on its current rate of change. The contribution

of each term to the control input is controlled by a gain Kp, Ki, and Kd for the

proportional, integral and derivative terms respectively. The gains are scalar values

which need to be chosen for each application of the PID controller so that it performs

well on the given control problem. Tuning a PID controller is the process of finding

the gains that give good performance. This can be done by hand or with with

automated tools. In this thesis I used MATLAB’s PID autotune [115]. Often the

derivative term is omitted, as it can be difficult to tune, and the resulting PI controller

is sufficient for most applications.

2.4 Model predictive control
A model predictive controller (MPC) [116] uses a calibrated model of a system to

predict optimal control inputs. In the applications in this thesis the model is a set of

differential equations

dX
dt

= F(X,θ ,u), (2.4)

2.4. Model predictive control 41

where X is a vector of system variables, θ is a vector of parameters and u is a vector

of experimental inputs. Assuming that the parameters are known, the MPC can

integrate the model over a predefined time interval to optimise an objective function

ΘD, with respect to the control inputs u. The objective function is a function of

the system variables that defines the MPC’s control objective, common choices can

be to minimise the distance between the system state and a target set point or to

maximise some productivity objective, such as the product output of a bioreactor.

The time horizon the MPC optimises over is a hyperparameter to be chosen. If the

control scenario is composed of N sample and hold intervals the time horizon can

be between 1 and N. In this thesis I consider two variants of MPC. The first uses

a time interval of 1, and I refer to this as a one step ahead optimiser (OSAO). The

OSAO is myopic and only concerned with finding the single input that maximises the

objective over the next sample and hold interval. For each interval the OSAO uses

the model to predict the experimental input to be applied during the next interval. At

interval i the OSAO solves the optimisation problem

ui = argmax
u

ΘD(u,θ , ti, ti+1). (2.5)

The second variant is a controller that optimises over the full timeseries of N

intervals, and I refer to this as an MPC. At the beginning of the experiment the MPC

uses the model to optimise over the full experiment, choosing every input that will

be applied by solving the optimisation problem:

[u0,u1, ...,uN] = argmax
[u0,u1,...,uN]

ΘD(u,θ ,0, tN) (2.6)

To solve the optimisation problems for both the OSAO and MPC the non-linear

solver IPOPT [117] was called from the CasADi library [118].

Chapter 3

Distributed digital biocomputation

through spatial diffusion and

engineered bacteria

3.1 Introduction
Engineering biological systems capable of computation has long been a goal of

synthetic biology. The first papers in the field engineered fundamental computer

parts such as a toggle switch [32], oscillator [33] and auto regulator [34] and since

then much progress has been made. A common approach is the construction of

computationally capable cells by engineering programmable logic into the gene

regulatory networks (GRNs) inside cells. The current state of the art of this approach

are automated design tools such as Cello [40, 44], which transcribes a given logic

function into its corresponding GRN. This allowed a comprehensive suite of three

input digital functions to be constructed. However, each function needs to be con-

structed from scratch which means extensive genetic engineering. Furthermore, there

are practical limitations on the complexity of circuits we can program into a single

cell, due to crosstalk between regulatory molecules and metabolic burden. Crosstalk

is a problem because components in a cell can’t be directly wired together, so we

cannot reuse gene regulators without interference. In contrast, metabolic burden

becomes a problem when the resource requirements of a GRN in a cell approaches

3.1. Introduction 43

the capacity of the cell’s metabolism. Under high metabolic load a cell may exhibit

increased mutation rates due to stress responses [119] and a competitive advantage to

losing or mutating the programmed circuit [120]. These factors reduce the stability

of a programmed GRN and place a practical upper limit on the complexity of the

constructed function.

To overcome these limitations on single cells computational communities of

microbes have been developed in liquid culture. This allows the division of a complex

function into smaller, isolated modules which can be programmed into different

populations and integrated using inter-population communication. Two and three

input logic gates have been implemented in yeast liquid culture [50], microbial

consortia capable of four input digital logic [53] have been built in this way and

algorithms for the optimal design of digital functions in liquid communities have

been developed [51]. However, like the non-orthogonality requirements of GRNs

within single cells, building microbial communities that communicate in liquid

culture requires the use of a unique communication molecule for each ‘wire’ and

the avoidance of crosstalk between molecules. This has previously been termed the

‘wiring problem’ of wet computational circuits [121].

In this theoretical work I show the potential to overcome the limitations as-

sociated with single cell computing and distributed communities in liquid culture

by producing distributed logic gates based on spatially arranged, communicating

bacterial colonies in solid culture. I combine a suite of patterning functions that have

been shown to be possible in bacteria [62, 122] with the use of spatial structure as a

control parameter to produce designs for modular, easily programmable bacterial

computers capable of computing complex digital logic. This design allows a function

to be split into parts and the parts can be distributed across multiple bacterial colonies

and wired together using a diffusible molecule. This means that the GRNs inside

each colony are small and isolated, naturally overcoming the limitations of burden

and non-orthogonality. Furthermore, the signal produced by a colony is spatially

localised, meaning that other colonies can be insulated from it by placing them

outside of the signal range and we can largely avoid the wiring problem associated

3.1. Introduction 44

with liquid culture communities. Early work using colonies on solid media combined

bacterial logic gates with spatial signalling by using four different quorum molecules

to connect bacterial colonies containing NOR gates [49]. In contrast to this approach,

we use a suite of four activation functions and offload much of the information

processing into the spatial pattern of colonies. This allows us to implement arbitrary

digital functions with only one layer of biological signalling (and only one signalling

molecule) and with many fewer bacterial colonies. Another work decomposed digi-

tal functions into the sum of spatially separated modules, where each module is a

negated sum of IDENTITY and NOT functions of the inputs [54]. In this setup the

potential complexity of the resulting circuits is great, with up to 2n−1 modules, where

n is the number of inputs to the function, which can include any combination of

inputs or their negations and the physical implementation requires a complex setup

of connected growth chambers. A subsequent paper arranged sender and modulator

cells spatially by printing functions in a branched architecture on a piece of paper

and digital functions such as a three input parity bit were implemented [55]. This

work enables the easy printing of digital functions using stamps and ‘cellular ink’

and the printed functions were shown to be storable for later use. However the

worst case complexity of the branching architecture grows quickly for more complex

functions, where the maximum number of branches is 2n−1 and each branch can

contain up to n different modulators. Furthermore, the size of the library of required

cells including sender, modulator, amplifier and reporter cells is quite large at 3n+2.

The use of programmable spatial patterns and the range of patterning functions is

unique to our approach and enables us to program arbitrary digital functions with

minimal genetic engineering. I use distance between colonies as a design parameter,

which effectively means each patterning function can be used as a flexible module

that encodes different functions at different positions relative to its inputs. Unlike

designing and building a complex GRN into a cell, a new pattern can easily be

produced using automated pipetting robots.

I consider patterns of communicating bacterial colonies growing on a plate

where there are two colony types. The first are biosensor or input colonies, these

3.2. The capabilities of a single output colony 45

sense environmental inputs and produce the quorum molecule AHL in response. The

second type is the output colony, these integrate the signals from the input colonies

and produce a fluorescent output that represents the result of the computation. The

response of each output colony to diffusible signals is described by one of four

activation functions. Because communication by a diffusible molecule is dependent

on distance, the bacterial computer can be programmed by specifying the spatial

pattern of the colonies. In this chapter I develop a mathematical framework to

understand the system and make mathematical statements of its capability. I show

that each of our activation functions can be programmed to encode many different

two-input logic gates by changing its position relative to the inputs and this allows

us to implement any two-input digital function with a single output colony. I then

develop an algorithm, the Macchiato algorithm, to optimise the programming of

complex digital logic functions distributed over multiple output colonies. A key

feature of this algorithm is that it encodes a given logic function in a form that can

be implemented in one layer of biological signalling. This minimises the complexity

of the spatial patterns and greatly reduces the required genetic engineering. It also

guarantees that any function can be implemented using only one communication

molecule, minimising the wiring requirements. Finally, I prove the capability to

encode any n input logic function with only one level of biological signalling, n+4

unique cell types and n+
⌈

n−1
2

⌉
+1 total colonies.

3.2 The capabilities of a single output colony
In order to make mathematical statements about the capability of the system I devel-

oped a simple representation that can capture its key properties and simultaneously

express digital logic gates. We define an n input, one output digital function as

follows. An input state is represented as the string {0,1}n, where n is the number

of inputs, a 0 represents the corresponding input being OFF and a 1 represents it

being ON. There are 2n different inputs states for a digital logic function. A one

output digital function maps each input state into one of two outputs, ON or OFF,

meaning there are 22n
one output digital functions for a given number of inputs. We

3.2. The capabilities of a single output colony 46

represent this output mapping as a boundary dividing the input states into OFF and

ON sets. With consideration of the constraints imposed by communicating with a

diffusible molecule and how different activation functions partition the input states

into OFF and ON sets we can enumerate possible logic gates by finding the allowable

permutations of the input states and the boundary.

This will be demonstrated with the two input digital logic gates. Each of the two

input logic gates maps each one of the four possible input states (00,01,10,11) to a

binary output state (OFF or ON). In our system we represent the input states using

the concentration of AHL produced by biosensing strains of bacteria. The input

colonies effectively transduce the input state into a concentration field, where the

concentration of diffusible molecule at a point will be dependent on the current input

state and the position of the point relative to the input colonies. An output colony

then maps the concentration of diffusible molecule at its position to an output state

using its activation function. The activation function can be one of threshold (TH),

inverse threshold (IT), bandpass (BP) or inverse bandpass (IB) (Figure 3.1A,B,C,D

respectively) and these are digital approximations of activation functions that have

previously been built [62, 122]. Considering the digital approximation of the cellular

activation functions simplifies the analysis and has previously been used when

constructing digital circuits from cells [49, 54] .

An example of a two input logic gate is AND, an AND gate’s output is ON if

and only if both of its inputs are ON. A common way of representing a logic gate

is using a truth table (Figure 3.1E). I will represent this logic gate as 4 input states

(00, 01, 10, 11) divided into two sets (OFF|ON), where input states to the left of the

boundary, |, are mapped to OFF and to the right are mapped to ON. This means that

the AND gate would be represented as 00,10,01|11 (Figure 3.1F). An example of an

instantiation of an AND gate using bacterial colonies is shown in Figure 3.1G, where

the distance of the input colonies from the output colonies is tuned such that the

concentration of diffusible molecule at the output colony is only sufficient to activate

it when both inputs are active. Because the concentration of diffusible molecule at

the output colony depends on its position relative to the input colonies we can change

3.2. The capabilities of a single output colony 47

00 01 10 11

AND
OFF ON

00 01

10 11

00

01

10

11

0

0

0

1

ANDInput states AND

Inverse Bandpass (IB)Inverse Threshold (IT)Threshold (TH) Bandpass (BP)

[AHL] [AHL] [AHL] [AHL]

ON

OFF

ON

OFF

ON

OFF

ON

OFF

[GFP] [GFP] [GFP] [GFP]

(A) (B) (C) (D)

(E)

(F)

(G)

A B

A B

A B

A B

[AHL]

Figure 3.1: Digital logic by diffusible communication. A, B, C, D) The activation functions
we assume that can be engineered into bacteria, threshold, inverse threshold,
bandpass and inverse bandpass. Each activation function responds to the con-
centration of a diffusible molecule, [AHL] by producing a fluorescent molecule
[GFP]. E) The truth table of a two input AND gate. F) The mathematical repre-
sentation of an AND gate. G) How an AND gate could be physically instantiated
using our system, an output colony containing a threshold activation function is
distanced from two input colonies such that there is only enough signal to acti-
vate the fluorescence response when both input colonies are producing diffusible
molecule.

the input-output mapping by moving the output colony. However, there are some

constraints on the relative concentrations of AHL which must hold for all positions

of the output colony. These are:

A00 ≤ A01

A00 ≤ A10

A01 ≤ A11

A10 ≤ A11

Ai j ≥ 0 ∀ i, j ∈ {0,1}

where Ai j is the concentration of AHL at the output colony when the system’s input

3.2. The capabilities of a single output colony 48

state is i j. To capture the notion of AHL concentration and these constraints in our

representation we impose the convention that from left to right the concentration of

diffusible molecule is increasing. e.g. if our input states were ordered 00,01,10,11

then the concentration of AHL at the output colony would be lowest when the inputs

are in the 00 state and highest in the 11 state. The result of the constraints when

dealing with two inputs is that by changing the position of the output colony we

can swap the ordering of the input states between 00,01,10,11 and 00,10,01,11,

however the end states, 00 and 11, cannot be moved. To see this imagine a system in

the 00 state, with neither of the input colonies activated. For all relative positions of

the input colonies and output colony it is true that the concentration of AHL at the

output colony must increase or remain the same if the system moves into the 10 or

01 state by turning an input colony on. Equally, the AHL concentration at the output

colony must decrease or remain the same if we start in the 11 state and move into 10

or 01.

Next, we can represent the digital approximations to our activation functions as

the boundary dividing the input states into OFF and ON sets, for example a threshold

activation would be represented as OFF|ON, where all input states to the left of the

boundary are mapped to OFF and input states to the right are mapped to ON and

the inverse threshold is represented as ON|OFF, with the opposite mapping to the

threshold. Figure 3.2 shows how we can change the logic gate encoded by an output

colony by moving it with respect to the input colonies (A,B,C) or by using a different

activation function (D,E,F). Figure 3.2A shows a threshold output colony adjacent to

the A input colony, meaning that the 10 input state will have a much higher AHL

concentration than the 01 state and will be sufficient to turn on the output colony.

This pattern encodes the digital function A. Figure 3.2B shows the opposite situation,

the relative concentrations of the 10 and 01 states have been swapped by moving

the output colony adjacent to input B, encoding the function B. Figure 3.2C shows

that by moving the output colony so that it is equal distance from each input we can

reduce the concentrations of 01 and 10 such that only the 11 input state activates

the output colony, resulting in an AND gate. Figure 3.2 (D,E,F) shows the same

3.2. The capabilities of a single output colony 49

00 01 10 11 00 10 01 11

[AHL]

A) B)

00 10 01 11

C)

OFF ON OFF ON OFF ON

Logic gate: A

00 01 10 11 00 10 01 11

D) E)

00 10 01 11

F)

ON OFF ON OFF
ON OFF

A B B
B

A
A

[AHL] [AHL]

[AHL] [AHL] [AHL]

A B B
B

A
A

Logic gate: B Logic gate: AND

Logic gate: NOT A Logic gate: NOT B Logic gate: NAND

Figure 3.2: Programming logic gates by moving colonies. A) If the output colony is closer
to input A then the state 10 will be at a higher AHL concentration and the logic
gate encoded will be A. B) if the colony is moved closer to input B then 01 state
will have a higher concentration than 10 at the output colony and the logic gate
changes to B. C) Moving the colony further away from both colonies will leave
the order of the input states unchanged but will move the decision boundary,
changing the logic function to AND. (D,E,F) equivalent configurations but using
an inverse threshold activation changes the logic gate.

patterns but with an inverse threshold, the inverted output map results in a different

set of logic gates for the same spatial patterns. Finally, different permutations of

input states and the boundary are distinguishable if and only if they have different

output mappings and each distinguishable mapping corresponds to a unique logic

gate. For example the mapping 00|01,10,11 is indistinguishable with 00|10,01,11,

and they therefore both encode the same logic gate with a threshold mapping (OR),

but 00,01|10,11 is distinguishable from 00,10|01,11 and as such they encode two

different logic gates (A and B).

Using this representation we capture the constraints inherent in representing the

input states as concentrations of a diffusible molecule and we can naturally represent

the activation functions as boundaries partitioning the input states into the two output

states. By enumerating the distinguishable permutations of the system, which exactly

correspond to the distinct logic gates that can be encoded, we can discover whether

3.2. The capabilities of a single output colony 50

this system could allow the encoding of arbitrary, multi-input logic gates. In the

following, the two input case, which is simple enough to walk through by hand, will

be used to demonstrate the approach and show that with all four activation functions

all two-input logic gates can be achieved using only one output colony. Then the

results of the computational extension to three inputs will be shown and we shall see

that a single output colony is not sufficient for logic gates with more than two inputs.

3.2.1 All two input logic gates can be realised with a single

output colony

To enumerate all two input logic gates that are possible in our system, first we

take the threshold function (OFF|ON). For each admissible position of the decision

boundary we will enumerate all the logic functions that can be obtained by swapping

the 01 and 10 input states. There are four positions of the decision boundary we need

to consider, where we assume that |00,10,01,11 is not possible as at least one input

colony must be active to turn the output on. First the 00|10,01,11 position. Here

we can see that we obtain one distinct logic gate (OR), as swapping 10 and 01 gives

us two indistinguishable mappings. For the next boundary position; 00,01|10,11

is distinct from 00,10|01,11, so we gain two logic gates (A and B). The boundary

positions 00,10,01|11 and 00,10,01,11| both give us one each (AND and OFF

respectively). This means that with the threshold we have a total of 5 logic gates:

OR, A, B, AND, OFF (Figure 3.3A). With the inverse threshold we have the same

boundary positions, but with the inverse mapping (ON|OFF) and through similar

arguments, or through inversion of the 5 threshold logic gates, we gain another 5

gates (NAND, NOT A, NOT B, NOR, ON) (Figure 3.3B). This means that with the

threshold and inverse threshold we can achieve 10 of the 16 two input logic gates.

We now investigate the additional logic gates that are possible by adding the

bandpass and inverse bandpass to our set of available activation functions. The

bandpass can be seen as a threshold function where circular permutations of the

states 00,01,10,11 are allowed (Figure 3.3C). Taking a similar requirement that

some AHL must be present for the bandpass to activate, we have the constraint

that the 00 input state must be in the lower OFF region of the bandpass, which

3.2. The capabilities of a single output colony 51

00 01 10 11

11 00 01 1011 00 01 10

00 01 10 11

00 10 01 11

00 01 10 11

00 10 01 11

00 01 10 11

00 10 01 11

00 01 10 11

00 10 01 11

OFF ON

Degenerate OR

Degenerate AND

Degenerate OFF

A

B

(A) (B) 00 01 10 11

00 10 01 11

00 01 10 11

00 10 01 11

00 01 10 11

00 10 01 11

00 01 10 11

00 10 01 11

Degenerate NOR

Degenerate NAND

Degenerate ON

NOT A

NOT B

ON OFF

00 01 10 11
OFF OFFON

11 00 01 10

OFF ON
ON

OFF

Circular permutation

(C)

XOR

11 00 01 10

10 11 00 01 B NIMPLIES A

A NIMPLIES B

(D)
OFF ON XNOR

11 00 01 10

10 11 00 01 B IMPLIES A

A IMPLIES B

(E)
ON OFF

[AHL] [AHL]

[AHL] [AHL]

Figure 3.3: Proving two input digital capabilities. The logic gates possible with a threshold
(A) and inverse threshold (B), swapping any two state that are within the same
set will not change the function, but swapping between sets will. (C) The
introduction of the bandpass allows circular permutations of the input states.
Additional logic gates are possible with the bandpass (D) and inverse bandpass
(E). With the threshold, inverse threshold, bandpass and inverse bandpass we
have achieved all 16 two-input logic gates.

imposes the limitation that the 00 input state must be to the left of the boundary.

We will examine each circular permutation in turn for the bandpass and place the

boundary in each allowable position and enumerate the possible logic gates. The first

circular permutation of input states is 00,10,01,11, which gives us the same logic

gates as the threshold. The next circular permutation is 11,00,10,01 where each

of the allowed boundary positions (11,00|10,01, 11,00,10|01 and 11,00,10,01|),

gives us one (XOR), two (B NIMPLIES A and A NIMPLIES B) and one (OFF)

logic gate respectively. Here, the second boundary position gives us two logic gates

because swapping 01 and 10 results in two distinguishable mappings. The next

circular permutation is 01,11,00,10 with which the allowable boundary positions

(01,11,00|10 and 01,11,00,10|) give two (B NIMPLIES A and A NIMPLIES B) and

3.2. The capabilities of a single output colony 52

one (OFF) logic gates respectively. The final circular permutation is 10,01,11,00|,

which gives us OFF. We see that we have gained XOR, B NIMPLIES A and A

NIMPLIES B in addition to the gates possible with the threshold (Figure 3.3D). The

same analysis for the inverse threshold or inverting the bandpass mapping to ON|OFF

gives us the remaining logic gates B IMPLIES A, A IMPLIES B and XNOR and we

have found the remaining 6 two input logic gates (Figure 3.3E). In this way we have

shown that all two-input logic gates are possible using a single output colony.

3.2.2 Computationally enumerating logic gates

The complexity of this analysis increase combinatorially and a computational method

for enumerating possible logic gate was developed to allow its application to digital

functions with more than two inputs. Here I introduce and demonstrate the method

for the two input case.

I define a microstate of the system as a unique permutation of input states and

the boundary. I define two microstates as being distinguishable if by observing

the output it is possible to distinguish between them, for example 00|01,10,11 and

00|10,01,11 are indistinguishable as they both map 00 to OFF and 01,10,11 to ON,

but 00,01|10,11 and 00,10|01,11 are distinguishable as the output mapping of the

two microstates is different. If two microstates are distinguishable they are said

to belong to two different macrostates, where a macrostate is a set of one or more

microstates that are all indistinguishable from each other. In this representation each

macrostate of the system is equivalent to a unique logic gate and the number of

logic gates possible can be enumerated by finding the number of distinguishable

macrostates of the system. An outline of this procedure is as follows. The first step

is to enumerate all the possible permutations of input states. Those permutations

that violate the constraints imposed by the physics of our spatial computing system

are then eliminated. Then, I apply all possible boundary positions that divide the

inputs states into OFF and ON sets enabled by the activation functions. This gives

the total set of realisable microstates. From this set of microstates I find the number

of macrostates (logic gates) by collapsing all sets of indistinguishable microstates.

An algorithm which automated these steps was developed (Algorithm 5).

3.2. The capabilities of a single output colony 53

Algorithm 5 Enumeration of logic gates
1: permutations = permute(concentration states) . all possible orderings of input

states
2: permutations = filter(orderings, constraints) . remove any orderings that violate

a constraint
3: possible logic gates = []
4: for each boundary position do . for each position of the boundary
5: microstates = apply boundary(permutations)
6: macrostates = collapse(microstates) . collapse indistinguishable microstates
7: possible logic gates.append(macrostates)
8: return possible logic gates

The results of this for two inputs are summarised in Figure 3.4, where each

circle represents a possible microstate. Each microstate is one of 5! = 120 possible

permutations of the 5 elements (4 input states and 1 boundary). A physical system

with no constraints would be able to realise any microstate. This phase space of 120

different microstates is grouped according to the number of input states mapped to

OFF on the x-axis. The microstates are further grouped on the y-axis into macrostates,

where each macrostate is a group of indistinguishable microstates that all encode

the same logic gate. For example, there are 4 of the total 120 different microstates

that encode an XOR gate, all of which have two input states mapped to OFF. To be

able to build all two input logic gates at least one microstate corresponding to each

of the logic gates must be realisable by the physical system. This phase space was

enumerated computationally and the permutations realisable by our system were

found by checking against the constraints (Algorithm 5). The realisable permuta-

tions are represented by filled in circles, where the colours represent the activation

function required to encode the microstate. Note that all microstates possible with

the threshold are also possible with the bandpass and all those possible with the

inverse threshold are also possible with the inverse bandpass. This shows how the

constraints on our system mean that we cannot represent any microstate within the

phase space, but we do have sufficient capability to realise any two input logic gate

using a single output colony.

3.2. The capabilities of a single output colony 54

0 1 2 3 4

O
N

O
R

N
O

R

N
A

N
D

A
B

N
O

T
A

N
O

T
B

A
N

D

O
FF

XO
R

B
N

IM
PL

IE
S

A
A

 N
IM

PL
IE

S
B

XN
O

R

B
IM

PL
IE

S
A

A
 IM

PL
IE

S
B Microstate

Threshold
Inverse Threshold
Bandpass
Inverse Bandpass

Number of input states in the OFF output box

XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XXOFF ON

XX Any of 00, 01, 10, 11

Macrostate

Figure 3.4: Realisable microstates in the phase space of logic gates. Each of the 24 mi-
crostates associated with each boundary position and the microstates that are
compatible with each macrostate (logic gate). The coloured circles show the
microstates that are accessible when using each of the activation functions. For
a logic gate to be possible, at least one of it’s microstates needs to be accessible.

3.2.3 Simulation verifies the two input mathematical results

These mathematical results were then verified by simulation using a finite difference

diffusion model (Section 2.1). Two input colonies, A and B, were simulated for each

of the input states 00, 01, 10 and 11, where each input colony acts as a continuous

source of AHL if it is active. All simulation units were arbitrary. The four activation

functions were applied to the resultant AHL concentration fields for each state

and the resulting logic gates were mapped onto each position on the grid. This

effectively results in a map of the two-dimensional area around the input colonies,

where the colour of each region represents the logic gate that would be encoded

by an output colony if it was placed within that region. The results are shown in

3.2. The capabilities of a single output colony 55

B NIMPLIES A

A NIMPLIES B

A IMPLIES B

B IMPLIES A

Threshold Inverse Threshold

Bandpass Inverse Bandpass

B

A

B

A

B

A

B

A

Figure 3.5: Digital logic patterns. Simulation results showing the areas on a grid that
correspond to each logic gate for each activation function.

Figure 3.5 and fully corroborate the mathematical predictions. This shows I have

successfully abstracted the system, producing a mathematical framework capable

of making predictions about the capabilities of the system based on communication

via a diffusible molecule. The simulation also clearly shows how we can use spatial

patterning to increase the utility of our genetic circuits, each activation function

can be used as a module that is capable of many digital functions depending on its

position relative to the input colonies.

3.2.4 One output colony cannot realise all three input digital

functions

So far in this chapter I have shown that any two-input digital function can be encoded

with a single output colony, next the three input capabilities were investigated. There

are now have 8 possible input states (000, 001, 010, 011, 100, 101, 110, 111). The

set of states with one and two inputs ON will be labelled as I = {001,010,100}

and II = {011,101,110} respectively. As before we will represent the logic gates

3.3. The Macchiato algorithm: optimal distributed spatial circuits 56

by introducing a boundary that partitions the input states that map to ON and

input states that map to OFF. For example, three input AND is represented as

000,001,010,011,100,101,110|111, with a threshold activation (OFF|ON). The use

of AHL concentration to represent the input states gives us the following constraints

for the three input case:

A000 ≤ AI,AII,A111

A001 ≤ A101,A011

A010 ≤ A011,A110

A100 ≤ A101,A110

A000,AI,AII ≤ A111

Notice that we can swap the positions of some of the input states in I and II without

violating these constraints. The realisable logic gates were enumerated computa-

tionally using Algorithm 5. The result of this was then compared with the number

of actual three input logic gates for each boundary position, which is calculated by:
8!

(8−i)!i! where i is the position of the boundary or, equivalently, how many input states

are mapped to OFF (Table 3.1). This analysis shows that we can do a total of 164

of the 256 three input logic gates and that for functions with three inputs we cannot

encode all of the possible digital logic functions with a single output colony.

3.3 The Macchiato algorithm: optimal distributed

spatial circuits
To overcome these limitations when building digital logic gates with more than two

inputs I developed an algorithm for the optimisation of two-level spatial digital logic.

When building electronic digital circuits, two level logic optimisation is used to

simplify a logical circuit into the minimal sum of products (OR of ANDs) or product

of sums (AND of ORs). The Espresso algorithm is ubiquitous in electronic design

automation (EDA) and is a heuristic optimiser that finds an approximate minimal

3.3. The Macchiato algorithm: optimal distributed spatial circuits 57

Boundary position: i (OFF|ON) 8!
(8−i)!i! Realisable gates

0 (|) 1 1
1 (. |) 8 8
2 (. . |) 28 22
3 (. . . |) 56 32
4 (. . . . |) 70 38
5 (. | . . .) 56 32
6 (. | . .) 28 22
7 (. | .) 8 8
8 (. |) 1 1

Total 256 164

Table 3.1: The possible three input logic gates with a single output colony.

form of a given digital function [2]. Despite returning approximate solutions, in

practice the Espresso algorithm is extremely effective and its use is widespread

in optimising electronic digital functions. The Espresso algorithm attempts to

minimise a digital function into the minimal set of OR of ANDs, where each AND

term can contain any of the inputs or their negations (Figure 3.6A, top). Taking

inspiration from the Espresso algorithm I have developed a novel algorithm, named

the Macchiato algorithm, which finds the minimal set of bacterial colonies which

encode a given digital function.

The Macchiato algorithm takes the truth table of a multi-input, one output

function and returns the approximate minimal set of bandpass, threshold, inverse

threshold and inverse bandpass colonies that are required to construct the digital

function represented by the truth table. These constitute the analogue of the AND

layer and this formulation has increased computational capabilities over a single

output colony by distributing different parts of the overall function across multiple

colonies. The OR layer can then be done using a threshold colony which activates

if any of the previous layer is activated (Figure 3.6A, middle) or it can be done

implicitly in the sense that if any colonies are fluorescing we take the output to be

ON (Figure 3.6A, bottom). It is for this reason I focus on an analogue of the OR

of ANDs (sum of products) form of a digital function, as we gain the flexibility

to encode a two level digital function using only one level of biological signalling

3.3. The Macchiato algorithm: optimal distributed spatial circuits 58

with a fluorescence output or encode the same function with two levels of biological

signalling if a specific biological response is required. The Macchiato algorithm also

returns the required connectivity or ’wiring’ specification of the bacterial colonies,

which, in principle, can be used to find the requisite pattern of colonies. The

algorithm works as follows (Figure 3.6B).

1. A truth table is supplied as input

2. The input states are rearranged to minimise the number of blocks, where a

block is defined as a contiguous sequence of ones in the output mapping, while

obeying the constraints imposed upon the possible orderings of input states.

This is the main part of the algorithm

3. Activation functions are mapped onto the blocks, so that each block is covered

by a single output colony. For a block to be covered by an output colony the

input states within the block and only those input states must be mapped to

ON by the activation function in the output colony. This results in the required

minimal set of colonies as well as their connectivity to the inputs and this is

returned to the user

4. This output could be used to produce a spatial configuration of colonies that

results in the truth table, if any of the green output colonies are activated the

output of the function is ON

The Espresso algorithm works by iteratively increasing the size of ‘covers’. A

cover is a group of 1s in the output of the digital function that can be represented

by one term in its input. The Macchiato algorithm has an analogous concept of

blocks, where a block is a group of ones in the output that can be mapped to ON by a

single output colony containing one of our four activation functions. The aim of the

Macchiato algorithm is to reduce the number of blocks. The Macchiato algorithm is

also heuristic, so it is not guaranteed to find the best solution. However, in comparison

with an exhaustive, graph search based algorithm found the optimal solution for

100% of the two and three input logic functions, for more complex functions the

time and space requirements of the exhaustive search became prohibitive.

3.3. The Macchiato algorithm: optimal distributed spatial circuits 59

AND

OR

AND

(A) ¬A OR (¬B AND C)

A B C ¬A ¬B ¬C

A B C

B)

A

B

C

A

C

B

1) Truth table 2) Minimize blocks 3) Activation function map 4) Colony placement
Espresso

Macchiato

Macchiato simpli�ed

Function:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

A
B
C

Output 0 0 1 1 0 1 1 1

[AHL]

0 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1
0 1 0 0 1 1 0 1

A
B
C

Output 0 0 0 1 1 1 1 1

[AHL]

Output 0 0 0 1 1 1 1 1

Activation
functions

2 blocks 1 block
A

B

C

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

A
B
C

Output 0 0 1 1 1 1 0 1

[AHL]

A
B
C

Output 0 0 1 1 1 1 0 1

[AHL]

Output

Activation
functions

2 blocks

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

A
B
C

Output 1 0 1 0 1 1 1 0
A
B
C

Output 1 1 0 0 1 1 1 0

Output

Activation
functions

3 blocks 2 blocks

0 0 0 0 1 1 1 1
0 1 0 1 0 0 1 1
0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0

2 blocks

[AHL] [AHL]

A B C

Figure 3.6: The Macchiato algorithm. A) The same digital logic function simplified by the
Espresso algorithm (top), Macchiato algorithm with two levels of biological
signalling (middle) and Macchiato with one level of biological signalling (bot-
tom). B) The stages of the Macchiato algorithm on three examples, from left to
right; 1) a truth table is supplied as input, 2) the input states are rearranged to
minimise the number of blocks while obeying the constraints imposed by the
system, 3) activation functions are mapped onto the blocks, this is the output
return to the user, 4) this output can be used to produce a spatial configuration
of nodes that results in the truth table, if any of the green output colonies are
activated the output of the function is ON. Top is an example of a function
that can be simplified sufficiently that it can be implemented with one colony.
Middle cannot be simplified due to the system constraints. Bottom, can be
simplified but still requires two colonies.

The main part (2 in Figure 3.6) of the Macchiato algorithm is split into two

stages. The first stage is to do a rough optimisation (Algorithm 6) to find the optimal

ordering of states assuming no mixing between the different input groups. An

input group is defined as a set of input states which all have an equal number of

1s. Because the system constraints permit input states within each input group to

be rearranged arbitrarily, we can always simplify an input group that contains both

0s and 1s such that the 1s are all at the low or high AHL concentration end and

we can always flip the group so that the 1s are moved to the other end. In this first

stage all possible combinations of flips of input groups are searched to find the one

with the smallest number of blocks. This acts to give a good initial condition for the

second stage. The second stage further minimises the number of blocks by allowing

3.3. The Macchiato algorithm: optimal distributed spatial circuits 60

mixing between the input groups (Algorithm 7). The smallest blocks are tried in

turn to be eliminated by moving their input states into larger blocks, while obeying

the constraints imposed by representing the input states with a diffusible molecule.

When no further improvements can be made the algorithm exits. Then the blocks are

covered by mapping activation functions onto this set of minimal blocks (3 in Figure

3.6). This works by analysing the minimal set of blocks and applying activation

functions such that all blocks are covered by at least one activation function and no

zeros in the output are covered (Algorithm 8). Finally, the output, composed of the

required activation functions and the input states that need to be in their respective

ON and OFF sets, is returned to the user.

Three example applications of the Macchiato algorithm to three input functions

are shown in Figure 3.6B. Figure 3.6B-top shows an example of one of the three

input functions that can be implemented using a single colony, the input truth table

contains two blocks of ones, however by changing the distances between colonies

we can group these into a single block and this means that only one output colony is

required to implement the function. Figure 3.6B-middle shows an example where the

constraints of our system prevent any simplification of the input truth table, therefore

there are two blocks that need to be covered and the function is distributed over

two output colonies. Figure 3.6B-bottom is an example of a truth table that can be

simplified from three blocks to two. Therefore this function is also distributed over

two output colonies.

Algorithm 6 Rough Optimisation
1: input: truth table
2: simplified table = simplify(truth table)
3: min blocks = count blocks(simplified table)
4: flip combinations = cartesian product([False, True], repeat = simpli-

fied table.n flippable)
5: for combination in flip combinations do
6: if count blocks(combination) < min blocks then
7: min blocks = count blocks(combination)
8: best table = combination
9: initial truth table = truth table(combination)

10: return initial truth table

3.3. The Macchiato algorithm: optimal distributed spatial circuits 61

Algorithm 7 Minimise Blocks
1: input: initial truth table
2: current table = initial truth table
3: finished = False
4: while not finished do
5: blocks = get blocks(current table)
6: block sort = arg sort(blocks) . sort blocks by size, smallest to largest
7: finished = True . exit if we are unable to make any further simplifications
8: for block in block sort do
9: test table = current table

10: move ones(block) . try and move ones in the output to other blocks
11: if block is empty then
12: current table = test table
13: finished = False . don’t exit as we have made a simplification
14: break . start again with the simplified truth table
15: return current table

Algorithm 8 Map activation functions
1: input: blocks table
2: if blocks == [1,0,1] then . This is the only situation where IB is required
3: return [IBP]
4: activations = []
5: pos = 0
6: if blocks[0:2] == [1,0] then . Inverse threshold only allowed at beginning
7: activations.append(IT)
8: pos += 1
9: while pos < len(blocks) - 1 do

10: if blocks[pos:pos+3] == [0,1,0] then
11: activations.append(BP)
12: pos += 2
13: if blocks[-2:0] == [0,1] then . Threshold only allowed at end
14: activations.append(TH)
15: return activations

3.3. The Macchiato algorithm: optimal distributed spatial circuits 62

3.3.1 The relative importance of the activation functions for the

Macchiato algorithm

The output of the Macchiato algorithm is an OR of the outputs of a set of colonies.

This means it is important that input states that are required to be mapped to OFF

are not mapped to ON by any of the output colonies. However, an input state that is

required to be mapped to ON can be mapped to OFF by multiple output colonies

and as long as it is covered by another output colony this won’t affect the functions

output. Figure 3.7A demonstrates that if an input state that is required to be OFF is

mapped to ON by any output colony then the output will differ from the required

mapping (left). This makes the bandpass the most important activation function as

it can select a block and map those and only those input states within the block to

ON (right). The threshold and inverse threshold can only be used if a block of input

states that need to be mapped to ON contain ALL 1 and or ALL 0 respectively i.e.

the minimum and maximum AHL concentration. As we assume that a non-zero

amount of AHL is required to activate the bandpass, the inverse threshold is required

to map the state ALL 0 to ON, whereas the input state ALL 1 could be covered

by the bandpass if required. The inverse bandpass is only required where there are

exactly two blocks of input states that map to ON, one of which includes ALL 0

and the other includes ALL 1 and is effectively a convenience that will simplify a

number of functions. This means that the activation functions are ranked bandpass

(BP), inverse threshold (IT), threshold (TH), inverse bandpass (IB) in order of most

important to least important. This intuition was demonstrated and the capability

of our approach to build the three input logic gates was analysed. The Macchiato

algorithm was applied to each three input gate using five different sets of available

activation functions. For each set of activation functions the number of bacterial

colonies required to build each gate was found (Table 3.2). With access to all four

activation functions the Macchiato algorithm can achieve all three input logic gates

using one or two output colonies. This shows that two-level logic optimisation has

overcome the limitations using a single output colony in implementing three input

digital functions. If we remove the inverse bandpass from the available activation

3.3. The Macchiato algorithm: optimal distributed spatial circuits 63

000 001010 011 100 101 110 111

[AHL]

0

1

000 001010 011 100 101 110 111

[AHL]

0

1

0

1

0

1

000 001010 011 100 101 110 111
0

1

O
ut

pu
t

000 001010 011 100 101 110 111
0

1

Re
qu

ire
d

m
ap

pi
ng

 O
up

ut
 c

ol
on

ie
s

(B)(A)
0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1
0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1
0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

A
B
C
D

Output X 1 0 0 1 0 0 1 1 0 1 0 1 0 0 X

0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1
0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1
0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1
0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1

A
B
C
D

Output X 0 0 1 1 0 0 0 1 1 1 0 0 0 1 X

X 0 1 0 1 0 1 X

X 0 1 1 0 0 1 X

1 0 1 1 0 0 1 1

[AHL]

Figure 3.7: A) If an input state is falsely mapped to ON then the output will differ from
the required mapping (left), which makes the bandpass the most important
activation function (right). B) We can prove the upper bound on the number of
output colonies required, from top to bottom; 1) for any given truth table we can
rearrange the input states with the same number of activated inputs such that in
the worst case each number of activated inputs contains a block of 0s and 1s
(2). 3) in the worst case no further simplification can be done and the problem
reduces to finding the upper bound number of blocks upon inverting these (4).
5) This is an example of the most pathological case for four inputs.

functions we retain the capability to do all the three input logic gates, however a

larger proportion now require two output colonies as expected. If we remove the

threshold or inverse threshold the Macchiato algorithm finds 64 logic gates that are

now not possible. However, note that a bandpass could, in theory, be used in place of

the threshold to map the highest AHL concentration states to ON. If we remove the

bandpass activation we are unable to construct the majority of the three input logic

gates, demonstrating the importance of the bandpass. This shows that experimental

effort should be prioritised to developing first the bandpass and inverse threshold and

if possible a threshold, but the inverse bandpass is of much less importance.

3.3.2 Upper bound for the number of output colonies

Here I show that the Macchiato algorithm can be used to encode any given digital

function with an arbitrary number of inputs and that the upper bound for the required

3.3. The Macchiato algorithm: optimal distributed spatial circuits 64

Number of colonies
Activation functions Not possible 1 2

TH, IT, BP, IB 0 164 92
TH, IT, BP 0 101 155
TH, BP, IB 64 144 46
IT, BP, IB 64 144 46
TH, IT, IB 155 99 0

Table 3.2: Number of colonies required to implement three input logic gates for different
combinations of activation functions

number of output colonies is

Co ≤
⌈

n−1
2

⌉
+1

where Co is the number of output colonies and n is the number of inputs. To show

this take a digital function, an example is shown with four inputs in Figure 3.7B,

and group the input states into input groups according to the number of activated

inputs (Figure 3.7B, top). Due to the constraints of the system we know that the two

end states ALL 0 and ALL 1 must be fixed at the end points. We also know that we

can change the order within each group of input states arbitrarily without violating

any constraints on the concentration of AHL. This means that for any function we

can order each group such that it’s output is a block of zeros followed by a block

of ones (Figure 3.7B second one down) and in the worst case each group will have

at least one 0 and one 1 in it’s output. Note that in most circumstances we could

further simplify this as we are allowed to mix some states between groups, however

in the worst case this will not be possible and so we can ignore this complexity.

Now, to simplify, we can represent each of the n− 1 middle groups as a 0 and a

1, representing its outputs that map to 0 and to 1 (Figure 3.7B, middle) and the

problem reduces to flipping the input groups such that the number of blocks of ones

is minimised (Figure 3.7B, second from bottom). It is apparent that when there are an

odd number of inputs (and an even number of middle groups) the number of blocks

is n−1
2 and when there are an even number of inputs (and an odd number of middle

groups) there are n−1
2 + 0.5. Both these facts can be combined to give the

⌈
n−1

2

⌉

3.3. The Macchiato algorithm: optimal distributed spatial circuits 65

term, where dxe is the ceiling of x. The only additional complexity comes from the

output states of the ALL 0 and ALL 1 input states; there are four combinations 00,

01, 10, 11. Appending a zero onto either end of the sequence can never increase the

number of blocks, therefore the state 11 represents the worst case and is the only one

that we need to consider (Figure 3.7B, bottom). If the middle groups adjacent to the

output (the outer middle groups) are both 1s it is apparent that no additional blocks

can be added. If one outer middle group are is 0 and the other is 1, it is apparent that

this will increase the number of blocks by one. If both outer middle groups are 0

then at first glance it appears that two blocks will be added, however you can simply

invert each of the middle groups, at worst incurring a cost of one additional block.

This means that the addition of the end states at worse adds one additional block,

and, remembering that each block requires a single output colony to be covered, we

have derived our formula.

This result was verified for the 1, 2, 3 and 4 input cases computationally. For

each given number of inputs every possible logic gate was enumerated. For each logic

gate the input states were grouped such that each group of input states had a block

of zeros then a block of ones in the output, while ensuring that the constraints on

AHL concentration were being obeyed. Following this, every different configuration

possible by flipping these blocks of zeros and ones was generated and the minimum

number of blocks possible by flipping was found. For each number of inputs the

worst case number of blocks agrees with the derived formula. Verification of the 5

input case was attempted, but the memory requirements were found to be prohibitive.

The relative complexity of our approach was assessed by comparison with

two other implementations of spatially distributed biocomputers [54, 55]. The

first comparison is with an approach based on the separation of cells into a set of

connected growth chambers [54]. The maximum number of independent growth

chambers, named modules, was used for the comparison. A subsequent paper

implemented similar circuits on branched 2D circuits on pieces of paper [55] and

the maximum number of branches was used for comparison. These two measures

were compared with the maximum total number of colonies required for any given

3.4. Discussion 66

(A) (B)

Figure 3.8: A) Comparison of how the number of required cell types and colonies for the
Macchiato algorithm scales with the number of inputs (blue) with the number
of required cell types and similar measures of complexity for two previous
approaches (green [55] and red [54]) to spatially distributed biocomputing. B)
How this scales for larger numbers of inputs.

function designed with the Macchiato algorithm. This is equal to the number of

input colonies plus the maximum number of output colonies Ctot = n+
⌈

n−1
2

⌉
+1.

The number of unique cell types that need to be constructed was compared for all

three approaches. For the Macchiato algorithm this is n input cell types plus 4

patterning functions. It is shown in Figure 3.8 that as the number of inputs increases

the complexity of the Macchiato algorithm scales favourably in terms of both the

amount of genetic engineering that needs to be done to construct the requisite cells

and the resulting complexity of the spatial circuits. This means that the distributed

circuits considered here are capable of encoding complex digital functions with less

biological complexity than the current state of the art.

3.4 Discussion
In this chapter I have shown that bacterial colonies programmed with realistically

achievable patterning functions can be spatially wired together using diffusible

molecules to create programmable digital computers. I have proven that a single

computing colony is capable of being programmed with any two-input digital logic

gate by changing its activation function or its position relative to the inputs. I have

then shown that additional complexity is needed to allow the implementation of all

3.4. Discussion 67

three input logic gates. An extension of the method that is capable of distributed

digital logic circuits was proposed and, inspired by two level electronic digital

logic optimisation, an algorithm was developed for an analogous spatial digital

optimisation procedure to find the minimal set of bacterial colonies required to

implement a given digital function. The results of this algorithm are analysed to find

the requirements on the activation functions and their relative importance, which can

be used to prioritise wetlab work. Furthermore, it is shown that any function with

an arbitrary number of inputs can be encoded and an upper bound for the number

of output colonies required with respect to the number of inputs is found to be

Co ≤
⌈

n−1
2

⌉
+1. This means that including the input colonies the total number of

colonies required to implement a given function is bounded by Ctot ≤ n+
⌈

n−1
2

⌉
+1.

In comparison with previous, similar approaches [49, 54, 55] our system allows

the construction of more complex digital functions with less biological complexity

(Figure 3.8). This work is based on the use of genetic circuits that already exist

[62, 122] and existing lab protocols make automated production of patterns of

bacterial colonies easy. This is combined with the modular design that requires at

most the genetic engineering of n biosensor strains and 4 patterning functions which

can subsequently be reused and programmed into arbitrary digital functions with

minimal effort.

To illustrate the approach we showed digital activation functions that transition

between the OFF and ON states as a step function. However, the assumption we

make about the activation functions is much weaker than the requirement for a digital

step function. We only require that each function is able to partition the input space

into OFF and ON regions in the required manner. For example, to build an OR gate

with the threshold (00|01,10,11), a digital transition from OFF to ON in the region

between 00 and 01 is not required. What is needed is that at the concentration of AHL

in the 00 state the threshold is OFF and at the 01,10 and 11 states it has turned ON.

The increase of activation in the concentrations between 00 and 01 can be gradual

and it will not affect our design. However, in practice activation functions with

more step like responses will likely make the construction of functions easier and

3.4. Discussion 68

future work could include the optimisation of activation functions for this purpose.

Another consideration is that ideally the output pattern of a constructed function

would achieve steady state and after an initial calculation time could be read out

at any subsequent time. There are ways that could be investigated the achieve this

including expressing AHL degradase enzymes in bacteria [123]. However, during

the initial implementation of the method a measurement time could be set at which

results are automatically imaged, removing the need for a steady state pattern.

The work in this chapter represents the theoretical foundation required to

implement digital functions in patterns of bacterial colonies. However, to implement

these designs the minimal set of colonies and the wiring specifications returned by

the Macchiato algorithm will have to be translated into a spatial pattern of colonies.

This can be done in future work by calibrating a spatial reaction diffusion model

to characterisation data of a system. The work in this chapter is system agnostic

and the Macchiato algorithm can be applied to any system based on communication

using diffusible molecules. However, different systems will require different reaction

diffusion models and these models represent the bridge between theory and eventual

wetlab implementation. Once a calibrated reaction diffusion model has been obtained

the spatial pattern that results in the required connectivity between the minimal set of

output colonies and the input colonies can be inferred and subsequently implemented

in the lab. This would represent a fully realised implementation pathway from

abstract digital logic functions to computing using patterns of bacterial colonies. A

further practical consideration is the degrees of freedom available to place colonies

in 2D space. This method is based upon the use of spatial proximity as a wiring

parameter and, as the distance between each pair of colonies in a multi-colony pattern

cannot be varied independently, there will be an upper limit to the complexity of the

functions we can build before the wiring requirements become too great. Future work

could be done to find the point at which this becomes a problem and if solutions are

required. Potential solutions could include the extension to 3D patterns, which would

increase the degrees of freedom in colony placement, or the 3D printing of custom

made plates incorporating channels that connect and insulate pairs of colonies, which

3.4. Discussion 69

would be cheap and fast using a desktop 3D printer.

In summary I have developed a mathematical representation and design al-

gorithm for distributed digital spatial computing using bacterial colonies. These

methods can be used to advance the state of the art in distributed computing in

synthetic biology. Furthermore, the eventual implementation of these designs can

easily be automated using pipetting robots, paving the way for practical applications

of distributed biocomputing such as medical diagnosis. Overall this work has opened

an exciting avenue of research for both future lab work and potential real world

applications.

Chapter 4

Distributed analogue biocomputation

through spatial diffusion and

engineered bacteria

4.1 Introduction
In this chapter I investigate the potential to do spatial analogue computing. In

contrast to the digital functions considered in the Chapter 3, the inputs and outputs

of an analogue function are not restricted to the values 0 and 1, meaning that any

continuous value can be taken. The genetic reaction networks (GRNs) within a

cell and the quorum molecules used to communicate between cells operate in the

domain of concentration, which is effectively a continuous value unless a molecule

is at extremely low levels. For this reason, analogue computing might be a more

natural way of exploiting the processes inside cells and there have been results that

support this. Analogue computing is more efficient, in terms of the rate of ATP

consumption and the number of protein molecules required, for doing addition with a

genetic circuit at the ranges of precision that are metabolically feasible in single cells

[45]. This is due to the mathematical dependence of precision on ATP consumption

and number of protein molecules differing for analogue and digital genetic circuits

[45]. Additionally, it has been shown that building the equivalent circuit using

analogue logic can require orders of magnitude fewer genetic parts [46, 47]. However,

4.1. Introduction 71

analogue processes are much more susceptible to noise, which presents additional

challenges to engineering them within synthetic biology. Minimising noise within

synthetic constructs and incorporating noise resistance into design methods will

likely be a big part of the future of biological analogue computing.

Possibly the most widespread method of implementing analogue functions are

artificial neural networks (ANNs). The use of ANNs has driven the recent advance-

ments in the field of deep learning and some work has been done to implement

ANNs within synthetic biology. Perceptrons, the building blocks of artificial neural

networks, have been implemented using enzymes that transduce different inputs into

a common output molecule, benzoate, and a synthetic actuator circuit that sensed

benzoate [48]. This was used to build a cell based adder and cell free metabolic

perceptrons in which enzyme concentrations acted as weight. Additionally, single

layer artificial neural networks have been implemented in liquid culture within cells,

where each neuron is a bacterial population and communication is done using dif-

fusible molecules [124]. However, in this work the weights and bias values are

adjusted by changing the promoters in the GRNs, meaning that extensive genetic

engineering is required to build a new network. In this chapter I propose a method for

building bacterial neural networks (BNNs) into spatial patterns of bacterial colonies,

where colonies communicate using diffusible molecules. Because the strength of

a diffusible signal is a function of distance this would allow us to easily tune the

weights between neurons by changing the distance between them.

In this chapter I leverage the similarities between a bacterial colony respond-

ing to sources of diffusible molecules and a neuron in a neural network to model

communication between bacterial colonies growing on a two dimensional plate as

the forward pass of a neural network. This model allows the rapid simulation of

the forward pass of a BNN which enables the use of complex design algorithms

that require thousands of simulations. I found that backpropagation, the primary

method of training ANNs, was unsuitable for our purposes as it would get stuck in

local minima when attempting to train networks of the sizes we are interested in.

Therefore, I developed an evolutionary algorithm for the design of BNNs. This was

4.2. Modelling bacterial communication networks as artificial neural networks 72

used to train BNNs, in silico, to perform a wide range of non-linear classification

tasks, including a classical example from machine learning, the XNOR function and

a medical diagnosis problem to diagnose irritable bowel disease (IBD) and irritable

bowel syndrome (IBS). A finite difference model was used to verify one of these

designs, which showed that the feed forward model was able to make predictions

that held true in a more realistic reaction diffusion situation.

4.2 Modelling bacterial communication networks as

artificial neural networks
The most common type of artificial neuron, and those most widely used for deep

learning perform a weighted sum of a vector of n inputs, x1,x2...xn and a bias term

b. A non-linear activation function, σ , is then applied to the result of the sum to

calculate the neuron’s output (Figure 4.1A). An ANN can be created by connecting

multiple neurons together, such that the output of one neuron is passed on as the

input of all the neurons it is connected to. In a feed forward network the neurons

are arranged in layers, where each neuron receives inputs from the neurons in the

previous layer and send its outputs on to the neurons in the next layer. Figure 4.1B

shows an example of a simple feed forward network with a single hidden layer. The

strength of connection between each neuron is dictated by a weight and training a

neural network is the process of finding the set of weights that best performs some

defined objective. In the field of deep learning, training is usually done by the process

of backpropagation, but other methods such as evolutionary algorithms can be used

[125].

We observe that the response of a colony of bacteria to multiple sources of a

diffusible molecule greatly resembles an artificial neuron. Consider the situation

with two sources of a diffusible molecule at different positions (Figure 4.1C). Each

source will produce a concentration field of the molecule which decays as distance

from the source increases. Therefore we can use the distance from a source as a

design parameter to tune the weight between the source and the colony, the closer

the colony is to the source the higher the weight. As diffusion is governed by the

4.2. Modelling bacterial communication networks as artificial neural networks 73

(B)

(E) (F) (H)(G)
Inverse BandpassInverse ThresholdThreshold Bandpass

[AHL][AHL][AHL] [AHL]

(A)

Input layer Hidden layer

Output layer

(D)(C)

AHL1

AHL2

Input colony Output colony

Relay colony

Figure 4.1: Bacterial neurons and neural networks. Diagram of an artificial neuron (A) and
how these can be connected into an artificial neural network (B). Diagram of
a bacterial neuron (C) and how these can be connected into a bacterial neural
network (D). The activation functions we assume that can be engineered into
bacteria, where [AHL] is the concentration of the communication molecule. (E)
threshold, (F) inverse threshold, (G) bandpass, (H) inverse bandpass.

dynamics of the random motion of independent molecules, in the region where the

fields overlap the concentration will be equal to the sum of the contributions from

each source. If we consider a bacterial colony placed at some position relative to

the two sources the concentration at the colony will be a weighted sum of each of

the inputs, where the weight is a function of the distance of the colony from the

respective input. We refer to a bacterial colony used in this manner as a bacterial

neuron. Like the networks of artificial neurons that make up an ANN, we can create

a BNN by connecting multiple bacterial neurons (Figure 4.1D). Bacterial neurons

4.3. Training bacterial neural networks using an evolutionary algorithm 74

are connected together by positioning them in proximity to each other and the weight

between two neurons can be tuned by changing the distance between them. Finally,

the response functions that can be engineered into the colonies (Figure 4.1 E-H) are

non-linear, a key characteristic of the activation functions used in an ANN. To create

the feedforward architecture we can use three distinct types of bacterial neurons.

The first type are the input neurons which will contain engineered biosensors that

sense environmental inputs and respond with an AHL, these will constitute the input

layer of the network. The hidden layers of the network will be instantiated with relay

neurons which sense one AHL from the previous layer and respond with a second,

orthogonal AHL. We can use relay neurons that sense and respond with different

AHLs to build multiple hidden layers. Lastly, we have the output neurons, which

sense an AHL and respond with measurable fluorescence and this represents the

output layer of the network.

Using these similarities the spatial communication between bacterial colonies

can be modelled as a neural network, where each bacterial colony is a neuron and the

strength of communication between each pair of colonies via diffusible molecules is

represented by a weight.

4.3 Training bacterial neural networks using an

evolutionary algorithm
The predominant method of training ANNs is the gradient based method backpropa-

gation [3]. Backpropagation aims to train the weights of a neural network such that

a given optimisation objective is achieved. Often this objective is to minimise a loss

function, which quantifies the error of the neural network across a training data set.

Backpropagation is a local optimisation method which repeatedly adjusts the weights

of the network in the direction which would act to reduce the loss over the given data.

Because it is a local optimisation algorithm it is not guaranteed to find the global

optimal set of weights, in fact it is highly unlikely to do so. However, in practice, it

excels at finding a good local optima for complex neural networks, in which the given

task is performed well despite not being the globally optimal solution. The, perhaps

4.3. Training bacterial neural networks using an evolutionary algorithm 75

surprising, effectiveness of back propagation underpins much of the advancement of

deep learning. When training small networks of the kind we are interested in here,

however, it can be prone to converging to bad local optima, which do not perform the

task well. An initial investigation for the use of backpropagation for our application

found this to be a problem. Evolutionary algorithms present an alternative which are

less susceptible to converging to local optima and have been successfully applied to

the training of ANNs [125]. Furthermore, using an evolutionary algorithm makes

both the direct optimisation over positions of bacterial neurons on a two dimensional

plane and the enforcing of constraints on the available area and minimum distance

between neurons trivial.

4.3.1 Constraints

There are some constraints we need to consider that are present in BNNs but not

ANNs. First, unlike ANNs the weights in our spatial networks are no longer inde-

pendent of each other as we set them by moving a colony in two dimensional space.

This constraint means that simple networks will be desirable as there will be less

dependency among the weights. Second, weights are represented by concentration

and can not be negative. This imposes a restriction on the functions we can build by

constraining the networks to use non-negative weights. However, this can be at least

partially alleviated by the availability of more complex activation functions such as

the inverse threshold, bandpass and inverse bandpass or with the use of bacteria that

degrade AHL [123]. Lastly, for the results in this chapter we have no bias terms, b,

but this could be rectified simply with colonies that constitutively produce AHL.

4.3.2 Modelling bacterial communication as the forward pass

of a neural network

I use the similarities between BNNs and ANNs described to approximate the system

of communicating bacterial colonies as a neural network and drastically reduce the

computation time required to simulate the forward pass compared to using a full

finite difference model. To calculate the forward pass of a feedforward ANN with

m layers we start with the input layer, l = 0, and calculate the activations of each

4.3. Training bacterial neural networks using an evolutionary algorithm 76

following layer in turn, until we reach the output, l = m−1:

a(l+1) = σ
(l+1)(W(l)a(l)+b(l)),

where a(l) is the vector of activations of layer l, σ (l) is a vector function of the

non-linear activation functions of the neurons in layer l, W(l) is the matrix of weights

connecting the output of each neuron in layer l to the input of each neuron in layer

l + 1 and b(l) is the vector of bias terms associated with layer l. To express the

network of communicating bacterial colonies in the same way we first need to make

a few simplifying assumptions. The main assumption is that we consider each

bacterial colony as a point located at the centre of the colony, this simplifies the

model in two ways. Firstly, we can take concentration to be constant within a single

bacterial neuron, which is equivalent to considering the average concentration of

inducer molecule and the subsequent activation strength across a colony. Secondly,

we can use a simple mathematical formula for the diffusion of a molecule produced

by a point source to approximate the behaviour of signalling molecule produced by

the colony. This is a good approximation in the region outside the area of the colony,

which is our region of interest as our design does not allow overlapping colonies. We

also assume that bacterial neurons are instantly activated by their respective AHL,

which is reasonable as the timescales of the experiments are long compared to the

transcription and translation rate of the cells. The limitations of these assumptions

will be discussed later.

Under these assumptions the same feed forward method can be used to approxi-

mate the output of a BNN with a few considerations. First, the activation function

σ for each neuron will be one of the four available functions we can build into the

genetic reaction network of an E.coli cell, the threshold (TH), inverse threshold (IT),

bandpass (BP) and inverse bandpass (IB). The Threshold and inverse Threshold

closely resemble the sigmoid function that sees widespread use within deep learning

and the inclusion of the bandpass and inverse bandpass is supported by the fact that

many non monotonic activation functions found to perform well in neural networks

[126]. Secondly, as communication is done by diffusible molecules, the weight

4.3. Training bacterial neural networks using an evolutionary algorithm 77

between each pair of neurons is dependent on the distance between them, r, and the

time since activation of the first neuron, t (W(l)(r, t)).

To obtain an estimate of W(r, t) Mathematica [127] was used to solve the diffu-

sion equation for a point source of an AHL with diffusion coefficient 3×10−6 cm2

s

[128], over distances from 1-13.5mm and time 0-27 hours. In this chapter I assume

that it takes ten hours for a diffusible signal to propagate from one layer to the next

and hence for two bacterial neurons distance r apart we use the value W(r,10 hours)

to calculate their weight. The four activation functions were approximated as com-

binations of the sigmoid function, which was chosen as it resembles the response

of bacterial colonies to diffusible molecules. In the future these functions can be

found by fitting to characterisation data of the response of a colony to different

concentrations of molecule. The activation functions used were

0.0 0.2 0.4 0.6 0.8 1.0
[AHL] AU

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
Threshold

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
Inverse threshold

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Bandpass

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Inverse bandpass

Figure 4.2: Activation functions used for the bacterial neural networks

4.3. Training bacterial neural networks using an evolutionary algorithm 78

T H = S(A−5)

IT = 1−S(A−5)

BP = S(A−5)−S(A−15)

IB = S(A−15)−S(A)+1

where S is the sigmoid function S(x) = 1
1+e−x , T H is the threshold, IT the inverse

threshold, BP the bandpass, IB the inverse bandpass and A is the concentration of

AHL. These are shown in Figure 4.2.

4.3.3 Evolutionary algorithm

Here I demonstrate the evolutionary algorithm to find optimal spatial patterns of

bacterial colonies that implement the forward pass of a BNN such that a given target

function is approximated with minimal error. I show the use of the evolutionary

algorithm to design a BNN to learn the non-linear XNOR function, a classical

classification problem in machine learning that is not possible using a linear classifier.

I then use a finite difference model to show that the behaviour predicted by the neural

network model is recapitulated in a more realistic reaction diffusion system.

Evolutionary algorithms work by first initialising a random population then

evolving it through rounds of mutation, reproduction and selection steps. Just like a

biological population the mutation and reproduction steps introduce variation into

the population and the selection step drives the population to evolve in a certain

direction. The evolutionary algorithm works as follows and the process is shown in

Figure 4.3. Before the evolution can take place the user must supply some inputs to

the algorithm (Figure 4.3A). Firstly, a list of allowable activation functions, either

a subset or the whole suite of four activation functions can be available to be used

in the network. Secondly, an initial network topology, which specifies the initial

number of layers and number of neurons in each layer in the initial population. Third,

the maximum size of the area available is given, this is a rectangle whose size can be

specified and provides bounds which neurons are not allowed to move outside. For

4.3. Training bacterial neural networks using an evolutionary algorithm 79

Threshold ON

Threshold OFF

Input Output

Positive weights

Target function

I1

I2

Initial topology

Constraints

No bias nodes

Evolutionary algorithm

Spatial configuration of
colonies

0

0

1

1

I1

I2

Restricted to a 2D grid

Selection

WI,h1 Wh1,O

Reproduction

Mutation

Accuracy

Bandpass
Inverse Bandpass

Maximum width

Maximum length

A) B)

C)

D) Simulate bacterial neural network

Figure 4.3: The, in silico, pipeline for training and simulating a bacterial neural network. A)
An initial network topology, target function and constraints that arise from the
physical system we are using are passed to the algorithm. B) A two dimensional
spatial network is trained using an evolutionary algorithm. The mutation and
reproduction operations involve changing the position of neurons randomly or
swapping neurons between grids respectively. To select the best grids for the
next generation the spatial configurations are converted into a neural network
and tested against the target function. The grids with the highest lowest loss go
on to the next generation. The best network (C) can then be simulated to verify
it functions correctly (D).

this chapter the plate size was set to be 35mm by 35mm, the approximate size of a

well in a six well plate. Finally the target function which the BNNs will be trained to

approximate is passed in. The target function can be multi dimensional, where the

number of neurons in the input layer will be equal to the number of dimensions. The

number of output neurons can also vary, depending on the problem. Examples of

problems include binary classification in two dimensions in which the areas of the

input space should be classified as 0 or 1. This requires only a single output neuron.

Multi-class classification, where each class is represented with a different integer

and a distinct output neuron, will require as many output neurons as there are classes

in the dataset. In this work I have focussed on classification problems, but regression

could also be done on functions with continuous output.

The algorithm (Algorithm 9) first generates a random population of BNNs which

obey the constraints on plate size, number of layers and the allowable activation

functions. For each network the input and output layers are chosen to have threshold

activation functions and placed in random positions within the bounds. Then for the

hidden layers activation functions are chosen randomly from the allowable set of

4.3. Training bacterial neural networks using an evolutionary algorithm 80

Algorithm 9 Evolutionary training algorithm
1: input: target function, constraints, available activations, initial topology
2: N = 100 . number of evolutionary rounds
3: initial pop = 1000 . initial population size
4: population = generate random networks(initial topology, pop size)
5: for generation in 1...N do
6: select(population)
7: reproduce(population)
8: mutate(population)
9: return best network(population) . return network with highest fitness

functions and also randomly placed on the plate. For the results in this chapter the

initial population size was 1000. Each evolutionary round that follows is comprised

of a selection, mutation, and reproduction step (Figure 4.3B). For the selection step

the performance of each plate is evaluated by converting it into a neural network.

This is done using the neural network model of bacterial communication developed

above. The sum squared error loss with respect to the target function of the resulting

neural network is calculated. A network with low loss is said to have high fitness and

vice versa. Selection is applied to the population using stochastic universal sampling

in which members of the population go onto the next generation with probability

proportional to their relative fitness [129]. High fitness members can be copied

multiple times into the next generation and the fittest member of the population is

guaranteed to survive. Mutation is then carried out on the new population. The

probability that any given network will mutate is equal to 0.1 and if a network

does mutate there is a 0.2 probability that the position of any given neuron will be

perturbed, a 0.1 probability that any given hidden layer will gain a neuron of random

type and a probability of 0.1 that any given hidden layer will lose a random neuron.

The final step is reproduction, in which each plate has a 0.3 chance of reproducing.

If it does reproduce a second network is chosen at random to reproduce with. Two

children are created which have random combinations of the parent’s hidden neurons

and are added to the population. The reproduction rate of 0.3 was chosen to keep

the population approximately constant over the repeated rounds of evolution. The

rounds of selection, mutation and reproduction were repeated for 100 generations.

4.4. Bacterial neural networks can approximate a wide range of functions 81

The output of the algorithm is the network with the highest fitness or, equivalently,

lowest loss with respect to the target function. The output defines the positions and

types of bacterial neurons that form the network and these also satisfy the constraints

imposed by placing colonies on a two dimensional plate (Figure 4.3C). In lieu of

experimental verification we use a spatial finite difference model (see Section 2.1

for details) that simulates the system of communicating bacterial colonies on a two

dimensional area (Figure 4.3D).

Using this algorithm I first investigated the training of a simple neural network

with one hidden layer. The threshold, inverse threshold, bandpass and inverse

bandpass can be used in the colonies in the hidden layer, whereas the input and

output neurons always contain the threshold activation. Using the neural network

model and evolutionary training algorithm a BNN was trained to approximate the

non-linear XNOR function (Figure 4.3 A-C). The single hidden layer of the resulting

BNN consisted of a single threshold and inverse threshold colony. The threshold

colony was adjacent to, and therefore strongly strongly connected to, both inputs,

while the inverse threshold was adjacent to the output colony. The finite difference

simulation was run to verify the efficacy of the ANN model in approximating the

diffusion dynamics of BNNs and the evolutionary training algorithm in finding good

solutions. The plate was simulated and found to reproduce the XNOR function at

the digital extremes (Figure 4.3 D), showing that using the neural network model

and an evolutionary algorithm we have successfully designed a network of neurons

communicating with a diffusible molecule and the predicted behaviour has been

verified in the reaction diffusion system.

4.4 Bacterial neural networks can approximate a

wide range of functions
A key problem in the field of deep learning and in the potential application of

biocomputers to disease diagnosis is classification. Here I demonstrate the potential

of BNNs to perform a wide variety of classification tasks. The results are summarised

in Figure 4.4 where the network topology and predicted output of the simplified

4.5. Application to biosensing 82

neural network model after training via the evolutionary algorithm is shown for

four different target functions. Figure 4.4A is the predicted output of the network

in Figure 4.3, and shows that away from the digital extremes the predicted output

diverges from the target. Figure 4.4B shows that allowing the network to use an

additional hidden layer increases performance on the XNOR classification task.

Increasing network complexity has enabled more complex decision boundaries, the

shape and the sharpness of the decision boundaries have improved. Figure 4.4C

shows that the bandpass can increase the potential capabilities of the system, for

example by introducing the capability to learn a circle with a very simple network.

Figure 4.4D further demonstrates the utility of the bandpass, showing the potential to

learn a periodic function. To verify the efficacy of the bandpass and inverse bandpass

networks were trained on the target functions in Figure 4.4C and D with the bandpass

and inverse bandpass omitted from the set of available activation functions. Under

these conditions no good approximation to the target function could be found. This

shows how the more complex activation functions at least partially alleviate some

of the constraints of BNNs, such as the restriction to positive weights, allowing

functions to be learned which would otherwise not be possible.

4.5 Application to biosensing
IBD and IBS have many symptoms in common, but are caused by different un-

derlying mechanisms [130, 131]. This causes many patients to undergo expensive

and invasive endoscopies. A simple testing kit could save billions of dollars and

potentially allow IBD sufferers to monitor their gut health and predict when relapses

would occur. PH and inflammation markers are two key factors in the gut that could

be monitored [132] and biosensors for both are feasible [133, 134, 135]. Figure

4.4E shows the successful application of a BNN to the problem of diagnosing IBS

and IBD, where the classification into 3 disease states (healthy, IBS, IBD) is done

based off two biomarkers for health (pH and inflammation). These biosensors could

be used to analyse a gut sample and a biosensor for each is contained in the input

layer. To test the potential of BNNs to diagnose IBD, IBS and healthy gut states

4.5. Application to biosensing 83

IBS
IBD
Healthy

pH

In�ammation In�ammation

pH

I2

I1
I1

I2

I1

I2

I1

I2

I1

I2 I2

I1

+

+

+

+

A)

B)

C)

D)

Target function Network topology Predicted output

I1 I1

O
ut

pu
t

O
ut

pu
t

+

E)

Output ON
Output OFF

Output ON
Output OFF

Output ON
Output OFF

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.1 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure 4.4: Summary of neural network results. Left the target function, middle the given
network topology, right the predicted output of the spatial neural network. A)
The XNOR function with one hidden layer. B) XNOR function with two hidden
layers, the approximation is improved. C) The bandpass allows the learning of
a circle. D) learning a simple periodic function. E) A possible application to
diagnosis of IBS and IBD, where inputs from pH and inflammation biosensors
are used to classify into healthy, IBS or IBD states.

4.6. Discussion 84

artificial data was generated to represent the position of the three disease states on

a two dimensional plane with pH and inflammation axes. A BNN was trained on

the artificial data to perform the classification task. As shown, a relatively simple

BNN, with a single hidden layer, has decision boundaries that correctly classify the

three disease states. This shows that our BNN approach could be applied to medical

diagnosis, fulfilling an overall goal of the field of biocomputing.

4.6 Discussion
In this chapter I have demonstrated that implementing small neural networks in

two dimensional patterns of bacterial colonies has the potential to achieve analogue

computing within a synthetic biological system. Firstly, I developed a model which

simplifies the complex reaction diffusion system of communicating bacterial colonies

to the forward pass of a neural network. This bridges the gap between neural networks

and patterns of bacterial colonies and enables the fast calculation of a forward pass

through a BNN. Then, using this model, I developed an evolutionary algorithm

for the training of BNNs. The evolutionary training algorithm was demonstrated

on the training of a two-dimensional non-linear XNOR classification task, and the

predicted behaviour of the neural network was verified using a finite difference

simulation of the system. This demonstrates that modelling bacterial communication

networks as neural networks can enable the design of BNNs. Furthermore, I have

shown the ability of this method to successfully train BNNs on a range of non-linear

classification tasks, including a medically relevant diagnostic test to distinguish IBS

from IBD, a key medical problem.

Most work in synthetic biocomputing has tried to emulate the success of digital

computing within the field of electronics by implementing digital functions into

cells. Although this is an important avenue of work, it is equally as important that

we remain open to the other computational paradigms that might be better suited to

the computational substrates available in biology. This is the first work to investigate

the design of multilayer neural networks instantiated in patterns of bacterial colonies

and is an important step towards achieving distributed analogue computation in

4.6. Discussion 85

synthetic biology. Neural networks have been implemented in cells before [124].

However, this approach requires complex genetic engineering to build each new

network and control over the weights is restricted by the set of available promoters,

ultimately limiting its use for practical applications such as intelligent medical

diagnosis. The approach proposed here would require genetic engineering only in

the initial construction of the neurons for the input, hidden and output layers and

following this these neurons could be placed in different patterns using automated

pipetting robots to perform many different functions. Integrated into my approach is

the flexibility and robustness of neural networks, meaning that it should be possible

to learn many different functions and potentially use different organisms for the

neurons, such as mammalian cells.

The work in this chapter represents a good first step in the development of BNNs,

namely the development of the design methodology and initial demonstration of its

potential effectiveness. However, future work needs to be done before these designs

can be realised in the laboratory. The activation functions I used in both the neural

network model and the finite difference model were constructed from combinations

of the sigmoid function that resemble the shape of the activation functions that can

be built into bacteria. Future work could be done to gather characterisation data and

fit functional forms of these true activation functions which can be used in the design

of BNNs. Work could also be done to investigate the effectiveness of these functions

for use in BNNs and find targets for future genetic optimisation of these GRNs. It is

possible that some of the properties of the constructed functions such as leakiness

and linearity at small concentrations could present challenges for building effective

BNNs, however a wide variety of activation functions have been used and found to

be effective in ANNs [126], so the method is likely to be robust to differences. Using

realistic activation functions should be the first step in building a more complete

finite difference model of the system. This model should include other effects I

didn’t consider, mainly cell growth and nutrient consumption and could be used to

further verify that different networks behave as expected in a more realistic setting.

Additionally, a mathematical investigation could be done into the possible limitations

4.6. Discussion 86

of a diffusion based neural networks given that weights are constrained to be positive

and weights are no longer all independent from each other. An ANN lacking these

constraints is a proven universal function approximator if it has at least one hidden

layer [4, 5] and it would be interesting to see if an equivalent proof was possible for

BNNs. This would also inform us of any limitations imposed by these constraints

and, if required, possible solutions to these problems. Finally, the designs will need

to be built and tested in the lab to verify that our model of BNNs can be used to

design spatial bacterial patterns capable of analogue computing. In this chapter I

focussed on a set of non-linear classification tasks due to their relevance in medical

diagnostics, but this framework is general and could be used to solve many other

classical machine learning problems, such as regression

In summary, in this chapter I have made the first steps towards the implementa-

tion of neural networks using patterns of bacterial colonies. I have shown that this is

a potential area of interest for the future of synthetic biocomputing and I believe that

future work on this approach would be fruitful.

Chapter 5

Deep reinforcement learning for the

control of microbial co-cultures in

bioreactors

5.1 Introduction
In recent years, there has been growing interest in implementing increasingly com-

plex bioprocessing systems composed of multiple, interacting microbial strains. This

has many advantages over single culture systems, including enhanced modulariza-

tion and the reduction of the metabolic burden imposed on each strain. Despite

these advantages, the control of multi-species communities (co-cultures) within

bioreactors remains extremely challenging and this is a key reason why most indus-

trial processing still use single cultures. In this chapter, I apply recently developed

methods from artificial intelligence, namely reinforcement learning combined with

neural networks, to the control of multiple interacting species in a bioreactor. This

approach is model-free - the details of the interacting populations do not need to be

known - and is therefore widely applicable. I anticipate that artificial intelligence

has a fundamental role to play in optimizing and controlling processes in synthetic

biology as the complexity of the systems we can engineer increases. This work was

published in PLoS Computational Biology [102].

For my analysis, I use the chemostat model, which provides a standard descrip-

5.1. Introduction 88

tion of bioprocess conditions. This model is applicable to a wide range of other

systems where cell or microorganism growth is important, including wastewater

treatment [136] and the gut microbiome [137]. Such systems can be especially

difficult to control because they are often equipped with minimal online sensors

[138], limiting the effectiveness of classical control techniques that are hampered by

infrequent or delayed system measurements [100, 139].

Reinforcement learning is a branch of machine learning concerned with opti-

mising an agent’s behaviour within an environment. The agent learns an optimal

behaviour policy by observing environmental states and selecting from a set of ac-

tions that change the environment’s state (Figure 5.1A). The agent learns to maximise

an external reward that is dependent on the state of the environment. The training

of a reinforcement learning agent is often broken up into episodes. An episode is

defined as a temporal sequence of states and corresponding actions (generated by

the agent interacting with the environment) which progress until a terminal state

is reached. The total reward obtained during an episode is called the return. For

this study, I used a data-efficient variant of reinforcement learning called Neural

Fitted Q-learning [140, 105, 141] (see Section 2.2.1 for details). Much reinforcement

learning research has been done on video games [9] due to the availability of plentiful

training data. However, it is also seeing application to more practical problems in

the sciences, including the optimisation of chemical reactions [107] and in deriving

optimal treatment strategies for HIV [142] and sepsis [143]. A partially supervised

reinforcement learning algorithm has also been applied to a model of a fed-batch

bioreactor containing a yeast monoculture [144].

Here I develop a control scenario in which the growth of two microbial species

in a chemostat is regulated through the addition of nutrients C1 and C2 for which each

species is independently auxotrophic (Figure 5.1B, 5.1C). The influx of each nutrient

is controlled in a simple, on-off manner (bang-bang control). At each time point, the

agent decides, for each auxotrophic nutrient, whether to supply this nutrient to the

environment at the fixed inflow rate over the subsequent inter-sample interval. This

constitutes the set of possible actions. A constant amount of carbon source, C0, is

5.1. Introduction 89

Figure 5.1: Reinforcement learning for the control of two auxotrophic species in a chemo-
stat. (A) The basic reinforcement learning loop; the agent interacts with its
environment through actions and observes the state of the environment along
with a reward. The agent acts to maximise the total reward it receives (the
return). (B) System of two auxotrophs dependent on two different nutrients,
with competition over a common carbon source. (C) Diagram of a chemostat.
The state observed by the reinforcement learning agent is composed of the
populations of two strains of bacteria; the actions taken by the agent control the
concentration of auxotrophic nutrients flowing into the reactor. (D) Representa-
tive system trajectory. The agent’s actions, taken at discrete time-points (circles),
influence the state dynamics (black arrows), with the aim of fulfilling the reward
condition (moving to the centre of the green circle). The state is comprised
of the (continuously-defined) abundance of two microbial populations, N1 and
N2. The agent’s actions dictate the rate at which auxotrophic nutrients flow into
the reactor. At each time-step, the agent’s reward is dependent on the distance
between the current state from the target state.

5.2. A mathematical model of interacting bacterial populations in a chemostat 90

supplied to the co-culture. I define the environmental state as the population levels

of each population in the chemostat (assumed to be measured using fluorescence

techniques). The objective is either to maintain specific population levels or to

maximize product output. A corresponding reward is given, which depends on the

distance of the population levels from the target value or as a function of product

output. The populations evolve continuously, and the reward is likewise a continuous

function of the state. In contrast, the agent’s actions are discrete (bang-bang), and

are implemented in a sample-and-hold strategy over a set of discrete sampling times.

A visual representation of a two-population case is shown in Figure 5.1D.

Below, I illustrate that an agent can successfully learn to control the bioreactor

system in the customary episodic manner and is robust to differing initial conditions

and target set-points. Secondly, we compare a reinforcement learning approach to

proportional integral control, both working in a model free way on simulated data,

and show that the learning approach performs better in situations where sampling is

infrequent. We then show that the agent can learn a good policy in a feasible twenty

four hour experiment. Finally, I demonstrate that reinforcement learning can be

used to optimise productivity from direct observations of the microbial community.

Traditional proportional integral control could only be applied to such a case via

an accurate model of the system, or with additional measurement data from further

online sensors.

5.2 A mathematical model of interacting bacterial

populations in a chemostat
I develop a general model of m auxotrophs growing and competing in a chemostat.

An auxotroph is a bacterial strain that has is reliant on a specific nutrient, often

an amino acid, for growth. The model captures the dynamics of the abundance of

each species (m-vector N), the concentration of each auxotrophic nutrient (m-vector

C), and the concentration of the shared carbon source (scalar C0). A sketch of the

two-species case is shown in Figure 5.1B-C.

5.2. A mathematical model of interacting bacterial populations in a chemostat 91

Parameter Description Value Unit Source
C0,in Reservoir concentration of carbon source 1 g L−1 Experimentally controllable

q Flow rate 0.5 h−1 Experimentally controllable
γ0 Yield coefficient for common substrate 4.8×1011 cells g−1 [145]
γ1 Yield coefficient for arginine 5.2×1011 cells g−1 [146]
γ2 Yield coefficient for tryptophan 4.4×1011 cells g−1 [146]

µmax,1 Maximum growth rate 1 h−1 [147]
µmax,2 Maximum growth rate 1.1 h−1 [147]
Ks,0 Saturation constant for the carbon source 6.8×10−5 g L−1 [146]
Ks,1 Saturation constant for arginine 4.9×10−4 g L−1 [146]
Ks,2 Saturation constant for tryptophan 1.02−6.9×10−6 g L−1 [146]

Table 5.1: Parameters for the double auxotroph system. Parameter values used for simu-
lations of a system consisting of two auxotrophic populations of bacteria with
competition for nutrients. µmax values were chosen using values from the litera-
ture [147] as a guide.

The rate of change of the concentration of the shared carbon source is given by:

d
dt

C0(t) = q(C0,in−C0(t))−
m

∑
i=1

1
γ0,i

µ i(t)Ni(t) (5.1)

where γ0 is a vector of the bacterial yield coefficients for each species, C0,in is the

concentration of the carbon source flowing into the bioreactor, µ is the vector of the

growth rates for each species, and q is the flow rate. The parameters are found in

Table 5.1.

The concentration of each auxotrophic nutrient, Ci, is given by:

d
dt

Ci(t) = q(Ci,in(t)−Ci(t))−
1
γ i

µ i(t)Ni(t), (5.2)

where γ is a vector of bacterial yield for each auxotrophic species with respect to

their nutrient and Cin is a vector of the concentration of each nutrient flowing into

the reactor (which is the quantity controlled by the reinforcement learning agent).

Note that I assume all the auxotrophs are independent, i.e. each auxotrophic nutrient

is only used by one population.

The growth rate of each population is modelled using the Monod equation:

µ i = µmax,i
Ci

Ks,i +Ci

C0

Ks0,i +C0
, (5.3)

where µmax is a vector of the maximum growth rate for each species, Ks is a vector

5.3. Controlling interacting bacterial populations in a chemostat 92

of half-maximal auxotrophic nutrient concentrations and Ks0 is a vector of half-

maximal concentrations, C0, for the shared carbon source. Finally, the growth rate

for each population is determined as:

d
dt

Ni(t) = (µ i(t)−q)Ni(t). (5.4)

5.3 Controlling interacting bacterial populations in

a chemostat
Episodic Fitted Q-learning (Algorithm 2, Section 2.2.1) was applied to a model of

the system shown in Figure 5.1 using the parameters in Table 5.1. This model was

parametrised to simulate the growth of two distinct E. coli strains in a continuous

bioreactor, with glucose as the shared carbon source, C0, and arginine and tryptophan

as the auxotrophic nutrients, C1 and C2. The reward was selected to penalize deviation

from target populations of [N1,N2] = [20,30]× 109 cells L−1. Specifically, the

reward function was: r = 1
10(1−

1
2(
|N1−Ntarget

1 |
20×109 +

|N2−Ntarget
2 |

30×109). The scaling was of 1
10

was selected to ensure a maximum possible reward of 0.1, which helped prevent

network instability. (Negative rewards below -0.1 are possible; however due to

the system dynamics they rarely occurred and did not effect training performance).

The contribution of each population was scaled according to its target value so that

each contributed proportionally to the reward. This prevented the contribution to

the reward function from one strain becoming insignificant if its target value was

considerably smaller than the other. The absolute error was chosen because it is

continuous and differentiable (except when populations are at the target value) and

has a unique minimum, all properties that are favourable for reinforcement learning

in continuous state spaces. Absolute error was chosen over the squared error so

that the reward gradient didn’t diminish in the region near the target. The reward

function is based on target population levels because we have already assumed that

these are measurable through, for example, fluorescence measurement. Selection of

a target set-point in state space is also an approach widely used with more traditional

5.3. Controlling interacting bacterial populations in a chemostat 93

control techniques and so allows for direct comparison to these. The state variables

considered by the algorithm were the continuous populations of each species of

microbe. The agent acted as a bang-bang controller with respect to each input

nutrient, giving 2n possible actions, where n is the number of nutrients (in this work,

n = 2). The neural network that was used to estimate the value function consisted

of two hidden layers of 20 neurons, following the approach in previous work [105].

Each neuron in the hidden layers used the ReLU activation function. The input

layer had n neurons, one for each microbial strain; the linear output layer had 2n

neurons one for each available action. The populations levels were scaled by a

factor of 10−5 before being entered into the neural network; this generated values

between 0 and 1 (with units 106 cells L−1) and prevented network instability. The

odeint function of SciPy (version 1.3.1) [148] was used to numerically solve all

differential equations in this chapter. The code and examples are available on GitHub:

https://github.com/ucl-cssb/ROCC.

First an investigation is done to find the minimum inter-sampling period which

can be used in conjunction with reinforcement learning. This is important as it is

not guaranteed that reinforcement learning can be applied to this partially observed

problem without increasing the inter-sample period to a practically unsuitable time.

Then investigations are done to find suitable values for an important hyper parameter,

the number of Fitted Q-iterations done after each episode. This hyper parameter

needs to be chosen such that there is a balance between enough iterations to ensure

value convergence, but not so many that overfitting can occur. Finally, I demonstrate

the application of Fitted Q-learning to the model of interacting bacteria in a chemostat

and show that it is robust to different initial conditions and targets.

5.3.1 Minimum inter-sampling period

The theoretical convergence guarantees of reinforcement learning assume that it

is applied to a Markov decision process [103]. The two-strain chemostat system

we use here has five state variables: two auxotrophic nutrient concentrations, the

concentration of carbon source and the two microbial population levels. Only the

population levels are known to the agent, meaning the system is only partially

5.3. Controlling interacting bacterial populations in a chemostat 94

observed and is hence not a Markov decision process. There are methods to extend

reinforcement learning to partially observed Markov decision processes, including

incorporating time series information using a recurrent network [10], keeping track

of approximate belief states of the hidden variables [149] or using Monte-Carlo

methods [150]. To assess whether these computationally expensive methods would

be required, I determined the minimum sample-and-hold interval that allowed the

agent to accurately predict the reward resulting from a chosen action. (Intuitively,

this can be thought of as the minimum sample-and-hold interval in which an action

has time to have an observable effect on the the population levels.) To determine this

minimum interval, I first generated system trajectories of (st ,at ,rt) resulting from

random actions. The agent was trained on these sequences to predict the reward, rt ,

from the state action pairs (st ,at). This was done with the rationale that the ability to

correctly predict the instantaneous reward from a state-action pair is a requirement

for the ability to predict the value from a state-action pair. I repeated this process one

hundred times for each of the following sampling times: [1,2,3,4,5,10] minutes. The

results, shown in Figure 5.2A, indicate that at time steps lower than four minutes the

agents are unable to accurately predict the reward received from the state and action,

meaning reinforcement learning cannot be effective. However at four minutes and

above the reward prediction is accurate. I concluded that by using intervals of four

2 4 6 8 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(A) (B) (C)

20 40 60 80 1000 20 40 60 80 1000
0.05

0.06

0.07

0.08

0.09

0.10 0.10

0.08

0.06

0.04

0.02

0.00

-0.02

Er
ro
r

Re
w
ar
d

Re
w
ar
d

Actual

Predicted

Actual

Predicted

Figure 5.2: Identifying the minimum timestep above which the chemostat system behaves
effectively as a Markov decision process. (A) The error in reward prediction is
negligible for time steps above four minutes. Error bars represent one standard
deviation over one hundred repeats. The predicted vs actual reward for one
minute (B) and five minute (C) timesteps. Markov decision-based learning is
not possible for the short one-minute intervals, but performs well for five-minute
intervals.

5.3. Controlling interacting bacterial populations in a chemostat 95

minutes or longer, the sophisticated non-Markovian methods mentioned above would

not be required for this application. Figure 5.2 B and C show the reward prediction

for both one- and five-minute time steps, showing that the agent performs well for

five minutes intervals and poorly for one minute intervals. For the remaining results

in this section an inter-sampling period of five minutes is used and we assume that

this is short enough that it would not present a practical problem for implementation.

5.3.2 Number of Fitted Q-iterations to avoid over fitting

To determine how many Fitted Q-iterations to implement, I generated sequences of

(st ,at ,rt) of varying lengths by interacting with the chemostat system using randomly

chosen actions. Fitted Q-agents were again trained to predict the instantaneous

reward rt from the state-action pair (st ,at). I determined the training and testing

error for each Fitted Q-iteration, with a maximum of 40 iterations. Figure 5.3

shows the results of repeating this process 100 times for each sequence length. The

data reveal clear overfitting for the datasets shorter than 200 time steps long and a

reduction in testing error as the sequence length increases (i.e. with more training

data). For each sequence length, the training process with 4 Fitted Q-iterations

gave the smallest testing error (except for 100 training timesteps, where 5 iterations

performed marginally better). With a training set of 200 time steps, no significant

overfitting occurred.

5.3.3 Number of Fitted Q-iterations for value convergence

Another consideration is how many Fitted Q-iterations are required for the values to

converge via bootstrapping. For this analysis, I generated 100 sequences of (st ,at ,rt),

each one thousand time steps long, in the same manner as the previous section. For

each sequence, the actual values were calculated and Fitted Q-iteration was used to

obtain predicted values. After each Fitted Q-iteration, the error between the predicted

and actual values was recorded. As shown in Figure 5.4, the values converge after

about ten iterations. Using this and the information from the previous section, the

number of Fitted Q-iterations was chosen depending on the length of the agent’s

memory to both prevent overfitting and to allow convergence via bootstrapping.

5.3. Controlling interacting bacterial populations in a chemostat 96

Number of �tted Q-iterations

Er
ro

r

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 400 5 10 15 20 25 30 35 400 5 10 15 20 25 30 35 400 5 10 15 20 25 30 35 40

0.010

0.008

0.006

0.004

0.002

0.000

0.008

0.006

0.004

0.002

0.000

0.010

0.008

0.006

0.004

0.002

0.000

0.010

0.008

0.006

0.004

0.002

0.000

0.010

0.008

0.006

0.004

0.002

0.000

0.012 0.010

0.008

0.006

0.004

0.002

0.000

0.010

0.008

0.006

0.004

0.002

0.000

0.008

0.006

0.004

0.002

0.000

5 Training Timesteps 10 Training Timesteps 20 Training Timesteps 30 Training Timesteps

40 Training Timesteps 50 Training Timesteps 100 Training Timesteps 200 Training Timesteps

Figure 5.3: Overfitting of Fitted Q-iteration for different dataset sizes. The training (blue)
and testing (orange) accuracy of a Fitted Q-agent to predict rewards from states
and actions was tested after every Fitted Q-iteration. Overfitting is seen for
number of transitions less than 200. Error bars represent one standard deviation.

Er
ro

r

0

1

2

3

4

5

Fitted Q-iteration
0 10 20 30 40 50

Figure 5.4: Convergence of Fitted Q-iteration. The scaled error between actual and predicted
values as Fitted Q-iterations are completed

For all Episodic Q-learning the number of Fitted Q-iterations was set to 10 as the

agent’s memory always contains at least one episode of 288 transitions. For online

Q-learning the number of Fitted Q-iterations was set to 4 if there were less than 100

transitions in the agent’s memory, 5 if there were 100-199 transitions and 10 if there

were 200 or more transitions.

5.3. Controlling interacting bacterial populations in a chemostat 97

5.3.4 Reinforcement learning can be used to control the

bioreactor system

The agent was trained on thirty sequential episodes, this provided enough data

for the agent to learn while not being prohibitive in terms of computational time.

Each episode was twenty four hours long with sampling and subsequent action

choice every five minutes. The initial system variables of the chemostat for each

episode were [N1,N2] = [20,30]× 109 cells L−1 and [C0,C1,C2] = [1,0,0] g L−1.

The explore rate was initially set to ε = 1 and decayed as ε = 1− log10(aE) where

E is the episode number, starting at 0, and a = 0.3 is a constant that dictates the rate

of decay. A minimum explore rate of ε = 0 was set and was reached by the end of

training. Figure 5.5A shows the training performance of twenty replicate agents,

each trained over thirty episodes. The twenty agents converged to a mean final return

of 27.4 with a standard deviation of 0.33. The theoretical maximum return is 28.8; all

twenty agents were thus able to learn near optimal policies despite being restricted

to bang-bang control. The population curve in Fig 5.5B shows the system behaviour

when under control of a representative agent trained in one of the replicates (for all

twenty replicates see Figure A.1). The population levels track the targets, with some

jitter as expected with a bang-bang controller. Fig 5.5C shows the value function

learned by this representative agent at the end of training, indicating its prediction of

the total return from each point in state space. As expected, the value peaks at the

target point. The corresponding state-action plot, Fig 5.5D, shows that the agent has

adopted a simple, intuitive feedback law: add the specific nutrient needed by a strain

when its population level is below the target and refrain from adding the nutrient if

it is above the target. From these results, we conclude that reinforcement learning

can be successfully applied to the chemostat system with a practical inter-sampling

period of five minutes, as predicted .

5.3. Controlling interacting bacterial populations in a chemostat 98

Figure 5.5: Reinforcement learning applied to the bioreactor system. (A) Performance of
the agent improves and the explore rate decreases during training. The average
of the return over twenty training replicates is plotted; error bars represent one
standard deviation. (B) System behaviour under control of a trained agent for a
twenty four hour period. Populations are maintained near target values (green
lines). (C) Heatmap of the learned state value function; values are maximal at
the target. (D) A learned state action plot, showing the agent’s learned action
(coloured regions) over the state space.

5.3.5 Reinforcement learning is robust to different initial

conditions and targets

To verify that the algorithm is robust to different initial conditions and differ-

ent target populations I began by choosing a range of initial population values:

[5,10,40,50]×109 cells L−1 and two different targets: [20,30]×109 cells L−1 and

[30,20]× 109 cells L−1. For every combination of initial populations and target,

a Fitted Q-agent was trained in the same manner as in the previous section. This

was repeated three times. One of the three population curves from each experi-

ment is shown in Figure 5.6, the corresponding actions for the first 600 minutes

of the simulation are shown in Figure 5.7 and the average return across each of

the three repeats is shown in Figure 5.8. On 2 of the 96 total repeats the agent

5.3. Controlling interacting bacterial populations in a chemostat 99

failed to maintain the populations at the target levels. This happened with the target:

[30,20]×109 cells L−1 with initial conditions [N1,N2] = [5,5]×109 cells L−1 and

[N1,N2] = [5,10]×109 cells L−1. Intuitively these represent two of the most chal-

lenging combinations, where the target has the slower growing strain (N1) above the

faster growing strain (N2) and in which both populations are at low initial values.

5.3. Controlling interacting bacterial populations in a chemostat 100

Po
pu

la
tio

n
(1

09 c
el

ls
L-1

)

Time (minutes)

Figure 5.6: Population curves for different initial conditions and targets. Populations of one
of the three replicates for each of the different initial conditions and targets.

5.3. Controlling interacting bacterial populations in a chemostat 101

Time (minutes)

Ac
tio

n

Figure 5.7: Actions for different initial conditions and targets. The actions taken by the
agent for the first 600 minutes of one of the three replicates for each of the
different initial conditions and targets. The top graph of each panel shows the
agent’s actions with respect to the addition of the nutrient that N1 is dependent
on, the bottom graph shows the same for N2.

5.3. Controlling interacting bacterial populations in a chemostat 102

Av
er

ag
e

re
tu

rn

Episode

Figure 5.8: Average returns for different initial conditions and targets. Average returns of
the three replicates for each of the different initial conditions and targets. Error
bars represent one standard deviation.

5.4. Comparison of reinforcement learning with proportional integral control 103

5.4 Comparison of reinforcement learning with

proportional integral control
A potential advantage of the reinforcement learning method developed in this chapter

is the improved performance on systems that are hard to measure or interact with. In

all the results in this chapter the Fitted Q-agent is restricted to bang-bang control.

This means that for each controlled input only the implementation of discrete on and

off states would be required, significantly simplifying the interaction with the system.

In this section I also investigate how the Fitted Q-agent handles systems that are hard

to measure. This was done by comparing the performance of the agent against the

industry standard technique, proportional integral (PI) control (see Section 2.3 for

details) at different inter-sampling periods.

5.4.1 Proportional integral controller tuning

For the comparison between reinforcement learning and PI control, I tested a range

of sample-and-hold intervals ([5,10,20,30,40,50,60] mins). For each choice of

sampling interval, I generated thirty, twenty-four hour long episodes, each starting

with initial system variables [N1,N2] = [20,30]× 109 cells L−1 and [C0,C1,C2] =

[1,0,0] g L−1 and selecting actions randomly from [0,0.1] g L−1. These thirty

episodes were used as training data for the Fitted Q-agent. From each dataset, an

input-output model was constructed using the plant identification function in the PID

tuner app of MATLAB’s Simulink toolbox [115], which allows the identification

of an input-output model for any input-output dataset. Here, the randomly chosen

actions were used as input and the resulting populations (scaled by a factor of 10−10)

were taken as output. The model was a state space model, of order chosen by

the system identification app to best fit the data. The Akaike’s Final Prediction

Error (FPE) of the model fits was of the order 10−2 for the 5 min sample-and-hold

intervals, rising to a maximum of almost 1 for 60 min intervals. An independent

input-output model was derived for each microbial population. These were used

to tune two independent PI controllers, one controlling each population. I used

independent controllers because the PI tuner app is only compatible with single

5.4. Comparison of reinforcement learning with proportional integral control 104

(A)

(B)

(C)

(D)

(E)

(G)
(F)

(H)

Figure 5.9: The Simulink diagram of the system and PI controllers. (A,B) the setpoints or
target population levels, from which the error is calculated (C,D) and used by
the PI controllers (E,F) to adjust nutrient levels. The system of ODEs (G) is
solved by a continuous time integrator (H).

input, single output systems. I considered a range of tuning objectives to assess the

merits of tuning to minimise settling time, rise time or overshoot percentage. I found

that minimising rise time led to high overshoot errors, while minimising overshoot

percentage also led to high errors because the controller would be slow to reach

the target. Tuning the controller to minimise settling time worked best for all cases

tested and can be seen as a compromise between speed of response and robustness.

Hence, for all results presented, the PI controllers were tuned to minimise settling

time. The Simulink diagram of the system is shown in Figure 5.9.

5.4.2 Reinforcement learning outperforms proportional

integral control for long inter-sampling periods

As a comparison to a standard control approach, the reinforcement learning con-

troller was compared to a traditional PI controller. The controllers differ in that

the proportional integral controller implements feedback over a continuous action

space, whereas the reinforcement learning controller uses bang-bang control. For

both controllers thirty episodes of data were generated, each twenty-four hours

5.4. Comparison of reinforcement learning with proportional integral control 105

long, for a range of sampling-and-hold intervals: ts = [5,10,20,30,40,50,60] mins

by starting with initial system variables [N1,N2] = [20,30]× 109 cells L−1 and

[C0,C1,C2] = [1,0,0] g L−1 and sampling random input concentrations C1, C2 from

[0,0.1]gL−1. For each choice of sampling frequency, the reinforcement learning

agent was trained using Fitted Q-iteration (Section 2.2.1, Algorithm 1) on the dataset

of thirty randomly generated episodes, while the proportional integral controller was

tuned on an input-output model of the system derived from the same dataset. The

performance of the two controllers is illustrated in Figure 5.10, which shows how

the performance depends on the choice of sampling frequency. For inter-sampling

intervals longer than five minutes, the reinforcement learning controller outperforms

the proportional integral controller and the difference in performance increases as the

inter-sampling interval increases. I conclude that reinforcement learning can produce

comparable and even better performance, with the potential added advantage of a

simpler implementation (the proportional integral controller employs continuous

actions, whereas the reinforcement learning controller uses only bang-bang control).

Figure 5.10: Comparison of reinforcement learning and proportional integral controllers.
(A) The scaled average sum square error between the system state and the
target. For long inter-sample periods, the reinforcement learning controller
outperforms the proportional integral controller. The sum square error was
calculated from population values that were scaled by a factor of 10−9. (B-C)
Population time-courses under the reinforcement learning and proportional
integral controllers respectively, with a five minute inter-sampling time. (D-E)
Population time-courses under the reinforcement learning and proportional
integral controllers respectively, with a sixty minute inter-sampling time. Here
the proportional integral controller allows the populations to stray further from
their target values.

5.5. A good policy can be learned online using parallel bioreactors 106

Moreover, for microbial chemostat systems that are difficult or expensive to sample

at high frequency, reinforcement learning could be the preferred option.

5.5 A good policy can be learned online using

parallel bioreactors
A potential barrier to the use of reinforcement learning in real world applications is

the amount of data required. Experimental systems do exist that would allow one to

gather the necessary data to train an agent in the manner demonstrated above [151].

However, I aim to lower the barrier of entry so that our method can be implemented in

low cost bioreactors. For example, the development of a low cost turbidostat capable

of running eight cell culture experiments in parallel, demonstrated on time periods up

to 40 hours [152] presents a realistic scenario for a cell biology lab. I next show that

Online Fitted Q-learning, a variant of Fitted Q-learning adapted to run in an online

manner (Section 2.2.1, Algorithm 3), can learn to control the chemostat system using

an amount of data realistically obtainable in a single experiment. I trained an agent

online on five chemostat models running in parallel. Each modelled the system

described in Figure 5.1B and was run for the equivalent of twenty-four hours of real

time. The agent took an action every five minutes, making an independent decision

for each of the five chemostats from a single policy learned from experience gathered

from all models. The reward was observed and the value function updated by the

agent every ten time steps, using all experience gathered up to that time (Figure

5.11A). As in the previous sections, the initial microbial populations were set to

the target value of [N1,N2] = [20,30]×109 cells L−1 and the initial concentrations

of the nutrients were [C0,C1,C2] = [1,0,0] g L−1. Figure 5.11B shows the online

reward the agent received from the five chemostats. The initial reward was high,

due to the initial populations being set to the target values. As the agent explored,

the reward decreased and the standard deviation between the parallel chemostats

increased because the agent took independent exploratory actions in each chemostat

and drove them into different regions of state space. As time progressed, the reward

from all five chemostats increased and the standard deviation decreased because the

5.6. The yield of a community-based product can be directly optimised 107

Figure 5.11: Learning a policy in twenty four hours. (A) A reinforcement learning agent
was trained online on models of five parallel chemostats for twenty four hours.
(B) The average reward received from the environments. By the end of the
simulation all five chemostats were moved to the target population levels with
very little standard deviation in reward. (C) The population curve from one of
the chemostats. During the exploration phase the population levels vary and
random actions are taken, as the explore rate decreases they move to the target
values.

agent learned and moved all populations closer to the target. A pair of representative

population time-courses is shown in Figure 5.11C (all five are shown in Appendix

A.2). From these results, I conclude that Online Fitted Q-learning can be used to

learn a policy in a data-efficient, online manner.

5.6 The yield of a community-based product can be

directly optimised
Another advantage of reinforcement learning is the flexibility to optimise different

reward functions, while still engaging in model free control with no knowledge

of the underlying system dynamics. To demonstrate the ability of reinforcement

learning to directly optimise the output of a community-based bioprocess, the system

in Figure 5.12A was modelled. Here, each microbial strain produces an intermediate

product; N1 produces A and N2 produces B, each at a rate of 1 molecule per cell per

5.6. The yield of a community-based product can be directly optimised 108

hour. Factors A and B react to a product P, via the reaction 2A+B→ P, which is

presumed rapid. Consequently, the optimal state of the system has population ratio

N1 : N2 = 2 : 1, with the populations at the maximum levels that the chemostat can

support, which in our model means that all the carbon source, C0, is being consumed.

In this case, I set the agent’s reward to be proportional to the instantaneous production

rate of the bioreactor. I again take the observed state and the available actions to be the

population levels and the bang-bang auxotrophic nutrient inflow rates, respectively. I

set the initial populations to [N1,N2] = [20,30]×109 cells L−1 and initial nutrient

concentrations to [C0,C1,C2] = [1,0,0] g L−1 as before. The initial levels of A, B

and P were all 0. Ten replicate agents were trained using Episodic Fitted Q-learning

(Section 2.2.1, Algorithm 2). The sample-and-hold interval was increased to ten

minutes, which improved learning performance by giving sufficient time for the

agents actions to effect production rate. Performance in terms of the return is

shown in Figure 5.12B. The average ratio of the population levels in steady state

(the last 440 minutes of the simulation), over all agents, was 1.99 (with s.d. 0.08),

showing convergence to near optimal populations in all replicates. A representative

population time-course is shown in Figure 5.12C, for all time-courses see Appendix

A.3. Likewise, the average final concentration of the carbon source was 0.11% (s.d.

0.015%) of the source concentration, showing that in all cases the total population

was close to the carrying capacity of the chemostat. As shown in Figure 5.12D, the

replicates showed very little deviation in the final product output. However, in the

initial phase of moving and stabilising the populations to the optimal levels, there

is significant deviation. This suggests that most of the deviation in return shown

in Figure 5.12B is due to this initial stabilising phase and not to the final phase the

agents reached. From this analysis, I conclude that the reinforcement learning agent

can learn to move the system to, – and keep it at – the near optimal state for product

formation in a model free way.

5.7. Discussion 109

Figure 5.12: Using reinforcement learning to optimise product output. (A) Each microbial
population produces an intermediate; these react to produce the desired product.
(B) Training performance of ten reinforcement learning agents trained to
optimise product output. (C) The resulting population curves of the system
under control of a representative agent. The populations reach and then are
maintained at the optimal level for product production. (D) The levels of
carbon and product inside the chemostat. After the initial phase all carbon is
being consumed. The levels of product peak as all initial carbon is used, then
reach a level supported by the carbon supply to the reactor.

5.7 Discussion
I have applied deep reinforcement learning, specifically Neural Fitted Q-learning, to

the control of a model of a microbial co-culture, thus demonstrating its efficacy as a

model-free control method that has the potential to complement existing techniques. I

have shown that reinforcement learning can perform better than the industry standard,

PI control, when faced with long sample-and-hold intervals. In addition, I showed

that the data efficiency of Neural Fitted Q-learning can be used to learn a control

policy in a practically feasible, twenty-four hour experiment. Reinforcement learning

is most often used in environments where data is cheap and effectively infinitely

available. Importantly, this result shows that it can also be realistically used to control

5.7. Discussion 110

microbial co-cultures. Finally it is shown that the output of a bacterial community

can be optimised in a model free way using only knowledge of microbial population

levels and the rate of product output, showing that industrial bioprocess optimisation

is a natural application of this technique.

In this work I have applied our method to a chemostat model. It could easily be

applied in a range of other culture environments. Over the past several years, a num-

ber of low-cost bioreactors have been developed that can operate as both turbidostats

or as chemostats [153, 154, 151, 152]. One such system has 78 chambers running in

parallel; easily producing enough data to train the RL agent [151]. Another system

incorporates online measurement of multiple fluorescence channels, facilitating state

measurements at faster intervals than human sampling would allow [154]. Similar

devices have been made at a smaller scale, using microfluidics capable of running

batch, chemostat and turbidostat cell cultures [155, 156]. These have been applied

to high-throughput gene analysis [155, 156], elucidating the relationship between

population density and antibiotic effectiveness [157]. The development of a mor-

bidostat facilitated the investigation into the evolution of resistance to antibiotics

[158]. As these devices become more widely available, intelligent control methods

could be used to explore these important topics while enabling additional layers of

complexity, such as multiple competing species or environmental variation.

Here I adopted auxotrophy as our mechanism for control. The utility of this

approach has been highlighted by previous studies of microbial communities [159,

160, 161, 63]. However, this is an unlikely approach to be used in industry due

to the high cost of amino acids. Other methods of controlling strain growth or

competitiveness could also be used as long as they can be externally controlled

by the agent e.g. independent carbon sources [162], induced lysis [163] or growth

arrest [164]. More traditional control methods such as the control of feedstocks,

temperature, stirring rate or flow rate could also be used to apply reinforcement

learning to an industrial application.

It should be noted that any attempt to control microbial populations may give

rise to mutations. Because reinforcement learning approaches involve continual

5.7. Discussion 111

updates of the agent’s policy, our method has the capacity to adapt to evolutionary

changes in the growth dynamics. Understanding how to control populations of

evolving species is crucial for preventing the development of antibiotic resistance

[165] and the design of chemotherapy regimens [166]. Dynamic programming, the

model-based analogue of reinforcement learning, has been used to solve the optimal

control problem in both of these scenarios.

Overall, I have demonstrated the potential for control of multi-species com-

munities using deep reinforcement learning. As synthetic biology and industrial

biotechnology continue to adopt more complex processes for the generation of

products from fine chemicals to biofuels, engineering of communities will become

increasingly important. This work suggests that leveraging new developments in arti-

ficial intelligence may be highly suited to the control of these valuable and complex

systems.

Chapter 6

Deep reinforcement learning for

optimal experimental design in

synthetic biology

6.1 Introduction
Synthetic biology has the aim of applying engineering principles to build biolog-

ical systems from the ground up. A key part is the model based prediction and

design of genetic circuits and other cellular systems. Biological systems are often

complex, highly non-linear and noisy which makes obtaining accurate models chal-

lenging. Furthermore, characterisation experiments can be resource intensive and

time consuming, making the optimisation of experimental effort important. The

field of optimal experimental design (OED) uses mathematical techniques to identify

experiments that will provide maximally useful characterisation data given a finite

experimental capacity. This can be used to reduce the experimental effort required

for accurate parameter inference when applied to complex biological systems. The

difficulty with OED in biology is well known and has been tackled using Bayesian

methods [167, 168] and methods based on the optimisation of the Fisher information

[169, 170]. I aim to use reinforcement learning, a branch of machine learning, to

develop a novel OED method for model parametrisation of biological systems. Deep

reinforcement learning has been successfully applied to a similar class of problems

6.1. Introduction 113

within machine learning, called active learning. During active learning a learning

agent can sequentially choose training examples to maximise its efficacy with the aim

of data efficiency [171, 172]. The success of reinforcement learning to be applied

to active learning motivates my application of it to OED and I develop a method

complimentary to existing OED approaches. Previous work has shown the potential

utility of the Fisher information even on non-linear systems [169, 170] and I build on

this to use deep reinforcement learning to optimise the expected Fisher information

given a model of a system. Like Bayesian methods we can learn on distributions

over parameters. However, I exploit the ability of reinforcement learning to learn

from samples to negate the need to approximate complex probability distributions.

In place of this approximation is a, potentially lengthy, training process. However the

training takes place prior to the experiment and results in an experimental controller

that can be rapidly queried for experimental inputs. Here I focus on applications

within synthetic biology, but the method is general and can be applied to any OED

problem.

In this chapter I focus on time course experiments. Experiments are assumed to

be constrained in both the total time and the number of experimental inputs that can

be applied. Experiments are divided into a number of time intervals of equal duration,

which I refer to as sample and hold intervals. At the beginning of each sample and

hold interval an experimental measurement is taken and an experimental input is

chosen that is applied to the system for the duration of the interval. An experimental

design consists of a sequence of experimental inputs of length equal to the number of

sample and hold intervals that constitute the experiment. I develop a control scenario

in which the experimental inputs are controlled online by a reinforcement learning

agent. For each sample and hold interval, the agent decides which input to apply

and this constitutes the action space. I assume that potentially noisy measurements

of a subset of the system variables can be taken and the agent makes decisions

based on these measurements. The objective is to maximise the information gained

with respect to obtaining accurate parameter estimates of a dynamical model of the

system. A corresponding reward is given, such that the agent aims to maximise the

6.2. Formulation of the optimal experimental design problem 114

determinant of the Fisher information matrix over an experiment.

6.2 Formulation of the optimal experimental design

problem
Optimal experiments will be designed on systems which can be described by a set of

non-linear differential equations:

dX
dt

= F(X,θ ,u), (6.1)

where X is a vector of system variables, θ is a vector of parameters and u is a vector

of experimental inputs. It is assumed that system measurements Y = g(X)+ε can be

taken, where g is a measurement function and ε is Gaussian noise. In general only a

subset of the system variables may been observable. We intend to find an experiment

that allows us to subsequently obtain an accurate estimate of the unknown system

parameters, θ . We define our objective as the determinant of the Fisher Information

matrix, I, this is called D-optimal design. Although the theory of D-optimal design

only holds exactly for linear systems with Gaussian errors, previous work has shown

that it can be successfully applied to non-linear systems [169, 170] and we follow

their approach to obtain I from the system equations (Equation 6.1). First we obtain

time derivatives for the sensitivity of each of the outputs with respect to each of the

parameters:

d
dt

∂X
∂θ j

=
∂F
∂θ j

+
∂F
∂X

∂X
∂θ j

. (6.2)

The scale of parameters can vary, which can lead to poor conditioning of the Fisher

information matrix [31], to remedy this, the sensitivities are scaled by the parameter

values, which is equivalent to using logarithmic sensitivities. The scaled sensitivities

are

X̄θ j =
∂X

∂ log(θ j)
= θ j

∂X
∂θ j

.

Writing Equation 6.2 in terms of the scaled sensitivities results in

6.3. Fitted Q-learning for optimal experimental design 115

dX̄θ j

dt
= θ j

∂F
∂θ j

+
∂F
∂X

X̄θ j .

We assume that measurement error, ε , is normally distributed with variance equal

to 5% of the measured quantity: σ2 = 0.05X ε = N (X,σ2) and we assume no

covariance between measurements. The time derivative of the scaled FIM can be

written as [33]

d
dt

I jk(u,θ , t) = X̄θ jΣ
−1(t)X̄θk ,

where

Σ(t) =


σ2

1 X1
. . .

σ2
n Xn


is a diagonal matrix. The Fisher information can then be integrated over a whole

experiment, assuming that I(t = 0) = 0

I jk(u,θ ,0, t f) =
∫ t f

0
X̄θ jΣ

−1(t)X̄θkdt.

Because the Fisher information can vary over many orders of magnitude the overall

optimality score (D optimality) is taken to be

ΘD(u,θ ,0, t f) = log(|I|). (6.3)

The Python API of the CasADi library was used to solve all differential equations in

this chapter [118].

6.3 Fitted Q-learning for optimal experimental

design
I imagine a scenario in which a reinforcement learning agent is trained on a dynamical

model of a system of interest for a number of episodes. Each episode constitutes

6.3. Fitted Q-learning for optimal experimental design 116

a single experiment and is constrained in terms of the total experimental time and

partitioned into a number of equal time intervals. For each interval an experimental

input can be applied. Using the model the reinforcement learning agent can train

over repeated episodes with the goal of maximising the logarithm of the determinant

of the FIM over an experiment (Equation 6.3). After training, the resulting agent can

be used as an experimental controller, referred to as the RL controller, and applied to

the real system to dynamically control an experiment. D-optimal design is equivalent

to minimising the confidence ellipsoid of the resulting parameter estimates. Figure

6.1A shows the difference between a rationally designed experiment with low D-

optimality and a large confidence ellipsoid for the parameters (left) and an optimal

experiment with a high D-optimality score (right). The optimal experiment will

reduce the uncertainty of the parameters with no additional experimental effort.

To formulate the OED problem in the reinforcement learning framework we

need to consider the agent’s environment, the states observed and actions taken

by the agent, as well as the reward function that guides the agent towards optimal

behaviour. The environment the agent interacts with is a model of an experimental

system governed by a set of differential equations (Equation 6.1). The state that the

agent observes is composed of the current system observables, Y(t), an estimate

of the current unique elements of the FIM, I(t), and the current sample and hold

interval, t. The action taken by the agent at each time step is the experimental input

that will be applied over the next sample and hold interval u(t). The reward given to

the agent is the change in the logarithm of the determinant of the Fisher information

matrix over the last sample and hold interval ∆ log(|I|). This means that over an

experiment, the return is equal to the log of the determinant of the Fisher information

matrix and that the agent’s optimisation objective is equivalent to D-optimal design.

This overall picture is summarised in Figure 6.1B.

First I apply the Fitted Q-learning algorithm developed in Section 2.2.1 to OED

on two systems to validate the approach. These systems constitute a simple model

described by Monod growth dynamics and a biologically realistic system of gene

transcription. I then propose and develop two modifications to the algorithm. First,

6.3. Fitted Q-learning for optimal experimental design 117

State:
Reward:

Action:

Agent: OED controller

Environment:

Low High

Optimal experimentRational design

Figure 6.1: Reinforcement learning for optimal experimental design. A) An optimal design
that maximises the determinant of the Fisher information matrix will minimise
the confidence ellipsoid of the resulting parameter estimates. B) Optimal experi-
mental design formulated as a reinforcement learning problem.

the use of a recurrent neural network to make decisions using the entire experimental

trajectory and, secondly, the extension into continuous action spaces. Applying

these two modifications results in the Recurrent T3D algorithm. I then show the

effectiveness of this algorithm on the design of experiments for the growth of a

bacterial culture inside a chemostat, a system of interest for the synthetic biology

community and for industrial bioprocessing applications.

6.3.1 Reinforcement learning for optimal experimental design

on a simple Monod growth system

To test the potential of using reinforcement learning for OED I first apply the Fitted

Q-learning algorithm to a simple non-linear system with Monod dynamics. I also

compare the performance of the RL controller with a one step ahead optimiser

(OSAO) (see Section 2.4 for details). The OSAO uses the model of the system to

predict the experimental input which would greedily maximise the determinant of

the FIM over the next sample and hold interval.

In this system we have one state variable, x, and no measurement noise so that

output Y = x. There is one control variable u that is controlled by the OSAO or the

6.3. Fitted Q-learning for optimal experimental design 118

RL controller. The dynamics of the system are given by a simple Monod relationship

between dx
dt and u:

dx
dt

=
p1u

p2 +u
x,

where p1 and p2 are the parameters to be estimated.

In the following p1 = p2 = 1, both the RL and OSAO implementations start

from initial condition x0 = 1, u0 = 0.5 and are able to choose u between 0≤ u≤ 0.1.

The Fitted-Q agent works in a discrete action space and therefore has ten equally

spaced discrete actions to choose from. The choice of discretisation scheme and the

upper and lower bounds must be made for each system and a bad choice could have a

negative effect on performance. In a practical application the upper and lower bounds

are likely to be dependent on the experimental setup and sometimes the discretisation

scheme will be also. If the experimental setup allows for continuous inputs then

it must be discretised according to the experimenters knowledge. In this case I

equally space the possible input choices linearly, which I suggest is a good default

choice, but other methods such as equally spaced inputs on the log scale will likely

be appropriate for other systems and I make use of this in later sections. In Figure

6.2A we can see that the experimental input profiles chosen by the RL controller

and OSAO are similar, choosing between the highest u available and a value about

half way between the maximum and minimum u value. The RL controller picks

two u values either side of the optimum found by the OSAO. This is likely due

to the discretisation of its action space which means that it can’t precisely choose

the optimum value. Figure 6.2B shows the system trajectories of both controllers,

as expected these are very similar. Figure 6.2C shows the performance of the RL

controller as it was trained for 500 episodes, compared to the performance of the

trajectory found by the OSAO. This shows that their performance is extremely

similar, at the end of training the RL controller is performing slightly better than the

OSAO.

To understand these results and further verify the efficacy of the RL controller

I derived an analytical expression for the determinant of the FIM resulting from

6.3. Fitted Q-learning for optimal experimental design 119

(A) (B) (C)

0 1 2 3 4 5 6
Timestep

0.00

0.02

0.10

0.08

0.06

0.04

0 1 2 3 4 5 6
Timestep

u
(a

.u
.)

1.1

1.2

1.6

1.5

1.4

1.3

x
(a

.u
.)

1.0
0 100 200 300 400 500

Episode

6

8

16

14
12

10

Re
tu

rn

4
2

0

Figure 6.2: Reinforcement learning for optimal experimental design on a simple non-linear
system. (A) The input profile of the two agents, (B) The system trajectory (C)
The training performance of the RL agent compared to the performance achieved
by the OSAO

an experiment on the Monod system (see Appendix B for the full derivation). An

expression for the determinant of the FIM can be written as

|I|=
∫ ti

0

u(t)2

(p2 +u(t))2 x2dt
∫ ti

0

p2
1u(t)2

(p2 +u(t))4 x2dt−
(∫ ti

0

p1u(t)2

(p2 +u(t))3 x2dt
)2

. (6.4)

For the ease of visualisation, an approximate expression for an experiment composed

of two sample and hold intervals and therefore two experimental inputs (u1 and u2)

can be written as

|I|(u1,u2)≈

p2
1u2

1u2
2

(
1

(p2 +u1)4(1+u2)2+

1
(p2 +u1)2(p2 +u2)4−

2
(p2 +u1)3(p2 +u2)3

)
.

(6.5)

This expression is an approximation as I have ignored the x2 that all the integral

terms depend on, which allows us to easily calculate |I| for different values of u1 and

u2. The effect of this approximation is to alter the scaling between u1 and u2 as x

increases monotonically in our simulations. Equation 6.5 was plotted for ranges of

values for u1 and u2 between 0 and 0.1 (Figure 6.3A). Here we see that the experiment

6.3. Fitted Q-learning for optimal experimental design 120

(A) (B)

0.00
0.02

0.04
0.06

0.08
0.10

0.00
0.02

0.04
0.06

0.08
0.10

0.00
0.02

0.04
0.06

0.08
0.10

0.00
0.02

0.04
0.06

0.08
0.10

0.0
0.2
0.4
0.6
0.8

1.0
1.2
1.4

0.0
0.5
1.0
1.5
2.0

2.5
3.0

Figure 6.3: Analytical derivation of Fisher information. Determinant of I according to
Equation 6.5 (A) and Equation 6.4 (B) as a function of the two inputs u1 and u2

that maximises |I| has one u at its maximum and one u at an intermediate value at

roughly half of the upper bound on u. This result corroborates the behaviour of the

OSAO and RL controllers. To check that this result was not significantly changed

by the removal of the x2 factors the full system was simulated and I according to

Equation 6.4 was calculated for the same region in u space (Figure 6.3B). This shows

a very similar result, with the expected difference in scaling between u1 and u2. These

results validate the solutions found by both agents and that the optimal experimental

design setup is working as intended (Figure 6.3A was made independently of any of

this code). Importantly, this shows that enough information is provided to the agent

through the state and the reward to choose optimum experimental inputs.

6.3.2 Reinforcement learning for optimal experimental design

on a model of gene transcription

As an example of a system of realistic biological complexity that has been used

in previous OED research [169], the method was tested on the inference of the

‘intrinsic’ parameters of a genetic construct. The model equations are:

6.3. Fitted Q-learning for optimal experimental design 121

d
dt

Xrna

V
= α

g
V

Pa
ηGKr +

PaKrt
(ηG)2 u(t)

1+ Pa
ηGKr +(Kt

ηG + PaKrt
(ηG)2)u(t)

−δξ
Xrna

V

d
dt

Xprot

V
=

β
R f
V

KM +
R f
V

Xrna

V
−λ

Xprot

V

where Xrna and Xprot are the concentration of RNA and protein, α,Kr,Kt ,Krt ,δ ,β

and KM are intrinsic parameters, V,g,Pa,G,R f and λ are growth rate dependent

parameters and η and ξ are fixed. The distinction is made between these intrinsic

parameters, which govern the genes induction behaviour, and the physiological

parameters which are growth-rate-dependent and reflect the state of the host cell. In

this work I focus on the inference of the intrinsic parameters, omitting Kr from the set

of parameters to be inferred as it has previously been found practically unidentifiable

[169]. The control inputs are the transcription factor copy number, u, and the levels

of both protein and mRNA, Xrna and Xprot , are measured.

Experiments were designed using rational design, the OSAO and RL controller.

The rational design represents an experiment that might be chosen by a human

designer. An experiment lasts 600 minutes and is divided into 6 intervals of 100

minutes, for each interval a different u can be chosen. The OSAO could choose u con-

tinuously from within the range 0 < u < 1000, the RL agent could choose between

12 discrete values for u equally spaced on the log scale where −3 < log(u)< 3. The

RL controller was trained on 20000 episodes. Because the optimality of an experi-

ment designed using the D-optimality score is only guaranteed for linear systems

we follow the approach taken in previous work [169] to test the correspondence of

a high optimality score with low uncertainty in resulting parameter estimates. To

test an experimental design the co-variance of 30 resulting independent parameter

estimates was calculated. To obtain the parameter estimates, 30 independent trajec-

tories were generated using each experimental design with measurement noise equal

to σ2 = 0.05X, where ε =N (X,σ2). Using the CasADi library [118] each noisy

experimental trajectory was used to infer the intrinsic system parameters, where the

6.3. Fitted Q-learning for optimal experimental design 122

Intrinsic parameter Value Minimum Maximum Unit
α 20 1 30 min−1

Kt 5×105 2×103 1×106 AU
Krt 1.09×109 4.02×105 5.93×1010 AU
δ 2.57×10−4 7.7×10−5 7.7×10−4 µm−3min−1

β 4.0 1 10 min−1

KM 750 750 1500 µm−3

Physiological parameter Value Unit
g 5.7 AU
Pa 4000 AU
G 4.3 AU
η 900 µm−3min−1

R f 7000 AU
V 2.24 µm−3

λ 3.5×10−2 min−1

Table 6.1: The intrinsic parameters of the gene transcription system. Parameter values used
for simulations of an inducible gene transcription system and their minimum and
maximum bounds when sampling from a distribution.

Rational OSAO RL
Optimality score 67.73 71.00 73.26

log |cov(θ)| 66.96 34.17 25.72

Table 6.2: Summary of the performance metrics of different methods for optimal experimen-
tal design on the gene transcription model

initial values of the parameters were sampled from a uniform range (Table 6.1). The

covariance of these resulting parameter estimates was calculated, where experiments

with higher optimality scores should lead to a lower parameter covariance.

The optimality score and the resulting logarithm of the determinant of the

covariance matrix of the parameters is shown in Table 6.2. We can see that the

RL controller outperformed both the rational design and the OSAO in terms of the

optimality score. Furthermore, there is good agreement between the optimality scores

and the co-variance in the parameter estimates, which confirms that maximising the

D-optimality reduces the uncertainty of the parameter estimates on this non-linear

system. The experimental inputs and resulting trajectories of the three experimental

designs are shown in Figure 6.4. The experiments designed by the OSAO and the

RL controller show similarities, which is not unexpected when optimising the same

6.4. A continuous, recurrent RL controller for OED for bacterial growth 123

Rational design RL
(A)

0 100 200 300 400 500 600
Time (mins)

-3

-2

-1

0

1

2

3
lo

g(
u)

(E)

0 100 200 300 400 500 600
Time (mins)

-2

-1

0

1

2

lo
g(

u)

(B)

0 100 200 300 400 500 600
Time (mins)

0

20

40

60

80

100

120

m
RN

A
 #

0

2000

4000

6000

8000

10000

Pr
ot

ei
n

#

(D)

0 100 200 300 400 500 600
Time (mins)

0

20

40

60

80

100

120

m
RN

A
 #

0

2000

4000

6000

8000

Pr
ot

ei
n

#

(F)

0 100 200 300 400 500 600
Time (mins)

0

20

40

60

80

100

120

m
RN

A
 #

0

2000

4000

6000

8000

Pr
ot

ei
n

#

One step ahead optimisation

0 100 200 300 400 500 600
Time (mins)

-3

-2

-1

0

1

2

3

lo
g(

u)

(C)

OSAO

Figure 6.4: Optimal experimental design for parameter inference on a gene transcription sys-
tem. Experiments design using rational design (A), one step ahead optimisation
(C) and reinforcement learning (E) and the corresponding system trajectories
(B), (D), (F) respectively.

objective using two different methods. Figure 6.5 shows the training performance of

3 independent RL controllers. We see that the resulting performance at the end of

training is consistently high compared with the rational design and OSAO. However

there is some difference in the performance in the intermediate portions of training.

One of the repeats adopted a bad policy at around episode 14000 before converging

to a good policy at the end of training.

6.4 A continuous, recurrent RL controller for OED

for bacterial growth
The results in the previous sections show that reinforcement learning has promise for

the optimal design of experiments on systems with realistic biological complexity.

In the subsequent sections I develop the reinforcement learning algorithm further

and propose a method of practical application.

Inserting new genes into a bacterial strain can alter the growth dynamics by

inflicting a metabolic burden on the cells, or other unintended effects such as cross

6.4. A continuous, recurrent RL controller for OED for bacterial growth 124

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

0.50

0.55

0.60

0.65

0.70

0.75
Re

tu
rn

Optimisation = 0.71
Rational design = 0.68
Reinforcement learning = 0.74

Figure 6.5: Average return of three Fitted Q-agents over 20000 episodes and the scores of the
one step ahead optimisation and rational design applied to a gene transcription
system. For interpretability the returns for each of the 20000 episodes were split
into bins of 200 and the average of each bin was taken. This was then averaged
across the 3 repeats.

talk between regulatory pathways. This makes the characterisation of the growth

characteristics of a, potentially engineered, strain of bacteria in liquid culture of

interest to the field of synthetic biology. One way this can be done is the monitoring

of bacterial growth under different nutrient conditions in a bioreactor. Using cheap

tabletop bioreactors this is a setup that is feasible for most synthetic biology labs.

I investigate the parameter inference of bacteria growing in a chemostat where the

bacteria has been engineered to be an auxotroph. An auxotroph is a bacterial strain

that has is reliant on a specific nutrient, often an amino acid, for growth.

I model the system where the agent controls the concentration of carbon source,

C0, and auxotrophic nutrient, C1, for an auxotroph growing in a chemostat (Figure

6.6 A,B). This model is the same the one used in Chapter 5 used to model microbial

communities, but in this chapter only a single bacterial strain is considered. This

6.4. A continuous, recurrent RL controller for OED for bacterial growth 125

0 1

(A) (B)

Figure 6.6: Description of the chemostat system. (A) Diagram of a chemostat. The actions
taken by the agent control the concentration of nutrients flowing into the reactor.
(B) System of an auxotroph dependent a carbon source and an amino acid.

model simulates the growth of one E. coli strain in a continuous bioreactor. The

strain has been engineered so that it is an auxotroph and is reliant on the amino

acid arginine to grow, in addition to a carbon source. Both of the nutrients can

be controlled during an experiment by controlling the flow of nutrients into the

chemostat, Cin and C0,in, so u(t) = [Cin(t),C0,in(t)]. The population of the bacteria,

N, is the only measured system variable and C1 and C0 are hidden variables, so

Y(t) = N(t). The system equations are:

d
dt

C0 = q(C0,in−C0)−
1
γ0

µN

d
dt

C1 = q(C1,in−C1)−
1
γ

µN

µ = µmax
C1

Ks +C1

C0

Ks0 +C0
d
dt

N = (µ−q)N

where µmax is the maximum growth rate, Ks is the half-maximal auxotrophic nutrient

concentration, Ks0 is the half-maximal concentration for the carbon source and

N is the concentration of bacterial cells in the chemostat which is assumed to be

measurable using optical density or fluorescence techniques.

The aim of this section is to design an experiment to infer the growth parameters

6.4. A continuous, recurrent RL controller for OED for bacterial growth 126

Parameter Value Minimum Maximum Unit Source
q 0.5 h−1 Experimentally controllable
γ0 4.8×1011 cells g−1 [145]
γ1 5.2×1011 cells g−1 [146]

µmax 1 0.5 2 h−1 [147]
Ks,0 6.8×10−5 10−5 10−4 g L−1 [146]
Ks 4.9×10−4 10−4 10−3 g L−1 [146]

Table 6.3: Parameters for the single auxotroph system. Parameter values used for simulations
of a system consisting of a single population of bacteria and their minimum and
maximum bounds when sampling from a distribution.

of this strain. Each episode consists of one twenty-hour experiment in which experi-

mental inputs are chosen every two hours. This means that the controllers choose ten

different inputs over the course of an experiment. The initial system variables of the

chemostat for each episode were N = 20×109 cells L−1 and [C0,C1] = [1,0] g L−1.

The parameters in Table 6.3 were used. It was found that the parameters γ0 and

γ were practically unidentifiable (Appendix C) and so these were set to their true

values throughout. This means that in this section we are designing experiments to

infer 3 parameters: Ks0, Ks1 and µmax. Throughout, the experimental inputs Cin and

C0,in have the minimum and maximum bounds of 0.01g/l and 1g/L respectively.

6.4.1 Removing the dependence on a priori parameter

estimates

The FIM is a function of the parameters of the system and so the experiment that

maximises the determinant of the FIM is dependent on these parameters. So far all

experimental designs have been done with a priori knowledge of the true parameter

values. The OSAO has access to the true model to make predictions and the RL

controller uses the true parameter values to calculate the elements of the FIM that

make up part of its observed state. This is obviously an unrealistic scenario and in

this section I investigate methods to remove this dependence for the RL controller.

Designing and analysing experiments using true parameter values is common in the

field of OED [169, 170]. The effectiveness of experiments experiments designed

with parameters drawn from a distribution sufficiently close to the true values is

sometimes subsequently verified [169]. However, there is no guarantee that the

6.4. A continuous, recurrent RL controller for OED for bacterial growth 127

experiment designed using any given sample from a parameter distribution will

perform well for the true parameters, especially with limited prior knowledge, and I

view this as a limitation of existing approaches.

The first potential solution is taken from the OED literature [173, 174, 175]. It is

to use an initial parameter guess and iteratively improve this guess as the experiment

progresses. Using this method an initial guess of the parameters would be taken

and after each sample and hold interval the parameter guess would be updated by

fitting the model to the data gathered so far. This technique has previously been

discussed in literature [173] and used as part of online OED algorithms on fed-batch

bioreactors [174, 175]. I found that using CasADi to do this accurately estimates the

parameters. However, it was prohibitive in terms of computation time and integrating

this into training would increase training time by several orders of magnitude. I

also tried various methods from the Scipy library, these are faster, however the

majority of the time they converge to local parameter optima, which give low error

in terms of predicting the data but do not actually correspond to the true parameters.

Furthermore, the performance of the resulting experimental design would likely be

dependent on the initial parameter guess, which could lead to inconsistent results.

These factors lead me to conclude that this is not a viable option.

The second potential method leverages the capabilities of deep reinforcement

learning so that the agent can learn to adapt its experiment based on previous system

behaviour. This involves changing the state observed by the agent by removing the

elements of the FIM, which require parameter estimates to calculate, and replacing

them with the timeseries of previous experimental measurements and inputs. The

resulting timeseries for any given sequence of actions depends on the true parameters

of the system. Therefore, I hypothesise that the agent should be able to infer where

it is in parameter space given the full experimental trajectory of states and actions

leading up to the current sample and hold interval and adapt its future actions

accordingly. To verify this I tested the ability of three different agents to learn a value

function. The three agents choose from the same set of actions and are rewarded

in the same way as throughout, however they differ in the state information that is

6.4. A continuous, recurrent RL controller for OED for bacterial growth 128

available to them. The first agent uses the original state composed of the system

observables, elements of the FIM and the current timestep. The second agent’s state

is composed of only the current observables and timestep, removing the dependence

on parameter guesses but not giving the agent any additional information. The third

agent observes the current observables, the full trajectory of past observables and

past actions taken during the current experiment and the current timestep. The third

agent has substituted the FIM elements for a full experimental trajectory in the hope

that it can infer where it is in parameter space using the full trajectory. Each agent

was evaluated by testing its ability to fit its value function to effectively predict the

returns from a corresponding sequence of states and actions. The value of a state-

action pair is defined as the expected return after taking the given action while in the

given state and so a good value function will shown low, but not necessarily zero,

error in predicting returns. First, a training set of 1000 experiments was generated

by sampling 1000 different chemostat environments from a uniform distribution

over parameters (see Table 6.3 for the minimum and maximum bounds). For each

environment 10 random experimental inputs were applied, sampled uniformly from

within the bounds on Cin and C0,in. An independent testing set was also generated

in the same way. Each experiment was simulated and the return was calculated for

each state action pair and the value functions of each of the three agents were fitted

to the training data. This process is illustrated in Figure 6.7A. Effectively this is

testing each agent’s ability to learn the value function of the random policy applied

to chemostat environments sampled from the uniform distribution over parameters.

Because the parameters are different for each experiment the agent must learn to

infer where it is in parameter space to accurately predict the returns of experimental

inputs. The results, in terms of mean square error of return estimates over the training

and testing set, are shown in Figure 6.7. Figure 6.7B shows the performance of the

first agent that has the dependence on the true parameter values and acts as a baseline

for comparison. Figure 6.7C shows the performance of the second agent with only

knowledge of the current state and timestep, we can see in this case that the agent

struggles to learn the values accurately, likely because it has no way of inferring

6.4. A continuous, recurrent RL controller for OED for bacterial growth 129

where it is in parameter space for any given parameter sample. Figure 6.7D shows the

third agent with knowledge of the full system trajectory. We can see that at the end

of training performance is only slightly worse than the agent with prior knowledge of

the true parameter values. This implies that, using the full system trajectory, the agent

can infer where it is in parameter space and alter its value predictions accordingly.

The result of this is that we can sidestep the dependence on parameter guesses during

decision making by changing the agent’s state. It should be noted that the reward

signal is still dependent on the unknown parameter values. However, unlike the state,

the calculation of the reward is not required when deploying a trained agent on a real

system and I develop this idea further in Section 6.4.4.

M
ea

n
Sq

ua
re

 E
rr

or

(B) (C) (D)

0 100 200 300 400 500

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000
0 100 200 300 400 500 0 100 200 300 400 500

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

Iteration Iteration Iteration

For every episode take a new sample

State:
Reward: Action:

Environment:

Agent
Fit value function

1) De�ne distribution over parameters 2) Generate data using random policy 3) Learn the value function

Sequence of states, actions and returns

(A)

Figure 6.7: The performance of agents using three different states to predict values of
the random policy. (A) Outline of the testing method; 1) the distribution of
parameters was chosen as a wide flat distribution, 2) data was generated on
chemostats sampled from the distribution using the random policy, 3) agents
were trained to predict the observed returns with three different states. (B) State
composed of the current observables, the true elements of the Fisher information
matrix and the current timestep (C) State composed of the current observables
and the current timestep (D) State composed of the current observables, the full
system trajectory of states and actions so far and the current timestep. The agent
in (D) is able to accurately predict values with no a priori knowledge of the
parameters.

6.4. A continuous, recurrent RL controller for OED for bacterial growth 130

6.4.2 Continuous, recurrent reinforcement learning to design

experiments

Further to the addition of the full experimental timeseries I also anticipate that

learning in a continuous action space will be beneficial. There are three reasons for

this. Firstly, in the experimental setups we consider here the inputs are continuous,

therefore an agent with continuous actions will have more precise control over the

experimental inputs it can apply. This could improve the overall quality of our

experimental designs. Secondly, there will be no need for the experimenter to choose

a discretisation scheme, which could lower the agent’s effectiveness if done poorly.

Thirdly, in a discrete action space the number of available actions grows to the power

of the number of different experimental inputs. For example, in the case previously

considered we have a single experimental inputs with 12 possible values. Adding a

second experimental input also with 12 possible values would give 12×12 = 144

possible input combinations to choose from. A third experimental input would

give 1728 and so on. Q-learning in such large action spaces results in a difficult

learning problem [176]. In a continuous action space only a single continuous value

is required to be learned for each experimental input, meaning that the method could

easily be applied to systems with many experimental inputs. If an experimental setup

that uses discrete inputs was required the original discrete Q-learning method could

be used or, if the resulting discrete action space was too large to learn effectively on,

the continuous experimental input from the agent could be binned into a discrete

value. Incorporating the binning into training would mean that the agent could be

‘aware’ of the binning while it learns and I anticipate that this should not effect

performance.

To incorporate the recurrent neural network and the transition to a continuous

action space I developed a recurrent version of the continuous reinforcement learning

algorithm Twin Delayed Deep Deterministic Policy Gradient (T3D) [108] (see

Section 2.2.2 for details). The internal structure of the agent is shown in Figure

6.8A. The main components of the agent are the memory, value network and policy

network. During each sample and hold interval states, s, and rewards, r, are observed

6.4. A continuous, recurrent RL controller for OED for bacterial growth 131

Environment

Memory

Value network

Policy network

Agent

Value network

GRU

Policy Network

GRU

(A) (B)

[]

[]

Figure 6.8: The Recurrent T3D algorithm. A) Structure of the T3D agent. B) Network
diagrams of the artificial neural networks used to approximate the value function
(top) and policy (bottom)

from the environment and stored in memory. The state also acts as input for the policy

network which chooses the action, a, to apply to the environment and this action

is also stored in memory. The agent’s value and policy functions are periodically

updated by training on the experience stored in the memory (dotted arrows). The

value function is approximated using a deep neural network (Figure 6.8B - top). This

is composed of a gated recurrent unit (GRU) layer which takes as input all system

measurements, Y, and experimental inputs, u, seen so far in the current experiment.

The GRU cell is a type of recurrent layer which excels at processing sequences such

as time series data. The output of the GRU is concatenated with the current system

measurements, Y(t), the current time step, t, and the current action, u(t). These

are fed into a feed forward network composed of two hidden layers, each with 100

neurons. The output of the value network is an estimate of the value of the supplied

experimental input, u(t), in the given system state. The policy network is shown in

network (Figure 6.8B - bottom). This is composed of a recurrent GRU layer which

takes as input all observable states and experimental inputs seen so far in the current

experiment. The output of the GRU is concatenated with the current state, composed

of the current observable system measurements and the current time step, and fed

into a feed forward network composed of two hidden layers, each with 100 neurons.

The output of the policy network is the experimental input that is estimated to have

the highest value for the given system state.

6.4. A continuous, recurrent RL controller for OED for bacterial growth 132

Because training a RL controller takes place over a large number of independent

episodes, it is possible to gather experience from multiple episodes in parallel. I took

advantage of this by running experimental simulations in parallel using the function-

ality provided by the CasADi library. This means that all of the computationally

demanding aspects of the training process are parallelised. The training of the neural

networks using TensorFlow is implemented in parallel and can be run on a GPU

if available or a multicore CPU. The simulation of the experimental system using

CasADi is parallelised and can take advantage of a multicore CPU. In the following

section I ran experimental simulations in batches of 10 parallel simulations, but

this number could be increased to take advantage of more computing resources.

The average training time was 11.73 hours with standard deviation 0.91 hours over

20 total training runs on a computing cluster with 40 CPU cores and a GeForce

GTX 1080 Ti. To asses the training time on a smaller scale personal computer, a

single agent was trained on a 13-inch MacBook pro with a 2GHz Quad core Intel i5

processor with no GPU and the training time was 15.48hrs.

6.4.3 Optimal experimental design for a single auxotroph in a

chemostat

OED was done for the single auxotroph system with the full Recurrent T3D algorithm

using the true parameters in Table 6.3. The RL controllers were trained for 17500

episodes. Because the RL controller now makes decisions based on a full timeseries

I also developed a Model Predictive Controller (MPC) which works similarly to the

OSAO in that it uses the model of the system to predict which experimental input

would maximise the determinant of the FIM. However, the MPC optimises over the

full experimental trajectory (see Section 2.4 for details).

The experimental input profiles and resulting system trajectories for the rational

design, OSAO, MPC and RL controllers are shown in Figure 6.9. There is less simi-

larity in the experiments designed using the different controllers, the MPC and RL

controllers have achieved similar optimality scores with very different experiments.

Figure 6.10 shows the training performance of ten RL controllers and the equivalent

performance of the optimisation and rational designs. The training performance is

6.4. A continuous, recurrent RL controller for OED for bacterial growth 133

(A)

(C)

(G)

(B)

(D)

(F)

(H)

(E)

Ra
tio

na
l d

es
ig

n
O

ne
 s

te
p

ah
ea

d
op

tim
is

er
M

od
el

 p
re

di
ct

iv
e

co
nt

ro
lle

r
Re

in
fo

rc
em

en
t l

ea
rn

in
g

(hours) (hours)

(hours) (hours)

(hours) (hours)

(hours) (hours)

Figure 6.9: Optimal experimental design to infer parameters of a single auxotrophic bacteria
growing in a chemostat. Control inputs chosen by rational design (A), one step
ahead optimisation (C), model predictive control (E) and reinforcement learning
(G) and the corresponding system trajectories (B), (D), (F) and (H) respectively.

6.4. A continuous, recurrent RL controller for OED for bacterial growth 134

Figure 6.10: Training performance of reinforcement learning for optimal experimental
design on the chemostat system. Average training progress of ten Recurrent
T3D agents over 17500 episodes and the scores of the MPC, OSAO and rational
design. For interpretability the returns for each of the 17500 episodes were
split into bins of 100 and the average of each bin was taken. This was then
averaged across the 10 repeats.

stable with only minor differences between each of the 10 independently trained RL

controllers. We can see that the MPC and RL controllers significantly outperform

the other controllers and that the MPC and RL perform very similarly to each other.

The MPC reaches a slightly higher optimality score than the mean of the RL con-

trollers, but the best RL controller performs better than the MPC. From these results

I can conclude that the recurrent RL controllers are performing at a similar level to

an MPC controller that has explicit prior knowledge of the true parameters. The

methods are further compared by repeated parameter fittings to noisy data generated

by each experimental design. For each method, 30 experiments are carried out and

30 independent parameter estimates are done. The total sum square error in the

parameter estimates, normalised by the true parameter values, and the logarithm

6.4. A continuous, recurrent RL controller for OED for bacterial growth 135

Rational OSAO MPC Best RL
Optimality score 8.43 16.6 20.07 20.27

Total normalised error 33.0 26.7 6.1 3.4
log |cov(θ)| -3.76 -5.47 -8.72 -11.85

Table 6.4: Summary of the performance metrics of different methods for optimal experimen-
tal design on the single auxotroph model

of the determinant of the covariance matrix of the parameter estimates is shown

(Table 6.4). For this the best performing RL agent was used. Again these results

show that a high optimality score is a good predictor of a low determinant of the

covariance matrix and here we see that this also corresponds to low error in the

inferred parameters. As expected, according to the two additional metrics the MPC

and RL controllers have greatly outperformed the rational design and the OSAO and

the performance of the best RL agent is slightly better than the MPC.

6.4.4 Reinforcement learning can be used to optimise over a

parameter distribution

One of the key advantages of the reinforcement learning approach is the trivial

extension to optimising over a distribution of parameters. Reinforcement learning

can train by simply drawing a new sample from a distribution for each episode. This

is similar to a technique used in reinforcement learning called domain randomisation

[177]. Domain randomisation involves perturbing the behaviour of a simulated

system during training so that the learned policy is less brittle with respect to any

potential error in the simulation model when applied in a real situation. Here I employ

a very similar method, but I use the distribution to capture any prior knowledge of the

parameters in question. If there is significant prior knowledge of the system this can

be reflected by sampling parameters from a narrow distribution such as a Gaussian

with low standard deviation. Equally, if there is little prior knowledge parameters

can be sampled from a wide flat range. Furthermore, there is no restriction on the

shape of the distribution beyond the requirement that it can be sampled. This also

enables a method of real world implementation that doesn’t require prior knowledge

of the true parameter values (summarised in Figure 6.11):

6.4. A continuous, recurrent RL controller for OED for bacterial growth 136

State:
Reward:

Action:

Agent: OED controller

Environment:

For every episode take a new sample

1) Choose distribution to train over 2) Train on dynamic model 3) Run experiment on real system
Controller will adapt the experiment to the true parameters

Figure 6.11: Training over a parameter distribution. 1) The distribution of parameters
was chosen as a wide flat distribution, 2) the RL controller is trained where
each episode a new chemostat system was sampled from the distribution, 3)
the RL controller can design near optimal experiments across the parameter
distribution.

1. A distribution is chosen to train over, which can be used to incorporate any

prior knowledge. Here I use a wide flat distribution.

2. The RL controller is trained on the dynamical model of the system, for each

episode it takes a new parameter sample from the distribution

3. This trained agent can then be used to experiment on the real system with the

ability to tailor the experiment depending on the system behaviour

A RL controller trained in this manner will learn to maximise the expected return

over the specified distribution. As evidenced by Section 6.4.1 the agent should be

able to infer its position in parameter space using the trajectory of experimental

inputs and measurements. This means that as the agent observes how the system

behaves it should be able to adapt the experiment to maximise the optimality score

To investigate this further, the RL controller was trained in this manner on

the single auxotroph system, where each episode uses a different parameter set

sampled from a uniform distribution over the three parameters to be optimised (see

Table 6.3 for the allowable parameter ranges). The training performance in Figure

6.12 shows that RL controllers can successfully learn to optimise the objective

Rational OSAO MPC RL
Total normalised error 30.29 39.9 23.5 7.8

Table 6.5: Total parameter error of different methods for optimal experimental design on the
single auxotroph model over a parameter distribution

6.4. A continuous, recurrent RL controller for OED for bacterial growth 137

Re
tu
rn

Figure 6.12: Training performance of reinforcement learning for optimal experimental de-
sign on the chemostat system over a parameter distribution. Average training
progress of ten Recurrent T3D agents over 17500 episodes where the system
for each episode is sampled from a distribution over parameters. For inter-
pretability the returns for each of the 17500 episodes were split into bins of
100 and the average of each bin was taken. This was then averaged across the
10 repeats.

over the distribution of parameters. As a comparison to the other methods, 30

noisy experimental trajectories were generated and the rational design, OSAO, MPC

and RL controllers were compared by finding the error in repeated fittings of the

parameters, where the best performing repeat from Figure 6.12 was used as the

RL controller. Here the true system parameters were sampled from the uniform

distribution before each repeat and the OSAO and MPC used parameters in the centre

of the distribution to optimise with respect to the experimental inputs. Because the

true system parameters are different for each experiment, we discard the determinant

of the covariance matrix of parameters and the optimality score, as these will both

be highly dependent on the samples taken, and focus on the normalised sum square

6.4. A continuous, recurrent RL controller for OED for bacterial growth 138

parameter error in the resulting inferred parameters, these results are shown in Table

6.5. These results show that in comparison to the previous section the performance

of the MPC has drastically reduced. This is expected because it has no mechanism

to change its experiment depending on where in the parameter distribution the true

system happens to be. In contrast, the RL controller has maintained its performance

well, with a much smaller increase in the total parameter error. This is further

verification that the RL controller can adapt the experiment online and that this leads

to more informative experiments.

I then further investigated the quality of the resulting experiments designed by

the best performing RL controller by comparing them to those designed by an MPC

with complete a priori knowledge of the system. This was done by comparing the

performance, in terms of the optimality score, of the RL controller against an MPC

at different parameters sampled from the distribution. For each parameter sample an

experiment was designed using both the RL controller and the MPC. In this scenario

the MPC was given the sampled parameters to predict the optimum experimental

inputs, whereas the RL controller only had the information encoded in the parameter

distribution it was trained on. In total eight samples were investigated. Four of these

were chosen rationally to understand the behaviour of the RL controller across the

parameter distribution, these were the true parameter values from the literature, the

lower bounds, upper bounds and centre of the distribution. The remaining four were

sampled randomly from the distribution. The results are summarised in Table 6.6.

This shows the optimality score of experiments produced by the MPC and RL con-

trollers. We can see that for every sample the RL controller trained on the parameter

distribution has performed nearly as well as an MPC that has total system knowledge.

This implies that by using a parameter distribution we can train an RL controller

to perform near optimal experiments across the whole distribution. The samples at

the upper and lower bounds of the distribution show more deviation between the

two controllers. This is expected as the random sampling during training will be

less likely to sample points in the vicinity of these positions and the RL controller

will likely have less access to relevant training data for these points. For this reason

6.4. A continuous, recurrent RL controller for OED for bacterial growth 139

Parameter value [µmax,Km,Km0] MPC RL
[0.5,0.0001,0.00001] (Lower bound) 18.01 16.78
[1.25,0.00055,0.000055] (Centre) 20.79 20.31

[1,0.00048776,0.00006845928] (Actual params) 20.07 20.11
[2,0.001,0.0001] (Upper bound) 21.86 20.15

[0.552564,0.000400962,0.0000775143] 18.85 17.63
[0.708972,0.000500437,0.0000490196] 20.05 19.03
[0.500478,0.00041873,0.000029529] 18.02 16.81
[1.45073,0.000810734,0,0000961402] 21.52 20.41

Table 6.6: Comparison of RL OED controller trained over a parameter distribution com-
pared with an MPC with perfect system knowledge. The optimality score of the
experiments produced by each controller is shown for different samples within
the distribution

the extremities of the prior likely represent a pathological worst case for the RL

controller. To understand the experiments the RL agent is performing at different

parameter samples the experimental designs and resulting system trajectories of

the four rationally chosen parameter samples were plotted (Figure 6.13). The four

experiments (Figure 6.13 A, C, E, and G) and the corresponding timeseries (Figure

6.13 B, D, F, and H) are similar, but they do show differences. The experimental

inputs for the initial 3 sample and hold intervals are the same for all parameter

samples. It is expected that the initial portion of the experiment will be the same

for any sample, this is because the agent has little or no information with which to

infer the system behaviour at the beginning of the experiment. After this initial stage

however, the experiments diverge and there are subtle changes in the input profiles

for the different parameter samples. The differences in the experiments are not large

however, and this implies that there is a ‘core’ experimental design which works

well over the distribution and the agent deviates from this slightly to maximise its

effectiveness for different regions of the parameter distribution.

6.4. A continuous, recurrent RL controller for OED for bacterial growth 140

Lo
w

er
 b

ou
nd

Ce
nt

re
Tr

ue
U

pp
er

 b
ou

nd

(A)

(C)

(G)

(B)

(D)

(F)

(H)

(E)

(hours)
(hours)

(hours)
(hours)

(hours)
(hours)

(hours)
(hours)

Figure 6.13: The experimental designs of the RL controller at different parameter samples.
Here the RL controller is trained on a distribution over parameters and adapts its
experimental design for different points in parameter space. The experimental
inputs (left) and resulting system trajectories (right) are shown. For each
experimental design the system is initialised with different parameter values:
the lower bound of the parameter distribution (A,B), the centre (C,D), the true
parameter values from literature (E,F) and the upper bound of the distribution
(G,H)

6.5. Discussion 141

6.5 Discussion
In this chapter I have investigated and demonstrated a novel application of rein-

forcement learning; the optimal design of experiments within biology. The optimal

experimental design problem was formulated as the maximisation of the determinant

of the Fisher information (D-optimal design). First, the efficacy of the approach

was tested using the Fitted Q-learning algorithm (Section 2.2.1). Fitted Q-learning

was applied to a simple non-linear Monod growth model and the resulting exper-

imental design was investigated and verified mathematically and by comparison

with a OSAO. Next, Fitted Q-learning was applied to a model of gene transcription

as an example of a system of realistic biological complexity. The RL controller

was compared with a OSAO and the resulting experimental designs were further

confirmed by the covariance of repeated parameter estimates fitted to independent

noisy experimental trajectories. These initial results with Fitted Q-learning showed

that reinforcement learning has the potential to design optimal experiments and

my subsequent work focussed on removing the unrealistic dependence on the true

parameter values and the restriction of the Fitted Q-agent to discrete action spaces.

This dependence on the true parameter values is a limitation of other OED works

[169, 170, 173, 174, 175], which require ad hoc verification [169] or other work

arounds [173, 174, 175]. To decouple the RL controller from the true parameters I

used a recurrent neural network to enable it to make experimental decisions based

on a full experimental trajectory of measurements and experimental inputs. It was

shown that this allowed an agent to effectively predict the optimality of experiments

on systems sampled from a distribution over parameters, performing similarly to

an agent with explicit knowledge of the parameters. To move from a discrete to a

continuous action space an implementation of the continuous reinforcement learning

algorithm T3D was used. This simplifies the learning problem when a large num-

ber of different experimental inputs are required and allows the precise control of

experimental inputs in a continuous space. The result of these two modifications

is the Recurrent T3D algorithm, which I demonstrate by designing optimal experi-

ments to infer the growth parameters of an auxotroph growing in a chemostat. To

6.5. Discussion 142

mirror the RL controller’s knowledge of the full experimental trajectory an MPC was

developed that optimised over the full experimental trajectory. The RL controller

was found to perform well in comparison to the OSAO and MPC despite not having

explicit knowledge of the true parameters. Lastly, the ability of the RL controller

to infer where it is in parameter space was further shown by training the agent on

a distribution over parameters. The resulting trained agent was compared with the

MPC and OSAO which used the mean parameter values to make predictions. In

this case we see drastically better performance in terms of the error in the inferred

parameters for the RL controller than the other methods. Furthermore, it was shown

that an RL controller trained on a parameter distribution can design near optimal

experiments throughout the distribution by comparison with an MPC with complete

system knowledge. This demonstrates how the recurrent neural network allows

the same agent to perform well even for different parameter samples and enables a

natural method for implementation on a real system.

Overall this work shows the potential to do optimal experimental design with

deep reinforcement learning and that this could compliment existing methods. OED

work has often been categorised into Bayesian and Fisher information based methods

[178, 179]. Fisher information based techniques have been limited to local analysis

around a nominal parameter guess. Bayesian approaches allow global optimisation

and the incorporation of prior knowledge, but can be very computationally expensive.

Here I build on previous work that has demonstrated the applicability of Fisher

information based methods to non-linear biological systems [169, 170], including

online OED of fed batch bioreactors [174, 175]. I have shown the capability to

encode prior parameter knowledge and therefore globally optimise with respect to

the Fisher information by training an RL controller over samples from a parameter

distribution. The same technique could be used in the future to encompass mea-

surement noise and stochasticity in the model dynamics. This mirrors some of the

statistical capabilities of Bayesian approaches. However, Bayesian approaches can

require complex integrals over multiple probability distributions, which for online

experimental design needs to be solved during the experiment using methods such

6.5. Discussion 143

as Monte Carlo simulation [167, 180]. This can be computationally expensive, po-

tentially limiting the speed at which experiments can be done. Previous Bayesian

approaches have been limited to greedily optimising over the next time step only

[167] or choosing from a limited set of experimental designs [180], likely to reduce

the computational effort required. In this approach, a trained RL controller can be

rapidly queried for inputs on the order of a second. However, the price for this is

a potentially lengthy training process which must be done prior to the experiment.

The longest training times in this chapter were around 12 hours of simulation time

on a computing cluster and around 15 hours on a personal laptop.

In this chapter I have focussed on D-optimal design by maximising the deter-

minant of the FIM. However, there is no reason other metrics could not be used.

These could include other Fisher information based metrics including maximising

the trace of the FIM (A-optimality) or maximising the minimum eigenvalue of the

FIM (E-optimality). Furthermore, we are not limited to Fisher information based

metrics and future work could explore the possibility of metrics such as maximising

the uncertainty of the posterior predictive distribution [180].

I demonstrated the capability to learn over a parameter distribution with a

uniform distribution. Future work could be done to evaluate the performance of an

RL controller when trained over more complex distributions that are non-symmetric

or multi-modal. As the RL controller learns by sampling the distribution this is trivial

to implement and the flexibility to learn over any distribution presents a compelling

reason to use reinforcement learning for OED. Additionally, work in this area could

involve the extension to model selection. This could be done using Ds optimal

design, in which experimental effort is focussed on a subset of the parameters

of a nested model [181] or by introducing an extra term in the reward function

to encourage the divergence of different model predictions [182]. The flexibility

of the reinforcement learning framework means that it is possible to incorporate

prior knowledge by sampling from distributions over parameters and models and to

learn on stochastic models by sampling system trajectories. Further investigation

could be done into the effectiveness of this approach to do simultaneous model

6.5. Discussion 144

selection and parameter inference on highly stochastic systems as an alternative to

Bayesian methods. The effect of training over a distribution of structurally distinct

models on the resulting experiments would be an interesting result. The flexibility of

reinforcement learning means that training effort can easily be focussed to regions

in model space by increasing their weighting in the distribution training episodes

are sampled from. Combining this with techniques such as Ds optimal design could

lead to a flexible method to explore large model spaces. Often in synthetic biology

there is uncertainty in the structure of the model we are investigating and this can

lead to model mismatch. Using a distribution over model space and Ds optimal

design it should be possible to investigate a large model space and find the model that

best fits the available data. If required, this could be done iteratively over multiple

experiments. The first experiment would have a wide focus, where training is done

over the whole model space. Subsequent training runs and experiments could then

narrow the focus regions of model space found to be relevant.

Overall in this chapter I have developed and demonstrated the potential for

reinforcement learning to be used for OED. As the systems we build and characterise

in biology continue to increase in complexity, automated experimental design tools

will become ever more important. Furthermore this method is general and could be

applied in many areas of science to understand natural systems and shows potential

to be complimentary to existing tools.

Chapter 7

General conclusions

In the last two decades the field of synthetic biology has made rapid progress by

applying the principles of engineering to the construction of novel biological systems.

As the complexity of our engineered systems increases we will find increasing need

to escape the limitations of using a single cell type and create engineered distributed

systems. Synthetic biology is a highly interdisciplinary field and a key characteristic

of the field is the use of mathematical and computational design tools. In this thesis

ideas from mathematics, physics and artificial intelligence have been applied in the

development of novel design, control and experimentation algorithms which will

facilitate the construction of distributed biological systems.

In Chapters 3 and 4 I develop novel methods for the design of distributed

biological computers composed of patterns of bacterial colonies communicating

with diffusible molecules. I develop a new optimisation algorithm that facilitates

a key capability from electronic circuit design, the optimal construction of digital

functions, within synthetic biology. I also create an algorithm for the training of

bacterial neural networks, this leverages the analogue computing capabilities of

artificial neural networks that have been the driving force behind the widespread

success of deep learning. I anticipate that as synthetic biology advances as a field the

limitations of bio-computing within a single cell will become increasingly restrictive

and distributed methods of computing like the ones investigated in this thesis will

become ever more important. These methods could be applied in the future to

the automated construction of biocomputers with complex information processing

146

capabilities. In combination with biosensors, which can be engineered to detect a

myriad of biological molecules, these could be used to analyse biological samples

cheaply and provide an easy to read fluorescence output. An important example

of this is medical diagnosis of the gut microbiome disease states. This design

methodology could, in the future, be combined with methods for the printing of cells

on paper devices which can be stored for later use [55] to construct cheap diagnostic

devices for use in hospitals, and eventually as home testing kits. Furthermore, the

methods developed represent general theoretical frameworks for digital and analogue

spatial computers. These frameworks could be applied in the future for understanding

how patterning is used for natural biocomputing, for example the role of spatial

structure in the information processing capabilities of biofilms.

The second theme investigated was the control of distributed biological systems.

In Chapter 5 I use a technique from artificial intelligence, reinforcement learning, to

control microbial communities. Microbial communities engineered for bioprocessing

have been shown to be more productive than single strains [82, 83, 86] and are not

limited in the complexity of the metabolic pathway by the metabolic capability of

a single cell [87]. These factors make the effective utilisation of communities an

important consideration for the future of industrial bioprocessing and I show that

reinforcement learning is a compelling compliment to existing control techniques.

As the complexity of the microbial communities used for industrial processes in-

creases I anticipate that more complex control methodologies will become ever more

important.

The final avenue of work, Chapter 6, considered the use of reinforcement learn-

ing for optimal experimental design in synthetic biology. Distributed biological

systems have the potential to be governed by complex and highly non-linear dynam-

ics. This further increases the need for accurate models within synthetic biology,

while also making the rational design of experiments challenging. I show that the

flexibility of reinforcement learning allows a natural way to optimise over statistical

distributions resulting in a method that could be implemented in the laboratory. There

are several potential advantages of a general reinforcement learning algorithm for

147

optimal experimental design over existing mathematical methods. These include

ease of use for non-specialists, greater flexibility of implementation, removal of

restrictions on the probability distributions that can be optimised over, and parallel

implementation to reduce the computational time required. I believe these advan-

tages make it a compelling option for the future of experimental design in synthetic

biology and other scientific fields.

In summary, the methods developed here will have impact in distributed bio-

logical computing, distributed bioprocessing and optimal experimental design in

synthetic biology. Like the field as a whole this thesis is an interdisciplinary effort

to apply techniques from other disciplines to biological systems and I believe that

continuing interdisciplinary work will be key to the future success of synthetic bi-

ology. Biological systems are often complicated and highly non-linear and many

engineering challenges such as noise, unexpected downstream effects and interfer-

ence between communication channels are compounded. Furthermore, cells are

reproducing organisms subject to mutation and the forces of selection, which means

that any engineered alteration might be discarded if it hinders reproductive success.

These factors can make the reductionist, bottom up approaches from traditional

engineering challenging and much of the future success of synthetic biology will be

dictated by how we deal with these challenges. The obvious approach is to mitigate

or build resistance to these effects into designs and I think that the near future work

into the implementations of synthetic biocomputers should continue in this vein.

Additionally, the continued advancement of high throughput experimental techniques

means that the quantity of data we have access to is always increasing. This quantity

of data facilitates the, often data hungry, methods from machine learning and data

science and means a key future challenge in biology is the application of these meth-

ods to best exploit this data. Within synthetic biology, I think that it should continue

to be used to create new machine learning based methods to design emergent systems

which exploit the effects of noise, interference and selection in their designs. This

could mean that a large part of the future of synthetic biology looks much different

from the traditional engineering disciplines.

Appendix A

Reinforcement learning control

repeats

Time (minutes)

Po
pu

la
tio

n
(x

10
6 c

el
ls/

L)

Figure A.1: Episodic Fitted Q-iteration repeats. Population curves of twenty trained agents
controlling the chemostat system.

149

0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750

0 250 500 750 1000 1250 1500 17500 250 500 750 1000 1250 1500 1750

0 250 500 750 1000 1250 1500 1750

Time (minutes)

Po
pu

la
tio

n
(x

10
6 c

el
ls

/L
)

Figure A.2: All population curves from Online Fitted Q-iteration running in parallel. Popu-
lations curves of five chemostats running in parallel while under online control
of a single agent. Here the agent is trained for 1440 minutes (twenty-four hours)
and then allowed to control the system for a further 310 minutes to show that
the target system behaviour is maintained.

150

Figure A.3: Optimising product output repeats. Population curves of ten trained agents
controlling the chemostat system with the goal of optimising product output.

Appendix B

Mathematics of optimal experimental

design on the Monod system

Firstly, we will show that to get information about the parameters u must vary with

time.

We start from
dx
dt

=
p1u

p2 +u
x

First calculate the sensitivity time derivatives:

dẋ
d p1

=
u

p2 +u
x = ẋp1

dẋ
d p2

=− p1u
(p2 +u)2 x = ẋp2

We know that

I =

 ∫ ti
0 ẋ2

p1
dt

∫ ti
0 ẋp1 ẋp2dt∫ ti

0 ẋp1 ẋp2dt
∫ ti

0 ẋ2
p2

dt

=

a b

b c


Where the full fisher information matrix. The determinant of F is given by:

|I|= ac−b2 =
∫ ti

0

u2

(p2 +u)2 x2dt
∫ ti

0

p2
1u2

(p2 +u)4 x2dt−
(∫ ti

0

p1u2

(p2 +u)3 x2dt
)2

152

If we assume u is constant, we can take it out of the integrals:

|I|= u2

(p2 +u)2

∫ ti

0
x2dt

p2
1u2

(p2 +u)4

∫ ti

0
x2dt−

(
p1u2

(p2 +u)3

∫ ti

0
x2dt

)2

|I|=
p2

1u4

(p2 +u)6

(∫ ti

0
x2
)2

dt−
p2

1u4

(p2 +u)6

(∫ ti

0
x2
)2

dt = 0

Showing that if u doesn’t vary then the determinant of the fisher information matrix

is 0.

Now we will consider a simple experiment with two timesteps of time 1, each

with different input u; u1 and u2, where u is a step function. For this special case∫ 2
0 f (u)dt = f (u1)+ f (u2). Now look at

|I|=
∫ ti

0

u2

(p2 +u)2 x2dt
∫ ti

0

p2
1u2

(p2 +u)4 x2dt−
(∫ ti

0

p1u2

(p2 +u)3 x2dt
)2

(B.1)

we will, for now, ignore the x2 that all the integral terms depend on to simplify the

analysis. The effect this will have is to alter the scaling between u1 and u2 as x

increases monotonically in our simulations.

|I| ≈
∫ ti

0

u2

(p2 +u)2 dt
∫ ti

0

p2
1u2

(p2 +u)4 dt−
(∫ ti

0

p1u2

(p2 +u)3 dt
)2

For our simple experiment with two u values:

|I| ≈(
u2

1
(p2 +u1)2 +

u2
2

(p2 +u2)2

)(
p2

1u2
1

(p2 +u1)4 +
p2

1u2
2

(p2 +u2)4

)
−
(

p1u2
1

(p2 +u1)3 +
p1u2

2
(p2 +u2)3

)2

.

(B.2)

Note that if u1 = u2 then |I| = 0 as expected. If we expand the brackets and

153

simplify we are left with:

|I|(u1,u2)≈

p2
1u2

1u2
2

(
1

(p2 +u1)4(1+u2)2+

1
(p2 +u1)2(p2 +u2)4−

2
(p2 +u1)3(p2 +u2)3

)
.

(B.3)

Appendix C

Parameter identifiability of the single

chemostat system

First we will look at the structural identifiability of the parameters of a single

auxotroph grown in a chemostat. In this model a single bacterial strain grows in a

chemostat, its growth is reliant a carbon source and an auxotrophic nutrient, both of

which can be controlled during an experiment by controlling the flow of nutrients

into the chemostat (Cin and C0,in). The population of the bacteria (N) is the only

measured system variable and C and C0 are hidden variables. The system equations

are:

d
dt

C0 = q(C0,in−C0)−
1
γ0

µN (C.1)

d
dt

C = q(Cin−C)− 1
γ

µN (C.2)

µ = µmax
C

Ks +C
C0

Ks0 +C0
(C.3)

where µmax is a vector of the maximum growth rate for each species, Ks is a vector

of half-maximal auxotrophic nutrient concentrations and Ks0 is a vector of half-

maximal concentrations C0 for the shared carbon source.

155

The growth rate of the bacterial population is:

d
dt

N = (µ−q)N (C.4)

First substitute Equation C.3 into Equations C.1, C.2 and C.4:

d
dt

C0 = q(C0,in−C0)−
µmax

γ0

C
Ks +C

C0

Ks0 +C0
N

d
dt

C = q(Cin−C)− µmax
γ

C
Ks +C

C0

Ks0 +C0
N

d
dt

N = (µmax
C

Ks +C
C0

Ks0 +C0
−q)N.

We will non-dimensionalise the hidden variables by substituting C = aC̃ C0 =

bC̃0 where C̃ and C̃0 are the dimensionless variables.

This gives us, after some rearranging:

d
dt

C̃0 = q(
C0,in

b
−C̃0)−

µmax
bγ0

C̃
Ks
a +C̃

C̃0
Ks0

b +C̃0
N

d
dt

C̃ = q(
Cin

a
−C̃)− µmax

aγ

C̃
Ks
a +C̃

C̃0
Ks0

b +C̃0
N

d
dt

N = (µmax
C̃

Ks
a +C̃

C̃0
Ks0

b +C̃0
−q)N.

Now set

µmax
bγ0

=
µmax
aγ

= 1

meaning b =
µmax

γ0
and a =

µmax
γ

so that

d
dt

C̃0 = q(
C0,inγ0
µmax

−C̃0)−
C̃

Ksγ
µmax

+C̃

C̃0
Ks0γ0
µmax

+C̃0
N

156

d
dt

C̃ = q(
Cinγ

µmax
−C̃)− C̃

Ksγ
µmax

+C̃

C̃0
Ks0γ0
µmax

+C̃0
N

d
dt

N = (µmax
C̃

Ksγ
µmax

+C̃

C̃0
Ks0γ0
µmax

+C̃0
N−q)N.

Here some of the parameters are lumped, however we have 5 unique lumped

parameters and 5 real parameters. I wasn’t able to simplify any further than this,

leading me to believe that the model is structurally identifiable. To verify this I

used the MATLAB [183] package STRIKE-GOLD [184]. STRIKE-GOLD can

determine the structural identifiability of the parameters of dynamic systems models

and confirmed the structural identifiability of all parameters.

To investigate the practical identifiability I looked a the values for the Fisher

information matrix over 25000 experiments. For each experiment a different

sample of the uniform prior between [100000,100000,0.5,0.0001,0.00001] ≤

[γ,γ0,µmax,Ks,Ks0] ≤ [1000000,1000000,2,0.001,0.0001] was taken and 10 ran-

dom experimental inputs were applied to the resulting system. Included in these

experimental inputs was the dilution rate, q, to ensure that the identifiability problems

were not due to our choice of q. For every experiment the Fisher information was

always 0 for both γ0 and γ , leading me to believe they are practically unidentifiable.

Bibliography

[1] Maurice Karnaugh. The map method for synthesis of combinational logic

circuits. Transactions of the American Institute of Electrical Engineers, Part

I: Communication and Electronics, 72(5):593–599, 1953.

[2] Robert Brayton, G.D. Hatchel, R. Hemanchandra, and A. Sangiovanni-

Vincentelli. A comparison of logic minimization strategies using espresso:

An apl program package for partitioned logic minimization. pages 42–48,

1982.

[3] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[4] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedfor-

ward networks are universal approximators. Neural networks, 2(5):359–366,

1989.

[5] Chen Debao. Degree of approximation by superpositions of a sigmoidal

function. Approximation Theory and its Applications, 9(3):17–28, 1993.

[6] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied

to handwritten zip code recognition. Neural computation, 1(4):541–551,

1989.

[7] Xueheng Qiu, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan Ama-

ratunga. Ensemble deep learning for regression and time series forecasting.

Bibliography 158

In 2014 IEEE symposium on computational intelligence in ensemble learning

(CIEL), pages 1–6. IEEE, 2014.

[8] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek,

Anna Potapenko, et al. Highly accurate protein structure prediction with

alphafold. Nature, 596(7873):583–589, 2021.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-

land, Georg Ostrovski, et al. Human-level control through deep reinforcement

learning. nature, 518(7540):529–533, 2015.

[10] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with

deep reinforcement learning. In Thirty-First AAAI Conference on Artificial

Intelligence, 2017.

[11] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,

Thore Graepel, et al. A general reinforcement learning algorithm that masters

chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[12] Lewis Grozinger, Martyn Amos, Thomas E Gorochowski, Pablo Carbonell,

Diego A Oyarzún, Ruud Stoof, Harold Fellermann, Paolo Zuliani, Huseyin

Tas, and Angel Goñi-Moreno. Pathways to cellular supremacy in biocomput-

ing. Nature communications, 10(1):1–11, 2019.

[13] Leonard M Adleman. Molecular computation of solutions to combinatorial

problems. Science, 266(5187):1021–1024, 1994.

[14] Milan N Stojanovic, Tiffany Elizabeth Mitchell, and Darko Stefanovic.

Deoxyribozyme-based logic gates. Journal of the American Chemical Society,

124(14):3555–3561, 2002.

Bibliography 159

[15] Milan N Stojanović and Darko Stefanović. Deoxyribozyme-based half-adder.

Journal of the American Chemical Society, 125(22):6673–6676, 2003.

[16] Harvey Lederman, Joanne Macdonald, Darko Stefanovic, and Milan N Sto-

janovic. Deoxyribozyme-based three-input logic gates and construction of a

molecular full adder. Biochemistry, 45(4):1194–1199, 2006.

[17] Joanne Macdonald, Yang Li, Marko Sutovic, Harvey Lederman, Kiran Pendri,

Wanhong Lu, Benjamin L Andrews, Darko Stefanovic, and Milan N Sto-

janovic. Medium scale integration of molecular logic gates in an automaton.

Nano letters, 6(11):2598–2603, 2006.

[18] Renjun Pei, Elizabeth Matamoros, Manhong Liu, Darko Stefanovic, and

Milan N Stojanovic. Training a molecular automaton to play a game. Nature

nanotechnology, 5(11):773, 2010.

[19] Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation

with dna strand displacement cascades. Nature, 475(7356):368, 2011.

[20] Andrew Currin, Konstantin Korovin, Maria Ababi, Katherine Roper, Dou-

glas B Kell, Philip J Day, and Ross D King. Computing exponentially faster:

implementing a non-deterministic universal turing machine using dna. Journal

of The Royal Society Interface, 14(128):20160990, 2017.

[21] Zhen Xie, Liliana Wroblewska, Laura Prochazka, Ron Weiss, and Yaakov

Benenson. Multi-input rnai-based logic circuit for identification of specific

cancer cells. Science, 333(6047):1307–1311, 2011.

[22] Satoshi Matsuura, Hiroki Ono, Shunsuke Kawasaki, Yi Kuang, Yoshihiko Fu-

jita, and Hirohide Saito. Synthetic rna-based logic computation in mammalian

cells. Nature communications, 9(1):1–8, 2018.

[23] Alexander A Green, Jongmin Kim, Duo Ma, Pamela A Silver, James J Collins,

and Peng Yin. Complex cellular logic computation using ribocomputing

devices. Nature, 548(7665):117–121, 2017.

Bibliography 160

[24] Guillermo Rodrigo, Thomas E Landrain, Eszter Majer, José-Antonio Daròs,

and Alfonso Jaramillo. Full design automation of multi-state rna devices to

program gene expression using energy-based optimization. PLoS computa-

tional biology, 9(8):e1003172, 2013.

[25] Pejman Mohammadi, Niko Beerenwinkel, and Yaakov Benenson. Auto-

mated design of synthetic cell classifier circuits using a two-step optimization

strategy. Cell systems, 4(2):207–218, 2017.

[26] Ronan Baron, Oleg Lioubashevski, Eugenii Katz, Tamara Niazov, and Itamar

Willner. Logic gates and elementary computing by enzymes. The Journal of

Physical Chemistry A, 110(27):8548–8553, 2006.

[27] Guinevere Strack, Marcos Pita, Maryna Ornatska, and Evgeny Katz. Boolean

logic gates that use enzymes as input signals. ChemBioChem, 9(8):1260–1266,

2008.

[28] Jian Zhou, Mary A Arugula, Jan Halamek, Marcos Pita, and Evgeny Katz.

Enzyme-based nand and nor logic gates with modular design. The Journal of

Physical Chemistry B, 113(49):16065–16070, 2009.

[29] Vladimir Privman, Oleksandr Zavalov, Lenka Halámková, Fiona Moseley, Jan

Halámek, and Evgeny Katz. Networked enzymatic logic gates with filtering:

new theoretical modeling expressions and their experimental application. The

Journal of Physical Chemistry B, 117(48):14928–14939, 2013.

[30] Jan Halamek, Vera Bocharova, Soujanya Chinnapareddy, Joshua Ray Wind-

miller, Guinevere Strack, Min-Chieh Chuang, Jian Zhou, Padmanabhan San-

thosh, Gabriela V Ramirez, Mary A Arugula, et al. Multi-enzyme logic

network architectures for assessing injuries: digital processing of biomarkers.

Molecular BioSystems, 6(12):2554–2560, 2010.

[31] Dan V Nicolau, Mercy Lard, Till Korten, Falco CMJM van Delft, Malin

Persson, Elina Bengtsson, Alf Månsson, Stefan Diez, and Heiner Linke.

Bibliography 161

Parallel computation with molecular-motor-propelled agents in nanofabricated

networks. Proceedings of the National Academy of Sciences, page 201510825,

2016.

[32] Timothy S Gardner, Charles R Cantor, and James J Collins. Construction of a

genetic toggle switch in escherichia coli. Nature, 403(6767):339–342, 2000.

[33] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of

transcriptional regulators. Nature, 403(6767):335–338, 2000.

[34] Attila Becskei and Luis Serrano. Engineering stability in gene networks by

autoregulation. Nature, 405(6786):590–593, 2000.

[35] Neil Dalchau, Gregory Szép, Rosa Hernansaiz-Ballesteros, Chris P Barnes,

Luca Cardelli, Andrew Phillips, and Attila Csikász-Nagy. Computing with

biological switches and clocks. Natural computing, 17(4):761–779, 2018.

[36] J Christopher Anderson, Christopher A Voigt, and Adam P Arkin. Environ-

mental signal integration by a modular and gate. Molecular systems biology,

3(1):133, 2007.

[37] Tae Seok Moon, Chunbo Lou, Alvin Tamsir, Brynne C Stanton, and Christo-

pher A Voigt. Genetic programs constructed from layered logic gates in single

cells. Nature, 491(7423):249–253, 2012.

[38] Brynne C Stanton, Alec AK Nielsen, Alvin Tamsir, Kevin Clancy, Todd

Peterson, and Christopher A Voigt. Genomic mining of prokaryotic repressors

for orthogonal logic gates. Nature chemical biology, 10(2):99–105, 2014.

[39] Shuyi Zhang and Christopher A Voigt. Engineered dcas9 with reduced toxicity

in bacteria: implications for genetic circuit design. Nucleic acids research,

46(20):11115–11125, 2018.

[40] Alec AK Nielsen, Bryan S Der, Jonghyeon Shin, Prashant Vaidyanathan,

Vanya Paralanov, Elizabeth A Strychalski, David Ross, Douglas Densmore,

Bibliography 162

and Christopher A Voigt. Genetic circuit design automation. Science,

352(6281), 2016.

[41] Joseph H Davis, Adam J Rubin, and Robert T Sauer. Design, construction

and characterization of a set of insulated bacterial promoters. Nucleic acids

research, 39(3):1131–1141, 2011.

[42] Chunbo Lou, Brynne Stanton, Ying-Ja Chen, Brian Munsky, and Christo-

pher A Voigt. Ribozyme-based insulator parts buffer synthetic circuits from

genetic context. Nature biotechnology, 30(11):1137–1142, 2012.

[43] Vivek K Mutalik, Joao C Guimaraes, Guillaume Cambray, Colin Lam,

Marc Juul Christoffersen, Quynh-Anh Mai, Andrew B Tran, Morgan Paull,

Jay D Keasling, Adam P Arkin, et al. Precise and reliable gene expression

via standard transcription and translation initiation elements. Nature methods,

10(4):354–360, 2013.

[44] Mao Taketani, Jianbo Zhang, Shuyi Zhang, Alexander J Triassi, Yu-Ja Huang,

Linda G Griffith, and Christopher A Voigt. Genetic circuit design automation

for the gut resident species bacteroides thetaiotaomicron. Nature Biotechnol-

ogy, 38(8):962–969, 2020.

[45] R Sarpeshkar. Analog synthetic biology. Phil. Trans. R. Soc. A,

372(2012):20130110, 2014.

[46] Lulu Qian and Erik Winfree. Scaling up digital circuit computation with dna

strand displacement cascades. Science, 332(6034):1196–1201, 2011.

[47] Ramiz Daniel, Jacob R Rubens, Rahul Sarpeshkar, and Timothy K Lu. Syn-

thetic analog computation in living cells. Nature, 497(7451):619, 2013.

[48] Amir Pandi, Mathilde Koch, Peter L Voyvodic, Paul Soudier, Jerome Bonnet,

Manish Kushwaha, and Jean-Loup Faulon. Metabolic perceptrons for neural

computing in biological systems. Nature communications, 10(1):1–13, 2019.

Bibliography 163

[49] Alvin Tamsir, Jeffrey J Tabor, and Christopher A Voigt. Robust multicellular

computing using genetically encoded nor gates and chemical ‘wires’. Nature,

469(7329):212–215, 2011.

[50] Sergi Regot, Javier Macia, Núria Conde, Kentaro Furukawa, Jimmy Kjellén,

Tom Peeters, Stefan Hohmann, Eulãlia De Nadal, Francesc Posas, and Ri-

card Solé. Distributed biological computation with multicellular engineered

networks. Nature, 469(7329):207–211, 2011.

[51] M Ali Al-Radhawi, Anh Phong Tran, Elizabeth A Ernst, Tianchi Chen,

Christopher A Voigt, and Eduardo D Sontag. Distributed implementation of

boolean functions by transcriptional synthetic circuits. ACS Synthetic Biology,

9(8):2172–2187, 2020.

[52] Sarah Guiziou, Federico Ulliana, Violaine Moreau, Michel Leclere, and

Jerome Bonnet. An automated design framework for multicellular recombi-

nase logic. ACS synthetic biology, 7(5):1406–1412, 2018.

[53] Sarah Guiziou, Pauline Mayonove, and Jerome Bonnet. Hierarchical composi-

tion of reliable recombinase logic devices. Nature communications, 10(1):1–7,

2019.

[54] Javier Macia, Romilde Manzoni, Núria Conde, Arturo Urrios, Eulàlia

de Nadal, Ricard Solé, and Francesc Posas. Implementation of complex

biological logic circuits using spatially distributed multicellular consortia.

PLoS computational biology, 12(2):e1004685, 2016.

[55] Sira Mogas-Dı́ez, Eva Gonzalez-Flo, and Javier Macı́a. 2d printed multicellu-

lar devices performing digital and analogue computation. Nature communica-

tions, 12(1):1–10, 2021.

[56] T Chen, C Voigt, E Sontag, et al. A synthetic distributed genetic multi-bit

counter. 2021.

Bibliography 164

[57] Hideki Kobayashi, Mads Kaern, Michihiro Araki, Kristy Chung, Timothy S

Gardner, Charles R Cantor, and James J Collins. Programmable cells: inter-

facing natural and engineered gene networks. Proceedings of the National

Academy of Sciences, 101(22):8414–8419, 2004.

[58] Victoria Hsiao, Yutaka Hori, Paul WK Rothemund, and Richard M Murray.

A population-based temporal logic gate for timing and recording chemical

events. Molecular systems biology, 12(5):869, 2016.

[59] Arturo Urrios, Javier Macia, Romilde Manzoni, Núria Conde, Adriano Bon-

forti, Eulàlia de Nadal, Francesc Posas, and Ricard Solé. A synthetic multi-

cellular memory device. ACS synthetic biology, 5(8):862–873, 2016.

[60] Josep Sardanyés, Adriano Bonforti, Nuria Conde, Ricard Solé, and Javier

Macia. Computational implementation of a tunable multicellular memory

circuit for engineered eukaryotic consortia. Frontiers in physiology, 6:281,

2015.

[61] Javier Macia, Blai Vidiella, and Ricard V Solé. Synthetic associative learning

in engineered multicellular consortia. Journal of The Royal Society Interface,

14(129):20170158, 2017.

[62] Yolanda Schaerli, Andreea Munteanu, Magüi Gili, James Cotterell, James

Sharpe, and Mark Isalan. A unified design space of synthetic stripe-forming

networks. Nature communications, 5(1):1–10, 2014.

[63] Alissa Kerner, Jihyang Park, Audra Williams, and Xiaoxia Nina Lin. A

programmable escherichia coli consortium via tunable symbiosis. PLoS One,

7(3), 2012.

[64] Oleg Kanakov, Roman Kotelnikov, Ahmed Alsaedi, Lev Tsimring, Ramon

Huerta, Alexey Zaikin, and Mikhail Ivanchenko. Multi-input distributed

classifiers for synthetic genetic circuits. PloS one, 10(5):e0125144, 2015.

Bibliography 165

[65] Behzad D Karkaria, Neythen J Treloar, Chris P Barnes, and Alex JH Fedorec.

From microbial communities to distributed computing systems. Frontiers in

Bioengineering and Biotechnology, 8:834, 2020.

[66] Adam G Krieger, Jiahao Zhang, and Xiaoxia N Lin. Temperature regulation as

a tool to program synthetic microbial community composition. Biotechnology

and Bioengineering, 118(3):1381–1392, 2021.

[67] Christina V Dinh, Xingyu Chen, and Kristala LJ Prather. Development of a

quorum-sensing based circuit for control of coculture population composition

in a naringenin production system. ACS synthetic biology, 9(3):590–597,

2020.

[68] Angel Goñi-Moreno and Martyn Amos. A reconfigurable nand/nor genetic

logic gate. BMC systems biology, 6(1):1–11, 2012.

[69] Michael J Liao, M Omar Din, Lev Tsimring, and Jeff Hasty. Rock-paper-

scissors: engineered population dynamics increase genetic stability. Science,

365(6457):1045–1049, 2019.

[70] Angel Goñi-Moreno, Fernando de la Cruz, Alfonso Rodrı́guez-Patón, and

Martyn Amos. Dynamical task switching in cellular computers. Life, 9(1):14,

2019.

[71] Andriy Didovyk, Oleg I Kanakov, Mikhail V Ivanchenko, Jeff Hasty, Ramón

Huerta, and Lev Tsimring. Distributed classifier based on genetically engi-

neered bacterial cell cultures. ACS synthetic biology, 4(1):72–82, 2015.

[72] Subhayu Basu, Yoram Gerchman, Cynthia H Collins, Frances H Arnold,

and Ron Weiss. A synthetic multicellular system for programmed pattern

formation. Nature, 434(7037):1130–1134, 2005.

[73] Subhayu Basu, Rishabh Mehreja, Stephan Thiberge, Ming-Tang Chen, and

Ron Weiss. Spatiotemporal control of gene expression with pulse-generating

Bibliography 166

networks. Proceedings of the National Academy of Sciences, 101(17):6355–

6360, 2004.

[74] Andreia Carvalho, Diego Barcena Menendez, Vivek Raj Senthivel, Timo

Zimmermann, Luis Diambra, and Mark Isalan. Genetically encoded sender–

receiver system in 3d mammalian cell culture. ACS synthetic biology, 3(5):264–

272, 2014.

[75] Seunghee S Jang, Kevin T Oishi, Robert G Egbert, and Eric Klavins. Spec-

ification and simulation of synthetic multicelled behaviors. ACS synthetic

biology, 1(8):365–374, 2012.

[76] Martı́n Gutiérrez, Paula Gregorio-Godoy, Guillermo Perez del Pulgar, Luis E

Muñoz, Sandra Sáez, and Alfonso Rodrı́guez-Patón. A new improved and

extended version of the multicell bacterial simulator gro. ACS synthetic

biology, 6(8):1496–1508, 2017.

[77] Jonathan Pascalie, Martin Potier, Taras Kowaliw, Jean-Louis Giavitto, Olivier

Michel, Antoine Spicher, and René Doursat. Developmental design of syn-

thetic bacterial architectures by morphogenetic engineering. ACS synthetic

biology, 5(8):842–861, 2016.

[78] Yangxiaolu Cao, Marc D Ryser, Stephen Payne, Bochong Li, Christopher V

Rao, and Lingchong You. Collective space-sensing coordinates pattern scaling

in engineered bacteria. Cell, 165(3):620–630, 2016.

[79] Isaac N Nuñez, Tamara F Matute, Ilenne D Del Valle, Anton Kan, Atri Choksi,

Drew Endy, Jim Haseloff, Timothy J Rudge, and Fernan Federici. Artificial

symmetry-breaking for morphogenetic engineering bacterial colonies. ACS

synthetic biology, 6(2):256–265, 2017.

[80] Liyang Xiong, Yuansheng Cao, Robert Cooper, Wouter-Jan Rappel, Jeff Hasty,

and Lev Tsimring. Flower-like patterns in multi-species bacterial colonies.

Elife, 9:e48885, 2020.

Bibliography 167

[81] Lee R Lynd, Mark S Laser, David Bransby, Bruce E Dale, Brian Davison,

Richard Hamilton, Michael Himmel, Martin Keller, James D McMillan,

and John Sheehan. How biotech can transform biofuels. Nat. Biotechnol.,

26(2):169, 2008.

[82] Hyun-Dong Shin, Shara McClendon, Trinh Vo, and Rachel R Chen. Es-

cherichia coli binary culture engineered for direct fermentation of hemicellu-

lose to a biofuel. Appl. Environ. Microbiol, 76(24):8150–8159, 2010.

[83] Garima Goyal, Shen-Long Tsai, Bhawna Madan, Nancy A DaSilva, and

Wilfred Chen. Simultaneous cell growth and ethanol production from cellulose

by an engineered yeast consortium displaying a functional mini-cellulosome.

Microb. Cell Fact., 10(1):89, 2011.

[84] Chris J Paddon and Jay D Keasling. Semi-synthetic artemisinin: a model

for the use of synthetic biology in pharmaceutical development. Nat. Rev.

Microbiol., 12(5):355, 2014.

[85] M Fujita, M Ike, and S Hashimoto. Feasibility of wastewater treatment using

genetically engineered microorganisms. Water Research, 25(8):979–984,

1991.

[86] Mark A Eiteman, Sarah A Lee, and Elliot Altman. A co-fermentation strategy

to consume sugar mixtures effectively. J. Biol. Eng., 2(1):3, 2008.

[87] Kang Zhou, Kangjian Qiao, Steven Edgar, and Gregory Stephanopoulos.

Distributing a metabolic pathway among a microbial consortium enhances

production of natural products. Nat. Biotechnol., 33(4):377, 2015.

[88] Katie Brenner, Lingchong You, and Frances H Arnold. Engineering microbial

consortia: a new frontier in synthetic biology. Trends Biotechnol., 26(9):483–

489, 2008.

Bibliography 168

[89] Ahmad A Zeidan, Peter Rådström, and Ed WJ van Niel. Stable coexistence of

two caldicellulosiruptor species in a de novo constructed hydrogen-producing

co-culture. Microb. Cell Fact., 9(1):102, 2010.

[90] Frederick K Balagaddé, Hao Song, Jun Ozaki, Cynthia H Collins, Matthew

Barnet, Frances H Arnold, Stephen R Quake, and Lingchong You. A synthetic

escherichia coli predator–prey ecosystem. Mol. Syst. Biol., 4(1):187, 2008.

[91] Wenying Shou, Sri Ram, and Jose MG Vilar. Synthetic cooperation in engi-

neered yeast populations. Proc. Natl. Acad. Sci, 104(6):1877–1882, 2007.

[92] Alex JH Fedorec, Behzad D Karkaria, Michael Sulu, and Chris P Barnes.

Single strain control of microbial consortia. Nature communications, 12(1):1–

12, 2021.

[93] Gang Wu, Qiang Yan, J Andrew Jones, Yinjie J Tang, Stephen S Fong, and

Mattheos AG Koffas. Metabolic burden: cornerstones in synthetic biology

and metabolic engineering applications. Trends Biotechnol., 34(8):652–664,

2016.

[94] Rimvydas Simutis and Andreas Lübbert. Bioreactor control improves biopro-

cess performance. Biotechnol. J., 10(8):1115–1130, 2015.

[95] J Prakash and K Srinivasan. Design of nonlinear pid controller and nonlinear

model predictive controller for a continuous stirred tank reactor. ISA Trans.,

48(3):273–282, 2009.

[96] Guang-Yan Zhu, Abdelqader Zamamiri, Michael A Henson, and Martin A

Hjortsø. Model predictive control of continuous yeast bioreactors using cell

population balance models. Chem. Eng. Sci., 55(24):6155–6167, 2000.

[97] S Ramaswamy, TJ Cutright, and HK Qammar. Control of a continuous

bioreactor using model predictive control. Process Biochem., 40(8):2763–

2770, 2005.

Bibliography 169

[98] Iasson Karafyllis, Georgios Savvoglidis, Lemonia Syrou, Katerina Stamate-

latou, Costas Kravaris, and Gerasimos Lyberatos. Global stabilization of

continuous bioreactors. In American Institute of Chemical Engineers-Annual

Meeting, Sn. Francisco, USA, 2006.

[99] Hernán De Battista, Martı́n Jamilis, Fabricio Garelli, and Jesús Picó. Global

stabilisation of continuous bioreactors: Tools for analysis and design of

feeding laws. Automatica, 89:340–348, 2018.

[100] Frédéric Mazenc, Jérôme Harmand, and Michael Malisoff. Stabilization in

a chemostat with sampled and delayed measurements and uncertain growth

functions. Automatica, 78:241–249, 2017.

[101] Karlene A Hoo and Jeffrey C Kantor. Global linearization and control of

a mixed-culture bioreactor with competition and external inhibition. Math.

Biosci., 82(1):43–62, 1986.

[102] Neythen J Treloar, Alex JH Fedorec, Brian Ingalls, and Chris P Barnes. Deep

reinforcement learning for the control of microbial co-cultures in bioreactors.

PLoS computational biology, 16(4):e1007783, 2020.

[103] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-

tion, volume 1. MIT press Cambridge, 1998.

[104] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.

1989.

[105] Martin Riedmiller. Neural fitted q iteration–first experiences with a data

efficient neural reinforcement learning method. In European Conference on

Machine Learning, pages 317–328. Springer, 2005.

[106] Sabino Gadaleta and Gerhard Dangelmayr. Learning to control a complex

multistable system. Phys. Rev. E, 63(3):036217, 2001.

[107] Zhenpeng Zhou, Xiaocheng Li, and Richard N Zare. Optimizing chemical

reactions with deep reinforcement learning. ACS Cent. Sci., 2017.

Bibliography 170

[108] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-

mation error in actor-critic methods. In International Conference on Machine

Learning, pages 1587–1596. PMLR, 2018.

[109] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org.

[110] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,

2006.

[111] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv.org, 2014.

[112] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially

observable mdps. arXiv.org, 7(1), 2015.

[113] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[114] Michael A Johnson and Mohammad H Moradi. PID control. Springer, 2005.

[115] MATLAB. version 9.60.0 (R2019a). The MathWorks Inc., Natick, Mas-

sachusetts, 2019.

[116] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control.

Springer science & business media, 2013.

Bibliography 171

[117] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming. Math-

ematical programming, 106(1):25–57, 2006.

[118] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz

Diehl. CasADi – A software framework for nonlinear optimization and

optimal control. Mathematical Programming Computation, 11(1):1–36, 2019.

[119] Jillian M Couto, Anne McGarrity, Julie Russell, and William T Sloan. The

effect of metabolic stress on genome stability of a synthetic biology chassis

escherichia coli k12 strain. Microbial cell factories, 17(1):8, 2018.

[120] Peter Rugbjerg, Nils Myling-Petersen, Andreas Porse, Kira Sarup-Lytzen,

and Morten OA Sommer. Diverse genetic error modes constrain large-scale

bio-based production. Nature communications, 9(1):1–14, 2018.

[121] Javier Macia and Ricard Sole. How to make a synthetic multicellular computer.

PLoS One, 9(2):e81248, 2014.

[122] Yeqing Zong, Haoqian M Zhang, Cheng Lyu, Xiangyu Ji, Junran Hou, Xian

Guo, Qi Ouyang, and Chunbo Lou. Insulated transcriptional elements enable

precise design of genetic circuits. Nature communications, 8(1):1–13, 2017.

[123] Joy Doong, James Parkin, and Richard M Murray. Length and time scales of

cell-cell signaling circuits in agar. 2017.

[124] Kathakali Sarkar, Deepro Bonnerjee, Rajkamal Srivastava, and Sangram

Bagh. A single layer artificial neural network type architecture with molecular

engineered bacteria for reversible and irreversible computing. Chemical

science, 12(48):15821–15832, 2021.

[125] Jürgen Branke. Evolutionary algorithms for neural network design and train-

ing. In In Proceedings of the first Nordic workshop on genetic algorithms and

its applications. Citeseer, 1995.

Bibliography 172

[126] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation

functions. arXiv preprint arXiv:1710.05941, 2017.

[127] Wolfram Research, Inc. Mathematica, Version 12.3.1. Champaign, IL, 2021.

[128] Joy Doong, James Parkin, and Richard M. Murray. Length and time scales of

cell-cell signaling circuits in agar. bioRxiv, 2017.

[129] James E Baker et al. Reducing bias and inefficiency in the selection algorithm.

In Proceedings of the second international conference on genetic algorithms,

volume 206, pages 14–21, 1987.

[130] Stephen B Hanauer. Inflammatory bowel disease: epidemiology, pathogenesis,

and therapeutic opportunities. Inflammatory bowel diseases, 12(suppl 1):S3–

S9, 2006.

[131] Magdy El-Salhy. Irritable bowel syndrome: diagnosis and pathogenesis.

World journal of gastroenterology: WJG, 18(37):5151, 2012.

[132] Julia MW Wong, Russell De Souza, Cyril WC Kendall, Azadeh Emam, and

David JA Jenkins. Colonic health: fermentation and short chain fatty acids.

Journal of clinical gastroenterology, 40(3):235–243, 2006.

[133] Kristina N-M Daeffler, Jeffrey D Galley, Ravi U Sheth, Laura C Ortiz-Velez,

Christopher O Bibb, Noah F Shroyer, Robert A Britton, and Jeffrey J Tabor.

Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut

inflammation. Molecular systems biology, 13(4):923, 2017.

[134] Christoph Küper and Kirsten Jung. Cadc-mediated activation of the cadba

promoter in escherichia coli. Journal of molecular microbiology and biotech-

nology, 10(1):26–39, 2005.

[135] Tanel Ozdemir. Design and construction of therapeutic bacterial sensors in

Escherichia coli Nissle 1917. PhD thesis, UCL (University College London),

2018.

Bibliography 173

[136] Olivier Bernard, Zakaria Hadj-Sadok, Denis Dochain, Antoine Genovesi,

and Jean-Philippe Steyer. Dynamical model development and parameter

identification for an anaerobic wastewater treatment process. Biotechnology

and bioengineering, 75(4):424–438, 2001.

[137] Amanda N Payne, Annina Zihler, Christophe Chassard, and Christophe

Lacroix. Advances and perspectives in in vitro human gut fermentation

modeling. Trends in biotechnology, 30(1):17–25, 2012.

[138] Pascal Cougnon, Denis Dochain, Martin Guay, and Michel Perrier. On-line

optimization of fedbatch bioreactors by adaptive extremum seeking control.

Journal of Process Control, 21(10):1526–1532, 2011.

[139] L Syrou, I Karafyllis, K Stamatelatou, G Lyberatos, and C Kravaris. Robust

global stabilization of continuous bioreactors. IFAC Proceedings Volumes,

37(9):995–1000, 2004.

[140] Aivar Sootla, Natalja Strelkowa, Damien Ernst, Mauricio Barahona, and Guy-

Bart Stan. Toggling a genetic switch using reinforcement learning. arXiv.org,

2013.

[141] Thomas Lampe and Martin Riedmiller. Approximate model-assisted neural

fitted q-iteration. In 2014 International Joint Conference on Neural Networks

(IJCNN), pages 2698–2704. IEEE, 2014.

[142] Damien Ernst, Guy-Bart Stan, Jorge Goncalves, and Louis Wehenkel. Clinical

data based optimal sti strategies for hiv: a reinforcement learning approach.

In Proceedings of the 45th IEEE Conference on Decision and Control, pages

667–672. IEEE, 2006.

[143] Xuefeng Peng, Yi Ding, David Wihl, Omer Gottesman, Matthieu Komorowski,

Li-wei H Lehman, Andrew Ross, Aldo Faisal, and Finale Doshi-Velez. Im-

proving sepsis treatment strategies by combining deep and kernel-based rein-

forcement learning. In AMIA Annual Symposium Proceedings, volume 2018,

page 887. American Medical Informatics Association, 2018.

Bibliography 174

[144] B Jaganatha Pandian and Mathew Mithra Noel. Control of a bioreactor using a

new partially supervised reinforcement learning algorithm. Journal of Process

Control, 69:16–29, 2018.

[145] MASAYUKI Seto and MARTIN Alexander. Effect of bacterial density and

substrate concentration on yield coefficients. Appl. Environ. Microbiol.,

50(5):1132–1136, 1985.

[146] JD Owens and JD Legan. Determination of the monod substrate saturation

constant for microbial growth. FEMS Microbiol. Rev., 3(4):419–432, 1987.

[147] Robert A Cox. Quantitative relationships for specific growth rates and macro-

molecular compositions of mycobacterium tuberculosis, streptomyces coeli-

color a3 (2) and escherichia coli b/r: an integrative theoretical approach.

Microbiology, 150(5):1413–1426, 2004.

[148] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source

scientific tools for Python, 2001.

[149] Andres C Rodriguez, Ronald Parr, and Daphne Koller. Reinforcement learning

using approximate belief states. In Advances in Neural Information Processing

Systems, pages 1036–1042, 2000.

[150] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In

Advances in neural information processing systems, pages 2164–2172, 2010.

[151] Brandon G Wong, Christopher P Mancuso, Szilvia Kiriakov, Caleb J Bashor,

and Ahmad S Khalil. Precise, automated control of conditions for high-

throughput growth of yeast and bacteria with evolver. Nature biotechnology,

36(7):614–623, 2018.

[152] Chris N Takahashi, Aaron W Miller, Felix Ekness, Maitreya J Dunham, and

Eric Klavins. A low cost, customizable turbidostat for use in synthetic circuit

characterization. ACS synthetic biology, 4(1):32–38, 2015.

Bibliography 175

[153] Stefan A Hoffmann, Christian Wohltat, Kristian M Müller, and Katja M Arndt.

A user-friendly, low-cost turbidostat with versatile growth rate estimation

based on an extended kalman filter. PloS one, 12(7), 2017.

[154] Harrison Steel, Robert Habgood, Ciarán Kelly, and Antonis Papachristodoulou.

Chi. bio: An open-source automated experimental platform for biological

science research. bioRxiv, page 796516, 2019.

[155] Kevin S Lee, Paolo Boccazzi, Anthony J Sinskey, and Rajeev J Ram. Mi-

crofluidic chemostat and turbidostat with flow rate, oxygen, and temperature

control for dynamic continuous culture. Lab on a Chip, 11(10):1730–1739,

2011.

[156] Gustaf Ullman, Mats Wallden, Erik G Marklund, Anel Mahmutovic, Ivan

Razinkov, and Johan Elf. High-throughput gene expression analysis at the

level of single proteins using a microfluidic turbidostat and automated cell

tracking. Philosophical Transactions of the Royal Society B: Biological

Sciences, 368(1611):20120025, 2013.

[157] Jason Karslake, Jeff Maltas, Peter Brumm, and Kevin B Wood. Population

density modulates drug inhibition and gives rise to potential bistability of

treatment outcomes for bacterial infections. PLoS computational biology,

12(10), 2016.

[158] Erdal Toprak, Adrian Veres, Jean-Baptiste Michel, Remy Chait, Daniel L

Hartl, and Roy Kishony. Evolutionary paths to antibiotic resistance under

dynamically sustained drug selection. Nature genetics, 44(1):101, 2012.

[159] Samay Pande, Holger Merker, Katrin Bohl, Michael Reichelt, Stefan Schuster,

Luı́s F De Figueiredo, Christoph Kaleta, and Christian Kost. Fitness and

stability of obligate cross-feeding interactions that emerge upon gene loss in

bacteria. The ISME journal, 8(5):953–962, 2014.

[160] Colton J Lloyd, Zachary A King, Troy E Sandberg, Ying Hefner, Connor A Ol-

son, Patrick V Phaneuf, Edward J O’Brien, Jon G Sanders, Rodolfo A Salido,

Bibliography 176

Karenina Sanders, et al. The genetic basis for adaptation of model-designed

syntrophic co-cultures. PLoS computational biology, 15(3):e1006213, 2019.

[161] Xiaolin Zhang and Jennifer L Reed. Adaptive evolution of synthetic cooperat-

ing communities improves growth performance. PloS one, 9(10), 2014.

[162] Haoran Zhang, Brian Pereira, Zhengjun Li, and Gregory Stephanopoulos. En-

gineering escherichia coli coculture systems for the production of biochemical

products. Proceedings of the National Academy of Sciences, 112(27):8266–

8271, 2015.

[163] M Omar Din, Tal Danino, Arthur Prindle, Matt Skalak, Jangir Selimkhanov,

Kaitlin Allen, Ellixis Julio, Eta Atolia, Lev S Tsimring, Sangeeta N Bhatia,

et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature,

536(7614):81–85, 2016.

[164] Jérôme Izard, Cindy DC Gomez Balderas, Delphine Ropers, Stephan Lacour,

Xiaohu Song, Yifan Yang, Ariel B Lindner, Johannes Geiselmann, and Hidde

de Jong. A synthetic growth switch based on controlled expression of rna

polymerase. Molecular systems biology, 11(11), 2015.

[165] Jeff Maltas and Kevin B Wood. Pervasive and diverse collateral sensitivity

profiles inform optimal strategies to limit antibiotic resistance. PLoS biology,

17(10), 2019.

[166] Andrej Fischer, Ignacio Vázquez-Garcı́a, and Ville Mustonen. The value

of monitoring to control evolving populations. Proceedings of the National

Academy of Sciences, 112(4):1007–1012, 2015.

[167] Edouard Pauwels, Christian Lajaunie, and Jean-Philippe Vert. A bayesian

active learning strategy for sequential experimental design in systems biology.

BMC Systems Biology, 8(1):1–11, 2014.

[168] Juliane Liepe, Paul Kirk, Sarah Filippi, Tina Toni, Chris P Barnes, and

Michael PH Stumpf. A framework for parameter estimation and model selec-

Bibliography 177

tion from experimental data in systems biology using approximate bayesian

computation. Nature protocols, 9(2):439–456, 2014.

[169] Nathan Braniff, Matthew Scott, and Brian Ingalls. Component characterization

in a growth-dependent physiological context: optimal experimental design.

Processes, 7(1):52, 2019.

[170] Nathan Braniff, Addison Richards, and Brian Ingalls. Optimal experimen-

tal design for a bistable gene regulatory network. IFAC-PapersOnLine,

52(26):255–261, 2019.

[171] Meng Fang, Yuan Li, and Trevor Cohn. Learning how to active learn: A deep

reinforcement learning approach. arXiv preprint arXiv:1708.02383, 2017.

[172] Adam Yala. Improving information extraction by acquiring external evi-

dence with reinforcement learning. PhD thesis, Massachusetts Institute of

Technology, 2017.

[173] Tilman Barz, Diana C López Cárdenas, Harvey Arellano-Garcia, and Günter

Wozny. Experimental evaluation of an approach to online redesign of ex-

periments for parameter determination. AIChE Journal, 59(6):1981–1995,

2013.

[174] MN Cruz Bournazou, T Barz, DB Nickel, DC Lopez Cárdenas, F Glauche,

A Knepper, and P Neubauer. Online optimal experimental re-design in robotic

parallel fed-batch cultivation facilities. Biotechnology and bioengineering,

114(3):610–619, 2017.

[175] David Benjamin Nickel, Mariano Nicolas Cruz-Bournazou, Terrance Wilms,

Peter Neubauer, and Andreas Knepper. Online bioprocess data generation,

analysis, and optimization for parallel fed-batch fermentations in milliliter

scale. Technical report, Wiley Online Library, 2017.

[176] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag,

Timothy Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas

Bibliography 178

Degris, and Ben Coppin. Deep reinforcement learning in large discrete action

spaces. arXiv preprint arXiv:1512.07679, 2015.

[177] Fabio Muratore, Felix Treede, Michael Gienger, and Jan Peters. Domain

randomization for simulation-based policy optimization with transferability

assessment. In Aude Billard, Anca Dragan, Jan Peters, and Jun Morimoto,

editors, Proceedings of The 2nd Conference on Robot Learning, volume 87 of

Proceedings of Machine Learning Research, pages 700–713. PMLR, 29–31

Oct 2018.

[178] Ankush Chakrabarty, Gregery T Buzzard, and Ann E Rundell. Model-based

design of experiments for cellular processes. Wiley Interdisciplinary Reviews:

Systems Biology and Medicine, 5(2):181–203, 2013.

[179] Nathan Braniff and Brian Ingalls. New opportunities for optimal design of

dynamic experiments in systems and synthetic biology. Current Opinion in

Systems Biology, 9:42–48, 2018.

[180] Juliane Liepe, Sarah Filippi, Michał Komorowski, and Michael PH Stumpf.

Maximizing the information content of experiments in systems biology. PLoS

computational biology, 9(1):e1002888, 2013.

[181] Anthony Atkinson, Alexander Donev, and Randall Tobias. Optimum experi-

mental designs, with SAS, volume 34. Oxford University Press, 2007.

[182] Lucia Bandiera, David Gomez-Cabeza, James Gilman, Eva Balsa-Canto,

and Filippo Menolascina. Optimally designed model selection for synthetic

biology. ACS Synthetic Biology, 9(11):3134–3144, 2020.

[183] MATLAB. 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Mas-

sachusetts, 2018.

[184] Alejandro F Villaverde, Antonio Barreiro, and Antonis Papachristodoulou.

Structural identifiability of dynamic systems biology models. PLoS computa-

tional biology, 12(10):e1005153, 2016.

	Background
	Overview of computational concepts
	Digital computing
	Analogue computing with neural networks

	Computing in synthetic biological systems
	Capabilities of realised distributed computers

	Distributed bio-processing
	Reinforcement learning
	The Markov property
	The Bellman equations
	Q-learning

	Aims
	Thesis outline
	Contribution to publications

	Methods
	Finite difference simulation of diffusion
	Reinforcement learning algorithms
	Neural Fitted Q-learning algorithm
	Twin Delayed Deep Deterministic Policy Gradient

	Proportional integral derivative control
	Model predictive control

	Distributed digital biocomputation through spatial diffusion and engineered bacteria
	Introduction
	The capabilities of a single output colony
	All two input logic gates can be realised with a single output colony
	Computationally enumerating logic gates
	Simulation verifies the two input mathematical results
	One output colony cannot realise all three input digital functions

	The Macchiato algorithm: optimal distributed spatial circuits
	The relative importance of the activation functions for the Macchiato algorithm
	Upper bound for the number of output colonies

	Discussion

	Distributed analogue biocomputation through spatial diffusion and engineered bacteria
	Introduction
	Modelling bacterial communication networks as artificial neural networks
	Training bacterial neural networks using an evolutionary algorithm
	Constraints
	Modelling bacterial communication as the forward pass of a neural network
	Evolutionary algorithm

	Bacterial neural networks can approximate a wide range of functions
	Application to biosensing
	Discussion

	Deep reinforcement learning for the control of microbial co-cultures in bioreactors
	Introduction
	A mathematical model of interacting bacterial populations in a chemostat
	Controlling interacting bacterial populations in a chemostat
	Minimum inter-sampling period
	Number of Fitted Q-iterations to avoid over fitting
	Number of Fitted Q-iterations for value convergence
	Reinforcement learning can be used to control the bioreactor system
	Reinforcement learning is robust to different initial conditions and targets

	Comparison of reinforcement learning with proportional integral control
	Proportional integral controller tuning
	Reinforcement learning outperforms proportional integral control for long inter-sampling periods

	A good policy can be learned online using parallel bioreactors
	The yield of a community-based product can be directly optimised
	Discussion

	Deep reinforcement learning for optimal experimental design in synthetic biology
	Introduction
	Formulation of the optimal experimental design problem
	Fitted Q-learning for optimal experimental design
	Reinforcement learning for optimal experimental design on a simple Monod growth system
	Reinforcement learning for optimal experimental design on a model of gene transcription

	A continuous, recurrent RL controller for OED for bacterial growth
	Removing the dependence on a priori parameter estimates
	Continuous, recurrent reinforcement learning to design experiments
	Optimal experimental design for a single auxotroph in a chemostat
	Reinforcement learning can be used to optimise over a parameter distribution

	Discussion

	General conclusions
	Appendices
	Reinforcement learning control repeats
	Mathematics of optimal experimental design on the Monod system
	Parameter identifiability of the single chemostat system
	Bibliography

