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Abstract 

87.5% of wild plant species are thought to be pollinated to some extent by animals, with an 

estimated global value of $235-577 billion US dollars per annum to crop pollination. Across 

North America and Europe numerous studies have documented declines in pollinating 

animals. A number of anthropogenic drivers—primarily land-use and climate change—have 

been associated with these losses. However, the extent to which land-use and climate act 

individually and synergistically to drive changes, and how this might risk the contribution 

pollinators make to crop pollination, is still unclear. In this thesis I explore the causes and 

potential consequences of pollinator biodiversity change. First, I use a set of name-entity 

recognition algorithms to quantify the geographic and taxonomic distribution of the animal 

pollination literature, confirming that although the pollination literature does over-represent the 

honey bees and bumblebees of North America and Europe, there is also pollination 

information across a range of other taxa and locations. Second, I then apply these same 

algorithms in combination with a manual literature check to identify a set of likely pollinating 

species. I then use this set of likely pollinating species and a database of local biodiversity 

records to model the global response of pollinator biodiversity to land-use type and intensity, 

showing how response differs among taxonomic groups, biodiversity metrics, and geographic 

regions. Third, I then use my set of likely pollinating species to investigate the interactive 

effects of land use and climate change on pollinator abundance, demonstrating a strongly 

negative synergistic interaction between climate change and land use. Using this model, 

estimations of global pollination dependent production, and future climate scenarios, I then 

project temporal and spatial changes in crop pollination risk. Fourth, I develop a new metric of 

biodiversity awareness using Wikipedia page views, which I use to show that public interest 

in pollinators has likely not increased. I conclude by discussing the core findings of my thesis 

in the context of the current debate around pollinator biodiversity change and conservation 

culturomics, with some suggestions as to how these respective fields might move forward. 
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Impact statement 

Pollinator biodiversity is highly important to humanity, both through the way in which it 

underpins the structure of many ecosystems, and through the contribution it makes to crop 

production. Numerous studies have indicated that pollinator biodiversity is undergoing rapid 

change, driven primarily by climate change and land use, but the magnitude of change and 

the extent to which it differs among taxonomic groups, biodiversity metrics, and geographic 

regions, remains unclear. Moreover, how these changes might affect crop pollination is an 

ongoing question, with a large body of research indicating losses of crop yield can result from 

pollinator biodiversity change. The primary aim of this thesis is to further our understanding of 

both the causes and potential consequences of pollinator biodiversity change, in this present 

epoch of unprecedented human activity. I make a number of novel contributions to the field, 

which could potentially help to inform the future conservation of pollinator biodiversity. 

In Chapter 3, I model the effect of land-use intensity on global pollinator biodiversity, using the 

most comprehensive space-for-time model to date, showing strong effects of land use on 

tropical pollinator biodiversity and a differential effect among pollinating taxa. The results of 

this chapter are published in Nature Communications, where it was selected for an editor’s 

highlight in the category ‘Ecology and Evolution’. 

In Chapter 4 I further develop the models in Chapter 3, here focussing on the interactive effects 

of climate change and land use. Using future scenarios of climate change and estimations of 

global pollination dependent agriculture, I show that crop pollination risk will likely be highest 

in northern South America and sub-Saharan Africa, and that under RCP 8.5 rapid change in 

pollination production risk could occur in the 2030s. As far as I know this work represents the 

broadest study of the interactive effects of climate change and land use on pollinator 

biodiversity, and the first attempt to project how this interaction might relate to the spatial and 

temporal distribution of crop pollination risk. The results of this chapter are currently in 

preparation for submission in a high-impact journal. In addition I have also developed an 
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interactive web app to present the findings of this paper 

(https://joemillard.shinyapps.io/pollinator_dependence_visualisation/), which can be used to 

inform both crop pollination risk to individual countries and global crop production.  

In addition to Chapters 3 and 4, I also contribute towards developing our understanding of the 

pollination literature, and efforts to develop online metrics for public biodiversity awareness, 

both of which are important in contextualising the causes and consequences of pollinator 

biodiversity change. For example, Chapter 2 confirms that the pollination literature is 

concentrated in the honey bees and bumble bees of North America and Europe, with a set of 

name-entity recognition tools rarely applied in ecology and conservation. The results of this 

chapter are published in Ecography, and were presented at SCCS Europe 2019, the RSPB 

Annual Science Meeting 2019, and the Linnean Student Conference 2019. In Chapter 5, I 

introduce a new metric of public biodiversity awareness using Wikipedia page views, and 

suggest how this might be combined with other online metrics already in existence. The results 

of this chapter are published in a special section of Conservation Biology, entitled ‘Advancing 

Conservation Culturomics’, and were presented at the BES Festival of Ecology 2020. 
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Thesis outline 

Chapter 1: Introduction 

Chapter 2: Text-analysis reveals taxonomic and geographic biases in pollinator 

information 

As anthropogenic activity has driven changes in global biodiversity, concerns have arisen for 

the prospects of pollinators and the services they provide humanity. Such changes have driven 

a significant push for further research. Much of this growth in research is said to have occurred 

in the honeybees and bumblebees of North America and Europe, but the extent of this bias is 

unclear. In Chapter 2 I carry a text-analysis systematic review of the animal pollinator 

literature, using name-entity recognition algorithms to quantify the temporal, taxonomic, and 

geographic distribution of the animal pollinator literature. The work for this chapter is published 

in Ecography (Millard et al. 2020a), in collaboration with Dr. Robin Freeman and Dr. Tim 

Newbold. I conceived and designed the review (with Dr Robin Freeman and Dr Tim Newbold), 

carried out all the analysis, produced the figures, wrote the initial draft of the manuscript, and 

handled the manuscript through submission and review. Thanks also to Prof. Richard D. 

Gregory, Adrienne Etard, and Patrick Molgaard for suggestions, edits, and advice. 

Chapter 3: Global effects of land-use intensity on local pollinator biodiversity 

Anthropogenic land-use intensity is well known as a driver of pollinator biodiversity change, 

but at the global scale the magnitude of its effect among taxonomic groups, geographic 

regions, biodiversity metrics, and forms of intensity is unclear. In Chapter 3 I use the name-

entity recognition algorithms of Chapter 2, in conjunction with manual checking from both 

myself and a panel of experts, to build a database of likely pollinating species. I then subset 

this set of likely pollinating species from a database of local biodiversity records (the 

PREDICTS database), before building a set of space-for-time models predicting pollinator 

biodiversity response to land-use intensity and type. The work for this chapter is published in 
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Nature Communications (Millard et al. 2021a), in collaboration with Dr. Charlotte L. Outhwaite, 

Robyn Kinnersley, Dr. Robin Freeman, Prof. Richard D. Gregory, Dr. Opeyemi Adedoja, Dr. 

Sabrina Gavini, Dr. Esther Kioko, Dr. Michael Kuhlmann, Prof. Jeff Ollerton, Dr. Zong-Xin Ren, 

and Dr. Tim Newbold. I conceived and designed the analysis (with Dr Tim Newbold), led all 

the analysis and figure design, wrote the initial draft of the manuscript, and handled the 

manuscript through submission and review. Thanks also to Dr Manu Saunders and Bruna 

Abreu for advice and comments, and Dr Monica Ortiz for aggregating the forest cover data in 

the supplementary information (Appendix 2). 

Chapter 4: Worldwide vulnerability of local pollinator abundance and crop pollination 

to land-use and climate change 

Although anthropogenic land use has been a significant driver of pollinator biodiversity 

change, its effect is predicted to be surpassed by climate change over the coming decades. 

These climate effects likely interact with the structure of the land, such that the effects of both 

land use and climate change together have a magnified effect on biodiversity. In the future 

therefore, places in which cropland and rapid climate change intersect may be most vulnerable 

to significant pollinator biodiversity change. For regions that experience this interactive effect 

in combination with a high dependence on pollination for crop production, one might expect 

crop pollination shortfall. In Chapter 4 I use the PREDICTS database subset from Chapter 3 

to model the response of pollinator abundance to land-use type (cropland and primary 

vegetation) and a standardised climate anomaly. I then apply my model of insect pollinator 

abundance in conjunction with global crop data, ratios for crop production dependence on 

animal pollination, and future projections of climate change, to predict temporal and spatial 

patterns of future crop pollination risk. The work for this chapter was undertaken in 

collaboration with Dr. Abbie Chapman, Dr. Silvia Ceausu, Dr. Robin Freeman, Prof. Richard 

D. Gregory, Dr. Charlotte L. Outhwaite, and Dr. Tim Newbold, and is being prepared for 

submission. I conceived and designed the analysis (with Dr Tim Newbold), led all the analysis 

and figure design, and wrote the initial draft of the manuscript as a thesis chapter. 
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Chapter 5: The species awareness index as a conservation culturomics metric for 

public biodiversity awareness.  

Given the recent media attention afforded to pollinator biodiversity change, and biodiversity 

change more generally, one might expect that public awareness of biodiversity and its threats 

has experienced a concomitant increase. Conservation culturomics has emerged as a means 

through which such awareness can be measured, with online data sources such as social 

media, online newspapers, and search trends used to quantity human-nature interactions. In 

Chapter 5 I introduce a new conservation culturomics metric for public biodiversity awareness, 

using Wikipedia page views and a methodology inspired by the Living Planet Index. Here I 

show that although awareness of biodiversity has likely marginally increased, awareness of 

the value of biodiversity likely has not, since both pollinating and traded species do not have 

significantly greater rates of change in awareness than their non-pollinating or non-traded 

counterparts. The work for this chapter is published in Conservation Biology in a special 

section entitled ‘Advancing Conservation Culturomics’ (Millard et al. 2021b), in collaboration 

with Dr. Robin Freeman, Prof. Richard Gregory, and Prof. Kate Jones. I conceived and 

designed the analysis (with Dr Robin Freeman), carried out all the analysis, produced the 

figures, wrote the initial draft of the manuscript, and handled the manuscript through 

submission and review. Thanks also to Dr. Yan Wong and Dr James Rosindell for providing 

taxonomic mapping data and Dr Tim Newbold, Dr Rory Gibb, and the CBER Journal Club and 

Data Club for discussions and comments on earlier drafts of the manuscript.  

Chapter 6: Discussion and synthesis 
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Chapter 1: Introduction 

A brief introduction to animal pollination 

Pollination facilitates the reproduction of many plant species (IPBES 2016). Its importance to 

the continuing functioning of the biosphere, as it currently exists today, is undoubtedly highly 

significant. Specifically, pollination describes the transfer of pollen—the male plant gamete—

from the male anther structure of the plant to the female stigma, causing fertilisation and the 

production of a fruit and seed (Proctor 1996). This fruit and seed forms the basis of the 

following generation, dispersed by either the plant itself or some animal vector (Proctor 1996). 

Pollen can be transferred either among the sexual structures of a single plant, or across 

individual plants. When pollen is transferred from the male to female structures of the same 

flower, or across flowers within the same individual, it’s described as self-pollination (Proctor 

1996). Such a reproductive strategy is present at least to some extent in many flowering 

plants, with some species having evolved to reproduce entirely through self-pollination 

(Schoen et al. 1996). When pollen is transferred across individual plants, it’s described as 

cross-pollination (Proctor 1996). Since self-pollination increases inbreeding and reduces 

genetic diversity, in many flowering plants selection has favoured the evolution of cross-

pollination (Barrett 2010). In order to achieve cross-pollination however, given the distance 

between individual plants, many plants have evolved to recruit some external means of pollen 

transfer (Proctor 1996). For many flowering plants this means abiotic pollination, using either 

wind or water (Ackerman 2000). These flowering plants release large quantities of pollen into 

their immediate surroundings, with the pollen then carried in wind or water currents to 

neighbouring plants (Ackerman 2000). Wind pollination is typical of grass species, and more 

common at temperate than tropical latitudes (Ollerton et al. 2011). Water pollination is less 

common, but an important mechanism for many seagrass species (Ackerman 2000). 
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Since releasing large quantities of pollen is energetically expensive, if they exist within an 

environment in which they can, many flowering plants have evolved to recruit animal vectors 

for the transfer of pollen (Proctor 1996). Such a reproductive strategy is thought to have 

evolved perhaps as early as the Carboniferous (300 mya) (van der Kooi and Ollerton 2020). 

Since then, animal pollination has been a hugely successful evolutionary innovation for 

flowering plants. At tropical latitudes approximately 95% of all flowering plants are animal 

pollinated (Rech et al. 2016), and at the global level, 87.5% of wild plant species are thought 

to be pollinated to some extent by animals (Ollerton, Winfree and Tarrant 2011). These 

pollinators are represented across a variety of taxonomic groups, including but not limited to 

insects, bats, birds, lizards, and rodents (Ollerton 2017). The greatest contributors globally are 

the insects (Wardhaugh 2015). Insect pollinators include the bees (Anthophila), beetles 

(Coleoptera), butterflies and moths, (Lepidoptera), bugs (Hemiptera), flies (Diptera), and 

multiple wasp groups (Wardhaugh 2015). Spatial differences in pollinator importance for wild 

and crop plants do exist (Ollerton 2017), but of these pollinating groups, today the bees are 

likely the most important pollinators (Potts et al. 2010). A relatively small group at 

approximately 20,000 species (Michener 2000), the bees are almost completely reliant on 

floral resources in both the larval and adult developmental stages, meaning the frequency with 

which they visit flowers is relatively high (Michener 2000). 

The importance of animal pollinators to people 

Over roughly the past 10,000 years, humans have domesticated a number of plant species in 

the development of agriculture, artificially selecting desirable plant traits for large-scale 

production and consumption (Harlan 1992). At the global level today, by both total production 

and the number of crops, production of these species is in the main not reliant on animal 

pollination (Aizen et al. 2009). Staple crops such as wheat, rice, maize, and barley are all 

wind-pollinated (Klein et al. 2007). Root vegetable crops such as potatoes, carrots, turnips, 

and cassava are propagated from tubers of previous generations, often only requiring self or 

cross pollination for the production of new crop varieties (Aizen et al. 2009). Indeed, owing to 
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the contribution of wind, self-pollination, and propagation, only 5-8% of global crop production 

(by tonnage) is said to be dependent on animal pollinators (Aizen et al. 2009).  

Given the relatively low contribution animal pollination makes to global crop production, it is 

tempting to conclude that pollinators are unimportant to humanity. However, for a number of 

reasons this conclusion is misguided. First, although the extent to which crop production is 

reliant on animal pollination is relatively low, the importance of pollinators in maintaining the 

terrestrial ecosystems in which we have evolved is not (Ollerton 2021). With the instantaneous 

disappearance of animal pollinators, one would expect the environment in which we live to 

change abruptly, with unknown consequences for our own future (Potts et al. 2016). Second, 

although total crop production dependent on animal pollinators is relatively low, this production 

forms an important nutritional component in the diets of many people. Wind-pollinated crop 

species more often produce a high-calorie crop (Richards 2001; Prescott-Allen and Prescott-

Allen 1990; Ghazoul 2005); a core dietary component, but not sufficient alone for a healthy 

diet. Animal-pollinated fruits, on the other hand, tend to provide a higher density of many 

essential vitamins and minerals (Eilers et al. 2011). Third, although total crop production has 

low dependence on animal pollination, for some crops animal pollination is essential (Klein et 

al. 2007). For example, production of atemoya, Brazil nuts, cantaloupes, cocoa, kiwis, 

macadamia nuts, passion fruit, pawpaw (Asimina fruit), rowanberries, sapodilla, squashes and 

pumpkins, vanilla and watermelons is wholly reliant on animal pollination (Klein et al. 2007). 

Since the spatial distribution of these crops is not even, there is therefore variation in the extent 

to which agricultural regions are dependent on animal pollination. Many tropical crops, for 

example, have a higher reliance on animal pollination than crops grown elsewhere (Klein et 

al. 2007). Reliance in the tropics is such that, via the production of cocoa alone, the national 

economies of countries such as Ivory Coast and Ghana are in theory highly vulnerable to 

changes in animal pollinator biodiversity (Schroth et al. 2016).  
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Animal pollinator biodiversity change in the Anthropocene  

Pollinators exist within a world that’s experiencing an abrupt—at least on geological time-

scales—period of environmental change. A period of change driven by the activities of 

humanity on Earth, often referred to as the Anthropocene (Schroth et al. 2016). Typically, 

these human activities are associated with the Industrial Revolution and the Great 

Acceleration (Lewis and Maslin 2015), but likely go back much further (Mottl et al. 2021). 

Indeed, current anthropogenic impacts are now seen in the context of a period of disturbance 

going back thousands of years (Mottl et al. 2021). Since the Great Acceleration however, 

effects on the Earth have increased rapidly (Steffen et al. 2015). Over the past ~40 years, 

average global temperature has increased at a rate of 0.2°C per decade (IPCC 2018). This 

upward trend is projected to continue and accelerate, with a potential 4°C rise by 2100 (IPCC 

2018). (Models also indicate precipitation will experience regional changes, leading to novel 

conditions of both temperature and aridity (IPCC 2018).  Anthropogenic land use has also 

grown significantly, with more than 75% of the terrestrial world now showing evidence of 

historical or current transformation (Ellis and Ramankutty 2008), and just over 50% currently 

used by humans (Le B. Hooke, et al. 2012). And land-use will continue to grow, particularly in 

the tropics where agriculture is expected to expand quickly over the coming decades 

(Laurance et al. 2014).  

The consequences of human activity for biodiversity have been great. The clearest effects are 

seen in species extinction rates, currently thought to be ~100-1000 times the background rate 

(Pimm et al. 1995), which has been said could lead to a sixth mass extinction (Ceballos et al. 

2015). Specifically, 28% of all assessed species are currently threatened with extinction (IUCN 

2021), and at least 778 animal species have gone extinct since 1500 (IUCN 2021). Most likely 

this total is an underestimate, given the difficulties associated with recording a species as 

extinct (Dirzo et al. 2014), and the many species we know very little or nothing about (Pimm 

et al. 1995). Local change is more complex, owing to the multiple ways in which local 

biodiversity can be measured, and the complexities associated with taxonomic, spatial, and 
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temporal scale (Gonzalez et al. 2016). Space-for-time models of local biodiversity indicate that 

anthropogenic land use tends to reduce site-level species richness and total abundance, and 

homogenise biodiversity between sites (Newbold et al. 2018; Newbold et al. 2015a). 

Assemblage trends indicate that local diversity has experienced no net change and community 

composition a reduction, both since the late 1800s (Dornelas et al. 2014). Vertebrate 

population trends specifically have tended to decrease on average since the 1970s (McRae 

et al. 2017), but again there is variation in the direction and magnitude of change among taxa 

and geographic regions (Leung et al. 2020) 

Animal pollinators have not escaped the effects of the Anthropocene. A number of recent 

studies have found evidence of change in pollinator biodiversity, typically referred to in the 

literature as “pollinator decline” (Lever et al. 2014; Garibaldi et al. 2009; Gallai et al. 2009), 

and in the media as an “ecological Armageddon” (Embury-Dennis 2017). For the evidence 

currently available, the term “pollinator decline” is well-founded, at least for average change 

in abundance, species richness, and biomass (Ollerton 2017; see below for a summary of the 

evidence). But there are still quite profound differences among taxonomic groups and 

geographic regions (Powney et al. 2019), and data still tends to be biased towards select 

taxonomic groups in North America and Europe (Saunders et al. 2020).  For “pollination 

crises”, it’s an open question as to whether declines yet warrant this term (Ghazoul 2005; 

Ghazoul 2015), or if the term “crisis” could still be warranted if global pollinator biodiversity 

change is found to be highly heterogeneous. Indeed, for the services pollinators provide in the 

form of crop pollination and ecosystem functioning, a negative net-change in some metric of 

biodiversity doesn’t necessarily have to mean a negative impact on people. 

One of the core distinctions for pollinator biodiversity change is between domesticated and 

wild pollinators (Ollerton 2021; Potts et al. 2010), both in terms of the difference in change and 

the extent to which we can be confident that our evidence of change is representative. 

Domesticated pollinators refer to those that humans deliberately rear for the production of 

honey and the pollination of crops, and wild pollinators those that have no history of deliberate 
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and direct human use (IPBES 2016). For domesticated pollinators, that typically means the 

western honey bee (Apis mellifera; Linnaeus, 1758) (Potts et al. 2016). The western honey 

bee is a highly important generalist crop pollinator, providing much of the pollination service 

in many crop species (Rucker et al. 2012). The convenience of the western honey bee as a 

pollinator is such that hives are brought onto cropland in large numbers to meet pollination 

demand and maximise crop yield (Degrandi-Hoffman et al. 2019). For example, in the USA, 

hives are shipped into California in February for almond pollination, then onto Oregon and 

Washington for apple, cherry, and pear pollination, and then by May-June for pollination of 

crops such as strawberries and raspberries (Rucker et al. 2012). The importance of the honey 

bee to agriculture means it has reasonably good estimates of biodiversity change, typically 

inferred from the total number of hives (Aizen and Harder 2009; vanEngelsdorp and Meixner 

2010). Total hive numbers indicate that the western honey bee is not globally declining (Aizen 

and Harder 2009), despite fears that colony collapse disorder—a quite sudden breakdown of 

the colony driven by a number of interacting factors (van Engelsdorp et al. 2009)—in European 

and North American colonies could become more widespread (Williams et al. 2010). In fact, 

the total number of honey bee hives increased by ~45% between 1961 and 2007 (Aizen and 

Harder 2009). There is again heterogeneity in this change, with decreases in some parts of 

Europe and North America, and large gains in China (Aizen and Harder 2009), but taken 

together it appears that honey bee populations are not currently of global concern. 

Unlike domesticated pollinators, the extent to which wild pollinator biodiversity has changed is 

less clear, but from research that does exist it is reasonable to conclude that wild pollinators 

have undergone more extensive change than domesticated pollinators, and in many cases 

decline (Powney et al. 2019; Burkle et al. 2013; Biesmeijer et al. 2006; Hallmann et al. 2017). 

Uncertainty in the existence and magnitude of pollinator declines stems in part from the much 

greater range of taxonomic groups involved (Wardhaugh 2015; Ollerton 2017), making it both 

a bigger task to evidence change in all groups, and far more likely that there will be differences 

in the direction and magnitude of change. Moreover, it’s also true that wild insect pollinators 
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tend to experience significant inter-annual population fluctuations, meaning detecting real 

population change requires research intensive, long-term time series (Roubik 2001). 

Nevertheless, despite these uncertainties and difficulties, the drivers of wild pollinator 

biodiversity change are at least now well-known. Change in land cover, chemical application 

(e.g. pesticides, fertilisers, herbicides, and fungicides), disease, domesticated pollinator 

management, the introduction of invasive species, and climate change have all been linked to 

wild pollinator biodiversity change to varying degrees (IPBES, 2016). 

Evidence for wild pollinator decline has been found in a number of groups, and continues to 

grow. Pollinator declines in Europe and North America are some of the best studied. 3 

bumblebee species in the UK, and at least 4 species across 11 European countries, have 

become extinct (Kosior et al. 2007; Goulson et al. 2008). In Britain and the Netherlands, wild 

bee species richness declined significantly in ~52%  and ~67% of spatial cells between a set 

of observations pre-1980 and a set of observations post-1980 (Biesmeijer et al. 2006). In the 

UK, such richness declines have occurred in conjunction with bee and flower-visiting wasp 

extinctions, which began increasing rapidly in the 1920s following a period of agricultural 

expansion (Ollerton et al. 2014). Also in the UK, butterflies have experienced significant net 

losses, with a median change in occupancy of -13% (Thomas et al. 2004). For UK pollinators 

more broadly, occupancy models suggest a net loss of wild pollinator range, with the most 

significant losses seen in rare species (Powney et al. 2019). Declines have also been reported 

for biomass, particularly in Germany where flying insect biomass was found to have declined 

by 75% between 1989 and 2016 (Hallmann et al. 2017). Such declines are concerning, but 

apparently do not represent a consistent trend for all regions and taxonomic groups, given that 

moth biomass change in the UK was found to have no difference in mean biomass between 

the 1960s and 2010s (Macgregor et al. 2019). In North America, change in plant-pollinator 

interaction networks between 1888 and 2010 was associated with a significant reduction in 

bee species richness (Burkle et al. 2013), and a study of historical bumblebee records found 

significant reductions in range and relative abundance (Cameron et al. 2011). Bumblebees in 
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particular have been associated with strong climatic effects, with frequency of warmer 

temperatures predicting extinction risk and change in local species richness (Soroye et al. 

2020). Given the importance of insect pollinators to crop pollination (Potts et al,. 2010), insects 

have typically been the focal point of study, but vertebrate pollinators have also been found to 

have declined. Indeed, bird and mammal pollinators have on average moved 1 IUCN category 

towards extinction every 2.5 years, although on average this is still less threatened than non-

pollinators (Regan et al. 2015). 

Outside western Europe and North America long-term data on pollinator biodiversity change 

are fewer, but for studies that do exist declines also represent the average trend. In Argentina 

significant reductions in range for native bumblebees have occurred, driven in part by 

competition from Bombus terrestris (Linnaeus, 1758), a species introduced in much of the 

world for crop pollination (Morales et al. 2013). A similar process of bumblebee 

homogenisation has occurred historically in a number of other locations, including but not 

limited to Japan and Tasmania (Matsumura et al. 2004; McQuillan and Hingston 1999). In 

China, wild bee abundance, diversity, and occupancy have fallen in a number of agricultural 

localities (Teichroew et al. 2017; Williams and Osborne 2009). In South Africa, declines in 

some pollinating bees have been inferred from reduced orchid seed set (Pauw 2007). Outside 

North America and Europe, hoverfly, butterfly, and vertebrate pollinator trends represent a 

significant gap, perhaps with the exception of bat and bird island extinctions (Ollerton 2017). 

Such island extinctions have been reported for birds in Hawaii, and two bat species in New 

Zealand (Ollerton 2017). 

Average trends in biodiversity change hide variation among taxonomic groups, with some 

groups of wild pollinators experiencing increases in biodiversity (Powney et al. 2019; 

Biesmeijer et al. 2006). Hoverflies, for example, experienced no significant change in richness 

in Britain between pre- and post- 1980, and a significantly increasing trend in the Netherlands 

(Biesmeijer et al. 2006). Dominant crop pollinators also appear to be more resilient (e.g. 
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Bombus terrestris, Osmia Bicornis) with an increase in occupancy from 1980-2013 (Powney 

et al. 2019).   

The drivers of pollinator biodiversity change 

Of the threats described by IPBES (2016), wild pollinator biodiversity change has primarily 

been linked to land use, land-use intensity (including the effects of pesticide application), 

climate change (Kerr et al. 2015; Kerr 2001; Goulson et al. 2015), and the interaction between 

land-use and climate change (Dalsgaard 2020). Here I will briefly review the effects of land-

use, land-use intensity, and the interaction between land-use and climate change. I will not 

discuss climate change alone in detail, since this is not directly relevant to the aims of this 

thesis. I will also not discuss the effects of anthropogenic activity on domesticated pollinators 

(e.g. colony collapse disorder), since these have been studied extensively elsewhere (e.g. van 

Engelsdorp et al. 2009) and are again not directly relevant to the aims of this thesis (i.e. large-

scale, cross-taxa effects on wild pollinators). 

A number of studies have documented a negative impact of anthropogenic land use on wild 

pollinator populations (Tscharntke et al. 2002; Kennedy et al. 2013; IPBES 2016; Goulson et 

al. 2015; Klein et al. 2003; Ricketts et al. 2008). Such effects have typically been associated 

with reduced floral availability on managed land (Goulson et al. 2015). Modern agricultural 

practice often means monoculture cropland and infrequent crop-rotation, resulting in land 

which provides a lower diversity of the floral resources required by pollinating species 

(Goulson et al. 2005). Fragmentation of the land through disturbance will also be detrimental 

to some species (Tews et al. 2004). Patchy habitat isolates populations through acting as a 

barrier to migration (Saunders et al. 1991), leaving pollinators less able to exploit neighbouring 

floral resources.  

Some studies have shown positive effects of land-use change, finding that moderate 

anthropogenic pressure and the creation of more open and diversified habitats can also benefit 

some pollinators (Winfree et al. 2011). Such effects likely relate to two key factors: first, that 
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at low levels of intensity, human activity can increase niche diversity by making habitats more 

heterogeneous (Baldock et al. 2015; Tscharntke et al. 2002; Tews et al. 2004; Hagen and 

Kraemer 2010; Winfree et al. 2011); and second, that some species happen to be better able 

to adapt to the environments humans create, with these species tending to move into 

anthropogenic habitats (McKinney 2006). The conjunction of these two points means 

increased pollinator biodiversity for some groups on low-intensity managed land. For example, 

some bees, butterflies, syrphid flies, and nectarivorous pollinating birds have been found to 

favour open, less forested areas of semi-natural grassland or agroforestry (Deans et al. 2007; 

Kuussaari et al. 2007; Michener 2000; Tscharntke et al. 2008).  Globally however, for many 

pollinators it’s unclear the extent to which the direction and magnitude of response to land use 

differs among biodiversity metrics, taxonomic groups, scale, and geographic regions. 

Climate change has been highlighted in the literature as a concern for the current and future 

prospects of pollinating animals. IPBES (2016) summarised the effects of climate on 

pollinators at three levels: spatial range shifts, changes in abundance, and shifts in seasonal 

and daily activity patterns. These changes are well-known in butterflies (Chen et al. 2011; 

Parmesan 2007) and bumblebees (Kerr et al. 2015), but less well understood in hoverflies, 

bats and birds (see IPBES (2016) for a thorough review of the evidence). Climate change is 

also thought to interact multiplicatively with land-use, such that the effects of climate change 

and land use are greater together than individually (Oliver and Morecroft 2014). Such 

interactive effects are thought to occur through two means: first, through one driver altering 

the magnitude of another; and second, through the effect of one driver on biodiversity being 

moderated by change in another (Oliver et al. 2014). Recent research has begun to investigate 

these potential interactions broadly (Mantyka-Pringle et al. 2011; Spooner et al,. 2018), and 

in the context of pollination services specifically (Marshall et al. 2017), but our understanding 

is far from complete (see Chapter 4). 

The extent to which a species is impacted by environmental change will depend on the traits 

of that species (Marini et al. 2014; Vanbergen 2014), since traits are indicative of a species’ 
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ability to adapt to a new environment. Responses to environmental change will also be 

experienced indirectly, through effects at the level of interactions among species (Lever et al. 

2014). Such effects refer to concepts of trophic cascade and co-extinction, both of which don’t 

directly relate to individual response characteristics, but rather the strength of the connection 

between one species and another (Colwell et al. 2012; Polis et al. 2000). At the trait level, 

body size, dietary and habitat specialism, mobility (wing length), tongue length, nesting 

behaviour, and sociality have all been highlighted as important traits in determining pollinator 

response to environmental change (Winfree et al. 2011; Goulson et al. 2015; Öckinger et al. 

2010; De Palma et al. 2015; Newbold et al. 2013; Newbold et al. 2014b; Burivalova et al. 2015; 

Montero-Castaño and Vilà 2012). However, there is an ongoing challenge associated with 

broad cross-taxa trait-based predictions (Bartomeus et al. 2017). Indeed, for these broader 

studies, with the exception of specialism and body size, traits appear to weakly predict overall 

response to land-use (Bartomeus et al. 2017). Although trait-based research represents an 

interesting area of work, in the remainder of this thesis I do not consider the predictive nature 

of these traits specifically, meaning I will not discuss them in further detail here. I will return to 

them in Chapter 3, since across taxonomic groups traits likely still underpin response to 

anthropogenic activity. 

Public awareness of pollinator biodiversity change 

In tackling pollinator biodiversity change, public awareness is a key factor. Through high-

carbon lifestyles and dietary choices, and more indirectly through the way in which the public 

votes, the choices people make continue to have a significant impact on biodiversity change 

(McCrea et al. 2015; Machovina et al. 2015; Garnett 2013). Admittedly the link between 

awareness and behaviour can be weak, but nevertheless awareness is likely still important to 

some extent in leveraging behaviour change (Asvatourian et al. 2018). Aichi Biodiversity 

Target 1 encapsulates this need, aiming that “by 2020, at the latest, people are aware of the 

values of biodiversity and the steps they can take to conserve and use it sustainably” (CBD 

2011). However, although important to recognise, quantifying progress on this target at the 
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global level is difficult. In part the problem has been the logistical and financial difficulties in 

surveying the opinions of large groups of people globally (Leadley et al. 2013), and the biases 

associated with such an approach (Mcowen et al. 2016). 

One emerging option for the quantification of biodiversity awareness, and pollinator 

awareness more specifically, is in the field of conservation culturomics (Ladle et al. 2016). 

Coined by Michel et al. (2011) in a study in which the authors built a dataset comprised of over 

5 million books, culturomics refers to the process of extracting insights from large bodies of 

text. Later Ladle et al. (2016) introduced the term to conservation, suggesting that culturomics 

could be used to quantify changes in public biodiversity interest. The digital age of the internet 

is largely driving interest, with Google Trends, Google Books, Twitter, Weibo, and website 

crawling all having been suggested as potential data sources (Ladle et al. 2016). Recently 

efforts have been made to calculate changes in biodiversity awareness at the global scale 

using Twitter, online newspapers, and Google Trends (Cooper et al. 2019). However, this 

study focused on awareness of conservation issues rather than species themselves, meaning 

there is still not a means through which to quantify awareness of biodiversity itself. For 

pollinators therefore, in the first instance we need a metric with which to quantify change in 

awareness for all species, which we can then use to focus in on changes in pollinator 

awareness. 

Thesis aim 

The main aim of my thesis is to understand better the causes of global pollinator biodiversity 

change, and the potential consequences for future crop pollination risk. To this end, my thesis 

will address four key research questions, with each question addressed in one of four core 

data chapters: 1) how disparate temporally, taxonomically, and geographically is the 

information available in the animal pollination literature, and what approaches can we use to 

utilise it better? 2) to what extent is land-use type and intensity associated with changes in 

local pollinator biodiversity (species richness, total abundance, and diversity) at the global 
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scale? 3) to what extent are interactive effects between land-use type (cropland and primary 

vegetation) and climate change associated with changes in local pollinator abundance, and 

how might these interactions relate to potential crop pollination risk in the future? and 4) using 

Wikipedia page view data, how might we measure changes in public awareness of biodiversity 

itself, and what can we learn from these metrics about change in awareness of pollinators and 

the value of biodiversity? 
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Chapter 2: Text-analysis reveals taxonomic and 

geographic disparities in animal pollination literature 

Abstract 

Ecological systematic reviews and meta-analyses have significantly increased our 

understanding of global biodiversity decline. However, for some ecological groups, incomplete 

and biased datasets have hindered our ability to construct robust, predictive models. One such 

group consists of the animal pollinators. Approximately 88% of wild plant species are thought 

to be pollinated by animals, with an estimated annual value of $230-410 billion dollars. Here I 

apply text-analysis to quantify the taxonomic and geographical distribution of the animal 

pollinator literature, both temporally and spatially. I show that the publication of pollinator 

literature increased rapidly in the 1980s and 1990s. Taxonomically, I show that the distribution 

of pollinator literature is concentrated in the honey bees (Apis) and bumble bees (Bombus), 

and geographically in North America and Europe. At least 25% of pollination-related abstracts 

mention a species of honey bee and at least 20% a species of bumble bee, and approximately 

46% of abstracts are focussed on either North America (32%) or Europe (14%). Although 

these results indicate strong taxonomic and geographic biases in the pollinator literature, a 

large number of studies outside North America and Europe do exist. I then discuss how text-

analysis could be used to shorten the literature search for ecological systematic reviews and 

meta-analyses, and to address more applied questions related to pollinator biodiversity, such 

as the identification of likely interacting plant-pollinator pairs and the number of pollinating 

species. 
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Introduction 

The number of publications and journals in the academic sciences is vast and continuing to 

increase (Ferreira et al. 2015). The field of ecology and biodiversity is no exception. Between 

1990 and 2014, the total number of ecological research articles increased more than tenfold, 

from fewer than 10,000 in 1989 to at least 125,000 in 2014 (Nunez-Mir et al. 2016). In 

conjunction with this increase, digitisation of the literature, indexing tools (such as Scopus, 

Web of Science, and Google Scholar), and the research structures of systematic review and 

meta-analysis have all become standard practice (Lortie 2014, Gurevitch et al. 2018). 

Understanding of global biodiversity decline in particular has reaped the benefits of these 

changes (Loh et al. 2005, Butchart et al. 2010, Pereira et al. 2010, Tittensor et al. 2014, 

Newbold et al. 2015a). However, for some important ecological and taxonomic groups, 

incomplete and biased datasets have hindered our ability to construct robust, predictive 

models (De Palma et al. 2016, Bartomeus et al. 2018).  

One such important ecological group consists of the animal pollinators, animals that act as a 

vector for the transfer of pollen from the male to the female reproductive parts of a flowering 

plant, causing fertilisation and the production of a fruit and seed (Proctor et al. 1996). Animal 

pollination is highly important, especially in tropical humid and warm environments where 

approximately 95% of flowering plant species are animal pollinated (Rech et al. 2016). 

Globally, approximately 88% of wild plant species are thought to be pollinated by animals 

(Ollerton, Winfree and Tarrant 2011), providing an ecosystem service valued at $230-410 

billion dollars per annum (Lautenbach et al. 2012).  Although disputed by some on the basis 

of taxonomic and geographic biases in the data used (Ghazoul 2005, Ghazoul 2015), many 

papers have suggested that pollinators are declining in the face of several environmental 

pressures (Biesmeijer et al. 2006, Steffan-Dewenter and Westphal 2007, Potts et al. 2010b, 

Winfree, Bartomeus and Cariveau 2011, Goulson et al. 2015, Woodcock et al. 2016). 
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IPBES (2016) summarised the anthropogenic threats to pollinators as change in land cover, 

chemical application (pesticides, fertilisers, herbicides, and fungicides), disease, pollinator 

management, the introduction of invasive species, and climate change. Through the 

interacting effect of these threats, populations of wild invertebrate pollinators have declined 

(see Ollerton (2017) for a summary of the evidence for pollinator decline), although we know 

little about the status of wild pollinators outside North America and Europe (IPBES 2016). In 

Britain and the Netherlands, wild bee species richness has declined over ~50-70% of the total 

land area (Biesmeijer et al. 2006). Bumble bee declines are some of the best studied, with at 

least 3 bumble bee species having gone extinct in the UK, and at least 4 species across 11 

European countries (Kosior et al. 2007, Goulson, Lye and Darvill 2008). Regional colony 

losses in European (1985-2005) and USA (1947-2005) honey bees have also been well 

documented (Stokstad 2007, Potts et al. 2010a), at 25% and 60% respectively, despite a 

global increase in managed colonies (Aizen and Harder 2009). 

Predictive models are important in understanding pollinator biodiversity change, but are a 

challenge to implement robustly. This difficulty is in part driven by the geographical and 

taxonomic distribution of available pollinator biodiversity data (De Palma et al. 2016). 

Pollinators are represented across a variety of taxonomic groups, including bats, birds, and 

multiple insect taxa, but many of the key syntheses of pollinator decline have been restricted 

to the bees of North America and Europe (Winfree, Bartomeus and Cariveau 2011, Ghazoul 

2015, Goulson et al. 2015, De Palma et al. 2016), but see Regan et al. (2015) for a global 

study on the status of mammal and bird pollinators. Although widely accepted, the degree of 

this bias and the extent to which it might influence biodiversity models is uncertain (Ghazoul 

2005, Ghazoul 2015, De Palma et al. 2016, Ollerton 2017). Some studies have made progress 

towards quantifying the geographical or taxonomic distribution of the animal pollination 

literature (Archer et al. 2014, Ollerton 2017), but the way in which taxonomy interacts with 

spatial distribution globally has not to our knowledge been the subject of a thorough review. 

This lack of research is in part a symptom of article indexing tools, which despite their 
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contribution, still have significant limitations, a problem not confined to the animal pollination 

literature (Westgate et al. 2018b, Westgate and Lindenmayer 2016, Westgate et al. 2015). 

Indexing search tools such as Scopus do have functions to account for differences in spelling 

(fuzzy-matching), and variable suffixes for the same family of words (stemming), but searching 

for geographical and taxonomic names and identifying overall text topic, is only possible 

through discrete search terms and phrases. As a result, returning literature fully representative 

of a particular theme, geographical region, or taxonomic group is difficult to accomplish, given 

the semantic ambiguity of search terms across academic fields (Westgate and Lindenmayer 

2016, Roll, Correia and Berger-Tal 2017). In the context of the animal pollination literature, 

better tools for extracting pollinator information could be used as the basis for more 

taxonomically and geographically representative meta-analyses and systematic reviews, in 

turn increasing the robustness of synthetic analyses.  

Text-analysis could help to mitigate the problem of biased and incomplete pollinator response 

data. Also often called text-mining, text-analysis refers to the automated extraction of 

information from large volumes of text (Cohen and Hunter 2008), most notably across multiple 

documents (Griffiths et al. 2004, Grimmer and Stewart 2013, Westgate et al. 2015). Given the 

very large numbers of published papers containing potentially useful information, such 

technologies are invaluable in automatically drawing together results across lots of studies 

(Grimmer and Stewart 2013), thereby reducing the duration of the “synthesis gap”, or in other 

words the lag between the practice of science and the synthesis of evidence (Westgate et al. 

2018b). Text-analysis tools can be used to optimise the systematic review and meta-analysis 

literature search path. For example, topic categorisation algorithms can be used to allocate 

articles automatically to particular fields of study, enabling the curator to discard articles of low 

relevance (O’Mara-Eves et al. 2015, Westgate 2018a). In the context of pollinator data, the 

application of such tools could increase recall of the relevant literature and decrease the effort 

required, in turn reducing data biases in systematic reviews and meta-analyses. These tools 

could be particularly beneficial for pollinator literature, given the effect of taxonomic and 
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geographic biases on predictions of pollinator response to human land-use (De Palma et al. 

2016). Here I briefly discuss two tools that could be particularly useful in the context of 

pollination ecology: geoparsing and taxonomic entity extraction. 

Geoparsing allows place names in text to be identified, resolved, and assigned geographical 

coordinates (Leidner and Lieberman 2011). Geoparsing can therefore be broken into two 

steps: firstly, the identification of geographical mentions (known as toponyms); and secondly, 

the resolution of mentions as the most likely physical coordinates (D’Ignazio et al. 2014). The 

first step is a key obstacle; the problem being semantic (D’Ignazio et al. 2014). Identical words 

can be used to describe both place and non-place information, interpretable only in the context 

the term is written (Leidner and Lieberman 2011). For example, the words “Rio” and 

“Alexandria” could be used to describe both a geographic location and the name of a person. 

High performance machine learning algorithms will therefore attempt to resolve locations 

through contextual information (Leidner and Lieberman 2011, Gritta et al. 2018). CLIFF-

CLAVIN is one such tool (D’Ignazio et al. 2014, Gritta et al. 2018). An open-source geoparser, 

CLIFF-CLAVIN was developed for extracting geographical information from news articles 

(D’Ignazio et al. 2014). CLIFF-CLAVIN also has an implementation of focus, meaning it 

attempts to resolve the primary country location of a given piece of text, even when the country 

is not mentioned (D’Ignazio et al. 2014). CLIFF-CLAVIN estimates focus on the basis of the 

most frequently mentioned country, and in the absence of country mentions, the frequency of 

specific locations within countries (D’Ignazio et al. 2014). CLIFF-CLAVIN will attempt to find 

geographical locations from the local to continental level. For example, CLIFF-CLAVIN is able 

to find correctly the records “Krakatoa”, “Sumatra”, “Indonesia”, and “Asia”. Although still in 

the early stages of development, and requiring significant improvements in accuracy and 

speed (Gritta et al. 2018), geoparsers have previously been used to identify the main 

geographical location of news reports (Imani et al. 2017), to geotag museum specimens 

(Beaman and Conn 2003), and to digitise historical maps (Chiang 2017).  
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Taxonomic entity extraction refers to the identification of taxonomic names (in theory of any 

taxonomic rank) from blocks of text (Sarkar 2007). Such algorithms tend to use taxonomic 

dictionary string matches, rule-based inference, and machine learning, either independently 

or in combination (Akella, Norton and Miller 2012). Dictionary match algorithms search for 

each word (unigram) and pair of words (bigram) in a taxonomic database such as NameBank 

(Leary et al. 2007), returning a record if the strings match. Similarly, rule-based inference 

searches for regular expressions indicating a form often associated with a species record, 

such as bigram capitalisation and abbreviation. Machine learning approaches identify text 

likely to represent a taxonomic record, inferring from both context and string structure (Akella, 

Norton and Miller 2012). The R package ‘taxize’ has implementations for two of these 

algorithm types in the function scrapenames: dictionary string match (Taxonfinder) and 

machine-learning (Neti Neti) (Chamberlain and Szöcs 2013). Scrapenames will search for 

strings resembling taxonomic records at any taxonomic rank, including abbreviated records, 

hybrids, and higher taxa. For example, scrapenames is able to correctly find the records “A. 

manicatum”, “Apidae”, and “Viburnum macrocephalum f. Keteleeri”. Many authors have 

emphasised the value of extracting taxonomic information (Sarkar 2007, Guralnick and Hill 

2009, Parr et al. 2012, Thessen, Cui and Mozzherin 2012), and others its associated 

methodological difficulties (Correia et al. 2018), but to my knowledge few studies have 

explored potential applications. 

Here I demonstrate how CLIFF-CLAVIN and taxize can be used in combination to quantify the 

taxonomic and geographical distribution of the animal pollinator literature. This analysis builds 

on the reviews of Archer et al. (2014) and Ollerton (2017), introducing new text-analysis 

methods, examining temporal changes in pollinator publications, and investigating the 

interaction between the taxonomic and geographical distributions of pollinator studies. I reveal 

disparities in pollinator literature, reinforcing the problem of biases in the context of pollinator 

biodiversity modelling. Finally, in exploring future directions, I discuss how these tools may be 

used to decrease data biases in biodiversity meta-analyses and systematic reviews. I 
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summarise by emphasising two different although related points: firstly, the geographical and 

taxonomic distribution of the animal pollination literature is indeed highly concentrated in North 

America and Europe in the honey bees and bumble bees, although many studies do exist for 

other species and geographic regions; and secondly, the development of text-analysis tools 

shows significant promise in optimizing the search for information on animal pollination, both 

through capturing data on underrepresented regions and taxa, and through speeding up the 

search process. 
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Methods 

I scraped the pollination literature for mentions of animal species and location data to 

investigate the taxonomic, geographical, and temporal distribution of studies on animal 

pollination. I considered any primary research article published in English returned through a 

search for the term “pollinat*” in Scopus, that mentioned an animal species in the abstract. 

Animal species scraping and geographical entity extraction were accomplished through a 

methodology built on the ‘taxize’ R package and the geoparser CLIFF-CLAVIN. My rationale 

for applying this semi-automatic approach, rather than manually checking all abstracts, was 

that identifying all Latin binomials and geographic locations would not be feasible given the 

volume of text. I first describe the methodology applied (see Appendix 1 for additional 

validation), before discussing change over time, the taxonomic breakdown of the animal 

pollinator literature, overall geographical distribution of information, and finally geographical 

distribution for individual taxonomic groups. 

Taxonomic extraction 

I queried Scopus using the stemmed term “pollinat*” (28/03/18 - 29/03/18), before subsetting 

for primary research articles in English (Appendix 1, Figure S1.1). Duplicated records were 

filtered out by removing duplicated titles. Any records without titles were also removed. I then 

retained any papers with abstracts that mentioned a taxonomic name, applying in conjunction 

both the Neti Neti and Taxonfinder algorithms implemented in the package ‘taxize’ (Appendix 

1, Figure S1.1). Taxonfinder represents a dictionary match algorithm, searching against 

dictionaries of multiple taxonomic levels (built from NameBank1) for potential taxonomic 

records. The Neti Neti algorithm applies a machine learning approach to extract strings 

deemed likely to be taxonomic records. 

 
1 http://ubio.org/index.php?pagename=namebank 
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I then carried out a series of data-cleaning steps to identify Latin binomial animal species 

within our initial scrape. I chose to use the Catalogue of Life (COL) in validating species 

records as animal species, due to its greater coverage (84% of all described species: Roskov 

et al. 2017). Animal species were validated by performing character string matches against 

the Latin binomials of a Metazoan subset of the COL (Appendix 1, Figure S1.1). Matches with 

the COL were carried out at two levels (1 and 2). Level 1 represented direct string matches, 

and level 2 any matches with an abbreviated record. Within level 1, I distinguished a series of 

sub-levels, reflecting the approach used to resolve a record as an animal species: level 1a 

represents any direct match with the original string, level 1b any direct match following the 

removal of punctuation, and level 1c any direct match following the removal of punctuation 

and the string “spp”. An abbreviated record refers to an abbreviated genus and full species 

picked up by taxize. For example, Apis mellifera would be abbreviated in the form A. mellifera. 

I also encountered problems regarding accepted and synonymous species names. In 

attempting to mitigate this issue, I substituted any record picked up by the COL as a synonym 

with its corresponding accepted name. For any further analysis, I then worked only from 

accepted names. 

For all studies related to pollination that mention an animal species, I initially calculated change 

over time in publication of pollination related studies mentioning an animal species (‘Temporal 

distribution’). I then investigated change over time in mentions of the animal genera Apis, 

Bombus, and all other pollination-related animal genera (henceforth “other genera”). I opted 

to cluster all other genera to test the hypothesis that publications concerning Apis and Bombus 

species are largely responsible for the rapid increase in pollination-related papers.  

I also calculated the frequency of taxonomic mentions at the level of genera (‘Taxonomic 

distribution’, Appendix 1, Figure S1.2). I opted to investigate the frequency of mentions at the 

level of genera given the hypothesized dominance of studies on Apis and Bombus species. I 

included only those genus names associated with a Latin binomial, given the increased 

ambiguity with just genus names. For example, Prunella is both a genus of plants and a genus 
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of birds. I presented taxonomic mentions as a raw count rather than a proportion since 

mentions of different genera are not necessarily independent of one another: one study 

abstract may mention multiple genera (see Millard et al. 2020b for the full list of pollination 

related animal genera). 

Geoparsing 

Following the verification of animal species, I then anchored each abstract mentioning an 

animal species to a geographic location, using an approach called geoparsing. Geoparsing 

refers to the resolution of ambiguous free-text place name descriptions as specific geographic 

coordinates. Not all abstracts will mention a location, but I assume that those that did were 

representative of the geographic distribution of the animal pollination literature as a whole. 

I chose to use the open-source geoparser CLIFF-CLAVIN, due to the high accuracy of its 

focus implementation, relative to commercial geoparsers such as Yahoo Placespotter and 

OpenCalais. The main focal country for a given text will henceforth be referred to as “major” 

mentions, and any specific locations found in an abstract as “minor” mentions. “Minor” 

mentions can therefore be of any geographical scale, from the continental to the local level. I 

used vagrant—a software tool for leveraging virtual environments—and the GitHub repository 

CLIFF-up to host CLIFF-CLAVIN (https://github.com/ahalterman/CLIFF-up).  

After geoparsing the pollination-related abstracts, I carried out a series of verification steps to 

improve the quality of the data. First, I plotted the data on a global map to check for any 

unusual-looking patterns, which revealed that continental “minor” mentions were distorting the 

apparent geographic distribution of studies. For example, the continental “minor” mention 

‘Europe’ appeared in a number of abstracts, which CLIFF-CLAVIN had assigned to a single 

coordinate in central Europe. I was also not interested in oceanic “minor” mentions, since 

these would not relate to the study of terrestrial animal pollinators. Before proceeding with any 

further analysis, I therefore removed any continental or oceanic “minor” mentions. Second, in 

initial runs of CLIFF-CLAVIN I also noticed that the geoparser was picking up geographic 

https://github.com/ahalterman/CLIFF-up
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information associated with copyright details, typically included at the end of the Scopus 

abstract following a copyright symbol. I therefore removed any characters following the 

copyright, before rerunning the geoparser. Third, after removing any low-resolution 

geographic locations, I then visually inspected the whole raw dataset, searching for any place 

names that were either questionable or clearly wrong. For example, place names that had 

been incorrectly disambiguated by CLIFF-CLAVIN, such as “Ivory” and “Hay Meadows”, as 

well as locations that seem overly specific or strange, such as “Blue Ridge Parkway Milepost 

234 ca. 886 m”. Fourth, given CLIFF-CLAVIN was originally trained on news articles, I was 

aware that performance might be reduced when applied to academic texts, particularly those 

mentioning Latin binomial species names. For example, the “Linnaeus Terrace”, a rock terrace 

in the Antarctic, was incorrectly identified from Linnaeus, the species authority, while 

taxonomic names such as “Peia” and “Pavonia” were also incorrectly identified as place 

names. I therefore also manually inspected any locations that could have been referred to in 

text as a species or genera, and removed any that we identified as mistakes. After the removal 

of text following the copyright symbol, CLIFF-CLAVIN identified geographic locations in 

2087/3974 (53%) of the pollination-related abstracts containing an animal species (Appendix 

1, Figure S1.1). After further verification of the geoparsed data, geographic locations were 

identified in 2072 abstracts (Appendix 1, Figure S1.1), meaning 2072/2087 (~99%) of those 

abstracts with a location contained a usable sub-continental geographical location. 

I calculated a study count through counting the number of “major” mentions coordinates within 

each set of country polygons, and a study density by dividing this value by the area of those 

polygons (Appendix 1, Figure S1.3). Beforehand I removed duplicated study-country 

combinations for both “minor” and “major” mentions, accounting for abstracts mentioning a 

given location more than once. Given focus describes the algorithm’s estimation of the main 

geographic focus of an abstract, I reasoned that “major” mentions would provide an indication 

of primary study location. Due to the highly right-skewed distribution of the country study 



 

 
 

37 

counts, I log10 transformed the values. “Minor” mentions were also plotted onto this map, with 

the size of each point representing the number of unique study-location combinations. 

For abstracts mentioning an animal species and a geographic location, I examined the way in 

which taxonomy and geographic location interact. I assumed that all geographic locations 

mentioned within a given abstract related directly to all animal species mentioned within that 

same abstract. Consistent with our investigation of overall taxonomic distribution, I examined 

taxonomy-geography interaction for Latin binomial species at the level of genera. 
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Results and Discussion 

Temporal distribution 

Over time, the number of studies on pollination has increased substantially, with a particularly 

rapid increase beginning in the mid-1990s and 2000s (Figure 2.1), occurring in conjunction 

with widespread incidences of colony collapse disorder (CCD) in the early 2000s (van 

Engelsdorp et al. 2008, Genersch et al. 2010). Much of this increase can be attributed to 

studies of Apis and Bombus species (Figure 2.2, Appendix 1, Table S1.4). From 1980-2017, 

the number of studies mentioning Apis and Bombus species increased non-linearly. The rapid 

increase for Apis coincided with the introduction of the parasite Varroa destructor to the United 

States in the 1980s (Oldroyd 1999), and for Bombus with the first commercialisation of 

Bombus pollination in the late 1980s (Velthuis and van Doorn 2006). Over this period, the 

general trend in publication number for other pollination-related genera increased marginally, 

with a slight non-linear increase from the year 2000. Given that Apis and Bombus are often 

referred to by their common name, it is likely that I underestimate the disparity in publication 

rate between Apis, Bombus, and other genera (see ‘Limitations’ and Appendix 1, Figure S1.5). 
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Figure 2.1 Annual study count for pollination-related studies mentioning an animal 

species, years 1961-2017. 
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Figure 2.2 Annual study count for Apis, Bombus, and all other genera 1961-2017. Black 

lines represent the fit of a generalized linear model with Poisson errors for Apis and 

Bombus, relating study count to year. Red lines represent the output of the same model 

for all other genera, presented in dotted form in the Apis and Bombus facets. Counts 

have been binned as a density to represent multiple counts at the same study-year 

combination, from dark blue to yellow (150 studies). The model for both Apis and 

Bombus deviates from all other pollination-related animal genera in the 1980s, with a 

rapid and non-linear increase.  
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Taxonomic distribution 

Of the abstracts related to pollination mentioning an animal species (3974), the Hymenoptera 

were overwhelmingly the most frequently mentioned of all taxonomic orders, in approximately 

65% of all abstracts (Figure 2.3). Of the 13 most frequently mentioned genera, 11 were 

hymenopteran genera, all but one (Ceratosolen) of which were bees. This is to be expected, 

since bees are regarded as the most important pollinating group (Potts et al. 2010b, Ollerton 

2017). Unsurprisingly, Apis and Bombus figure highly. Approximately 1/4 of abstracts mention 

a species of honey bee (Apis) and 1/5 a species of bumble bee (Bombus) (Figure 2.3), which 

is likely an underestimate given we do not consider common names (see ‘Limitations’ and 

Appendix 1, Figure S1.5). The disparity for Apis and Bombus is consistent with more anecdotal 

descriptions in the literature, describing honey bees and bumble bees as the main study 

groups (i.e. Ghazoul 2015). This taxonomic pattern probably to a large extent reflects 

commercial value: both Apis and Bombus are economically important commercial pollinators 

(Goulson 2003, Klein et al. 2007), with bumble bees in particular providing a unique 

contribution in the form of buzz-pollination (Goulson 2003). Moreover, 4 out of 13 other top-

mentioned genera (Osmia, Megachile, Melipona, Trigona) are also managed commercially to 

some extent, either for pollination services or honey production (Vit, Medina and Eunice 

Enríquez 2004, National Research Council 2007, Velthuis and van Doorn 2006). 

More generally, the insects are dominant in the pollination literature. Five of the top eight 

orders are insects (in decreasing order: Hymenoptera, Lepidoptera, Diptera, Coleoptera, and 

Hemiptera), the first four of which are well-known pollinating groups. The greater number of 

studies mentioning lepidopteran than dipteran species probably reflects a bias in study effort. 

Although flies are likely the second most important pollinators today—behind only the 

Hymenoptera (Ssymank et al. 2008)—and evolved as one of the first angiosperm pollinators 

(Endress 2001), lepidopteran flower-visitors are often deemed more conspicuous and 

attractive (New 2004), making them likely study candidates. The smaller number of studies 

mentioning beetles is more likely a true reflection of pollination importance. Although beetles 
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are important ecosystem service providers on the whole (Noriega et al. 2018) and evolved as 

some of the earliest gymnosperm pollinators (Labandeira, Kvaček and Mostovski 2007, 

Ollerton 2017), modern beetles are widely recognised as less important pollinators relative to 

the Diptera, Hymenoptera, and Lepidoptera (Ollerton 2017). A surprising result was the 

appearance of the moth Manduca in the top 13 genera, given the reputation of the moths as 

understudied relative to other lepidopterans (Hahn and Brühl 2016). Most likely this is an 

artefact of model taxa rather than pollinator importance. Although Manduca species can be 

agricultural pests and pollinators, with the larval stage feeding on a variety of plant species in 

the Solanacae family (Kessler and Baldwin 2002), and the adult stage a generalist nectar 

feeder (Raguso and Willis 2002), mentions are driven by Manduca sexta (Linnaeus, 1763), an 

important model species for molecular and genetic studies (Riddiford et al. 2003). The 

hemipterans are represented primarily by aphid genera: ~1/4 of the hemipteran genera in the 

pollination literature are aphids. Despite being flower visitors, hemipterans more often feed on 

plant stem sap, making them incidental pollinators (Wardhaugh 2015). Broadly, the extent to 

which absolute distribution of mentions might predict pollinator importance for the five insect 

orders is an interesting point. Although the Hymenoptera are likely the most important 

pollinating order, it seems unlikely that this would be by a factor of ~7 globally. Probably there 

will be a signal of importance, but confounded by geography and study biases. 

Vertebrates are also mentioned relatively frequently in pollination studies. Three vertebrate 

orders fall in the top eight: two avian, Apodiformes and Passeriformes; and one mammalian, 

Chiroptera. The Apodiformes are entirely represented by the Trochilidae (hummingbirds), a 

well-known nectar-feeding (and thus pollinating) family. The Passeriformes are represented 

more diversely, with approximately 75% of identified species coming from six nectar-feeding 

families: the sun birds (Nectarinidae), honey-eaters (Meliphagidae), Icteridae, honey-creepers 

(Thraupidae), white-eyes (Zosteropidae), and sugar birds (Promeropidae) (Proctor et al. 

1996). Many species of bats are known to feed on fruit or nectar (Fleming, Geiselman and 

Kress 2009). The bat genus Glossophaga, the only vertebrate genus falling in the top 13, is a 
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common lowland nectar-feeding group distributed in central and South America (Fleming, 

Geiselman and Kress 2009).  

Interestingly, some groups are associated with pollination through their nature as pollinator 

parasites and predators. For example, the Mesostigmata (an order containing the Varroa 

mites, 41 abstracts) and Araneae (spiders, 27 abstracts) are primarily parasites and predators 

respectively. Varroa mites parasitize honey bees, and are implicated in colony collapse 

disorder (van Engelsdorp et al. 2009). Araneae, such as crab spiders, prey on pollinators 

through hiding on the flower and ambushing at visitation (Dukas and Morse 2003).   
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Figure 2.3 Order-level distribution of animal species in the pollination literature across 

3974 studies. Given a study may mention multiple genera or orders, each bar is not 

independent, meaning study count values will not sum to the total of 3974. “Other” 

orders are represented by 55 orders, with 29/55 of these appearing in 2 or fewer 

abstracts. Inset shows genus-level distribution of animal species in the pollination 

literature. “Other genera” are represented by 1000 genera across the Hymenoptera, 

Lepidoptera, Diptera, Apodiformes, Chiroptera, Passeriformes, Coleoptera, Hemiptera, 

and “other” orders. Colours are the same in the main panel and the inset. 
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Geographical distribution 

I also investigated the geographical distribution of the animal pollinator literature, inferred by 

extracting place names with the geoparser CLIFF-CLAVIN. The top five countries for animal 

pollination studies are the United States, Brazil, Australia, Canada, and China (Figure 2.4), 

together representing ~50% of all studies. Previous systematic reviews of the distribution of 

pollinator data identified Australia, Brazil, the United States, Germany, and Spain, as the top 

five contributors (Archer et al. 2014). Germany is notable by its absence in our analysis. 

However, exact character string matches of the term “Germany” with each of the abstracts 

indicate that Germany is indeed less strongly associated with the animal pollination literature 

(Appendix 1, Figure S1.9). Potentially lower representation of Germany is explained by the 

confounding effect of study subject. Archer et al. (2014) found that German studies were 

frequently represented among studies of pollinator perturbation, but relatively infrequently 

among general pollination studies. Habitat perturbation studies represented a relatively small 

percentage of the pollination-related papers analysed here (Appendix 1, Figure S1.7), while 

general pollination studies accounted for a much higher proportion. In general, my results 

suggest that overall pollinator information is less restricted to western Europe and North 

America than was previously thought (Mayer et al. 2011), although I recognise that my 

analysis likely underestimates geographic disparities (see ‘Limitations’). Indeed, only three 

European countries appear in the top 15 (United Kingdom, Spain, and Greece). However, 

although study count in European countries is relatively low, density is higher since European 

countries tend to have small areas (Appendix 1, Figure S1.3). 
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Figure 2.4 Distribution of the animal pollinator literature among countries. The “major” 

focus of each abstract, as resolved by CLIFF-CLAVIN, was used as an indicator of the 

geographical location likely representing the main study area. The red dotted line 

represents the study proportion midpoint. Half of all animal pollinator related studies 

fall in only five countries. “Rest of the world” is represented by 238 countries. 
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The global distribution of study counts reveals geographic disparities in animal pollination 

literature (Figure 2.5). Study counts are particularly low across large regions of Africa, with the 

exception of Kenya, South Africa, and Madagascar. Central Asia is also underrepresented, 

with no studies returned for any of Afghanistan, Turkmenistan, Uzbekistan, Kazakhstan, and 

Tajikstan. It is probable that some Central Asian pollination studies were published in Russian, 

meaning they were missed in the initial download. Interestingly, and as you might expect, the 

geographical distribution of animal pollinator-related studies to some extent reflects the global 

crop production, as shown by the high research effort in Eastern Brazil, India, Europe, and 

North America (Potts et al. 2016). Indeed, the largely unproductive region of North Africa has 

low study density with the exception of the Nile Delta, a fertile region of the Sahara Desert 

(Elbasiouny et al. 2014). 
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Figure 2.5 Global study counts for animal pollinator related studies, aggregated at 

country level. Study counts were derived from the number of abstracts with their 

“major” focus in each country. All oceanic and otherwise obviously incorrect mentions, 

as well as mentions that could only be resolved to a unit larger than a country, were 

removed. Study counts were log10-transformed. Partially transparent blue points 

(“minor” mentions) represent the number of unique abstracts in which CLIFF-CLAVIN 

resolved that location. “minor” mentions include all specific geographical locations 

geoparsed by CLIFF-CLAVIN, with the exception of continents, oceans, and incorrectly 

geoparsed locations. 
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Interactions between taxonomy and geography 

 I also investigated the geographical distribution of pollination studies across taxa (Figure 2.6). 

I assumed that a taxonomic record in an abstract was related to any geographical location in 

the same abstract, and then plotted all unique abstract-species-location combinations (Figure 

2.6) for the top five taxonomic orders. My analysis shows clear spatial patterns in pollination 

studies for different taxa, which probably reflects some combination of the actual distribution 

of pollinator species, study biases, and methodology-induced biases (see ‘Limitations’ for 

more details). Given the inaccuracies inherent in CLIFF-CLAVIN, and the problem in assuming 

all taxonomic names are associated with all locations in an abstract, my results should be 

interpreted with caution.  

Genus-level study distributions for the Hymenoptera are associated with North America, South 

America, and Europe, reflecting some signal of actual distribution, although in my analysis 

Africa is conspicuous by its absence. My analysis indicates Apis has the largest study 

distribution, associated with North America, Europe, South and South-East Asia, Australia, 

and eastern South America, with some “minor” mentions in Kenya, South Africa, and Ghana. 

These results are consistent with the almost-global distribution of Apis (Han, Wallberg and 

Webster 2012), an important pollinating genus non-native to large portions of its current range 

(Whitfield et al. 2006). Bombus also appears to be associated with a global study distribution, 

albeit reduced in Africa, Central and South-East Asia, and Australia. This is to some extent 

concordant with the actual distribution of Bombus as a genus of the temperate regions, with 

anthropogenic introductions to New Zealand and Tasmania in the late 1800s and early 1990s 

respectively (Semmens, Turner and Buttermore 1993, Velthuis and van Doorn 2006). 

However, its association with studies in Africa and Australia is surprising, given it has no 

known distribution in either region. I found that all three Bombus abstracts associated with 

Africa, and all three with mainland Australia were false positives. Although each mentions a 

species of Bombus, the locations were inaccurate (either being mistakenly georeferenced 

taxonomic names or incorrect identification of a location). In all other top hymenopteran 



 

 
 

50 

genera, my results show some signal of actual distribution: Centris and Melipona are found 

naturally in the Neotropic and Neartic realms, Trigona in the Neotropic and Indo-Australian, 

Andrena and Osmia in the Holarctic and North America, and Megachile the Western 

Hemisphere and Palearctic (Michener 2007).  

Order-level trends likely indicate spatial patterns of pollinator importance, in part confounded 

by geographical study biases. For example, study records for dipterans are absent from 

Brazil—in a region highly populated with hymenopteran studies—but concentrated in Europe 

and North America. This would suggest some signal of lower ecological importance for 

dipterans in Brazil relative to hymenopterans. Indeed, previous studies have suggested an 

opposing latitudinal relationship for dipteran and hymenopteran pollination importance, with 

fly visitation decreasing at low latitude and hymenopteran increasing at low latitude (Ssymank 

et al. 2008). Similarly, chiropteran studies are concentrated in Central America, and the 

Apodiformes in South America, both regions within part of their respective native distribution 

(Fleming and Muchhala 2008). Some localities however are again conspicuous by their 

absence. Although hummingbirds went extinct in Africa in the Miocene, nectar-feeding fruit 

bats do occur in Africa and much of the tropics (Fleming and Muchhala 2008), which appears 

not to be represented in my analysis. Potentially also my outputs are influenced by the 

taxonomic spread of vertebrate pollinators in the Old and New World. The New World 

vertebrate pollinators are more diverse, but this diversity is concentrated in the hummingbirds 

and leaf-nosed bats, whereas in the Old World diversity is represented across multiple avian 

orders (Fleming and Muchhala 2008). For example, Old World pollinators include nectar-

feeding Psittaciformes and Passeriformes, both of which are not considered major pollinators 

in the New World (Fleming and Muchhala 2008). 
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Figure 2.6 Distribution of the animal pollinator literature broken down into 

taxonomic groups, for the top 12 genera and top 5 orders. Taxonomic orders are 

indicated here by fill colour, consistent across top and bottom panels: 

Hymenoptera (blue), Lepidoptera (pink), Diptera (orange), Apodiformes (green), 

and Chiroptera (grey). Point size represents the frequency of unique abstract-

genera-location combinations. “Other genera” here consists of 1001 genera 

across the Hymentopera, Lepidoptera, Diptera, Apodiformes, and Chiroptera.  
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Limitations 

Although taxonomic and geographical entity extraction are exciting developments, and show 

promise in both synthesising systematic review findings and prioritising the search path, these 

technologies are not without their limitations.  

I acknowledge that applying a single academic indexing tool (Scopus) will mean my initial 

search likely overlooked relevant literature. Notably, relative to indexing tools such as Web of 

Science (WoS) or Scopus, Google Scholar has been shown to return a greater proportion of 

the relevant literature for a given search term (Beckmann and von Wehrden 2012). Both 

Scopus and Web of Science have also been shown to exhibit geographical and language 

biases (Mongeon and Paul-Hus 2016), which could potentially influence my outputs. However, 

I reasoned that although an academic indexer might favour some geographical regions, 

taxonomic groups, or years over another, and Google Scholar would give greater coverage, 

an academic indexer would return a text corpus I could be confident had undergone peer-

review (Mongeon and Paul-Hus 2016). Given the underlying motive—to identify studies more 

efficiently for systematic review and meta-analysis—I decided that as a proof of concept, there 

was greater value in excluding the grey literature. In minimising the potential for biases, I opted 

for Scopus over WoS given its greater coverage (Mongeon and Paul-Hus 2016), and a single 

indexer to minimise the potential for duplication, a non-trivial risk in systematic reviews 

(Rathbone et al. 2015). 

Potentially, my restriction to abstracts from English-language articles biased the outputs of my 

results. Articles of any language can be indexed in Scopus, with the caveat that an English 

version of the abstract must be included (Scopus 2018). Choice of language should not 

significantly change my outputs, for two key reasons: firstly, English is the dominant language 

of the scientific literature (Tardy 2004, Hamel 2008), independent of the nationality of 

researcher, meaning articles published in English are representative of a geographical 

distribution greater than just native English speaking countries; and secondly, options for other 
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languages within Scopus are minimal—meaning their inclusion would likely not significantly 

influence the distribution of our results—with the greatest contributors after English (for the 

term pollinat*, returned on 16/08/18) being Portuguese (~1.7%), Chinese (~1.6%), Spanish 

(~0.9%), German (~0.5%), and Russian (~0.4%). However, I cannot exclude the possibility 

that the exclusion of some key languages may have biased the outputs, particularly given that 

35.6% of the biodiversity conservation literature is not written in English (Amano et al. 2016). 

Biases may also have been introduced by the taxonomic entity extraction algorithms, Neti Neti 

and Taxonfinder. Because the scrape for taxonomic information only picks up Latin binomial 

names, any species more often referred to by its common name, or any species more often 

referred to in the abstract through a higher taxonomic level, will likely be underrepresented. 

This may be the case for the western honey bee, Apis mellifera, which is often referred to by 

its common name, and possibly also for bumble bees. I briefly explored this limitation through 

investigating the frequency of common names for each of the top 4 genera (Apis, Bombus, 

Osmia, and Megachile), finding that the taxonomic disparity between honey bees, bumble 

bees and other taxa is likely even greater than suggested by our results, potentially by a factor 

of ~2 (Appendix 1, Figure S1.5). Given the strong association of Apis and Bombus studies 

with North America, Europe, and East Asia, I also expect that our analysis underestimates 

geographic disparity. Groups such as hummingbirds, which are more often mentioned in the 

abstract without an accompanying Latin binomial species name, may also be 

underrepresented. I explored this limitation through investigating the frequency of family 

names for 5 families with well-known common names (fig wasps, hawk-moths, hoverflies, 

hummingbirds, and leaf-nosed bats), selected from each of the top 5 orders (Hymenoptera, 

Lepidoptera, Diptera, Apodiformes, and Chiroptera). I found that three of these families 

(hummingbirds, fig wasps, and hoverflies) were likely under-represented by considering only 

Latin binomials (Appendix 1, Figure S1.6). 

My findings were also influenced by the approach used to verify animal species records. In 

particular, in counting only Latin binomials I will have missed records. However, I reasoned 
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that the unambiguity of the Latin binomial would help to reduce noise. Moreover, I assumed 

that, with the possible exception of taxa referred to by widely accepted common names, the 

frequency of mentions for the full species record would likely correlate with higher taxonomic 

levels (Correia et al. 2017).  

Spelling mistakes and failure to resolve as an accepted name are two different although 

closely-related limitations. Failure to resolve as an accepted name could potentially be caused 

by a spelling mistake in a synonym or accepted name, or by that record being absent from the 

COL as either an accepted name or synonym. Although I investigated fuzzy-matching for non-

matched records, I opted not to include this implementation here because taxonomic name 

resolution became more ambiguous as a result. Fuzzy-matching returned multiple potential 

matches for a given record, requiring significant input to exclude false positives. Moreover, 

spelling mistakes would only be problematic for my conclusions if unevenly distributed among 

taxonomic groups, which is unlikely to be the case.  

CLIFF-CLAVIN may also have introduced geographical biases in the distribution of our 

outputs, through the way in which it is trained and its probabilistic nature. Given that CLIFF-

CLAVIN is trained on news articles, its effectiveness on academic texts is unclear. During my 

analysis, I noticed that CLIFF-CLAVIN would occasionally mistake Latin taxonomic entities for 

geographic locations. For example, the genus Pavonia was mistaken for a geographical 

location. There may be instances in which the algorithm’s training interacts with taxonomy to 

bias our outputs. Relatedly, since CLIFF-CLAVIN is trained on news outlets based primarily 

in the US, US-based studies may be overestimated (Imani et al. 2017). However, my results 

for the representation of US pollination studies are consistent with Archer et al. (2014), which 

applied a different methodology. The probabilistic nature of CLIFF-CLAVIN may also have 

influenced my results to a small degree (indeed, running the algorithm a second time led to a 

reduced number of “minor” mentions in Brazil). 
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Future directions 

Here I have used two text-analysis tools to quantify the geographical and taxonomic 

distribution of the animal pollinator literature. I showed that the literature is heavily 

concentrated in the honey bees and bumble bees of North America, albeit less biased than 

some authors have implied (Mayer et al. 2011).  

The skewed taxonomic and geographical distribution of pollinator literature is a problem for 

the robustness of animal pollinator biodiversity models. Unfortunately, solving this problem is 

hard. Well-designed, long-term, and resource-intensive studies on little known taxonomic and 

geographical regions are needed. However, such studies are logistically difficult, expensive, 

and may not be achievable in time to inform important decisions. Another option—although 

not mutually exclusive—could be mitigating the problem through fully engaging with the 

available literature. Here I explore how this could be achieved by using the same text-analysis 

tools to yield a more representative and comprehensive set of studies for systematic reviews 

and meta-analyses. I briefly describe the conventional literature search path, as used for 

example in systematic reviews, before introducing a new search process. 

The conventional literature search process for a systematic review can be conceptualised as 

three key phases, with the first two concerning literature retrieval (Figure 2.7): the search-term 

phase, in which key words in an online database are optimised to return literature deemed 

representative of the given research question; and the manual filtering phase, in which each 

article is assessed according to a series of specific criteria, and then excluded if it is deemed 

irrelevant. This manual filtering phase can be long and labour-intensive (Haddaway and 

Westgate 2018); some authors will assess >10,000 papers (Lavoie, Verbeek and Pahwa 

2014, O’Mara-Eves et al. 2015), with one review as high as 800,000 papers (Shemilt et al. 

2014). The manual filtering phase is followed by a third phase: the appraisal of each selected 

article, in which data are extracted to quantify the main findings of the study (Pullin and Stewart 
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2005). Although article appraisal can in part be addressed through text analysis (Lajeunesse 

2016), here I focus on optimising the manual filtering and data-extraction phases.  

Text-analysis has been introduced as a useful tool in optimising the literature filtering phase, 

but uptake in ecology is still low (Westgate et al. 2015). This is in part a symptom of unintuitive 

text-analysis tools, and insufficient technical skills required to use them (Westgate 2018a). 

However, arguably the bigger barrier is the lack of understanding as to how text-analysis tools 

relate practically to the literature search process. Although text-analysis approaches in 

ecology have advanced (Nunez-Mir et al. 2016, Westgate et al. 2018b, Roll et al. 2017), as 

far as I know there are no clear recommendations as to how ecological researchers should 

implement these approaches in the literature search. Here, taking inspiration from the 

‘revtools’ package (Westgate 2018a), I propose a text-analysis search path in the context of 

the systematic review (Figure 2.7). The technology is available for this path, but not yet the 

specific intuitive tools or validation in the context of pollination ecology. My proposed synthesis 

path can be conceptualised as five key phases: search term, topic similarity, taxonomic and 

geographic identification, manual filtering, and appraisal. Below I briefly describe each of the 

first three modified phases: 

1. Initial search terms should be used to return a broad body of literature for a given field. 

Fewer and less specific search terms should be used across multiple databases, 

aiming to return all of the relevant literature irrespective of a potentially high false 

positive rate. This less restrictive initial search will require less researcher input, thus 

reducing the time required. Such an approach will also reduce the likelihood of 

overlooking relevant literature through overly specific search terms. 

2. The key filtering step should be shifted downstream to a text-analysis filter. Topic-

clustering algorithms should be used to exclude irrelevant articles. For example, in the 

context of the potential pollination literature returned by Scopus, topic-clustering can 

be used to exclude papers on the flower-pollination algorithm, an area of computer 

science unrelated to pollination ecology. Topic clustering is more reproducible than 
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database search terms, less subject to researcher methodology, more representative 

of overall content, and not subject to differences across database.  

3. Taxonomic and geographical entity extraction algorithms should be used to indicate 

the geography and taxonomy of each study. Taxonomic group and geography can be 

used to prioritise for underrepresented taxa or regions, as well as to identify likely 

literature for regional or taxonomic systematic reviews.  
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Figure 2.7  Reducing the length of the “synthesis gap” for ecological systematic 

reviews. The conventional synthesis gap (a) proceeds through three primary steps: the 

search term phase, manual filtering, and appraisal. My proposed, more efficient 

synthesis gap (b) proceeds through five steps: a less-exclusionary search term phase; 

text-analysis prioritisation (topic similarity and taxonomic/geographic filtering or 

prioritization); manual filtering, and appraisal, with both the search term and manual 

filtering stages shortened. Solid lines represent the research volume between each 

stage, which in my proposed process is greater, owing to the increased taxonomic and 

geographic representativeness. Dotted lines represent the change in research volume 

for each selection step. Red lines represent the beginning and ends of the synthesis 

gap, from the practice of science to the synthesis of evidence. 
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Text-analysis tools could also be applied to answer other research questions in the field of 

animal pollination, such as the identification of likely plant-pollinator interactions and the 

estimation of the number of pollinating species. Here I briefly explore how these research 

questions might be addressed. 

Likely plant-pollinator interactions could be identified through investigating the strength of 

animal-plant associations across the pollination literature. For example, a plant and animal 

species frequently occurring in the same abstract would imply a closely-related pair, while an 

animal-plant combination occurring infrequently would imply a weak or non-existent 

interaction. These animal-plant networks could then be validated with observational plant-

pollinator interaction data, using an approach similar to Tamaddoni-Nezhad et al. (2013), who 

showed that text-derived food web networks approximated empirical data. Such a database 

of likely interacting plant-pollinators could be invaluable for pollinator biodiversity modelling. 

For example, we might be able to predict better the likelihood of co-extinctions, as well as 

improve estimations of global and regional pollinator importance.  

I also envisage that an accurate lower bound for the number of pollinating species could be 

estimated through text-analysis. This would build on the work of Ollerton (2017) and 

Wardhaugh (2015), who estimated there to be ~350,000 described species of animal 

pollinator, based on the number of species in key pollinating groups. I propose that within 

taxonomic groups, the number of pollinating species could be estimated through quantifying 

the rate at which unique animal species accumulate as pollination text volume increases. This 

would be analogous to the species-effort rarefaction curve; a mathematical relationship 

between pollinator text volume (effort) and species number, revealing how the number of 

unique pollinators increases as a function of research volume (effort). Such work would likely 

require scraping of full articles, rather than just abstracts as presented here. Full-text scraping 

presents additional problems regarding rapid article download and permissions, file format, 



 

 
 

60 

text volume quantity, but the benefits relative to abstract scraping are known (Westergaard et 

al. 2018). Similar methodologies have been applied to quantify the number of species on 

Earth, both for the flowering plants (Joppa, Roberts and Pimm 2011) and for all Eurkaryotes 

(Mora et al. 2011). In the context of pollinator biodiversity models, good estimates of the 

diversity and number of pollinating species are fundamental for understanding how 

ecosystems will respond to future environmental change (Ollerton 2017).  

Summary 

Here I have shown—using a novel combination of informatics tools—how text-analysis can be 

used to quantify the taxonomic and geographical distribution of the animal pollinator literature. 

In doing so I have confirmed that the literature is heavily focused on the honey bees and 

bumble bees of North America and Europe, although many studies also exist for other taxa 

and regions. This skewed taxonomic and geographical distribution likely has a large impact 

on the robustness of systematic reviews and meta-analyses of animal pollinator decline. I have 

shown how text-analysis might to some degree mitigate these data biases. Text-analysis could 

be used to make the literature search process more efficient, as well as increase the 

taxonomic and geographic representativeness of the studies fed into systematic reviews and 

meta-analyses. To this end, I briefly outlined a new literature search process, using an 

ecological systematic review as an example for how text-analysis might contribute. I have also 

explored some potential broader applications of text-analysis in pollination ecology, such as 

the identification of likely plant-pollinator interactions and the estimation of the number of 

pollinating species, both of which could feed into more robust systematic reviews and meta-

analyses in the future. Text-analysis undoubtedly shows promise in increasing our 

understanding of the rapidly growing pollination ecology literature, and in turn the robustness 

of studies estimating pollinator decline. 
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Chapter 3: Global effects of land-use intensity on local 

pollinator biodiversity 

Abstract 

Pollinating species are reported to be in decline globally, with land use an important driver. 

However, most of the evidence on which these claims are made is patchy, and generally 

based on studies with low taxonomic and geographic representativeness. Further research 

incorporating a broader spectrum of taxa and geographies is required. Here, I model the 

effect of land-use type and intensity on global pollinator biodiversity, using a database of 

local-scale biodiversity covering 303 studies, 12,170 sites, and 4,502 unique species judged 

to be pollinating animals. Relative to a primary vegetation baseline, I show that low and 

intermediate levels of intensity can have beneficial effects on pollinator biodiversity. Within 

most anthropogenic land-use types however, intensity is associated with reductions in 

pollinator species richness and total abundance, particularly in urban (43% richness and 

62% abundance reduction compared to the least intensive urban sites), plantation (38% 

richness reduction), and pasture (75% abundance reduction) areas. I further show that on 

cropland, the strongly negative response to intensity is restricted to tropical areas, and that 

the direction and magnitude of response differs among taxonomic groups, with significantly 

higher pollinator biodiversity for some taxonomic groups (e.g. flies) on intensively fertilised 

cropland. My findings confirm widespread effects of land-use intensity on pollinator 

biodiversity, most significantly in the tropics, where climate and land use are predicted to 

change rapidly in the coming decades.       
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Introduction 

Pollinating species, particularly insect pollinators, are reported to be in decline, with change 

in land-cover, land-use intensity, and climate thought to be the primary drivers (Potts et al. 

2010; Steffan-Dewenter and Westphal 2007; Woodcock et al. 2016; Winfree et al. 2011; 

Soroye et al. 2020; IPBES 2017; Biesmeijer et al. 2006). In the media, insect pollinator 

biodiversity change has been reported to constitute an “ecological Armageddon” (Embury-

Dennis 2017). However, the evidence on which these claims are made is patchy and 

contested, based on studies with low taxonomic and geographic representativeness 

(Sánchez-Bayo and Wyckhuys 2019; Martin et al. 2019; Powney et al. 2019; Lister and 

Garcia 2018; Hallmann et al. 2017). For pollinators more broadly, declines have been 

reported in wild bees, honeybees, hoverflies, butterflies and moths, flower-visiting wasps, 

birds, and mammals (see Ollerton 2017 for a summary of the evidence), but comprehensive 

studies of change tend to be biased towards North America and Europe (Saunders et al. 

2020), which are unlikely to be globally representative (De Palma et al. 2016). Moreover, 

even within well-studied taxonomic groups and regions, the magnitude and direction of 

change can vary depending on methodological approach, spatial scale, and metric of 

biodiversity change (Kunin 2019; Macgregor et al. 2019). Recent research indicates there 

may be pollinator information for other geographic regions and taxonomic groups, previously 

untapped in synthetic analyses of pollinator biodiversity change (Millard et al. 2020a). Given 

the value of animal pollination to the global economy, at an estimated  $235-577 billion US 

dollars per annum (IPBES 2017), further research considering multiple metrics of 

biodiversity, across a broader spectrum of taxa and geographies, is required.    

The reliance of global crop production on animal pollinators makes pollinator biodiversity 

research highly relevant to policy-makers. More than 75% of globally important food crops 

are at least partially reliant on animal pollination, including fruits, vegetables, coffee, cocoa 

and almonds (Klein et al. 2007). Three recent policy initiatives demonstrate recognition from 

the international community that pollinator biodiversity change represents a significant 
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problem, and needs to be addressed: 1) the EU Pollinators Initiative (European Commission 

2018) called for improved knowledge of declines and causes, action to tackle drivers, and 

raised awareness across society on the importance of pollinators; 2) the International 

Pollinator Initiative plan of action aims to coordinate global action for pollinator conservation 

(FAO 2018); and 3) more broadly, the draft post-2020 framework of the Convention on 

Biological Diversity (Secretariat of the Convention on Biological Diversity 2020) describes 

the need for the sustainable use of biodiversity to support the productivity of ecosystems. 

Much of the Earth’s terrestrial surface is subject to anthropogenic use. More than 75% of the 

terrestrial world exhibits direct evidence of historical or current transformation (Ellis and 

Ramankutty 2008), with just over 50% (~67 million km²) currently used by humans (Hooke et 

al. 2012). This area is comprised of ~44% for agriculture and forestry, and ~7% for 

infrastructure including urban areas (Hooke et al. 2012). Within both natural and disturbed 

land-use types, intensity of human use varies markedly. Broadly capturing the inputs used in 

managing land, high-intensity farming refers to a suite of technological practices designed—

although not always successfully—to increase yield (Donald et al. 2001). Treatments of the 

land are often in the form of chemical applicants, such as pesticides, fungicides, herbicides, 

and fertilisers, as well as mechanical management (tillage). Such intensive agricultural 

practices are commonplace in much of the modern world (Benton et al. 2002; Benton et al. 

2003). 

Anthropogenic land-use and land-use intensity are interrelated drivers of pollinator 

biodiversity change (Tscharntke et al. 2002; Kennedy et al. 2013; IPBES 2017). Much of the 

research investigating land-use effects on pollinator biodiversity has demonstrated the 

importance of landscape-level habitat composition, often as distance to natural habitat 

(Ricketts et al. 2008) and distance to managed land (Klein et al. 2003; Kennedy et al. 2013), 

or habitat fragmentation (Xiao et al. 2016) and edge density (Martin et al. 2019). Land-use 

intensity effects are generally typified by chemical application (Woodcock et al. 2016; 

Goulson 2013; Pisa et al. 2015; Sanchez-Bayo and Goka 2014; Pilling and Jepson 1993). 
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Pesticides such as neonicotinoids have been a focal point of study, given their association 

with declining bee populations (Goulson 2013; Pisa et al. 2015; Woodcock et al. 2016), 

honey bee health (Sanchez-Bayo and Goka 2014), and bumblebee behaviour (Crall et al. 

2018). Other chemical inputs such as fungicides and herbicides have also been subject to 

investigation, tending to have indirect effects on pollinator biodiversity by increasing 

pesticide toxicity (Schmuck et al. 2003; Pilling and Jepson 1993) and reducing floral diversity 

(Morandin and Winston 2005). Similar indirect effects have also been shown for fertiliser 

application. For example, nitrogen-based fertilisers reduce plant species diversity (Ridding et 

al. 2020), and dispense with the requirement for clover field crop rotation, further reducing 

floral availability for pollinators (Goulson et al. 2008).  

Pollinator response to landscape-level land use is mixed, with the magnitude and direction of 

change differing among taxonomic groups. For example, some bees, butterflies, syrphid 

flies, and nectarivorous pollinating birds have been found to favour open, intermediate-level 

forested areas of semi-natural grassland or agroforestry (Michener 2007; Deans et al. 2007; 

Kuussaari et al. 2007; Tscharntke et al. 2008). Similarly, species rich and abundant wild bee 

communities have been found in urban environments, indicating that for some species 

anthropogenic activity can be beneficial (Hall et al. 2017). For both open forested and urban 

areas, benefits to pollinators can in part be attributed to floral availability (Goulson et al. 

2008; Hall et al. 2017). More broadly however, differences in pollinator response are often 

attributed to traits (Öckinger et al. 2010; Burivalova et al. 2015; Montero-Castaño and Vilà 

2012; De Palma et al. 2015), such as dietary specialism, mobility, and nesting behaviour 

(Aguirre-Gutiérrez et al. 2016; Shuler et al. 2005). Trait data are not available for many 

pollinating species, but given that phylogeny to some extent predicts traits, one would expect 

broad differences in response among taxonomic groups (Cusser et al. 2018).  

Differences in pollinator response to intensity are also likely between tropical and non-

tropical regions. There are a number of reasons why this is the case. First, temperate non-

tropical regions have a longer history of agricultural activity, which may have acted to filter 
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more sensitive species (Balmford 1996), meaning more recent shifts towards intensive 

agriculture may have a smaller effect. Second, with the exception of high laititude Arctic 

pollinators (Høye et al. 2013), tropical biodiversity has been reported to be more sensitive to 

the effects of climate change  (Barlow et al. 2018), which may magnify the effect of land-use 

(Williams et al. 2020b). In terms of insect pollinators specifically, tropical insects are thought 

to exist closer to their thermal tolerance limits, meaning small magnitude changes in 

temperature have a disproportionate effect on biodiversity (Deutsch, et al. 2008). Third, 

functional specialisation tends to be higher in tropical pollination systems (i.e. there is a 

narrower breadth of visitors to a flower across broad taxonomic levels), which may also 

relate to community sensitivity to land-use change. Although recent research has addressed 

patterns of overall biodiversity change between geographical zones (Blowes et al. 2019; 

Newbold et al. 2020), for pollinating taxa the extent to which response to land-use intensity 

differs between tropical and non-tropical regions is unclear. 

I present the most comprehensive global space-for-time synthesis of pollinator responses to 

land-use intensity. For the first time, I test for global differences in responses among land-

use types, taxonomic groups, geographic regions, and biodiversity metrics. I do so using two 

global compilations of data: 1) The PREDICTS database, a global compilation of site-level 

ecological survey data across different land uses and land-use intensities (Hudson et al. 

2017), which was originally built to model the overall effect of human-land use on global 

terrestrial biodiversity (e.g. Newbold 2015a); and 2) a new database of animal species 

judged to be animal pollinators (see Millard et al. 2020a and ‘Methods’). My final dataset 

included 3,862 invertebrate and 640 vertebrate species identified as potential pollinators, 

across 303 studies and 12,170 sites, primarily across North and South America, Europe, and 

Africa. I hypothesised that land-use intensity would decrease site-level biodiversity (species 

richness, Simpson diversity, and total abundance) for pollinating species overall, but that 

response would differ between taxonomic orders, and would be more negative in the tropical 

zone than elsewhere. Specifically, I set out to answer three questions related to land-use 
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intensity and global pollinator biodiversity: 1) What are the overall effects of land-use 

intensity on pollinator biodiversity across all land-use types? Then focusing on croplands, for 

which there is the most extensive data: 2) How does the effect of land-use intensity on 

pollinator biodiversity differ between tropical and non-tropical areas? and 3) How does 

pollinator response to land-use intensity vary among taxa? 

Methods 

Pollinator dataset construction 

I built an animal pollinator dataset through a semi-automatic approach, combining an 

automatic text-analysis method (see Millard et al. 2020a) with manual inspection of the 

automated output. Here I describe the full methodology used to derive this dataset. 

I first created a list of possible pollinating animal genera through automatic text analysis of 

the pollination literature. I used an initial automated search to avoid biasing towards well-

known pollinators, and to markedly reduce the input required in searching. I considered the 

pollination literature to be any primary research article published in English returned through 

a search for the term “pollinat*” in Scopus, and which mentioned an animal species in the 

abstract. I considered a possible pollinating genus to be any animal genus appearing as part 

of a Latin binomial in a pollination-related abstract returned from Scopus. Genus scraping 

was accomplished using the Taxonfinder and Neti Neti algorithms implemented in the 

‘taxize’ R package (CRAN 2018), with animal species confirmed through a series of 

character string matches to the Catalogue of Life (see Millard et al. 2020a for a detailed 

methodology).  

For each possible pollinating genus, I then read the abstracts in which these animals 

appeared, searching for evidence confirming that genus as pollinating. For any situation in 

which the abstract was inconclusive, I also searched the full text of the paper. For each 

confirmed pollinating genus, I then assigned a level of confidence between 1 and 4 based on 

the type of evidence, following Ollerton and Liede (1997): 1) experimental evidence 
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confirming pollination; 2) evidence of pollen carrying; 3) evidence of nectar/pollen feeding; 4) 

evidence of non-destructive/non-predatory flower visitation. I read abstracts for each genus 

searching for the highest level of evidence, either until I could be sure that the confidence 

value should be 1, or I ran out of abstracts for that genus. Non-destructive flower visitor 

refers to any animal which visits a flower without causing damage to the plant. This meant 

the exclusion of ants, which are typically referred to as poor pollen vectors, given that they 

damage pollen through secretions from the meta-pleural gland (Dutton and Frederickson 

2012). Non-predatory flower visitor refers to any animal which visits for some purpose other 

than predation. This meant the exclusion of animals such as crab spiders, which predate on 

pollinators during visitation, and therefore contribute minimally or negatively to pollination 

(Dukas and Morse 2003). I did not classify broad statements as evidence for pollination—for 

example, one study stated that Phylidonyris novaehollandiae (Latham, 1790) is a “key 

pollinator” (Myers et al. 2012)—unless it was associated with specific evidence reinforcing 

that statement, or some claim that pollination in that genus is “well-known” or “widely 

acknowledged”.  

Given that I only had direct evidence for a sample of all pollinating genera, I then searched 

for higher-level groups of likely pollinators. From the confirmed pollinators in the original list 

of genera, I identified all unique families with at least one pollinator. For each family, I 

assessed the breadth of evidence for pollination through consulting the abstracts and 

taxonomic group reference books. For any family with evidence of pollination across multiple 

branches of that family, and no evidence of any species definitely not pollinating, I assumed 

that the whole family is pollinating. If unable to extrapolate across the whole family, I then 

searched progressively lower taxonomic groups (i.e. subfamily, tribe, subtribe), searching for 

the point at which we could be relatively confident that the entire group contributes to 

pollination. If unable to extrapolate for a given group, I kept only the genera with direct 

evidence. For example, within the family Macroscelididae (elephant shrews), I found only 
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one genus (Elephantulus) with pollination evidence, and no evidence across the rest of the 

family, meaning I kept only that genus.  

To compile the final list of pollinators, I merged all genera identified directly as pollinators, 

and then all taxonomic groups identified indirectly, with all biodiversity records in the 

PREDICTS database. Any record in the PREDICTS database not for a pollinating genus or 

extrapolated taxonomic group was thereby filtered out. As a result, specific sites or studies 

were only kept of it they were represented by at least 1 pollinator record. I merged direct 

evidence (i.e. confidence levels 1-4) first to pick up each species record at its highest level of 

confidence, and to ensure that each species record is assigned only one confidence value. 

PREDICTS does not record additional taxonomic ranks between family and genus, so for 

any species extrapolated at a taxonomic level below the level of family (i.e. subfamily, tribe, 

subtribe), I consulted compiled genera lists for each group, using taxonomic references and 

Wikispecies (see ‘Supplementary Data 2’ in Millard et al. 2021a for the list of taxonomic 

references), and then filtered these genera from PREDICTS. As an additional check of our 

final list of likely pollinating species, I sought the opinion of experts in pollination ecology. 

Initially I shortlisted a set of pollination experts, using my knowledge of the pollination 

literature and contacts made through conferences. From this initial shortlist, I then selected a 

group of individuals such that I had expert opinion across a breadth of geographic regions 

and taxonomic groups. From this abridged list, I then sent lists of the likely pollinating genera 

in PREDICTS to 7 experts (OA, SG, EK, MK, JO, Z-XR, MS; see Appendix 2, Table S2.15), 

and removed any taxa identified as highly unlikely pollinators.  

Effect of land use and land-use intensity on global pollinator biodiversity 

I used the PREDICTS database to model responses of animal pollinators to land-use type 

and intensity (Hudson et al. 2017). The PREDICTS database is structured such that each 

site is nested at a series of levels (Appendix 2, Figure S2.13), allowing one to account for 

variation owing to study methodology. The database contains variables for land-use intensity 

(minimal, low, and high) and land-use type (primary vegetation, mature secondary 
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vegetation, intermediate secondary vegetation, young secondary vegetation, plantation, 

pasture, cropland, and urban). Land-use intensity for each land-use type is defined 

according to a series of variables, such as fertiliser and pesticide application, mechanisation, 

and hunting (see Newbold et al. 2015a for more details).  

After merging the PREDICTS database with my set of likely pollinating species I performed a 

series of data-processing steps. I removed any sites for which land-use type and land-use 

intensity was unknown. I also removed sites in secondary vegetation at an unknown stage of 

recovery. I combined the factors for land-use intensity and type to create a single variable 

(henceforth referred to as LUI), following the methodology of De Palma et al. (2016). After 

combining land-use intensity and type, I then removed the class “Mature secondary 

vegetation-Intense use”, which was represented by only 5 sites, and “Intermediate 

secondary vegetation-Intense use”, which was represented by only 23 sites. After removing 

these factors, site representation was ≥ 43 sites for all land use type and land-use intensity 

combinations (see Appendix 2, Table S2.19). I then calculated site-level species richness 

(the number of uniquely named species sampled at a site), Chao1-estimated species 

richness (the number of species at a site controlled for abundance; Chao et al. 2005), total 

abundance (the sum of all species sampled abundances at a site), and the Simpson 

diversity index (the reciprocal of the sum of squared proportional abundances for all species 

sampled at a site). Sampling effort was accounted for by dividing the abundance values for 

each measurement by the sampling effort (rescaled to a max value of 1 for each study) for 

that record, as in De Palma et al. (2016). For any subsequent analyses I worked only from 

the sampling effort adjusted measurements. Given sampling effort adjustments, and that raw 

abundances were in some cases measured as densities, many total abundances will be 

non-integer values. 

I built generalised linear mixed-effects models with a Poisson error distribution for species 

richness and Chao1-estimated species richness (Chao et al. 2005), and linear mixed-effects 

models for Simpson diversity and total abundance. In an initial set of models all biodiversity 
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metrics were fitted as a function of land-use intensity, land-use type, and their interaction, for 

all likely pollinators in PREDICTS (see Appendix 2, Table S2.17). I then built a set of models 

predicting each biodiversity metric as a function of LUI, for the same set of pollinators. I did 

not use a generalised model with Poisson errors for total abundance or Simpson diversity 

because most recorded measurements are not integer counts of individuals. Instead I loge-

transformed all total abundance and Simpson diversity values (adding one because of zero 

values) to normalise the model residuals. Due to the nested nature of the database (see 

Appendix 2, Figure S2.13 and Hudson et al. (2017)), I included a random intercept of study 

identity to account for variation in sampling methods, sampling effort and broad geographical 

differences among studies, and a random intercept of spatial block within study to account 

for the spatial structuring of sites. An additional (observation-level) random intercept of site 

identity was included in the species richness model, to control for the over-dispersion 

present in species richness estimates (Rigby et al. 2008). Random-effects structures were 

selected to minimise AIC values. I checked for overdispersion in the species richness 

models using the function GLMEROverdispersion in the R package StatisticalModels 

(Newbold 2015b). I compared each model against an intercept-only model, and discarded 

any main model for which AIC was greater than the null model (see Appendix 2, Table S2.18 

for pseudo R squared values for all significant models).  

I carried out a series of additional validation analyses for our set of LUI models. 1) I checked 

for study-level spatial autocorrelation in the residuals of any significant model, using the 

Moran’s I test (Appendix 2, Figure S2.5). 2) I checked the extent to which a negative 

binomial zero-inflated model for total abundance would have differed from a linear model 

approach (Appendix 2, Figure S2.1). 3) I checked the extent to which the fixed effects would 

have differed if we had fit a model with climatic variables as potentially confounding 

covariates (Appendix 2, Figure S2.3), including both the maximum temperature of the hottest 

month and the total precipitation of the wettest month—both over the 12 months previous to 

the end data of each sample—which have previously been indicated as important biological 
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variables (Williams et al. 2020a). 4) I jack-knifed the sites for each significant model by 

continental region to check the extent to which geographic biases influenced our predictions 

(Appendix 2, Figure S2.2). 5) I checked the extent to which an abundance-controlled 

estimate of species richness (Chao1-estimated species richness; Chao et al. 2005) would 

have differed from species richness alone (Appendix 2, Figure S2.4).  

Effect of land-use intensity on cropland pollinator biodiversity 

I focused on cropland in our remaining analyses, given the importance of animal pollination 

to crop production. I built 3 models for all potential pollinating species, modelling each of 

three biodiversity metrics (species richness, total abundance, and Simpson diversity) in 

cropland as a function of land-use intensity (minimal, low, high), geographical zone 

(temperate/tropical), and their interaction. I included minimally used primary vegetation in 

these models as a baseline. Given that the structure of this baseline differs among sites—

particularly between tropical and non-tropical areas (see Appendix 2, Figures S2.11 and 

S2.12)—and that this may affect our predictions for pollinator biodiversity, I also built a set of 

models with a high (>= 60% cover) and low (<= 40% cover) forest cover baseline, using 

Hansen (2013) forest cover data (Appendix 2, Figure S2.6). I also carried out two additional 

validation analyses. 1) I checked whether unequal site number between our tropical and 

non-tropical data predicted the size of our 95% confidence intervals. Specifically, I 

resampled 1,000 sites from each of the tropical and non-tropical sites a total of 100 times, 

and then for each group of 2,000 (tropical and non-tropical) fitted total abundance as a 

function of land-use intensity, geographical zone, and their interaction. I then plotted the 

distribution of the size of the 95% confidence intervals for all models (Appendix 2, Figure 

S2.7). 2) I checked whether response to land-use intensity between the tropics and non-

tropics would have been the same if we had analysed only the main crop pollinating groups 

(Appendix 2, Figure S2.8; i.e. bees, wasps, beetles, thrips, flies, birds, and bats; see OIlerton 

2021). 
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I also built 3 models for a vertebrate and invertebrate cropland subset of the database, 

modelling the same biodiversity metrics as a function of land-use intensity, taxonomic order, 

and their interaction, again including minimally used primary vegetation as a baseline. My 

taxonomic subset included the better-sampled invertebrate orders Hymenoptera, 

Lepidoptera, Diptera, and Coleoptera, and the vertebrate orders Apodiformes and 

Passeriformes, and represented 3006 sites in total (see Appendix 2, Table S2.25). For both 

my geographical zone and taxonomic order models, I selected from the same set of random-

effects structures (as in the main models), aiming to minimise AIC values. I tested each 

model against an intercept-only model and a model with one fixed effect for land-use 

intensity, and discarded any main model for which AIC was greater than the null model (see 

Appendix 2, Table S2.18). 

I also explored the effect of a continuous variable describing a specific aspect of land-use 

intensity (fertiliser application rate) on pollinator biodiversity, specifically for cropland. I used 

Earthstat fertiliser data at a spatial scale of 5 x 5 minutes—equivalent to 10 × 10 km at the 

equator—largely for the years 1999-2000 (Mueller et al. 2012; West et al. 2014), aggregated 

as the total application in kg per hectare for nitrogen, phosphorous, and potassium on 17 

major crops (see Appendix 2, Table S2.34 for the full list crops). I aggregated the Earthstat 

fertiliser data by summing the per hectare application rate rasters for all crop/fertiliser 

combinations, and then extracting the summed fertiliser values at each site (see Appendix 2, 

Figure S2.9, note that site-level geographic distribution is lesser relative to our overall 

pollinator biodiversity models). Given that the spatial scale of this aggregated application 

rate data is greater than that of specific sites, my fertiliser metric refers to application rate in 

the surrounding landscape, rather than at that specific site. I chose to use fertiliser data 

given its availability at the global scale, reasoning that its application would both drive 

change itself, and broadly act as a surrogate for intensity. I built models for all potential 

pollinating species, modelling each of three biodiversity metrics (species richness, total 

abundance, and Simpson diversity) in cropland as a function of log10(fertiliser application 
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rate + 1), geographical zone (temperate/tropical), and their interaction. I also built models for 

the invertebrate and vertebrate subset (Hymenoptera, Lepidoptera, Diptera, Coleoptera, 

Apodiformes, and Passeriformes), modelling each of three biodiversity metrics as a function 

of total fertiliser application rate, taxonomic order, and their interaction. I compared each 

model against an intercept model and a model with one fixed effect for total fertiliser 

application rate, and excluded any main model for which AIC was greater than the null 

model. As a supplement to our total fertiliser application rate analyses, I also used PEST-

CHEMGRIDS to build an analogous set of total pesticide application rate models (Figure 3.6; 

Maggi et al. 2019). PEST-CHEMGRIDS represents 20 of the most common pesticides for 6 

individual crops and 4 aggregated crop groups, again at a scale of 5 x 5 minutes (Appendix 

2, Figure S2.10). All analysis and data processing were carried out in R v.4.0.3 (R Core 

Team 2020). 
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Results 

Pollinator dataset 

I identified 1,013 possible pollinating genera across 3,974 abstracts in the initial automatic 

search of the pollination literature. After reading the abstracts associated with each genus, I 

confirmed 545 genera as likely pollinators at confidence levels 1-4. These 545 genera 

represented 141 unique families, of which 46 families, 10 subfamilies, and 5 tribes were 

judged to consist entirely of pollinators. Whilst consulting literature prioritised by the 

automatic search, I also identified an additional 51 genera with direct pollination evidence, 

which I assigned a confidence level between 1 and 4, and 18 additional families with 

extrapolated evidence. Filtering all expert-assessed pollinators from the PREDICTS 

database returned records for 4502 species in total, sampled at 12, 170 sites (see Millard et 

al. 2021a ‘Data availability’ for the final list of pollinating species in PREDICTS). After 

selecting only sites in which land-use intensity and type were recorded in the PREDICTS 

database, a total 8,639 sites remained. The number of sites was highest in Europe (26.2%), 

North America (24.4%), and Africa (20%), and lowest in South America & the Caribbean 

(12.3%), Oceania (15.2%), and Asia (8.6%) (Figure 3.1). 
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Figure 3.1 Data on species in the PREDICTS database identified as likely pollinators, after 

automatic text-mining, manual filtering, and expert consultation. A) The global distribution 

of PREDICTS sites containing likely pollinating species, for which both the land-use type 

and intensity of that site are known (nsites = 8639). B) The taxonomic distribution of likely 

pollinating species in PREDICTS for all sites (nspecies = 4502). The number of species 

indicated here will be an underestimate of the number of pollinating species in PREDICTS, 

since this figure only includes records for which there is a full scientific binomial in the 

database. Some biodiversity records in the PREDICTS database are recorded above the 

level of species. C) The source of information (direct evidence at the genus level or 

extrapolated to groups based on information for groups at higher taxonomic levels) for 

pollinators in PREDICTS, broken down by taxonomic class. In both B and C, there are four 

taxonomic Classes: Insecta (black), Aves (purple), Mammalia (red), and Reptilia (yellow). 

The reptiles are represented by only 5 species with ‘Direct’ confidence (see Appendix 2, 

Table S2.16). 
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Effect of land use and land-use intensity on global pollinator biodiversity 

With human land-use type, land-use intensity, and their interaction fitted separately, 

increasing land-use intensity from minimal to intense use was associated with a significant 

change in pollinator biodiversity (species richness, F = 9.4384; total abundance, F = 4.8075, 

p <0.01; Simpson diversity, F = 11.6691, p < 0.01; Figure 3.2; see Appendix 2, Table S2.17 

for ANOVA tables of land-use intensity and type fitted separately). Land-use type was also a 

significant predictor (species richness, F = 8.9440; total abundance, F = 8.0346, p < 0.01; 

Simpson diversity, F = 4.4150, p < 0.01; see Appendix 2, Table S2.17), although declines 

occur more strongly within a land-use type as opposed to among land-use types (note that p 

values are not included for species richness since deriving these from F values for mixed 

effects generalised linear models is problematic).  

Fitting human land-use type and intensity as a combined ‘LUI’ variable, relative to the 

primary vegetation minimal use baseline, biodiversity was often higher at low intensity 

(Figure 3.2). Indeed, with the exception of cropland and young secondary vegetation, all 

land-use types had species richness and total abundance significantly greater than the 

baseline, for at least one of low or intermediate intensity (Figure 3.2). Effects of land-use 

intensity were strongest in urban areas, with a 43% reduction for species richness and 62% 

for total abundance, between minimal and intense use. Plantation forest also experienced 

strong declines, decreasing by 38% for species richness. For anthropogenic land uses the 

weakest effects of land-use intensity were seen in pasture and cropland. Species richness 

did not decline significantly for pasture—although there was a 75% decline for total 

abundance—or for cropland for both total abundance and species richness. Young 

secondary vegetation did not significantly differ for total abundance, but for species richness 

declined between minimal and high intensity by 16%. All other secondary-vegetation types 

(mature and intermediate secondary vegetation) did not show significant differences in 

pollinator biodiversity among intensity levels (Figure 3.2). The AIC value for my Simpson 
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diversity LUI model was greater than the intercept-only model, meaning it was excluded from 

further analysis (see Appendix 2, Table S2.18). A zero-inflated negative binomial model for 

total abundance did not markedly change my predictions (Appendix 2, Figure S2.1). 

Similarly, neither did jack-knifing total abundance and species richness by continent 

(Appendix 2, Figure S2.2), including environmental covariates (Appendix 2, Figure S2.3), or 

controlling for abundance in our measure of species richness (Figure S2.4). There was 

significant spatial-autocorrelation in the residuals of only a small proportion of studies (2.33% 

of species richness studies and 4.65% of total abundance studies; Appendix 2, Figure S2.5).  
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Figure 3.2 Responses of pollinator biodiversity to LUI (a combined variable of land-use type 

and intensity). Each panel represents a linear or generalised linear mixed-effects model for: A) 

species richness; and B) total abundance. I excluded Simpson diversity here since AIC was 

greater for the main model than the intercept-only model. Colours represent land-use type: 

orange (primary vegetation, Primary), green (mature secondary vegetation, MSV), yellow 

(intermediate secondary vegetation, ISV), blue (young secondary vegetation, YSV), dark orange 

(plantation forest, Plantation), pink (Pasture), grey (Cropland), and black (Urban), and point 

shape represents land-use intensity: circle (minimal use), triangles (light use), and squares 

(intense use).  Effect sizes were adjusted to a percentage by drawing fixed effects 1,000 times 

based on the variance-covariance matrix, expressing each fixed effect within each random 

draw as a percentage of the baseline (primary vegetation minimal use), and then calculating 

the median value (shown as points) and 2.5th and 97.5th percentiles (shown as error bars). See 

Appendix 2, Table S2.19 for the number of sites and Tables S2.20 and S2.21 for the model 

summaries. 
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Effect of land-use intensity on pollinator biodiversity within croplands 

Land-use intensity had a divergent effect on cropland pollinator biodiversity between the 

non-tropical and tropical geographical zones (Figure 3.3). In the non-tropical zone, species 

richness and total abundance did not differ significantly among cropland intensity classes, 

and were significantly higher in minimal-intensity cropland compared to the primary-

vegetation baseline. In contrast, in the tropical zone, species richness and total abundance 

decreased between primary vegetation and high-intensity cropland by 44% and 49% 

respectively. Forest cover of the baseline did effect change relative to cropland, with 

relatively bigger declines from a low forest cover baseline, although the relative difference 

within cropland remains largely unchanged (Appendix 2, Figure S2.6. Greater variation in 

non-tropical areas is not predicted by high sample size (Appendix 2, Figure S2.7), and 

response for the main crop pollinators is likely consistent with all pollinators (Appendix 2, 

Figure S2.8). The AIC value for my Simpson diversity zone model was greater than the 

intercept-only model, meaning it was excluded from further analysis (see Appendix 2, Table 

S2.18). Response to total fertiliser application rate between the non-tropical and tropical 

zones was also insignificant for all of species richness, total abundance, and Simpson 

diversity (Appendix 2, Table S2.18), meaning it was excluded from further analysis.  

Increasing land-use intensity in croplands had varying effects among taxa (Figure 3.4). 

Relative to primary vegetation, abundance declines at high intensity for the invertebrate 

pollinators were greater than 70% for all orders, and as high as 80% for the Lepidoptera and 

Diptera. The most consistent invertebrate declines were in the Lepidoptera, exhibiting a 

negative response across a gradient of intensity for species richness, total abundance, and 

Simpson diversity. For flies on the other hand, relative to minimally used cropland, 

intermediate levels of intensity were associated with higher species richness and total 

abundance. For the vertebrates, the Apodiformes exhibited a strong negative response to 

land-use intensity, declining by at least 20% from medium-intensity cropland to primary 
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vegetation for all three metrics (high-intensity cropland was not sampled for this taxonomic 

group). The Passeriformes experienced a significant reduction from the baseline to high 

intensity, of 30% for total abundance, 36% for species richness, and 26% for Simpson 

diversity. 

Response to total fertiliser application rate in surrounding cropland landscape differed 

strongly in magnitude and direction (Figure 3.5). Both Hymenoptera and Lepidoptera 

showed a strong negative response to increasing fertiliser application rate for both species 

richness and total abundance. In particular, an increase of 1000kg/ha in fertiliser application 

rate was associated with a reduction of 44% in hymenopteran total abundance, whereas 

lepidopteran abundance fell 50% over the same range. Dipteran richness and abundance, 

on the other hand, increased markedly by 760% and 374% respectively. Coleopteran 

response to total fertiliser application rate was insignificant for all of species richness, total 

abundance, and Simpson diversity. For the vertebrates, the Apodiformes increased by 163% 

for species richness, whereas the Passeriformes experienced no marked change for any of 

species richness, total abundance, or Simpson diversity. Although the AIC value for my 

Simpson diversity model was less than the null model (Appendix 2, Table S2.18), all 

interactions between total fertiliser application rate and taxonomic order for Simpson 

diversity were insignificant (Figure 3.5). On the whole the direction and magnitude of the 

response for pesticide application rate is similar to that of fertiliser application rate (Figure 

3.6). 
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Figure 3.3 Response of pollinators to land-use intensity on cropland, for non-tropical and 

tropical sites. Each panel represents a linear or generalised linear mixed-effects model for 

a given biodiversity metric: A, species richness; and B, total abundance. I excluded 

Simpson diversity here since AIC was greater for the main model than the intercept-only 

model. Colours represent the land-use intensity level, with primary vegetation (minimal 

use) as the reference factor: black (primary vegetation, minimal use); yellow (cropland, 

minimal use), orange (cropland, light use), and red (cropland, intense use). Effect sizes 

were adjusted to a percentage by sampling fixed effects 1,000 times based on the 

variance-covariance matrix, expressing each fixed effect as a percentage of the value in 

primary vegetation for that geographical zone, and then calculating the median value 

(shown as points), and 2.5th and 97.5th percentiles (shown as error bars). See Appendix 2, 

Table S2.22 for the number of sites and Tables S2.23 and S2.24 for the model summaries. 
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Figure 3.4 Response of different pollinator groups to land-use intensity in cropland. 

Each panel represents a linear or generalised linear mixed-effects model for a given 

biodiversity metric: A, species richness; B, total abundance; and C, Simpson diversity. 

Colours represent the land-use intensity level, with primary vegetation (minimal use) 

as a reference factor: black (primary vegetation, minimal use); yellow (cropland, 

minimal use), orange (cropland, light use), and red (cropland, intense use). Effect sizes 

were adjusted to a percentage by sampling fixed effects 1,000 times based on the 

variance-covariance matrix, expressing each fixed effect within each random sample 

as a percentage of the value in primary vegetation for that taxonomic order, and then 

calculating the median value (shown as points), and 2.5th and 97.5th percentiles (shown 

as error bars). See Appendix 2, Table S2.25 for the number of sites and Tables S2.26, 

S2.27, and S2.28 for the model summaries. 
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Figure 3.5 Response of pollinator biodiversity in cropland sites to total fertiliser application 

rate in the landscape (kg/ha) (note that each metric is plotted on a log scale), predicted 

across 95% of the range of sampled fertiliser values for each taxonomic order. Each panel 

represents a linear or generalised linear mixed-effects model for a given biodiversity metric 

for four invertebrate orders: A, C, and E, invertebrate species richness, total abundance, 

and Simpson diversity respectively; and B, D, and F vertebrate species richness, total 

abundance, and Simpson diversity respectively. Coloured lines represent median fitted 

estimates for each taxonomic order, with shading representing 95% confidence intervals: 

light blue (Coleoptera), light orange (Diptera), dark blue (Hymenoptera), pink (Lepidoptera),  

green (Apodiformes), and black (Passeriformes). Dashed lines represent significant 

interactions between taxonomic order and total fertiliser application rate, and solid lines 

non-significant interactions. See Appendix 2, Table S2.29 for the number of sites, Tables 

S2.30, S2.31, and S2.32 for the model summaries, and Appendix 2, Figure S2.10 for the 

global distribution of total fertiliser application rate. 
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Figure 3.6 Response of pollinator biodiversity in cropland sites to total pesticide 

application rate in the landscape (kg/ha) (note that each metric is plotted on an 

absolute value log scale), predicted across 95% of the range of pesticide values for 

each taxonomic order. Each panel represents a linear or generalised linear mixed-

effects model for a given biodiversity metric for four invertebrate orders: A, C, and E, 

invertebrate species richness, total abundance, and Simpson diversity respectively; 

and B, D, and F vertebrate species richness, total abundance, and Simpson diversity 

respectively. Coloured lines represent median fitted estimates for each taxonomic 

order, with shading representing 95% confidence intervals: light blue (Coleoptera), 

light orange (Diptera), dark blue (Hymenoptera), pink (Lepidoptera),  green 

(Apodiformes), and black (Passeriformes). Each biodiversity metric is predicted 

across 95% of the range of its values, meaning each response is not estimated across 

the same range of total pesticide application rate. 
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Discussion 

Using a space-for-time approach, here I showed that land-use intensity is associated with 

significant changes (both positive and negative) in pollinator species richness, total 

abundance, and Simpson diversity, particularly for invertebrate pollinators. This study 

represents, as far as I know, the largest global analysis of the response of animal pollinator 

biodiversity to land-use type and intensity, and the first to consider large-scale differences in 

responses among taxa, geographic regions, and biodiversity metrics. My results are 

consistent with previous analyses showing reductions in overall pollinator biodiversity at high 

land-use intensity (Clough et al. 2014), and increases at low-intermediate intensity (Lazaro 

et al. 2016). In particular, low-intensity urban sites (villages and green spaces; Hudson et al. 

2017) have higher pollinator biodiversity than the primary vegetation baseline, but at high 

intensity urban pollinator species richness is significantly lower than the baseline (although 

this was not the case for abundance). This is concordant with previous research 

demonstrating that urban areas can support species-rich and abundant pollinator 

populations (Hall et al. 2017; Baldock et al. 2019). I also highlight that strong negative 

responses to land-use intensity within croplands are largely restricted to the tropics, with no 

apparent effect (and even increases at low intensity) in non-tropical cropland. This is an 

important result, given the dominance of animal pollinated plants in tropical environments 

(Ollerton et al. 2011; Rech et al. 2016), and that rapid agricultural expansion is predicted to 

occur in the tropics in the near future (Hurtt et al. 2011). Furthermore, I show pronounced 

differences in response among taxonomic groups, consistent with time-series studies 

showing differential trends among UK invertebrate taxa (Outhwaite et al. 2020). Pollinator 

biodiversity change resulting from land-use intensity may have consequences for pollination 

(Rader et al. 2014) and crop yields (Woodcock et al. 2019), especially in the tropics: 

Although the abundance of some pollinating groups (i.e. flies) is greater on intensively 

fertilised cropland, increases may not compensate for overall losses across other pollinating 

groups.  
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Differences in response to intensity between tropical and non-tropical areas are likely driven 

by the interacting effects of historical land-use and climate sensitivity, which differ between 

the temperate and tropical zones. Non-tropical temperate regions have a long history of 

anthropogenic land-use, which has likely filtered out many sensitive species (Balmford 

1996), meaning that contemporary differences in land use and land-use intensity may be 

weakly associated with pollinator biodiversity. Indeed, historical land-use has been shown to 

be strongly associated with current species richness and abundance of insect pollinators 

(Cusser et al. 2018; Cusser et al. 2015; Bommarco et al. 2014), and may contribute towards 

an overall increase in pollinator biodiversity at low land-use intensity (Tscharntke et al. 

2005). The tropical zone, on the other hand, has a shorter history of intensive agricultural 

land-use (DeFries and Rosenzweig 2010), meaning recent intensification has stronger 

effects on pollinator community composition. Tropical biodiversity is also thought to be more 

sensitive to the effects of climate change (Deutsch, et al. 2008), which may be exacerbating 

the effects of land use (Williams et al. 2020a). Further research is required to tease out the 

relative contribution of historical land-use and climate change to tropical pollinator 

biodiversity.  

Pollinating insects across multiple geographic locations and taxonomic groups have been 

reported to have declined, particularly for biomass and abundance (Seibold et al. 2019; 

Hallmann et al. 2017). In my space-for-time analysis, I found significantly lower abundance 

on high-intensity cropland—relative to primary vegetation—for all insect orders, especially 

for the hymenopterans, lepidopterans, and coleopterans. I also found significant reductions 

in insect abundance and richness in response to increasing fertiliser application rate on 

croplands, particularly for the hymenopterans and lepidopterans. Sensitivity to land-use for 

butterflies has previously been attributed to dietary specialism: relative to flies, butterflies are 

known to be dietary specialists as larvae, making a reduction in lepidopteran species 

richness and diversity likely when plant species richness is reduced (Weiner et al. 2011; 

Weiner et al. 2014; Winfree et al.  2011; Scoble 1992), which is known to occur at high 
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fertiliser application rates (Woodcock et al. 2016; Jones and Chapman 2011; Kleijn et al. 

2009; Ridding et al. 2020). Previous research in the temperate zone has indicated beetle 

flower visitors are sensitive to land-use change (Weiner et al. 2011; Weiner et al. 2014). 

Although I found a decrease in coleopteran abundance relative to the primary vegetation 

baseline, response to fertiliser application rate was mixed and insignificant. It may be that 

fertiliser application buffers against the more negative effects of associated intensity, since 

some pollinating coleopterans are known to have a larval preference for fertile soils (Parker 

and Howard 2001). For the hymenopterans, sensitivity to land-use has been reported 

previously, particularly for solitary bees (Rader et al. 2014; Gathmann and Tscharntke 2002) 

which are on average highly specialised (Weiner et al. 2011).  

Dipteran abundance and species richness increased with fertiliser application rate, 

concordant with previous studies demonstrating increased dipteran biodiversity on managed 

land (Kühsel and Blüthgen 2015; Jauker et al. 2009; Biesmeijer et al. 2006; Weiner et al. 

2011; Weiner et al. 2014). Dipteran resilience to land use and land-use intensity has been 

attributed to a number of traits, including low dietary specialisation on floral resources 

(Weiner et al. 2014; Weiner et al. 2011), high mobility (Haenke et al. 2009), absence of 

parental care (Jauker et al. 2009), and larval preference for agricultural habitats (Jauker et 

al. 2009). Syrphid fly larval development in agricultural land is particularly of note. Semi-

aquatic syrphid larvae are known to favour eutrophic or manure-contaminated habitats 

(Speight 2017), which is consistent with the strong positive gradient for fly richness and 

abundance in response to increasing fertiliser application rate. In contrast, the response of 

fly abundance and species richness to my overall measure of land-use intensity was 

negative, suggesting that fertiliser application does not sufficiently capture all aspects of 

land-use intensity on cropland. Neonicotinoids such as imidacloprid, for example, have 

adverse effects on flies, given their association with declines in insects in general (Wood and 

Goulson 2017; Goulson 2013), and visitation rate in flies specifically (Easton and Goulson 

2013). I used the PEST-CHEMGRIDS global estimation of pesticide application rate (Maggi 
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et al. 2019) to build additional models of pollinator response between tropical and non-

tropical croplands, finding that the response for flies to pesticide application rate is in fact 

similar to fertiliser (Appendix 2, Figures S2.10 and S2.11), the cause of which is unclear. 

Further analysis is required to tease out the relative effects of fertiliser and pesticide 

application at the global scale. 

Compared to invertebrates, vertebrate pollinators appear to be less sensitive to the effects of 

land-use intensity, particularly with respect to change in total abundance. Relatively higher 

resilience to land-use intensity has been found for vertebrate pollinators in tropical forests 

(Tscharntke et al. 2008), and suggested in broad comparisons across taxa (Winfree et al. 

2011). However, although previous work found that vertebrate resilience diminishes after 

controlling for study design (Winfree et al. 2011), my results suggest that vertebrate 

pollinators are indeed less sensitive than invertebrate pollinators to increasing land-use 

intensity. Such relative vertebrate resilience likely relates to body size and mobility (Henle et 

al. 2004; Bommarco et al. 2010), both of which are typically greater in vertebrate pollinators. 

Change in global pollinator biodiversity resulting from land-use intensity may have 

consequences for crop pollination. Since the loss in pollination service provided by sensitive 

crop-pollinating taxa (Hymenoptera) will likely not be offset by gains in more resilient taxa 

(Passeriformes), the service will experience a net loss. Four lines of evidence indicate losses 

in sensitive taxa will not be buffered by gains in more resilient taxa: first, relative to bees, 

those species which are increasing (i.e. dipterans) are known to contribute less to crop 

pollination (Ollerton 2021), and do not necessarily pollinate the same set of crops; second, 

response to land-use intensity of the main crop pollinating groups (bees, flies, beetles, 

wasps, thrips, birds, and bats) appears consistent with responses across all pollinators 

(Appendix 2, Figure S2.8); third, there is evidence from multiple historical localities that 

significant pollinator deficits can result from the losses associated with intensive agriculture 

(Watanabe 1994; Kevan 1977; Stephen 1955), irrespective of differences among taxonomic 

groups; and fourth, significant crop-yield reduction has been linked to overall changes in 
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pollinator biodiversity in multiple studies (Kremen et al. 2002; Garibaldi et al. 2013; Garratt et 

al. 2014; Blitzer et al. 2016; Holzschuh et al. 2012; Klein, et al. 2003), again irrespective of 

taxonomic differences. 

My analysis of pollinator biodiversity change is subject to limitations. First, the nature of our 

study as a space-for-time analysis means we may overlook extinction-debt effects (De 

Palma et al. 2018). Such effects can be controlled for by assessing change over time at a 

specific location or region (Seibold et al. 2019; Hallmann et al. 2017). However, at the global 

scale, given that long-term studies are lacking, space-for-time analyses represent a 

necessary alternative (Purvis et al. 2018). Second, most of the results I present here are 

relative to a baseline of primary vegetation with minimal human use, which inevitably varies 

in nature, especially between tropical and non-tropical sites (Appendix 2, Figures S10 and 

S11). In particular, we might expect non-tropical primary habitats to be more open than 

tropical primary habitats, which is likely to be more favourable to pollinators, and thus might 

partly explain the absence of responses to land-use intensity in non-tropical areas. Indeed, I 

show that the margin of reduction from a low forest-cover baseline is greater than from a 

high forest-cover baseline (Appendix 2, Figure S2.6). Nevertheless, the overall responses for 

tropical and non-tropical areas remain unchanged. Third, I analyse raw species richness 

which I recognise may be confounded by abundance. However, since my validation model 

predicting estimated species richness (using the Chao1 estimator) does not differ markedly 

from raw richness, a confounding effect of abundance is unlikely (Appendix 2, Figure S2.4). 

Fourth, my dataset of pollinator biodiversity responses is spatially biased towards the non-

tropics, particularly Europe and North America. Given that tropical pollinators are affected 

more negatively, my overall results therefore likely underestimate the impact of land-use 

intensity. However, my continental jack-knife for my overall LUI models showed that the 

exclusion of any of the Americas, Europe, or Africa (the continents for which we have the 

most sites) did not markedly influence our predictions. Moreover, my additional validation 

analysis in which I re-sampled 1000 sites from each of the tropics and non-tropics would 
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indicate that greater variation in non-tropical regions is likely not predicted by greater sample 

size (Appendix 2, Figure S2.7). Fifth, total fertiliser application rate was estimated at a 

relatively coarse spatial scale, which for some pollinators—particularly those such as insect 

pollinators which respond strongly to more localised change—will not be meaningful. Since 

spatial scale is known to predict pollinator response to land-use intensity (Brittain et al. 

2010), I could infer a different response if more localised fertiliser estimates were available 

globally. Sixth, I recognise that evidence for a given species will not always be 

representative of all species in a whole genus, or all life-history stages within a species. For 

example, the species Crocidura cyanea (Duvernoy, 1838; Common name: Reddish-gray 

musk shrew; Order: Eulipotyphla; Family: Soricidae) has been found to feed on and carry 

pollen, but most other Crocidurans are insectivorous (Melidonis et al. 2015). As a result, 

pollination confidence for many species in the genus Crocidura will be less than the genus-

level evidence would imply. In the main, I assumed evidence for a single species would be 

representative of whole genera, given the association between phylogeny and traits (Cusser 

et al. 2018). I also reasoned that for some insect groups, searching at the species level 

would be ineffective, given the large number of species with little evidence. Seventh, species 

confirmed as pollinating one flowering plant will not necessarily make an important 

contribution to all flowering plants, or to the pollination of crops.  

Anthropogenic activity has significantly altered the biosphere. Such changes have had, and 

will continue to have, profound consequences for animal pollinator biodiversity. Here I 

demonstrated significant pollinator biodiversity change in response to land-use intensity, with 

both negative and positive effects. Within an anthropogenic land-use type, I showed that 

intensity often decreases pollinator biodiversity. But relative to the primary vegetation 

minimal-use baseline, pollinator biodiversity was often greater at low and intermediate levels 

of intensity, suggesting that some level of disturbance can be beneficial. Across taxa within 

croplands, I again showed a mixed response to intensity, varying according to both facet of 

intensity and taxonomic group. Specifically in the tropics however, pollinators appear highly 
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sensitive to land-use intensity; a situation that may worsen as intensive agriculture continues 

to expand. Moreover, it is also likely that climate change will drive further changes in tropical 

pollinator biodiversity, particularly for insects which respond strongly to changes in ambient 

temperature (Soroye et al. 2020; Kühsel and Blüthgen 2015). Further research is required to 

resolve better the way in which these threats interact at the global level. For crop pollination 

services in the tropics, the repercussions of land-use and climate change could be great, 

with a growing body of evidence indicating high wild pollinator biodiversity is required to 

sustain productive yields (Winfree et al. 2018). Although the complexities of this relationship 

are not yet fully understood, there is sufficient evidence to suggest that pollination shortfalls 

in the tropics could result from continuing anthropogenic intensification and expansion. 
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Chapter 4: Worldwide vulnerability of local pollinator 

abundance and crop pollination to land-use and climate 

change 

 Abstract  

Global climate and agricultural extent are predicted to change rapidly over the coming 

decades, with potential consequences for ecosystem services. For pollinators, it is unclear 

how the combined effects of land-use and climate change will drive shifts in biodiversity and 

the service they provide in the form of crop pollination. Here I model the response of pollinating 

insect and vertebrate abundance to agricultural land use, historical climate change, and their 

interaction. Given future scenarios of climate change (RCP 2.6, 6.0, and 8.5), and the global 

distribution of crops that depend on animal pollination, I then use my models to explore 

potential changes in global crop pollination risk. I show that insect pollinators experience 

strongly negative declines where cropland coincides with high levels of historical climate 

change. Under RCP 8.5—a high emissions future climate scenario—my total crop production 

risk index is predicted to increase by ~70% between 2016 and 2048. Again under RCP 8.5, 

the rate of change in total crop production risk could be up to ~25% higher than that of RCP 

2.6 and 6.0, with abrupt periods of increased exposure in the 2030s. I further show that crop 

pollination risk is highest, and predicted to increase most rapidly, in regions of sub-Saharan 

Africa and northern South America, primarily for cocoa, mango, pumpkin, melon, watermelon, 

and coffee. This study provides the first global framework for predicting current and future crop 

pollination risk from land-use and climate change. Mitigating this risk will be a key challenge 

of the 21st Century. 
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Introduction 

Global climate and agriculture are predicted to change rapidly in the coming years (IPCC 2018; 

Laurance et al. 2014). In 2015, the international community agreed on a set of policies aiming 

to keep change in climate to below 1.5°C, but recent research indicates this threshold will 

likely be exceeded by 2050 (IPCC 2018). Over the same period agriculture is expected to 

expand significantly, meeting an increasing global demand for both food and bioenergy 

(Laurance et al. 2014). The effects of future agriculture and climate change on the biosphere 

could be great. Although there is a debate regarding the magnitude of local change (Dornelas 

et al. 2014), on average agricultural activity has been shown to reduce and homogenise local 

biodiversity (Newbold et al. 2015a, 2018), such that agriculture likely represents the single 

greatest current threat to terrestrial mammals and birds (Joppa et al. 2016). Climate change 

on the other hand has been associated with elevational, latitudinal, and phenological shifts 

(Bellard et al. 2012), as well as predicted abrupt future changes in the species composition of 

communities (Trisos et al. 2020). 

The individual effects of climate change and agricultural land use on biodiversity are great, but 

in combination they have been shown to have synergistic interactive effects (Frishkoff et al. 

2016; Hendershot et al. 2020; Oliver et al. 2016; Williams et al. 2020b). Such interactive effects 

act through either ‘chain effects’ or ‘modification effects’ (Didham et al. 2007; Oliver & 

Morecroft 2014). Chain effects occur when one driver alters the magnitude of another. For 

example, areas of agricultural land use tend to be warmer and drier (Frishkoff et al. 2018), 

meaning on average degree of climate change is magnified on anthropogenic land. 

Modification effects refer to situations where the effect of one driver on biodiversity is 

moderated by change in another (Didham et al. 2007; Oliver et al. 2014). For example, 

biodiversity responses to extreme climatic events are modified by the structure of the 

landscape, with woodland patches reducing insect susceptibility to droughts (Oliver et al. 

2012). 
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The interactive effects of climate change and agricultural land use on biodiversity have been 

the focus of a growing number of studies, but there are still at least two big research gaps. 

First, for important ecosystem service providers such as pollinators, it’s unclear how climate 

change and agricultural land use might interact globally to drive biodiversity change (although 

there have been localised studies e.g. Oliver et al. 2012; Zaragoza-Trello et al. 2021). Given 

the sensitivity of insects to changes in microclimate (Boggs 2016) one might expect that, 

relative to vertebrate pollinators, insect pollinators will respond strongly to the interactive effect 

of climate change and land-use. Within the insects, one might also expect that pollinators will 

respond more strongly than non-pollinators, since insect pollinators tend to be associated with 

a set of traits that predict high sensitivity (e.g. high dietary specialism) (Winfree et al. 2011). 

Second, given the uncertainty around interactive effects on service providers, there is an 

ongoing question as to the extent to which the actual service to people may be affected, 

particularly with regards to the temporal and spatial scale at which consequences might play 

out. Since the interactive effects of land use and climate change on biodiversity are non-linear, 

one potential scenario is that future anthropogenic activity leads to rapid biodiversity change, 

with knock-on socio-economic effects that ripple out from agricultural areas that are highly 

dependent on animal pollinators (Garibaldi et al. 2016; Silva et al. 2021). Insufficient data for 

pollinating insects has previously made addressing both the first and second of these research 

gaps difficult, but appropriate datasets are now more widely available (Millard et al. 2021a). 

Crop pollination is one service that could be affected following rapid change in agricultural 

land use and climate. For example, as agricultural regions with high dependence on animal 

pollination begin to be exposed to novel extreme temperatures, and pollinators experience an 

associated change in biodiversity, these localities may be at sudden risk of pollination shortfall. 

Shortfalls will likely be best predicted by changes in pollinator abundance, given that a large 

quantity of the pollination service tends to be provided by a relatively small group of dominant 

species (Kleijn et al. 2015). Shortfalls will also relate to measures of taxonomic and functional 

biodiversity, given the connection between these measures and crop yield (Dainese et al. 
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2019; Woodcock et al. 2019), but since abundance has a consistent relationship with crop 

pollination service (Woodcock et al. 2019), here I focus on change in pollinator abundance as 

a measure of risk. 

Given the uneven global distribution of crops dependent on animal pollination, and the spatial 

heterogeneity of climate change and agricultural activity, the likelihood of future crop 

pollination shortfall will not fall evenly. This is for three primary reasons. First, tropical 

agriculture is more dependent on animal pollination, with animal pollinators an essential 

requirement for the production of tropical crops such as cocoa, vanilla, Brazil nuts, Macadamia 

nuts, and kiwifruit (Klein et al. 2007). Temperate agriculture does benefit to some extent from 

animal pollination (e.g. apples, pears, cherries, apricots, raspberries; see Klein et al. 2007), 

but the proportion of agricultural production dependent on pollination is markedly lower (Aizen 

et al. 2019). Second, climate change is occurring fastest at high latitudes (IPCC, 2018), but 

the greatest rate of exposure to novel extreme temperatures is taking place in the tropics 

(IPCC 2018). Although Arctic pollinators have been shown to respond strongly to high latitude 

warming (Schmidt et al. 2016), a growing body of evidence indicates that novel temperatures 

are more important to insect pollinator biodiversity change in the tropics, since novel 

temperatures act to push insects beyond their upper thermal limits (Boggs 2016). Third, during 

this century the tropical regions of sub-Saharan Africa and South America will experience the 

greatest relative growth in intensive agriculture (Laurance et al. 2014), which will likely lead to 

particularly strong changes in pollinator biodiversity (Millard et al. 2021a). In the tropics, then, 

there is a conjunction of high pollination dependence, high vulnerability to climate change, and 

high potential for agricultural expansion, meaning if significant shortfalls are to occur 

anywhere, it is likely that they will occur at tropical latitudes. 

Global production of crops dependent on animal pollination today exists within a network of 

international trade, meaning the consequences of pollination shortfall will not necessarily be 

localised (Silva et al. 2021). For localities producing animal-pollinated crops for local 

consumption, any shortfall resulting from pollinator loss will play out at a local scale (Garibaldi 
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et al. 2016). But for localities that ordinarily export large quantities of pollination-dependent 

crop production to multiple countries, one might expect fluctuations in global supply and 

consequent volatility of crop price. China, for example, is one of the main global exporters of 

crops dependent on animal pollination (Teichroew et al. 2017), by both the quantity of exports 

and the number of importing countries (Silva et al. 2021). As a result, one might expect crop 

pollination shortfalls in China to have consequences that extend beyond the country itself 

(Teichroew et al. 2017). Predicting when these rippling effects may occur, however, is 

complicated. One indicator might be high reductions in pollinator abundance in regions that 

produce a high quantity of animal pollination dependence crops, and the future year at which 

this occurs most rapidly. Some objective measure incorporating these factors would be a 

significant step towards an index of global risk to crop pollination shortfall. 

Here, I model the effect on pollinator abundance of agricultural land use and its interaction 

with historical climate change, before exploring potential risk to the production of crops that 

depend on animal pollination. I construct my initial models using the PREDICTS database 

(Hudson et al. 2017) and a set of likely pollinating and non-pollinating species derived 

previously (Millard et al. 2021a). I then use future scenarios of climate change (Frieler et al. 

2017), a set of rasters for global crop production (Monfreda et al. 2008), and estimates of the 

proportional dependence of different crops on animal pollination (Klein et al. 2007), to explore 

potential scenarios of change in crop pollination risk. Specifically, I address two core 

questions: 1) What is the difference in response to the interactive effects of agricultural land 

use and climate change between those species that pollinate (insects and vertebrates) and 

those that do not? And 2) given predicted changes in abundance of insect pollinators on 

cropland (based on scenarios of future climate change), and the global distribution of crops 

production that depends on animal pollination, where and when might we expect a risk of 

shortfalls for crop pollination in the future? I hypothesise that the interactive effect of climate 

change and agricultural land use will be stronger in insect pollinators relative to vertebrate 

pollinators, and that this interactive effect will be such that decline in abundance is greater on 
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cropland than primary vegetation. I also hypothesise that crop pollination vulnerability to future 

climate change will be greatest in the tropics, and that rate of change in crop pollination risk 

will experience abrupt increases as regions of high pollination-dependent crop production are 

exposed to novel extreme temperatures. 

Methods 

Pollinator dataset construction 

I used the PREDICTs database, and a set of likely pollinating species identified in PREDICTS 

(see Chapter 3 for a detailed background on the development of this PREDICTS database 

subset), to model the response of local pollinator abundance to the interactive effect of climate 

change and agricultural land use. PREDICTS is a global database of local biodiversity records, 

with a hierarchical structure such that each record is nested according to a series of levels 

(i.e. ‘source’, ‘study’, ‘block’, and ‘site’; see Chapter 3 Appendix 2 Figure S2.14, and Hudson 

et al. 2017). Each record in PREDICTS is associated with a land use type (primary vegetation, 

mature secondary vegetation, intermediate secondary vegetation, young secondary 

vegetation, plantation, pasture, cropland, and urban) and land use intensity (high, low and 

minimal), meaning change in biodiversity can be predicted as a function of anthropogenic 

land-use disturbance (e.g. Newbold et al. 2015a; also see Chapter 3 ‘Methods’). Land-use 

type categories in PREDICTS are defined according to the Representative Concentration 

Pathway land-use estimates (Hurtt et al. 2011), plus plantation and a gradation of stages 

according to age within secondary vegetation (Hudson et al. 2014). Land-use intensity for 

each land-use type is defined according to a series of variables, such as fertiliser and pesticide 

application, mechanisation, and hunting (see Newbold et al. 2015a for more details). 

I identified pollinating species in PREDICTS through a semi-automatic approach combining 

text-mining, manual inspection, and expert consultation. I first used the stemmed term 

‘pollinat*’ on Scopus to return all abstracts for English language primary research papers. 

From this set of abstracts, I then used a set of name-entity recognition algorithms to extract 
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all animal species Latin binomial names (see Chapter 2 ‘Methods’; Millard et al. 2020a for 

details). For each animal genus returned by the name-entity recognition algorithm, I then read 

the corresponding abstracts searching for evidence confirming that genus as pollinating. 

Given my set of pollinators identified from Scopus abstracts could only ever be a sample, I 

then searched for higher-level taxonomic groups, aiming to identify broader groups of animals 

that we could be confident would pollinate (see Chapter 3 ‘Methods’ for more details). After 

compiling my list of pollinators from automated text-analysis and manual searching, I then 

consulted a group of 7 expert pollination ecologists, and removed or added any groups at their 

suggestion (see Chapter 3 ‘Methods’ for details). 

I then built four separate datasets with different subsets of the original set of species in 

PREDICTS: pollinating vertebrates, non-pollinating vertebrates, pollinating insects, and non-

pollinating insects. My set of non-pollinating species are not strictly a set of confirmed non-

pollinators, rather a set of species not confirmed as pollinators (see Discussion for an 

exploration of this limitation). For each of my four data subsets, I then calculated site-level 

total abundance (the sum of all species sampled abundances at a site). Sampling effort was 

accounted for by dividing the abundance values for each measurement by the relative 

sampling effort among sites within a study, rescaled to a maximum value of 1 in each study, 

as in (Newbold et al. 2014a).  

Climate change data 

I used Climatic Research Unit Time Series (CRU TS) v4.03 (Harris et al. 2020) mean daily 

temperature estimates per month at a spatial resolution of 0.5° to calculate a global 

standardised temperature anomaly (STA) for the year of each PREDICTS sample, using an 

approach developed previously (Outhwaite et al. in review; see full details on methodology 

below). Although extreme temperatures have been shown to predict contemporary changes 

in biodiversity (Mantyka-Pringle et al. 2011), I used mean temperatures since they provide a 

measure of the overall change in temperature per month. Mean temperatures have been used 
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in a similar manner for a number of other studies on insect thermal tolerance (e.g. Deutsch et 

al. 2008; Johansson et al. 2020). To calculate my standardised temperature anomaly, I first 

calculated a 30-year baseline temperature for the years 1901-1930 as the grand mean 

temperature over all 360 monthly mean daily temperatures for each cell. For each PREDICTS 

site, I then extracted the sample end date (i.e. the last date at which that measurement was 

taken) for the measurements at each site, and then for the month of that end date and the 11 

months previously I calculated the grand mean temperature over all monthly mean daily 

temperatures for that sample. I then calculated a climate anomaly for each site as the 

difference between the 30-year baseline mean and the mean annual temperature at the time 

of the sample. I then standardised this climate anomaly by dividing the anomaly at each site 

by the standard deviation of the baseline, calculated as the standard deviation across monthly 

mean daily temperatures for the same 30-year baseline period. A standardised temperature 

anomaly of less than 0 indicates a region that has cooled since the baseline. A value between 

0 and 1 indicates a region that has warmed, but current average temperature remains within 

1 standard deviation of the variability in baseline temperatures. A value greater than 1 

indicates a region in which average warming is 1 standard deviation greater than the variability 

in the baseline (i.e. it is now experiencing high novel temperatures). Again, using CRU TS 

v4.03, I also calculated a global standardised temperature anomaly independent of 

PREDICTS sites (for an average of the 36 monthly mean temperatures in the period 2004-

2006), which I mapped globally for context (Figure 4.2). I chose the period 2004-2006 to 

coincide with the temporal distribution of most records in the PREDICTS database (Hudson 

et al. 2017). 

Interactive effects of land-use and climate change on pollinator biodiversity 

To model the effects of land-use and climate change on pollinator abundance, I built linear 

mixed-effects models predicting total abundance as a function of land-use type (primary 

vegetation and cropland), standardised temperature anomaly, and their interaction. I did not 

use a generalised linear model with Poisson errors because most recorded measurements 
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are non-integer values (also see Chapter 3, showing that log-linear and negative binomial 

models for land use intensity yielded similar results). I focussed on primary vegetation and 

cropland given my interest in the interactive effects of land-use and climate change between 

natural and anthropogenic land. I chose primary vegetation since it best represents natural 

vegetation, and cropland since it is both an anthropogenic land-use type and most relevant to 

crop production that depends on animal pollination. Since the interactive effect of land-use 

and climate change is likely greater between natural and anthropogenic land than among 

levels of intensity within a land-use type (Outhwaite et al. in review), for both cropland and 

primary vegetation I grouped together all levels of intensity. I loge-transformed all total 

abundance values (adding one because of zero values) to normalise the model residuals. Due 

to the nested nature of the database (Hudson et al. 2017), I included a random intercept of 

study identity to account for variation in sampling methods, sampling effort, and broad 

geographical differences among studies, and a random intercept of spatial block within study 

to account for the spatial structuring of sites. Random-effects structures were selected to 

minimise AIC values. To test how sensitive my predictions were to the inclusion of particular 

taxonomic groups, I ran an additional analysis in which I predicted change in total abundance 

on cropland following the removal of each taxonomic family (i.e. jack-knife removal with 

replacement). 

Potential future risk to crop pollination from land-use and climate change 

Given the importance of insect pollinators to global crop production, I used my model of insect 

pollinator abundance to predict geographic and temporal patterns of pollination shortfall risk, 

based on a combination of estimated crop production dependent on animal pollination, and 

projections of future climate change. I focus on two forms of risk: production risk, and 

proportional production risk. Production risk is a measure of the total crop production that 

could be at risk of shortfall. Proportional production risk is a measure of the crop production at 

risk as a proportion of the total production for a given cell (i.e. a single pixel in a gridded data 

layer), crop, or country. For both measures of risk, I specifically focussed on insect pollinator 
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abundance given that insects make a bigger contribution than vertebrates to global crop 

pollination (Klein et al. 2007).  

My projections assume that a projected loss in pollinator abundance combined with crop 

dependence on pollination is a good proxy for risk to crop production. There are three core 

uncertainties associated with these projections (also see Discussion). First, I do not know if 

there is a mechanistic link between the interactive effects of land-use and climate change on 

pollinator abundance. I reason that a significant interactive effect is at least likely however, 

given prior localised studies demonstrating a synergistic effect of climate change and 

anthropogenic land use in insects (Outhwaite et al. in review; Zaragoza-Trello et al. 2021). 

Second, I do not account for changes in the distribution of crops from the effects of climate 

change alone. Third, it remains unclear how local abundance change will impact crop 

pollination, and in turn how crop pollination will relate to yield change. Given these 

uncertainties my projections should not be interpreted as absolute projections of yield loss, 

but rather as a relative measure of crop production risk. Such a measure of global risk does 

not yet exist, despite its marked importance to policy-makers (IPBES, 2016). 

I first used a global dataset of crop production (Monfreda et al. 2008), in combination with the 

animal pollination dependencies reported in Klein et al. (2007), to build a map of global crop 

production dependent on animal pollination for the year 2000 (the date for which Monfreda et 

al. 2008 estimated global crop production). For each crop in Monfreda et al. (2008), I adjusted 

total production for the pollination dependence ratios reported in Klein et al (2007) (essential, 

0.95; great, 0.65; modest/great, 0.45; modest, 0.25; little, 0.05; no increase, 0). Given some 

Monfreda crops are represented by multiple crops in Klein et al (2007), for each Monfreda et 

al (2008) crop I first calculated the mean pollination dependence ratio among Klein crops. I 

then adjusted each crop for its pollination dependence and summed dependence-adjusted 

production for all crops at each cell as 
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𝑃𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑑𝑖 = ∑ 𝑃𝑟𝑜𝑑𝑐𝑖𝑑𝑐

𝑐 = n

𝑐 = 1 

 

where PollinationProd = animal pollination dependent crop production, Prod = crop production, 

c = Monfreda crop category, d = average animal pollination dependence ratio, and i = a given 

cell. I also calculated the total production in any given cell (independent of animal pollination 

dependence) for the same set of crops, as 

𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑑𝑖 = ∑ 𝑃𝑟𝑜𝑑𝑐𝑖

𝑐 = n

𝑐 = 1 

 

where TotalProd = total crop production. In any further work, I assumed that the distribution of 

pollination-dependent production in 2000 will be representative of that in 2050 (see 

‘Discussion’ for an exploration of this limitation). I also did not exclude pollination-dependent 

production which relies on either vertebrates or non-insect invertebrates. Although there are 

some crops recorded in Klein et al (2007) as reliant on either vertebrate or non-insect 

pollinators, after reconciling these crops with Monfreda et al (2008) there are no crop groups 

that are exclusively dependent on vertebrates or non-insect invertebrates. 

I then used ISIMIP temperature anomalies from Frieler et al (2017) to project potential future 

change in standardised temperature anomaly under three RCP (Representative 

Concentration Pathway) scenarios (8.5, 6.0, 2.6), using an ensemble mean of the climate 

models GFDL, HadGEM2, IPSL, and MIROC5. RCP scenarios describe how global climate 

might change in the future, according to the volume of greenhouse gases emitted by humans 

(van Vuuren et al. 2011). Each of these emission pathways are based on a set of 

socioeconomic assumptions (e.g. technological improvements, policy changes) about the 

future (van Vuuren et al. 2011). RCP 8.5 represents a worst-case high-emissions scenario, 

6.0 a pathway with some degree of mitigation, and 2.6 a pathway with significant reductions 

in emissions (van Vuuren et al. 2011). ISIMIP temperature anomalies were added onto a 

historical baseline for the period 1979-2013 (inclusive), calculated as the grand mean over all 
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monthly mean daily CRU temperatures for each cell. For each year, the standardised 

temperature anomaly was projected across the terrestrial surface of the globe (for the years 

2016-2048), using a 3-year rolling average to smooth change in risk over time. For each 3- 

year projection window, insect pollinator abundance on cropland was predicted according to 

the model in Figure 4.1 (top left panel) for all cells containing crop production dependent on 

animal pollination. These abundance values were then expressed as the proportional loss of 

abundance compared to the abundance expected on croplands that have experienced no 

warming (i.e. standardised temperature anomaly of 0) as 

𝑙𝑡𝑖 = 1 −
𝑎𝑤𝑡𝑖

𝑎0𝑖
 

where l = abundance loss, t = each 3-year time window, aw = predicted abundance on cropland 

under projected warming, and a0 = predicted abundance on cropland under no warming. In 

each cell, animal-pollination-dependent crop production was then adjusted for the percentage 

reduction in abundance at that time step, before summing production at risk for all cells as 

 𝑃𝑟𝑜𝑑𝑅𝑖𝑠𝑘𝑡 = ∑ 𝑃𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑑𝑖𝑙𝑡𝑖

𝑖= n

𝑖 = 1 

 

where ProdRisk  = the total crop production risk (i.e. production risk). To check the influence 

of single climate models on our projections, I calculated one projection as the average of all 

models for that RCP scenario, and a set of additional jack-knifed projections, dropping each 

climate model in turn. For the average of all climate models at RCP 8.5, I also checked the 

extent to which extrapolating abundance loss beyond the lowest fitted abundance value (i.e. 

greatest abundance loss) of our PREDICTS models affected my projections. Specifically, I 

projected change in total pollination-dependent crop production at risk when the greatest loss 

in predicted abundance is capped at the largest fitted value of standardised temperature 

anomaly (Appendix 3, Figure S3.2). For my projection in which abundance loss is not capped, 

I also calculated the percentage of cells where abundance loss was extrapolated beyond the 

maximum fitted value (Appendix 3, Figure S3.2).   
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To identify geographic regions in which a high proportion of crop production could be at risk 

under a worst-case climate scenario (i.e. RCP 8.5), I projected pollination risk for each cell as 

above (using the average of all four climate models), and then expressed pollination risk as a 

proportion of all crop production within each cell 

𝑃𝑟𝑜𝑝𝑅𝑖𝑠𝑘𝑡𝑖 =
𝑃𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑑𝑖𝑙𝑡𝑖

𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑑𝑖
 

where PropRisk = the proportion of total crop production at risk (i.e. proportional production 

risk). A value of 1 therefore indicates a hypothetical region in which all crop production in that 

cell is dependent on pollination, and predicted insect pollinator abundance loss is 100% (i.e. 

one would expect a very high risk of pollination shortfall). I projected this dependence risk for 

2006 and 2050, and mapped these projections globally. I also plotted the change in risk for 

the 10 countries with the highest overall risk (calculated as the average over the whole time 

series), and the change in risk for the 10 countries with the highest rate of change (the 

difference between the lowest and highest over the whole time series). For each of these high-

risk countries, I took the overall risk to be the median of all cells in that country at each time 

step, onto which I overlaid the 2.5th and 97.5th percentiles as a measure of the variation in risk 

across the country. 

Using the same approach as above, I also projected proportional production risk for each of 

the top 20 crops by total pollination-dependent production (i.e. PropRiskcti). Again, I took the 

overall risk to be the median of all cells in which that crop appears at each time step, onto 

which I overlaid the 2.5th and 97.5th percentiles as a measure of the variation in risk across 

locations where the crop is grown. I also calculated a change in total production risk for the 

same top 20 crops (i.e. ProdRiskct), which I then adjusted to a percentage of total production 

for each crop (i.e PropRiskct). This measure therefore estimates the total proportion of global 

production at risk for a given crop. All analyses were carried out in R v4.0.5 (R Core Team 

2020). All core analyses can be visualised interactively in a Shiny app currently hosted online 

(joemillard.shinyapps.io/pollinator_dependence_visualisation/). 

https://joemillard.shinyapps.io/pollinator_dependence_visualisation/
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Results 

Interactive effects of agricultural land use and climate change on pollinator biodiversity 

For both pollinating and non-pollinating insects, standardised temperature anomaly (STA) and 

land-use type had a strong interactive effect on local abundance (Figure 4.1; F = 23.3195, p 

< 0.001; F = 10.5764, p < 0.01). For vertebrates, there was no interactive effect for pollinators 

but a significant effect for non-pollinators (Figure 4.1; F = 2.1599, p = 0.14; F = 10.6743, p < 

0.01). In both insect groupings, the effect of STA diverges significantly between primary 

vegetation and cropland (Figure 4.1), such that abundance increases with greater STA on 

primary vegetation, and decreases with greater STA on cropland. The interactive effect is 

stronger for pollinating insects than for non-pollinating insects (Figure 4.1). Relative to 

croplands that experienced no warming, at the most extreme level of STA (1.58) at sampled 

cropland sites, insect pollinators experienced declines of up to ~75%. An STA value this 

extreme indicates a region that has warmed such that the average temperatures occurring 

now would only be expected to occur in ~1/18 years under baseline conditions. 
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Figure 4.1 Response of pollinating and non-pollinating total abundance to standardised 

temperature anomaly on primary vegetation and cropland (note that abundance is 

plotted on a loge scale). Each panel represents a linear mixed-effects model for 

pollinating or non-pollinating insects and vertebrates. Coloured lines represent mean 
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fitted estimates for each interaction, and shading 95% confidence intervals around that 

prediction: green, primary vegetation; orange, cropland. 

Potential future effects of land-use and climate on crop pollination 

Total production risk is predicted to increase under all climate scenarios (Figure 4.3). Rate of 

change in production risk is highest under RCP 8.5, rising from ~80 million to ~138 million 

metric tonnes by 2050. Rate of change is marginally lower under RCP 2.6 than RCP 6.0, 

although both are predicted to result in a production risk of ~110 million metric tonnes by 2050. 

Change for RCP 8.5 experiences a consistent year on year increase, with a period of 

increased exposure rate in the 2030s as a significant quantity of watermelon production is 

exposed to novel extreme temperatures (see Shiny app, 

https://joemillard.shinyapps.io/pollinator_dependence_visualisation/). My projections were not 

overly influenced by the prediction of single climate model (Figure 4.3), and they do not change 

markedly when abundance loss is capped at the maximum model-fitted value (Figure S3.2). 

Cell-level proportional production risk (i.e. PropRiskti) is highest, and predicted to increase 

most rapidly, in regions of sub-Saharan Africa and northern South America (Figure 4.4). All 

10 countries with the highest median proportional production risk, and all 10 with the highest 

increase in this risk, are in the tropics (Figure 4.4). Rwanda has the highest overall risk with a 

median index value of ~0.45 in 2020, rising to ~0.5 by 2050. Eritrea and Madagascar have the 

highest rates of change in this risk, increasing from ~0.27 to ~0.5 in Eritrea and ~0.02 to ~0.2 

in Madagascar. In order of rate of change, median cell-level proportional production risk (i.e. 

PropRiskcti) is highest for cocoa, mango, pumpkin, melon, watermelon, and coffee (Figure 4.5). 

Change in total proportional production risk (i.e. PropRiskct) is such that—according to the one 

in which I define risk—~60% of cocoa production and ~30% of mango production could be at 

risk by 2050 (Appendix 3, Figure S3.3). 

https://joemillard.shinyapps.io/pollinator_dependence_visualisation/
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Figure 4.2 Crop production that depends on animal pollination (A), and standardised 

temperature anomaly (in regions of animal pollination-dependent production; B) for the 

years 2000 and an average of 2004-2006, respectively. For the temperature anomaly, I 

show an average for the years 2004-2006 to coincide with the temporal distribution of 

most records in the PREDICTS database, and therefore the results in Figure 4.1. A) 

Animal pollination-dependent production is calculated as total crop production, 

adjusted for the degree of dependence on animal pollination according to Klein et al 

(2007). B) Standardised temperature anomaly is the change in the grand mean of 

monthly mean daily temperatures between a baseline period (1901-1930) and 2004-

2006, divided by the standard deviation across monthly mean daily temperatures, for 

the same 30-year baseline period. 
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Figure 4.3 Projected change in total production risk (ProdRiskt) under three RCP 

scenarios (8.5, 6.0, and 2.6), either as the average across all climate models, or 

dropping each climate model in turn. For each year into the future, the standardised 

temperature anomaly was projected globally for all cells of pollination-dependent 

production, using a 3-year rolling average. I used data on crop production from the year 

2000 (the latest year when such data are available for all crops), therefore assuming 

that the distribution of the production of these crops does not change. For each annual 

projection of standardised temperature anomaly, insect pollinator abundance on 

cropland was predicted according to the model in Figure 4.1 (top left panel), and then 

expressed as proportional abundance loss compared to cropland that has experienced 

no warming (i.e. standardised temperature anomaly of 0). In each cell, animal 

pollination-dependent production was then adjusted for the percentage reduction in 

abundance at that cell, before summing animal-pollination-dependent production for 

all cells at each time step. Colours refer to the climate model excluded in that jack-knife 

projection with the projection for all models shown in black. 
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Figure 4.4 Cell-level proportional production risk (i.e. PropRiskti) projected under RCP 

8.5, from the ensemble-average of four climate models (GFDL, HadGEM2, IPSL, and 

MIROC5), for the whole world as well as 10 countries with the highest overall risk and 

change in risk. Global standardised temperature anomaly was projected to 2050 for all 

areas of animal-pollination-dependent crop production, using the 3-year average 

approach as described in Figure 4.3. I used crop production data from the year 2000 

(the latest year for which such data are available for all crops), therefore assuming that 

the distribution of the production of these crops does not change. For each value of 

standardised temperature anomaly, insect pollinator abundance was predicted 
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according to the model in Figure 4.1, expressed as proportional loss compared to 

cropland that has experienced no warming (i.e. standardised temperature anomaly of 

0). Animal-pollination-dependent production at each cell was then adjusted for the 

predicted loss of insect pollinator abundance, and then converted to a proportion of 

the total production at that cell. Top: global maps of proportional production risk for 

2006 and 2050. A value of 1 indicates a hypothetical region in which all crop production 

in that cell is dependent on animal pollination, and predicted insect pollinator 

abundance loss is 100%. Bottom: each panel represents predicted change in 

proportional production risk under RCP 8.5 for a set of the most at risk countries. 

Coloured lines indicate the median across cells within that country, and grey dashed 

lines the 2.5th and 97.5th percentiles, providing an indication of variation in risk across 

locations within a country. The upper set of panels represents the 10 countries with the 

highest overall risk (average over the whole series), whereas the lower set of panels 

represents the 10 with the highest rate of change (difference between minimum and 

maximum).  
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Figure 4.5 Cell-level proportional production risk (i.e. PropRiskcti) projected under RCP 

8.5, from the ensemble-average of four climate models (GFDL, HadGEM2, IPSL, and 

MIROC5), for the top 20 crops by total animal-pollination-dependent crop production 

(ordered by rate of change in risk to highlight crops of potential future concern). Global 

standardised temperature anomaly was projected for all areas of animal-pollination-

dependent cropland to 2050, using the 3-year average approach as described in Figure 

4.3. I used crop production data from the year 2000 (the latest year for which such data 

are available for all crops), therefore assuming that the distribution of the production 

of these crops does not change. For each value of standardised temperature anomaly, 

insect pollinator abundance was predicted according to the model in Figure 4.1, 

expressed as proportional loss compared to cropland that has experienced no warming 

(i.e. standardised temperature anomaly of 0). Animal-pollination-dependent production 

at each cell for each crop was then adjusted for the predicted loss of insect pollinator 

abundance, and then converted to a proportion of the total production for that crop at 



 
113 

that cell. Colours correspond to the median proportional risk for all the cells in which 

that crop appears, and grey dashed lines the 2.5th and 97.5th percentiles, providing an 

indication of variation in risk across the locations in which a crop is grown. Total 

proportional production risk (i.e. PropRiskct) rank for the final year in the series is 

indicated in brackets. 
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Discussion 

Here I showed that land-use type and a standardised anomaly of temperature change have a 

significant interactive effect on local insect pollinator abundance, and a significant although 

less pronounced effect in non-pollinating insects. Change in abundance for insect pollinators 

on cropland was such that, relative to croplands that have not warmed (i.e STA = 0), at an 

STA of ~1.5 insect pollinator abundance was ~75% lower. In contrast on primary vegetation 

across the same gradient of STA, insect pollinator abundance increased by ~100%. For 

vertebrate pollinators and non-pollinators, these interactive effects of STA and land-use type 

appear to be weak or non-existent. On the basis of my predictions for insect pollinator 

abundance, and estimates of the global distribution of animal-pollination-dependent 

agriculture, I showed that the rate of change in crop production risk under RCP 8.5 could be 

25% greater than under RCP 2.6 or 6.0. Under RCP 8.5, according to the way in which I define 

risk, total crop production risk is predicted to increase by ~70% between 2016 and 2048. I 

further showed that proportional production risk is greatest and predicted to increase most 

rapidly in regions of northern South America and sub-Saharan Africa. Although I cannot predict 

when actual pollination shortfalls will occur—due to the uncertainties associated with the link 

between local pollinator abundance change and crop yield—my results suggest that they will 

be most likely in the tropics, where pollinator biodiversity and animal-pollination-dependent 

crop production will be increasingly exposed to extreme novel temperatures. 

Previous work has shown that insects are vulnerable to the interactive effects of land-use and 

climate change (Halsch et al. 2021; Oliver et al. 2016; Outhwaite et al. in review). Here I show 

that this effect is likely greater in insect pollinators than other insects. However, whether 

sensitivity to climate change and land-use interactions for insect pollinators relates to their 

actual reliance on floral resources, or to other correlated traits such as dispersal ability, body 

size, voltinism, or specialism, is unclear. Most likely some combination of both is true. For 

example, insect-pollinated plants have been shown to respond more strongly to warming than 
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wind-pollinated plants, suggesting that plant-pollinator interactions are highly sensitive to 

thermal changes (Fitter & Fitter, 2002). Pollinator pilosity (i.e. hairiness), on the other hand, 

has been shown to affect an insect’s ability to adapt to changes in climate (Roquer-Beni et al. 

2020), and given its nature as a trait typical of bees and hoverflies, tends to be correlated with 

a reliance on floral resources (Stavert et al. 2016). Reproductive behaviour change under 

warm temperatures may also be of relevance (Zaragoza-Trello et al. 2021). Recent work on 

Osmia bicornis (Linnaeus, 1758), a species of solitary bee, indicates that floral abundance 

and mean temperature interact such that sex ratios are skewed towards males when 

temperature is high and floral abundance is low. For this species at least, one might expect 

such a phenomenon to reduce local abundance (Zaragoza-Trello et al. 2021), since population 

growth rate is limited by the number of females (Bessa-Gomes et al. 2004). 

Given that tropical agriculture has strong effects on pollinator biodiversity (Millard et al. 2021a), 

and is expected to increase expand rapidly in the coming decades, a significant interactive 

effect such that insect pollinator abundance is lower on rapidly warming croplands, is 

concerning. Tropical agriculture’s ability to cope with pollinator losses will likely depend on the 

biology of specific crop-pollinator interactions. For example, tropical crops that can be 

pollinated by generalist domesticated pollinators will likely cope better with wild pollinator 

abundance decline, given the relative ease with which honey-bee hives can be transported to 

supplement local losses (Goodrich, 2019), although this does still come at a cost (Degrandi-

Hoffman et al. 2019; Lee et al. 2019). For crops such as cocoa however, which is reliant on 

Ceratopogonid midges (Claus et al. 2018), the cost of pollinator abundance decline will be 

greater (although see limitations paragraph for the caveat of missing data for Ceratopogonid 

midges). Mass rearing of Forcipomyia midges has been proposed to buffer population size, 

but given their requirement for a blood-meal for the production of eggs, their low dispersal 

ability, and their regional specificity (Claus et al. 2018), commercialising such an approach to 

supplement local losses would be challenging. Recent work has also shown that hand-

pollination can act to significantly increase yields and profit in cocoa, but it’s unclear whether 
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such an approach is sustainable long-term (Toledo-Hernández et al. 2020), or whether it would 

be profitable in other localities as local pollinator abundance continues to change. It is 

therefore of particular concern that cocoa falls within a region that will experience particularly 

high novel temperatures, and that in the countries in which it is grown—primarily Ivory Coast 

and Ghana—it so important for the livelihoods of many small-scale farmers (Claus et al. 2018; 

ICCO, 2014). 

The difference in total pollination risk under RCP 8.5 compared with RCPs 2.6 and 6.0 further 

reinforces the importance of avoiding a high-warming future for Earth (Lobell et al. 2008; 

Thomas et al. 2004; Thuiller et al. 2005). My models project that, under RCP 8.5, crop 

pollination risk could change abruptly as regions of high pollination-dependent production 

suddenly become exposed to novel extreme temperatures. In the 2030s, for example, I predict 

that total production risk could increase rapidly. This may translate into a change in the 

availability and price of crops. However, many factors determine crop production and crop 

price, and so even if impacts on crop production occur, conclusive attribution to pollinator 

abundance changes is likely to be challenging (Khanal et al. 2018; Santeramo et al. 2018). 

These complications likely explain why identifying a strong effect of pollinator losses on global 

crop yield and price has thus far been so difficult (Aizen et al. 2008, 2009; Garibaldi et al. 

2011).   

There are a set of limitations associated with the approach we use in my study. First, I assume 

here that dynamic processes of local pollinator change can be inferred from a space-for-time 

model of the impacts of climate change and agricultural land use. Ideally, I would use insect 

trends over time, but since long-term insect studies are sparse at the global scale (see Klink 

et al. (2020) for one example), space-for-time inferences represent a necessary alternative 

(Purvis et al. 2018). Second, my set of non-pollinating species were not confirmed as such, 

but rather a set of species not identified as pollinators. This is not a major problem for this 

study, since non-pollinators were used simply as a reference group. Third, I assume that both 

the spatial scale and temporal scale of the temperature anomaly I use is relevant to insect 
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pollinators. The temperature data I use is coarse by necessity. Finer-scale temperature data, 

if they were available globally, may derive a different result. Moreover, I also recognise that 

the interactive effect of climate change and agricultural land use may differ according to the 

active season of insects, which is known to vary between tropical and non-tropical insects 

(Johansson et al. 2020). Work is currently underway investigating this effect of active seasons, 

indicating that the interactive effect of climate change and land use is similar when considering 

either only the months in which insects are most active, or all months of the year (Outhwaite 

et al. in review). Fourth, the crop data I used is for the year 2000. In my projections I assume 

that the distribution of these crops has not changed since then, and will not continue to change 

between now and 2050. This assumption is clearly wrong. However, although the distribution 

of animal-pollination-dependent crops over the next 30 years will change, it seems unlikely 

that the temperate and tropical zones will experience a complete reversal in pollination 

dependence, meaning my rates of change in total production risk and proportional production 

risk will likely still be informative. Moreover, long-term agricultural investment in particular 

geographic regions may mean time-lags between crop yield loss and the subsequent 

movement of agriculture from that region, and even if agriculture does move, for those people 

that remain local livelihoods will be impacted  Fifth, in many regions the crop data I use is 

highly uncertain, due to the way in which it was interpolated for regions with insufficient 

reporting. Such interpolation means production of some pollination-dependent crops is 

predicted for regions of the world in which it is highly unlikely, such as small quantities of cocoa 

production across large areas of Europe. In Appendix 3 (Figure S3.4) I carried out a sensitivity 

analysis in which I reran my production risk projections at a series of data quality levels 

(according to Monfreda et al (2008)). This additional analysis indicates that overall change is 

not sensitive to data quality. Sixth, the pollination-dependence ratios (Klein et al. 2007) I use 

are averaged across multiple crops to align with Monfreda et al (2008), which I do not account 

for in my risk projections. However, since only 6/67 of the animal pollination dependent crops 

in Monfreda et al (2008) have a standard deviation greater than 0 for their set of Klein et al 

(2007) pollination dependence ratios, accounting for this variation would have only a minimal 



 
118 

impact. Seventh, there is an ongoing debate as to what level of wild pollinator abundance is 

required to sustain yields. Here I reason that crop production risk will be predicted as a function 

of pollinator abundance; an assumption based on evidence from a number of studies (Blaauw 

& Isaacs 2014; Dainese et al. 2019; Hayter & Cresswell 2006). However, the assumption I 

make is that risk will be proportional to an average loss in insect pollinator abundance, which 

does not account for potential variation among localities/taxonomic groups, or threshold 

relationships between pollinator abundance and crop pollination. This is particularly relevant 

in the context of cocoa pollinating midges, which are absent from my set of PREDICTS 

pollinator data (i.e. the predictions I make are not directly representative of cocoa pollination 

risk). I would argue, however, that my assumption is likely still sufficient to quantify overall 

relative risk, since my taxonomic family jack-knife analysis shows that the negative response 

of pollinators to the interaction of climate change and land-use is likely consistent across 

families (Figure S3.5). Regardless, future work should incorporate any new empirical evidence 

on the relationship between local pollinator abundance, crop pollination, and yields. Future 

work should also associate risk for a given crop with change in only the species known to 

pollinate that crop. As yet the data required to make both of these developments either does 

not exist or is incomplete. 

Climate change and anthropogenic land use have had significant effects on the biosphere. 

These effects will likely accelerate over the coming decades as human activity continues to 

increase. The consequences of such change on pollinators and the service they provide could 

be great. In this study I showed that climate change and agricultural land use have a strong 

interactive effect on insect pollinator abundance. Insect pollinators experience strongly 

negative declines where cropland coincides with high levels of historical climate change. I 

show that change in crop pollination risk could be ~25% times greater under RCP 8.5 than 2.6 

or 6.0, and that the tropics will likely experience the greatest risk of future pollination shortfalls. 

Crop pollination risk is highest, and predicted to increase most rapidly, in regions of sub-

Saharan Africa and northern South America, primarily for cocoa, mango, pumpkin, melon, 
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watermelon, and coffee production. These results further stress the importance of avoiding a 

high-warming future on Earth, and potential future risk for crop pollination in the global south 

(Dicks et al. 2021). The health, well-being, and livelihoods of billions of people to some extent 

depends upon the availability and affordability of animal pollination dependent crops (Potts et 

al. 2016). Climate change and agricultural land use could risk this contribution. Mitigating this 

risk will be a key challenge of the 21st Century. 
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Chapter 5: The species awareness index as a conservation 

culturomics metric for public biodiversity awareness 

Abstract 

Threats to global biodiversity are well-known, but slowing currents rates of biodiversity loss 

remains an ongoing challenge. The Aichi Targets set out 20 goals on which the international 

community should act to alleviate biodiversity decline, one of which (Target 1) aimed to raise 

public awareness of the importance of biodiversity. Whilst conventional indicators for Target 

1 are of low spatial and temporal coverage, conservation culturomics has demonstrated how 

biodiversity awareness can be quantified at the global scale. Following the Living Planet 

Index methodology, here I introduce the Species Awareness Index (SAI), a metric of change 

in species awareness derived from Wikipedia views. I calculated this index at the page level 

for 41,197 IUCN species across 10 Wikipedia languages, incorporating over 2 billion views. I 

then explored overall changes in species awareness, and tested the extent to which change 

in views is predicted by the language, taxonomic class, pollination contribution, and trade 

contribution of a species page. Bootstrapped indices for the page level SAI show that overall 

awareness of biodiversity is marginally increasing, although there are differences among 

taxonomic classes and languages. Among taxonomic classes, overall awareness is 

increasing fastest for reptiles and slowest for amphibians. Among languages, overall species 

awareness is increasing fastest for Japanese and slowest for Chinese and German users. 

Although awareness of species as a whole is increasing, and is significantly higher for traded 

species, over the period 2016-2020 change in awareness appears not to be strongly related 

to the trade of species or pollination contribution. As a data source for public biodiversity 

awareness, the SAI could be integrated into the Biodiversity Engagement Indicator. 
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Introduction 

Threats to global biodiversity are well-known, but slowing current rates of biodiversity loss 

remains an ongoing challenge (IPBES 2019; Mace et al. 2018). One problem is the 

requirement for transformational behavioural and economic change (IPBES 2019), and the 

difficulty in leveraging this change at a global level (IPBES 2019). The Strategic Plan for 

Biodiversity 2011–2020, underpinned by the Aichi Targets, represents an effort to guide 

these changes (UNEP CBD 2010). Specifically, the Aichi Targets set out 20 goals on which 

the international community should act to alleviate biodiversity decline (UNEP CBD 2010). 

Three of the Aichi Targets have sufficient and suitable indicators (6, 9, and 11), four have 

intermediately sufficient indicators (4, 7, 12, and 14), ten have insufficient indicators (1, 5, 8, 

10, 13, 16, 17-20), and 3 have none (Mcowen et al. 2016). Concerned with public awareness 

of biodiversity, Aichi Target 1 states that by 2020 the public should be aware of the value of 

biodiversity. Conventional indicators for Target 1 (i.e. the Biodiversity Barometer, UEBT 

2019)) are of low spatial and temporal coverage (Leadley 2013, Mcowen et al. 2016), and do 

not incorporate awareness of biodiversity itself (i.e. species). Without robust metrics 

capturing evidence towards Target 1, understanding whether this target has been met is 

hard. 

Conservation culturomics has emerged as a field concerned with digitised data and human 

nature interactions (Sherren et al. 2017; Ladle et al. 2016). Quantifying public awareness of 

biodiversity is an area of active interest. Using data sources such as Twitter, Facebook, 

Flickr, Wikipedia, and Google Trends, a number of researchers have shown how online data 

can be used to better understand how the public perceives biodiversity and 

environmentalism (Roberge 2014; Papworth et al. 2015; Tenkanen et al. 2017; Roll et al 

2016; Mccallum & Bury 2013). More recently, research has explored how online data 

sources can be combined to build a single indicator of biodiversity awareness. For example, 

Cooper et al. (2019) examined frequencies of biodiversity keywords across social media, 
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online newspapers, and internet searches, reasoning that relative frequencies reflect public 

awareness of conservation issues. A significant step forward in applying culturomic 

approaches to the development of indicators, Cooper et al. (2019) provided a global 

framework for future research. Given Cooper et al. (2019) focuses on conservation issues, 

one potential improvement could be to incorporate changing awareness of biodiversity itself.  

Wikipedia page views represent a powerful data source for quantifying change in public 

awareness of biodiversity itself. Page views have previously been applied to quantify reptile 

public interest (Roll et al. 2016) and species phenology (Mittermeier et al. 2019). In the 

context of awareness, Wikipedia is valuable in that pages are linked explicitly to biodiversity 

across scales. Pages on Wikipedia exist for taxa at multiple taxonomic levels, Red List 

statuses, and ecological systems, with an unambiguous link between the taxon and page 

identity (Mittermeier et al. 2019). Previous research has shown Wikipedia can reveal 

changes in public awareness in response to natural history documentaries, demonstrating 

that the data source could be informative of long-term changes in awareness 

(Fernández‐Bellon & Kane 2019). Moreover, since species characteristics provide a 

mechanistic link to ecosystem services, change in awareness for a particular species on 

Wikipedia could be used as a proxy for awareness of its contribution. For example, 

increasing awareness for species which contribute significantly to pollination or trade could 

indicate greater public awareness of biodiversity importance. For pollination specifically, 

such changes in awareness are particularly important, given the global economic importance 

and reported declines of animal pollinators (Lautenbach et al. 2012, Powney et al. 2019, 

Hallmann et al. 2017, IPBES 2016). Although using Wikipedia for quantifying awareness is 

not without its limitations and caveats (see Discussion), it provides the basis for a useful new 

indicator. 

An awareness metric using Wikipedia page views could be thought of as analogous to The 

Living Planet Index (LPI). The LPI represents an aggregation of vertebrate population trends 

(Loh et al. 2005, Collen 2009, McRae 2017), showing an average rate of change for multiple 
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species populations. Treating species page-views as a population size, the LPI methodology 

could be similarly applied to Wikipedia to derive a rate of change for species awareness. 

Multiple studies have used page views or search trends to infer change in awareness of 

specific species (Fink et al. 2020, Fukano et al. 2020, Lenda et al. 2020, Sorian-Redondo et 

al. 2017, Mittermeier et al. 2019, Veríssimo et al. 2020), but as far as I know no studies have 

calculated such an aggregated index for overall awareness. Here, I introduce and evaluate 

an approach based on the frequency of views for IUCN species on Wikipedia, naming it the 

Species Awareness Index (SAI). I then explore variation in this metric, aiming to assess 

whether awareness of biodiversity has changed. Specifically, I explore the overall SAI for 

41,197 IUCN species pooled, 6 distinct taxonomic classes—including the core pollinating 

groups (insects, birds, and mammals) and the most heavily traded vertebrates (reptiles, 

mammals, birds, amphibians, and ray-finned fishes)—and for each taxonomic class in each 

of the top 10 languages (by active user) on Wikipedia (Arabic, Chinese, English, French, 

German, Italian, Japanese, Portuguese, Russian, and Spanish). I then model rate of change 

in the page level SAI as a function of taxonomic class, Wikipedia language, trade 

contribution, and pollination contribution, using a pollinator dataset derived from the 

academic literature through named-entity recognition. I conclude by discussing the 

limitations of the SAI, suggesting potential avenues for future research, and demonstrating 

how the SAI might be combined with other approaches for a more holistic understanding of 

changing biodiversity awareness. 
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Methods 

Wikipedia data 

I used the Wikipedia pageview API1, and software written in Python, to download daily user 

views of IUCN species for the period 1st July 2015 – 301st March 2020 (downloaded on the 

16th-21st April 2020). I downloaded views for all IUCN species with Wikipedia pages in the 

taxonomic groups reptiles, ray-finned fishes (Actinopterygii), mammals, birds, insects, and 

amphibians, from 10 Wikipedia language projects (Arabic, Chinese, English, French, 

German, Italian, Japanese, Portuguese, Russian, Spanish). I retrieved my list of IUCN 

species on Wikipedia from OneZoom (Rosindell & Wong 2020), who used the Wikipedia 

API2 to map between a species’ Latin binomial, IUCN ID, Wikidata Q identifier3, and the main 

Wikipedia page name for each species in each language. Downloading views from only the 

main page name of each species excludes redirect views, controlling for potential variation 

caused by the URL used to reach a page. Each IUCN ID is unique to a species on the IUCN 

database, whereas each Wikidata Q identifier is unique to one page, for all the Wikipedia 

languages in which that page appears. Each individual Wikipedia page for a particular 

species in a given language I henceforth refer to as a “species page”, distinguishing from my 

use of the term “species” to refer to a particular species among languages. 

For each species page I retrieved only user views (i.e. views for which the visitor to that 

page was recorded as human, excluding automated views from bots). As in Mittermeier et al. 

(2019), I was not able to retrieve views from before 1st July 2015, since views from before 

this date are not archived by Wikipedia at the pageview API. For each species page 

returned, I calculated the daily average views for each month, and then kept only those 

species pages for which the series was represented for all months (see Appendix 4, Figure 

S4.1 for the number of complete series). I used daily average views rather than total views 

 
1 https://wikitech.wikimedia.org/wiki/Analytics/AQS/Pageviews 
2 https://www.mediawiki.org/wiki/API:Main_page 
3 https://www.wikidata.org/wiki/Q43649390 

https://wikitech.wikimedia.org/wiki/Analytics/AQS/Pageviews
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since the Wikipedia pageview API does not always return views for all days in a given 

month.  

To account for the overall change in Wikipedia's popularity and use, I also downloaded the 

daily user views for a random set of 11000 pages in each language, using the Wikipedia 

Random API4 to request random pages. I then aggregated these views in the same manner 

as the daily average species views, and again kept only pages represented across the whole 

time series. From this random set of views, I then removed any page also appearing in the 

set of species pages for that language. I initially sampled 11,000 pages to maximise the 

number of remaining pages after removing incomplete series and species pages. 

Pollinator and wildlife trade datasets 

To explore how species awareness varied with pollination contribution, I built a list of animal 

pollinators with an approach combining text-analysis and manual inspection of the pollination 

literature (see Appendix 4 and Millard et al. (2020a) for a detailed methodology). I also used 

the list of traded vertebrate species released in Scheffers et al. (2019) and FAO fisheries 

statistics (FAO, 2020) to compile a dataset of traded mammals, birds, squamate reptiles, 

and harvested ray-finned fish. I then retrieved the Wikidata Q ID for each of these traded 

species using the Wikipedia API, which I merged onto each species page. I henceforth refer 

to any species that pollinates as providing a “pollination contribution”, and any species in 

either Schefers et al. (2019) or the FAO statistics as “traded”. 

Calculating absolute awareness of biodiversity 

Before calculating the SAI I briefly explored absolute awareness of biodiversity among 

taxonomic classes, pollination contribution, and trade contribution. I defined “absolute 

awareness” as the total views for a species page on Wikipedia in the period 1st July 2015 – 

301st March 2020. I joined the total views for each species page onto the taxonomic class, 

 
4 https://www.mediawiki.org/wiki/API:Random 

https://www.mediawiki.org/wiki/API:Random
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trade contribution, and pollination contribution of that species, and then built two generalised 

linear mixed-effects model: 1) modelling log10 total article views as a function of taxonomic 

class, trade contribution (Y/N), the interaction of class and trade, and a random effect for 

language; and 2) modelling log10 total article views as a function of taxonomic class, 

pollination contribution (Y/N), the interaction of class and pollination, and a random effect for 

language. Rather than attempting to find the most parsimonious model, I present full model 

predicted values, with AIC values for these and a set of candidate null models included in 

Appendix 4 (Tables S4.23 and S4.24). In Appendix 4 (Figures S4.11 and S4.12) I also 

present boxplots for the distribution of total views among taxa for each language. 

Deriving the SAI 

The SAI is a new measurement of change in species awareness, calculated at the species 

page level from the rate of change in daily average Wikipedia views per month. The SAI 

could act as a counterpart to the Biodiversity Engagement indicator, a metric of biodiversity 

awareness derived from change in interest on Twitter, online newspapers, and Google 

Trends (see ‘Discussion’ for more details). Since the SAI measures the rate of change in 

views within a species page, species are weighted equally irrespective of their popularity, 

meaning highly viewed species do not dominate the SAI. In the remainder of this paper I use 

the term ‘SAI’ or ‘Species Awareness Index’ to refer to the overall change in awareness for a 

given species page, species, or group of species on Wikipedia. Specifically, I use the term 

“species page SAI” to refer to rate of change at the page level, the term “species SAI” to 

refer to the average of all species page SAIs for a unique species among languages, and 

“overall SAI” to refer to a bootstrapped group of species SAIs (see Figure 5.1). I also use the 

term “average monthly rate of change in the species page SAI” to refer to the average rate of 

change for a single species page across a given time period. All of the above are distinct 

from absolute interest in a given species or group of species (i.e. the total Wikipedia views 

over the whole time series).  
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Figure 5.1 A schematic describing how the species page, species, and overall SAI were derived using Wikipedia views. The species 

page SAI represents the random adjusted trend for a given species in a given language, the species SAI is the average of species 

page SAIs for a single species across languages, and the overall SAI is a group of bootstrapped species SAIs.  
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To construct the species page SAI, I used the R package “rlpi” to calculate an index of 

change over time for each species in 6 taxonomic groups (amphibians, birds, insects, 

mammals, ray-finned fish, and reptiles) on 10 Wikipedia languages (Arabic, Chinese, 

English, French, German, Italian, Japanese, Portuguese, Russian, Spanish). The “rlpi” 

package applies a generalised additive model (GAM) to smooth the daily average species 

page view trends, using k = N/2 for the degrees of freedom parameter, following Collen 

(2009). In ‘rlpi’, these smoothed values are then used to calculate a rate of change in views 

for a species page article, as 

 𝜆𝑠𝑡 = 𝑙𝑜𝑔10(
𝑁𝑡

𝑁(𝑡−1)
) 

where λs = the rate of change in a species page, N = the smoothed number of daily average 

page views per month, and t = month.   

To account for the overall change in popularity of Wikipedia itself over the same time period, 

I adjusted the rate of change for each species page using the rate of change in a random set 

of complete series Wikipedia pages (see Appendix 4 for the number of complete series, 

Figures S4.1 and S4.4). For each species page, this adjustment was made with a random 

set of pages in the Wikipedia language of that species page. For example, the Wikipedia 

page for Panthera tigris (Linnaeus, 1758) in the English language would be adjusted for a 

set of random pages in the English Wikipedia, whereas the page for Panthera tigris in 

French would be adjusted for a set of random pages in the French Wikipedia. To do so, I 

firstly calculated the rate of change for each random page in each language using ‘rlpi’, as in 

species pages. I then used a bootstrap resampling approach to calculate the average rate of 

change for all random pages in a given language at each timestep. The average rate of 

change in the random pages (𝜆𝑟𝑡) was calculated by bootstrapping the monthly rates of 

change 1000 times, and then extracting the bootstrapped mean. At each timestep, I then 

adjusted the species page rate of change by subtracting the monthly bootstrap estimated 

random rate of change (𝜆𝑟𝑡) as 
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𝜆𝑎𝑡  =  𝜆𝑠𝑡  −  𝜆𝑟𝑡 

where λ = the rate of change, t = month, r = the bootstrapped random trend for a given 

language, s = the species page trend for that same language, and a = the adjusted species 

trend.  

For each species page the SAI is then 

 𝐼𝑎𝑡   = 𝐼𝑎(𝑡−1)   ∗  10𝜆𝑎𝑡 , 

𝐼𝑎0  =  1 

where Iat = the species page SAI at time t. 

To account for differences in the tortuosity of trends among Wikipedia languages (see 

Appendix 4, Figure S4.7), I also smoothed the species page SAI in each Wikipedia language 

using a loess regression (span = 0.3), before transforming the smoothed species page SAI 

back into a rate of change. 

After smoothing the species page SAI as above, I then calculated a species SAI for each 

species (across languages) by averaging rates of change at each time step across all 

languages. For example, the species Panthera tigris has the unique Wikidata ID ‘Q19939’, 

meaning the average rate of change in SAI for all species pages (irrespective of language) 

identified as ‘Q19939’ provides the overall rate of change for the species Panthera tigris.  

I then calculated an overall SAI combining all species across 10 Wikipedia languages by 

averaging rates of change across all species SAIs. Bootstrap confidence intervals were 

calculated by taking the 2.5th and 97.5th percentiles of 1000 bootstrapped indices at each 

timestep. To check the extent to which single languages influence the overall SAI, I then 

jack-knifed the overall SAI for language, and removed any languages with a marked effect 

on the overall trend (see Appendix 4, Figure S4.6).  
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Using the same approach as above, I also calculated an overall SAI for each taxonomic 

class for all languages combined, and each taxonomic class in each language. For each 

taxonomic class I again averaged the loess smoothed rate of change in species page SAI 

among languages, and then bootstrapped the species rate of change in SAI at each time 

step for each taxonomic class, as above. To check the extent to which single languages 

influence class level trends, I again jack-knifed the overall SAI for language, and removed 

any languages with a marked effect on the overall trend (see Appendix 4, Figure S4.8). To 

calculate an overall SAI in each taxonomic class in each language, I bootstrapped the rate of 

change in species page SAI for the set of species pages in a given class-language 

combination. 

Modelling average monthly rate of change in the SAI 

After calculating the SAI for all species pages on Wikipedia, I then calculated an average 

monthly rate of change in each smoothed species page SAI for the period January 2016 – 

January 2020. This average monthly rate of change was calculated across complete yearly 

periods to control for the effect of seasonality. To robustly explore whether change in 

awareness differs for various groups, I constructed 1 linear model and 2 mixed effects linear 

models fitting average monthly rate of change in species page SAI: 1) a linear model for 

average rate of change in species page SAI as a function of taxonomic class, language, and 

their interaction; 2) a mixed effects model for average rate of change in species page SAI as 

a function of taxonomic class, pollination contribution (Y/N), their interaction, and a random 

effect for language; and 3) a mixed effects models for average rate of change in species 

page SAI as a function of taxonomic class, traded status, and a random effect for language. 

Rather than attempting to find the most parsimonious model, I present full model predicted 

values, with AIC values for these and a set of candidate null models included in Appendix 4 

(Tables S4.25, S4.26, and S4.27). 
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Results 

Wikipedia view dataset 

Before removing incomplete series, my initial Wikipedia dataset included ~2.23 billion page 

views for IUCN species across the Arabic, Chinese, English, French, German, Italian, 

Japanese, Portuguese, Russian, and Spanish Wikipedias. These views were represented 

across 41,197 IUCN species, over a period of 1735 days between the 1st July 2015 and 

31st March 2020. Views for each language varied from ~24.92 million views in the Arabic 

Wikipedia to ~1.08 billion views in the English Wikipedia (Figure 5.2). For all languages 

unique species number was highest in the ray-finned fishes at 13,571 and lowest in the 

insects at 2,743 (Figure 5.2, see Appendix 4, Figure S4.1 for a full language breakdown). 

After subsetting for series represented for every month, the proportion of complete series 

was lowest in the Arabic Wikipedia, specifically the ray-finned fishes (~35%) and the reptiles 

(~38%). Most taxonomic classes for most languages had complete series in at least 80% of 

the species in that grouping (Appendix 4, Figure S4.1). 

After removing pages also present in the species set, my set of random views consisted of 

~2.82 billion views across 113,622 random pages (Appendix 4, Figure S4.3), again for the 

same 1735 day period. The total number of random views was highest for the English 

Wikipedia at ~629.85 million views, and lowest in the Arabic Wikipedia at ~87.94 million 

views (Appendix 4, Figure S4.3). After subsetting for only random pages represented for all 

months, total random pages varied from 3486 in the Arabic Wikipedia to 9174 in the 

Japanese Wikipedia (Appendix 4, Figure S4.4). 
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Figure 5.2 The total number of views and unique species for the initial Wikipedia view 

dataset, before removing incomplete series. Top: the total number of views for IUCN 

species in each Wikipedia language, in order of magnitude. Bottom: the total number 

of unique IUCN species (n = 41,197) with Wikipedia pages in each of 6 taxonomic 

classes, across all 10 languages of the top panel. 
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Absolute awareness of biodiversity 

Among taxonomic classes, reptiles have consistently higher absolute awareness, appearing 

in the top 2 classes for 7/10 languages (Appendix 4, Figure S4.11). Amphibians on the other 

hand have consistently lower awareness, appearing in the bottom 2 classes for 8/10 

languages. Some languages appear to have uniquely high absolute awareness for specific 

classes. For example, the ray-finned fish have the highest absolute awareness in the 

Japanese Wikipedia (Appendix 4, Figure S4.11). Across all languages, absolute awareness 

(total views) is significantly higher in traded species (Figure 5.2; F = 15206.44, p < 0.001, 

Appendix 4, Table S4.19), but not significantly different in pollinating species (F = 0.3869, p 

= 0.5339, Appendix 4, Table S4.18). 
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Figure 5.3 Total Wikipedia article views for traded and non-traded species across 6 taxonomic 

classes and 10 Wikipedia languages (Arabic, Chinese, English, French, German, Italian, Japanese, 

Portuguese, Russian, Spanish). Predicted values were generated using a generalised linear 

mixed-effects model, modelling total article views as a function of the fixed effects taxonomic 

class, the presence of trade (Y/N), and their interaction, and the random effect language. Effect 

sizes were calculated by drawing fixed effects 1,000 times based on the variance-covariance 

matrix, and then calculating the median value (shown as points), and 2.5th and 97.5th percentiles 

(shown as error bars).  Black error bars represent species that are known to be traded, and red 

error bars represent species that are not known to be traded or harvested. Taxonomic classes are 

ordered by the magnitude of total article views, from highest on the left to lowest on the right. 
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The SAI 

The overall SAI for all taxa and languages was markedly affected by the inclusion of the 

French Wikipedia (see Appendix 4, Figure S4.6, and ‘Discussion’), meaning it was excluded 

from analyses presenting aggregated change at the overall level. With the exclusion of the 

French Wikipedia, the overall SAI increased from July 2015-March 2020, with marked 

declines in mid 2016 and 2018 (Figure 5.4). This overall increase in the SAI is largely robust 

to variable baselines (See Appendix 4, Figure S4.17, and ‘Discussion’), although average 

rate of change is marginally negative from mid 2017 and highly negative from mid 2019. 

At the level of taxonomic class, jack-knifing trends by language again showed that the 

French Wikipedia was markedly affecting the overall trend (see Appendix 4, Figure S4.8, 

and ‘Discussion’). With the exclusion of the French Wikipedia, over the period July 2015-

March 2020 all of the reptiles, ray-finned fish, mammals, and birds appear to have increased 

in awareness, whilst the amphibians and insects appear to have decreased (Figure 5.5). 

Birds experienced a peak in early 2017 (Figure 5), driven by an increase across multiple 

languages (Figure 5.6). The mammals appear to be experiencing a consistent and steady 

increase in awareness, particularly in the Japanese Wikipedia (Figure 5.6). The amphibians 

and insects both experienced a pronounced drop in awareness from the start of the series to 

mid 2016 before increasing, the cause of which is unclear. The trend for both the reptiles 

and insects is highly seasonal for multiple languages, peaking in July-August of each year, 

with the notable exception of the English language for insects (Figure 5.6).  
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Figure 5.4. The SAI for 6 taxonomic classes (reptiles, ray-finned fish, mammals, birds, 

insects, and amphibians) and 9 Wikipedia languages (Arabic, Chinese, English, 

German, Italian, Japanese, Portuguese, Russian, and Spanish) for the period July 

2015-March 2020. The French Wikipedia was removed here given its marked influence 

on the aggregated SAI (see Appendix 4, Figure S4.6). Here the black line represents 

the mean of the bootstrapped indices at each monthly timestep, and the grey band the 

2.5th and 97.5th percentiles. 
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Figure 5.5 The SAI for 6 taxonomic classes (reptiles, ray-finned fishes, mammals, birds, insects, and 

amphibians) and 9 Wikipedia languages (Arabic, Chinese, English, German, Italian, Japanese, 

Portuguese, Russian, and Spanish), for the period July 2015-March 2020. The French Wikipedia was 

removed here given its marked influence on the aggregated SAI (see Appendix 4, Figure S4.8). 

Coloured lines represent the mean of the bootstrapped indices at each monthly time step, and 

coloured bands the 2.5th and 97.5th percentiles: reptiles (black), ray-finned fishes (orange), mammals 

(blue), birds (green), insects (pink), and amphibians (brown). Taxonomic class panels are ordered 

by the magnitude of overall increase in each taxonomic class. 
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Figure 5.6 The SAI for 6 taxonomic classes across 10 Wikipedia languages, for the period July 2015-March 2020. Coloured lines represent 

the mean of the bootstrapped indices at each monthly each time step, and coloured bands the 2.5th and 97.5th percentiles: reptiles (black), 

ray-finned fishes (orange), mammals (blue), birds (green), insects (pink), and amphibians (brown). Taxonomic class panels are ordered by 

the magnitude of overall increase in each taxonomic class, and for language alphabetically.  
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Modelling average monthly rate of change in species page SAI 

Average monthly rate of change in species page SAI for the period January 2016-January 

2020 differed significantly for taxonomic class, language, and their interaction (Figure 5.7, 

Appendix 4, Table S4.22). At the level of taxonomic class, the reptiles and ray-finned fishes 

are increasing in awareness the fastest, and the insects and amphibians are either 

increasing slowly or declining (with the exception of the Japanese Wikipedia). Among 

languages, rate of change in species page SAI is highest in the Japanese and Portuguese 

Wikipedias, and lowest in the German and Chinese Wikipedias. Although absolute interest is 

significantly greater in traded species (See Figure 5.3, Appendix 4, Table S4.19), over the 

period January 2016-January 2020 average monthly rate of change in the species page SAI 

appears not to be related to either trade contribution (Appendix 4, Figure S4.14, Table 

S4.21) or pollination contribution (Appendix 4, Figure S4.14, Table S4.20). 
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Figure 5.7 Average monthly rate of change for the species page SAI for 6 taxonomic classes 

across 10 Wikipedia languages. Errors bars represent the predicted values of a linear model, 

fitting average monthly change in the species page SAI as a function of taxonomic class, 

Wikipedia language, and their interaction. Fitted values were generated from the linear model 

with the R function predict (represented as points), and 95% confidences intervals from the 

fitted values +/-1.96 * standard error. The colour of error bars refers to taxonomic class: reptiles 

(black), ray-finned fishes (orange), mammals (blue), birds (green), insects (pink), and 

amphibians (brown). 
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Discussion 

In this study I introduced the SAI, an index of change in public awareness of biodiversity. 

The SAI is derived from views of individual Wikipedia species pages, enabling investigation 

according to a variety of variables, such as taxonomy, language, geographic distribution, and 

ecosystem service provision. I show that awareness of biodiversity overall has marginally 

increased, with increases highest in the reptiles and ray-finned fish. Although biodiversity 

awareness is increasing overall, we also show that some groups (i.e. the amphibians and 

insects) are decreasing or only marginally increasing in awareness. Among languages, 

increases are highest in the Japanese and Portuguese Wikipedias, and lowest in the 

Chinese and German Wikipedias. Although my results suggest that awareness of 

biodiversity has increased since July 2015, increases do not appear to be related to a 

species’ trade contribution or pollination contribution. As an indicator for biodiversity 

awareness, a Wikipedia derived metric such as the SAI represents a useful additional data 

source, given its explicit and unambiguous link to biodiversity itself at multiple scales (i.e. 

species, family, class). 

The link between culture and perceived biodiversity value or awareness is widely recognised 

(Daniel et al. 2012, Cooper et al. 2019, Roll et al. 2016, Ladle et al. 2019), but for a 

culturomics metric such as the SAI the drivers of change are complex. Overall trends 

capture many different drivers of awareness, making it difficult to isolate the causes for a 

given increase or decrease. The Chinese Wikipedia, for example, shows a consistent 

decrease in awareness for 5 taxonomic classes, but a consistent increase for ray-finned fish. 

I hypothesised that this increase for ray-finned fish may be driven by increasing fish 

consumption, since seafood demand in China has increased significantly in recent years 

(FAO 2020). However, in a brief additional analysis, I found no significant difference between 

the rate of change for traded and non-traded ray-finned fish in the Chinese Wikipedia 

(Appendix 4, Figure S4.13). This would indicate that the greater rate of change for the 
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Chinese ray-finned fish may not be driven by consumption alone. The Japanese Wikipedia is 

also of note, given its consistent increase in awareness across all 6 taxonomic classes. This 

awareness increase is concordant with the results of conventional surveys, in which Japan 

has amongst the largest percentage point increases for familiarity with the term ‘biodiversity’ 

(UEBT 2019). However, it is unclear what may be driving this change in awareness. 

Counterfactual scenario modelling could help to better understand such relationships, 

previously demonstrated in a number of recent conservation culturomics studies (Acerbi et 

al. 2020, Veríssimo et al. 2020, Fernandez-Bellon & Kane 2019).  

Although drivers of overall change in the SAI are complex, it is conspicuous that absolute 

awareness and change in awareness do not differ between pollinating and non-pollinating 

animals. Since traded species have high absolute awareness relative to non-traded species, 

biodiversity awareness likely does relate to its value. But for pollination contribution this 

relationship appears to be weak or non-existent. For three main reasons this may be the 

case: first, the impact pollination contribution has on biodiversity awareness will be highly 

taxa dependent, with groups more strongly associated with pollination experiencing a bigger 

increase in awareness; second, unlike a species traded for direct consumption (i.e. food), 

pollinators make an indirect contribution to people, making their benefit less intuitive to 

understand; and third, the nature of a pollinator is that it is often not deliberately sought by 

those that benefit from its contribution. Given its central role in the value of biodiversity, more 

work is required to understand the contribution ecosystem service provision makes to public 

biodiversity awareness. Since pollinators have been so well-publicised (Smith and Saunders 

2016), one would expect that if awareness is not relatively high for pollinating species, it 

likely will not be for other service providing species. 

Change in biodiversity awareness reflected by the SAI is related to, but largely distinct from 

absolute awareness. In other words, for a given group of species, high rate of change in 

awareness does not necessarily also mean high absolute awareness. Instead, one might 

expect that groups of high absolute awareness would often be stable or increasing slowly, 
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since the margin within which they can continue to increase is smaller. In the Japanese 

Wikipedia, for example, ray-finned fish have the highest absolute awareness, but the lowest 

average monthly rate of change in species page SAI. Future work should further explore the 

relationship between absolute and change in awareness, particularly for variables previously 

applied in absolute awareness research, such as threat status and venomosity (Roll et al. 

2016), and geographic range and phenotypic distinctiveness (Ladle et al. 2019). 

Strong seasonal patterns in awareness are apparent in the bootstrapped trends for some 

taxonomic groups (e.g. insects and reptiles) and languages (e.g. Japanese). Seasonality in 

species interest on Wikipedia has been demonstrated previously, with high levels of 

seasonality in organisms that tend to have a strong phenological component to their life-

history (e.g. insects and flowering plants) (Mittermeier et al. 2019). In my analysis, 

languages such as English and Spanish have a conspicuous lack of a seasonal trend for all 

bootstrapped taxonomic classes. Most likely this results from the nature of English and 

Spanish as languages that are used widely in both the northern and southern hemispheres. 

Opposing peaks of interest in the northern and southern hemisphere summers will tend to 

cancel each other out, acting to smooth the overall bootstrapped trends. 

The significant effect of the French Wikipedia on the overall SAI is surprising, given the low 

species page and random page views for the French Wikipedia. Inspection of the French 

Wikipedia shows that reptile species pages are primarily the cause of this problem. The 

French Wikipedia contains a large number of reptiles (Figure S4.1), which decrease rapidly 

at the start of the series (Figure 5.6). This decrease is compounded by the large number of 

reptiles in the French Wikipedia appearing in only that Wikipedia (Figure S4.15). This means 

that when an average is taken across languages, the large negative trends of the French 

reptiles are not mitigated against other less negative trends, meaning they come to dominate 

the index. 
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Figure 5.8 Schematic adapted from Cooper et al (2019), demonstrating one method through 

which the SAI might be incorporated into the Biodiversity Engagement Indicator for a single 

indicator of country-level biodiversity awareness. All text squares in white represent the 

methodological pathway for the original Biodiversity Engagement Indicator, and all squares in 

pale blue represent a potential additional pathway for combining the SAI. Box 1 (top right) 

represents the overall SAI scaled starting at 1. Box 2 represents the overall SAI rescaled 

between 0-100, consistent with the Biodiversity Engagement Indicator.  
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The SAI and Biodiversity Engagement have value as independent metrics, but as in Cooper 

et al. (2019) I emphasise the importance of combining multiple online platforms for inferring 

public biodiversity awareness. Particularly since the SAI provides an explicit link to 

biodiversity itself, its inclusion could provide a more holistic understanding as to how 

biodiversity awareness is changing. Combining the SAI with the Biodiversity Engagement 

Indicator presents two core challenges. First, both the Biodiversity Engagement Indicator 

and SAI are measured on different units, inherent to their underlying methodology. The 

Biodiversity Engagement Indicator is scaled on a 0-100 scale in a manner analogous to 

Google Trends. The SAI on the other hand is scaled relative to a benchmark index of 1, in 

an approach inspired by the LPI. Second, there are problems of geographic scale in 

combining the Biodiversity Engagement Indicator and SAI. Namely, the Biodiversity 

Engagement Indicator is aggregated at the country-level, whereas the SAI cuts across 

countries at the language-level.  

Given differences in units and geographic scale, combining a Wikipedia metric and the 

Biodiversity Engagement Indicator is not simple. One potential solution could be to rescale 

the SAI on a 0-100 scale, disaggregate by language, and then calculate a weighted average 

among languages to reflect the proportion of users for a given country (Figure 5.8). The data 

for calculating such a weighting language level trend is provided by Wikipedia, in a format 

amenable to web-scraping (Wikimedia Traffic Analysis Report 2018). Such an approach 

would solve both the problem of differing units and geographic scale, transforming the SAI 

into a national metric amenable to averaging alongside a Twitter, Newspaper, and Google 

Trends score (Figure 5.8).  

Despite providing a novel approach, online-derived metrics for biodiversity awareness are 

subject to limitations. Primarily, online metrics are proxies rather than direct measures of 

awareness. For the SAI, we can show whether views increased or decreased on average for 

a given grouping, from which we can infer exposure to species-related information. However, 

we cannot tell why a given page was visited, or whether information related to that page was 
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retained. Previous research has shown how on-site Google Analytics can be used to return a 

suite of metrics intimating as to the reasons for a given visit (Soriano-Redondo et al. 2016), 

such as the site used to reach a page, but for Wikipedia this data is not publicly available. 

Text-mining could help to quantify the type of information users are exposed to on Wikipedia. 

For example, calculating a text similarity for each species page to a reference text on 

pollination would provide an indication as to the pollination salience of a given species page. 

Similar approaches have been applied in the context of climate change and invasive 

species, using rate of threat-related terms as an indicator of threat salience (Jarić et al. 

2020). 

There are other limitations associated with the SAI. First, the short length of my Wikipedia 

time series presents a problem for the interpretation of our index. Future iterations of the SAI 

should aim to include views archived from before 2015, which presents additional problems 

in reconciling views aggregated across multiple formats. Second, an index based on internet 

activity will only be representative of those that have access to the internet, and use the 

internet to access Wikipedia. Given ~50% of the global population has access to the internet 

(The World Bank 2020), and ~15% of those regularly access Wikipedia (Graham et al. 

2014), the SAI cannot be globally representative. In mainland China for example, the 

dominant online encyclopaedia is Baidu Baike, with Wikipedia views for the Chinese (zh) 

Wikipedia coming predominantly from Taiwan and Hong Kong (Wikimedia Traffic Analysis 

Report 2018). Future iterations of the SAI could incorporate page views for species on Baidu 

Baike, although this presents problems in requiring a distinct computational approach. Third, 

conclusions drawn from the SAI are susceptible to variations in the chose baseline month. I 

therefore carried out an additional analysis to explore the robustness of my overall Species 

Awareness Index to variable baselines. For all potential baselines of the SAI (i.e. months), I 

recalculated the average rate of change from that point to the end of the series, and then 

superimposed these rates of change onto the overall SAI (Figure S4.17). Here I show that 

the average rate of change is stable or greater than 0 for all baselines between July 2015 
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and February 2017. The average rate of change then goes negative from the baselines of 

mid 2017, and highly negative from mid 2019 to the end of the series. Although my 

additional analysis shows that the SAI for all 6 taxonomic classes is largely robust to variable 

baselines, further research is required to fully understand the effect among all taxa and 

languages.  

As global internet penetration increases and biodiversity continues to experience decline, 

digital metrics for public biodiversity awareness will become both more informative and more 

important. Here I presented the SAI, a metric derived from Wikipedia views depicting change 

in awareness for biodiversity online. I used this metric to show that overall awareness of 

biodiversity is increasing marginally, although this increase is inconsistent among taxonomic 

groups and languages. I also showed that such increases appear not to be related to either 

the pollination contribution or trade contribution of a species. I concluded by suggesting one 

approach through which the SAI could be combined with the Biodiversity Engagement 

Indicator, providing a more holistic understanding of public biodiversity awareness in the 

digital realm.  
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Chapter 6: Discussion and synthesis 

Pollinator biodiversity has undergone significant change in the Anthropocene (Biesmeijer et 

al. 2006, Burkle et al. 2013, Potts et al. 2010). Such changes have often been associated with 

climate change and anthropogenic land use (Potts et al. 2010, Vanbergen, 2013, Winfree et 

al. 2011), both of which will continue to increase and expand over the coming decades (IPCC 

2018; Laurance et al. 2014). Given the importance of animal pollinators to humanity, both to 

the structure of terrestrial ecosystems and crop pollination, understanding the extent to which 

pollinator biodiversity will change in the future is highly important (Brown et al. 2016). 

In this thesis I applied a number of computational methods to investigate the causes and 

consequences of pollinator biodiversity change in the Anthropocene. First, I carried out a text-

analysis review of the pollination literature, showing that although there is a marked bias 

towards the honey bees and bumblebees of North America and Europe, there is still pollination 

information for other geographic regions and taxonomic groups (Chapter 2). Second, I then 

used the output of this text-analysis (i.e. the set of animal genera extracted from a set of 

pollination related abstracts) to identify a set of potentially pollinating species in the PREDICTS 

database, which I then confirmed as likely pollinators using a manual check by myself and a 

group of pollination ecology experts (Chapter 3). I then used this pollinating subset of the 

PREDICTS database to investigate the global response of local pollinator biodiversity and 

land-use type and intensity (Chapter 3). Specifically, I showed that low levels of intensity can 

increase pollinator biodiversity, but that within a land use type increasing intensity tends to 

lead to decreases in pollinator biodiversity (Chapter 3). I also showed that pollinator responses 

to intensity differ among taxonomic groups, geographic region, and between analogues of 

intensity (i.e. total fertiliser application rate and a coarse categorical factor of intensity) 

(Chapter 3). Third, using the same set of likely pollinating species in PREDICTS, I then 

investigated the interactive effects of climate change and land use on local pollinator 

abundance (Chapter 4). I showed that land use and climate change have a significant 

interactive effect on insect pollinator abundance, such that climate change is associated with 
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a decrease in abundance on cropland, and an increase on primary vegetation (Chapter 4). I 

then used my interactive models, estimations of global crop production that is dependent on 

animal pollination, and projections of future climate change, to predict potential temporal and 

spatial regions of crop pollination risk (Chapter 4). Here I showed that under RCP 8.5—a high 

emissions future climate scenario—my total crop production risk index is predicted to increase 

by ~70% between 2016 and 2048. Again under RCP 8.5, I showed that the rate of change in 

total crop production risk could be up to ~25% higher than that of RCP 2.6 and 6.0, with abrupt 

periods of increased exposure in the 2030s. I further showed that crop pollination risk is 

highest, and predicted to increase most rapidly, in regions of sub-Saharan Africa and northern 

South America, primarily for cocoa, mango, pumpkin, melon, watermelon, and coffee 

production (Chapter 4). Fourth, I finished by introducing a new metric of public biodiversity 

awareness, derived from page views of animal species on Wikipedia (Chapter 5). I use this 

metric to show that, although awareness of biodiversity appears to be marginally increasing, 

these increases are likely not related to the contribution animals make to pollination (Chapter 

5). In this last chapter, I highlight the core contributions I make to four areas of work, as well 

as the main challenges and future directions for each of these research areas. 

Quantifying the geographic and taxonomic distribution of the animal pollination 

literature and improving tools for automated reviews  

Contribution 

Many studies make claims that most pollinator biodiversity change research concerns only the 

honey bees and bumble bees of North America and Europe (Ghazoul 2005, 2015; Goulson et 

al. 2015). However, attempts to quantify this extent are few, especially for the distribution of 

research among pollinating groups (although see Saunders et al. 2020). My work in Chapter 

2 aimed to address this problem. I showed that at least 25% of pollination-related abstracts 

mention a species of honey bee and at least 20% a species of bumble bee, and approximately 

46% of abstracts are focussed on either North America or Europe. This research builds on the 

work of Archer et al. (2014) and Ollerton (2017) through investigating taxonomic change over 
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of time, and investigating the interaction between taxonomy and geography in animal 

pollinators. Importantly, this research showed that there is a large quantity of animal pollinator 

related research based outside of North America and Europe, which could be used to 

supplement global models of pollinator biodiversity change. This work also used two named-

entity recognition tools which are rarely applied in ecology and conservation: CLIFF-CLAVIN, 

a geoparser which attempts to resolve the main geographic focus of a piece of text (D’Ignazio 

et al. 2014); and the function scrapenames from the package taxize, a piece of software that 

extracts a taxonomic names from text (Chamberlain & Szöcs 2013). In Chapter 2 I discuss 

that named-entity recognition algorithms could be used to estimate a lower-bound for the 

number of pollinating species, and to predict likely plant-pollinator interactions. 

As the quantity of literature in the field of pollination ecology continues to grow, incorporating 

all relevant literature in systematic maps and synthetic analyses will become increasingly 

difficult. In Chapter 2 I made some suggestions as to how this problem might be approached, 

using a novel synthesis path and text-analysis algorithms to shorten the synthesis gap, or in 

other words the lag between the practice of primary research and the synthesis of evidence 

(Westgate et al. 2018). A number of other papers have explored ways of shortening this 

synthesis gap, such as automating the identification of relevant texts (Cornford et al. 2021), 

and building software tools for article screening (Westgate 2019), but widespread uptake of 

these tools is still low.  

Challenges and future directions 

For the quantification of biases in the ecological literature, there are some key challenges that 

need to be overcome before such text-analysis of abstracts can be relied upon to make robust 

estimates. First, biases caused by the text-analysis algorithms themselves need to be more 

thoroughly checked, and where biases are found, these need to be accounted for in estimates 

of geographic and taxonomic distribution. In the context of the work I presented in Chapter 2, 

these biases will likely be strongest for the geoparser. CLIFF-CLAVIN was built for geoparsing 

online news articles, meaning it will likely perform less well when applied to ecological texts, 
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and may favour locations that tend to appear in the news articles from which it was trained 

(Imani et al. 2017). As mentioned in Chapter 2, one would expect that such biases likely favour 

the United States, meaning the actual disparity between the United States and the rest of the 

world may be smaller than suggested by my analysis. One approach to account for this 

potential bias could be to run CLIFF-CLAVIN on a set of texts with a known geographic 

distribution, and then use this to adjust any subsequent distributions outputted by CLIFF-

CLAVIN. Work is currently underway exploring this approach with the Living Planet Database, 

preliminarily indicating that CLIFF-CLAVIN does indeed identify locations in the United States 

more often than expected by chance (Cornford et al. 2021). Second, biases caused by the 

extent to which abstracts represent full text need to be tested and accounted for in estimates 

of taxonomic and geographic distribution. For example, it could be that researchers have a 

tendency to over-emphasise certain taxa in abstracts, perhaps to increase the impact of their 

study. Understanding this bias is particularly important given the number of studies that 

assume the content of an abstract is representative of the taxa studied in that paper (Millard, 

et al. 2020a, da Silva et al. 2020, Santos et al. 2020). If taxonomic and geographic information 

in abstracts is not consistently representative of the research content of the full paper, then 

the distribution implied by these papers would be biased. Work is also underway exploring 

this, again with the Living Planet Index, although results at this stage are inconclusive 

(Cornford et al. 2021). 

The causes of pollinator biodiversity change 

Contribution 

A number of prior studies have examined the effect of land use on pollinator biodiversity 

change (Biesmeijer et al. 2006, Goulson et al. 2015, Winfree et al. 2011), described by some 

as likely the greatest driver of change (Goulson et al. 2015). Climate change and its interaction 

with land use has also been described as a significant driver of pollinator biodiversity change 

(Settele et al. 2016, Vanbergen, 2013), often investigated in the context of localised studies 
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(e.g. (Zaragoza-Trello et al. 2021). However, for both land use and the interaction of climate 

change with land use, as far as I know there are no cross-taxonomic global studies. 

In Chapter 3 I used a set of likely pollinating species in the PREDICTS database to model the 

response of pollinator biodiversity to land-use type and intensity, using a space-for-time 

approach. Counter to many studies which suggest consistently negative effects of 

anthropogenic activity on pollinator biodiversity, I show that pollinator biodiversity change is 

likely more heterogenous. First, I demonstrate that pollinator biodiversity change follows a 

‘hump-shaped’ response, with low disturbance associated with higher biodiversity (relative to 

primary vegetation), and high intensity associated with lower biodiversity (relative to primary 

vegetation). Such a relationship has been shown in a number of other localised studies (e.g. 

Lázaro et al. 2016), and likely relates to the increased heterogeneity of habitats at low intensity 

(the intermediate disturbance hypothesis) (Connell 1978). Second, I show that vertebrate 

pollinators are more resilient to anthropogenic land use (and intensity) than invertebrate 

pollinators. Vertebrate pollinator resilience has been found in a number of localised studies 

(e.g. Tscharntke et al. 2008), but not in previous synthetic studies where the effect diminishes 

when accounting for differences in methodology among studies (Winfree et al. 2011). My work 

in Chapter 3 indicates that vertebrate pollinators are indeed less sensitive, likely resulting from 

their nature as bigger bodied, more mobile species (Henle et al. 2004). Third, I show that 

tropical pollinator biodiversity is more sensitive to the effects of land use intensity on cropland, 

with high anthropogenic intensity associated with significant declines on tropical cropland, and 

no change in non-tropical cropland. Relative to the non-tropics, tropical pollinator biodiversity 

has previously been found to be more sensitive (e.g. Newbold et al. 2020), but as far as I know 

my work here represents the first time this has been confirmed at large-scale.  Such sensitively 

is likely predicted by the combined effects of novel extreme climate and historical 

anthropogenic land use. The tropical zone is both being exposed to extreme novel 

temperatures more quickly, and has a shorter history of anthropogenic land use, which in the 

temperate zone has likely already filtered out the more sensitive species (Balmford 1996). 
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Fourth, I show that the effects of anthropogenic land use are not always negative, with some 

groups (e.g. flies) experiencing an increase in pollinator biodiversity in response to land use 

intensity. Such a positive response of flies to anthropogenic land use intensity has been found 

previously in local studies (Biesmeijer et al. 2006, Jauker et al. 2009, Weiner et al. 2011), here 

confirmed at the global scale. 

In Chapter 4 I used the same set of pollinating species to investigate the interactive effect of 

climate change and land use on local pollinator abundance. For insects, this interactive effect 

is such that abundance declines in regions where cropland coincides with high historical 

temperature change, and increases in regions of primary vegetation. Such a response has 

been found previously (Outhwaite et al. in review), likely relating to the nature of tropical 

insects as highly sensitive to novel extreme temperatures that fall outside their thermal limits 

(Deutsch et al. 2008). I show that this response is likely stronger in pollinating insects than 

non-pollinating insects and also vertebrates. From my analysis the mechanisms of this 

sensitivity are unclear, but as I describe in Chapter 4, it’s likely that some combination of traits 

and a reliance on floral resources predicts this high sensitivity.  

Challenges and future directions 

There is a lot we understand about the causes of pollinator biodiversity change, but still some 

key challenges and questions for future research. Here I briefly highlight three areas which 

require additional work. 

The primary challenge for pollinator biodiversity change research I feel lies in the geographical 

distribution of research. In Chapters 3 and 4 I showed that tropical pollinator biodiversity is 

highly sensitive. In the tropics, high agricultural intensity is associated with much greater 

declines than in the non-tropical zone (Chapter 3). The tropics are also being exposed to novel 

extreme temperatures more quickly, with this change associated with significant declines in 

local pollinator abundance on  croplands (Chapter 4). Given that many prior synthetic studies 

on pollinator biodiversity change focus on the temperate zone, it therefore seems likely that 
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these previous studies have underestimated the effects of anthropogenic activity on pollinator 

biodiversity. Although the two studies I carried out here help to reduce this bias, there is still a 

significant bias in the data towards non-tropical regions, and within the tropics towards a select 

few countries (e.g. South Africa, Kenya, Ghana, Madagascar). Moving forward we need to 

integrate more primary research from the tropics into global models of pollinator biodiversity 

change. 

Second, the models I present in both Chapters 3 and 4 are correlative, meaning they do not 

reveal the mechanisms of biodiversity change, with the observed patterns potentially 

explained by a set of correlated variables that I did not consider. This is particularly the case 

for the interaction between climate change and land use tested in Chapter 4. Standardised 

temperature change could be correlated with recent land-use intensity, or some measure of 

current climate. Future work therefore needs to establish the extent to which change in climate, 

current climate, historical land use, and current land-use intensity predict variation in pollinator 

biodiversity between tropical and non-tropical regions, with all variables included in a single 

model. Estimations of historical and current climate are feasible for much of the world (e.g. 

Frieler et al. 2017, Harris et al. 2020), but data for historical land use is, as far as I know, not 

available for much of the world.  

Third, for historical land use there is a related challenge associated with baselines for pollinator 

biodiversity change. The baseline for the models I present in this thesis, which used the 

PREDICTS database, is ‘primary vegetation’, or in other words vegetation that has not been 

disturbed by humans. However, as I discuss in Chapter 3, the nature of this baseline differs 

between the tropical and temperate zone, meaning it does not necessarily represent a 

consistent, perfectly natural baseline. Research increasingly shows that human activity goes 

back thousands of years (Mottl et al. 2021), meaning the land-use factor described here as 

‘primary vegetation’ will often not be a truly undisturbed habitat. Conservation biology more 

broadly has real difficulties with baselines, notably in the Living Planet Index that is anchored 

to a baseline of 1970 (McRae et al. 2017). Often it is either unclear where baselines should 
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be set, or the most logical baseline is clear but the relevant data are unavailable (Mihoub et 

al. 2017). One potential way forward is to test the sensitivity of predictions to changes in the 

baseline, as I did in Chapters 3 and 5 for pollinator biodiversity and changes in biodiversity 

awareness (see Figure S2.6 and Figure S4.17), and then quantify some degree of uncertainty 

according to the variation among baselines. Although such an approach still means model 

uncertainty, it is at least transparent that baselines are a cause of variation, and it enables the 

researcher to test the influence of arbitrary baseline selection on their model predictions. 

The consequences of pollinator biodiversity change 

Contribution 

One of the core questions for pollinator biodiversity research concerns the extent to which 

future changes in pollinator biodiversity might relate to the stability of crop production and the 

availability of animal pollination dependent crops (Potts et al. 2016). A number of studies have 

found that localised reductions in yield can occur through reductions in local pollinator 

abundance (Kevan 1977, Stephen 1955, Watanabe 1994), whilst others have suggested that 

we risk widespread shortfalls from continued pollinator losses (Aizen et al. 2008, Winfree, 

2008). Although large shortfalls are not yet thought to have occurred on a broad scale 

researchers postulate that as pollinator biodiversity continues to change we risk them become 

increasingly common (Winfree 2008). My work in Chapter 4 uses a model of the interactive 

effects of climate change and land-use on local pollinator abundance to make the first 

systematic predictions of the temporal and spatial distribution of crop pollination risk. Although 

there are a number of studies and reviews examining the interactive effects of climate change 

and land-use on pollinators (e.g. Settele et al. 2016, Vanbergen, 2013), as far I know there 

are none that combine models with estimates of animal pollination dependent crop production 

to predict risk to global crop pollination. 

 Challenges and future directions 
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The models I present here make coarse predictions on the temporal and spatial distribution of 

crop pollination risk. To increase the robustness of crop pollination risk scenarios there are a 

number of challenges that need to be addressed. Here I highlight three challenges, and 

suggest ways in which each may be overcome. Each of these points are in addition to the 

limitations I discuss in Chapter 4 itself. 

First, we need to understand better how the interactive effect of climate change and land use 

differs between wild and managed pollinators, since the resilience of managed pollinators will 

likely predict a locality’s ability to adapt to wild pollinator losses. In the future, as localities lose 

wild pollinator abundance through the interactive effects of climate change and land use, there 

will likely be an increased demand and incentive for shipping in pollinators (vanEngelsdorp & 

Meixner 2010). If the response for managed pollinators (e.g. Apis, Bombus, Osmia, 

Megachile) is similar to all pollinators (i.e. farmers are unable to maintain managed bee 

abundance in croplands that are experiencing extreme high novel temperatures), shipping in 

these bees will likely experience a diminishing return, such that production of the crop 

becomes more expensive, and at worst economically unviable. But if the response of 

domesticated pollinators differs (i.e. farmers are able to maintain managed bee abundance), 

it may be the case that crop pollination can be buffered against the effects of wild pollinator 

losses, albeit with some increase in cost associated with managed bee shipping. Here I did 

not distinguish between wild and managed pollinators in the development of my models. 

Future work needs to tease these two groups apart for a more refined understanding of our 

ability to adapt to changing crop pollination risk. 

Second, we need higher quality and more recent estimates of global crop production. 

Monfreda et al. (2008) is a valuable resource, but the data represents crop production from 

over 20 years ago, and relies on country-level interpolations for many highly pollination-

dependent crops (e.g. cocoa). To understand better how these crops will be affected, we need 

better estimates of where they tend to grow and at what relative quantity. To be of use to crop 

pollination risk models, these estimates need to be at the level of spatial cells. Climate change 
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and land use do not occur at the spatial scale of countries, meaning FAO national reports 

alone are of minimal use, especially for large countries (e.g. Brazil, China, India).  

Third, to better understand how localised shortfalls might affect globalised supply of crops 

dependent on animal pollination, we need to link models of localised crop pollination risk to 

estimates of global trade networks. Virtual pollination trade flows (see Silva et al. (2021)) 

represent a means through which this could be achieved. Silva et al. (2021) released data for 

the flow of animal-pollination-dependent crop production between countries, with quantities 

for the flow between each exporter and its corresponding importers. Each metric tonne of 

production risk I describe in Chapter 4 (see Figure 3) has a country in which it was produced 

(i.e. export risk), which can be ascribed to an importer (i.e. import risk) according to the 

proportional flow reported by Silva et al. (2021). Such work would provide a coarse estimate 

as to how many countries could be indirectly affected by changes in crop pollination risk, and 

to what extent. One might expect that countries that have low export production risk (e.g. the 

United Kingdom) could have high import production risk. Given the relationship between 

supply diversity and food-shock incidence (Gomez et al. 2021), countries of high import 

production risk that import from only a few countries will likely be most vulnerable to the knock-

on consequences of localised pollinator losses. 

Developing online metrics for pollinator biodiversity awareness 

Contribution 

Pollinator biodiversity has undoubtedly undergone significant change through the effects of 

climate change and anthropogenic land use. In regions of high agricultural dependence on 

pollinators, such change in agricultural intensity and climate change could have consequences 

for crop pollination. Although the potential for these effects has been well publicised 

(Carrington 2013, Milman 2020), it is unclear the extent to which publicity has translated into 

changes in awareness of the importance of biodiversity and pollinators. In Chapter 5, I 

developed a new approach for quantifying changes in awareness of biodiversity, which I use 
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to show that awareness of biodiversity has likely increased, but not awareness of pollinating 

species. I then suggest an approach through which this metric could be combined with the 

Biodiversity Engagement Indicator (Cooper et al. 2019).  

Challenges and future directions 

My work provides a novel means through which to quantify changes in biodiversity awareness, 

and therefore pollinator biodiversity. Regardless, the field still has a long way to go before it 

can claim to make broad, robust conclusions that are of genuine use to policy-makers. Here I 

highlight some of the problems associated with quantifying biodiversity awareness more 

broadly, before discussing some potential areas of research and concern in the context of 

pollinator biodiversity specifically.  

To understand how attempts to quantify changes in global biodiversity awareness might move 

forward, it is first helpful to understand their current state. At present there are effectively two 

main philosophies relating to the way in which culturomics—the quantitative study of human 

culture and behaviour using digitised data—can be used to infer biodiversity awareness: in the 

first, the frequency of biodiversity and conservation related key words online are used to try 

and infer directly awareness of issues (e.g. Cooper et al. 2019); in the second, awareness is 

quantified at the level of species through either online page views (e.g. the Species Awareness 

Index in Chapter 5) or a frequency of species names in text (e.g. Ladle et al. 2019) from which 

awareness of the importance of biodiversity is indirectly inferred. For example, a greater rate 

of change in page views for ecosystem service providing species, relative to non-service 

providers, might suggest that awareness of the importance of biodiversity is increasing. The 

first of these approaches (i.e. keyword level inference) works well across platforms at scale, 

but is disconnected from biodiversity itself, and tracks a set of words that are not in the lexicon 

of most people. Or in other words, it tracks changes in awareness for individuals that tend to 

use these words already, which will more often be those working in the biodiversity sciences. 

The second of these approaches (i.e. species level inference) overcomes this problem by 

focussing on biodiversity itself, but for page views is limited due to the difficulty in 
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understanding why a particular page was visited. As I discuss in Chapter 5, owners of websites 

can retrieve visit statistics for their own site through services such as Google Analytics, which 

intimate as to the reason for a given visit, but such data are unavailable for Wikipedia. For 

example, Google Analytics can show which other sites tend to be used to reach a site, and for 

how long a site is visited (Soriano-Redondo et al. 2017). 

Although understanding the reason for a given species page view on Wikipedia is challenging, 

recent research indicates that one of the core drivers is physical encounters with species 

(Mittermeier et al. 2021). For example, Mittermeier et al. (2021) showed that for a given 

Wikipedia language, species found within countries of that language tend to get more views, 

and that the frequency of sightings reported online explained a significant quantity of the 

variation in pageviews. An interesting complement to my work in Chapter 5, therefore, could 

be an index of change in awareness derived from the frequency of animal species photos 

uploaded online. A photo uploaded online, assuming it is of an organism which can be 

accurately identified, represents an unambiguous physical encounter with that species. Each 

photo has a timestamp indicating the approximate period of encounter, and typically 25% are 

geotagged such that the location of the species can be resolved to an unambiguous location 

(August et al. 2020). In combination with the Species Awareness Index, an online photo index 

would help to establish the extent to which change in species page views are predicted by 

physical encounters with biodiversity. Such an index could be built using an approach similar 

to August et al. (2020), in which photos are pulled from Flickr, and then identified using a 

species identifying algorithm such as PlantNet. Developing  a species identifying algorithm for 

insects will be challenging, however with advances in technology (e.g. Buschbacher et al. 

2020) it may be that such an approach is feasible in the future. In the manner of the Species 

Awareness Index (Chapter 5), the frequency of identified species could then be converted to 

a rate of change, adjusted for the background rate of change in uploaded photos, and then 

bootstrapped for groups of species. 
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In tackling pollinator biodiversity change, and biodiversity change more generally, there is also 

the question of how changes in online awareness relate to changes in behaviour in the 

physical world. Given that the link between awareness and behaviour can be weak 

(Asvatourian et al. 2018), it may be that aggregate changes in online awareness are poorly 

correlated with aggregate changes in behaviour. Assuming this is the case, conservation 

culturomics researchers need to develop means through which behaviours can be tracked 

online as well as awareness. This represents a much tougher challenge, since behaviours 

relevant to pollinator biodiversity change more often leave only a minimal trace online. The 

localised application of pesticides or fertiliser (e.g. in urban green spaces), for example, or the 

destruction of wild flower habitats, do not as far as I know leave a digital footprint. One proxy 

for these sorts of behaviour, however, could be online purchases. An online purchase 

represents an unambiguous action, which depending on the nature of the purchase, could be 

defined as either a negative or positive action on behalf of pollinator biodiversity. For example, 

the purchase of weed-killers or insecticides might indicate negative actions on behalf of 

pollinator biodiversity, whereas purchases of bee hotels or wild flower seed mixes positive 

actions. Purchase data is not made available by companies such as Amazon, but it could 

potentially be inferred from the frequency of reviews. Such an approach would require a robust 

methodology for filtering out fake reviews, but it could be a fruitful approach for quantifying 

large-scale changes in pollinator beneficial behaviours, and how these changes relate to 

awareness and conservation campaigns. 

More broadly for awareness of pollinator biodiversity change, I think the field of pollinator and 

insect conservation needs to challenge the language it uses, and think carefully about the way 

in which this language is interpreted by the online and print media. I feel that the language 

used, particularly in press releases and in some papers, will likely have caused some 

confusion for members of the public with respect to insect pollinator conservation. Such 

confusion is most recently exemplified by Sánchez-Bayo & Wyckhuys (2019) and the 

subsequent media coverage following this paper. Sánchez-Bayo & Wyckhuys (2019) carried 
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out a review of the evidence of insect declines, drawing some quite apocalyptic conclusions, 

such as that “insects as a whole will go down the path of extinction in a few decades”. This 

paper was picked up by the Guardian, who ran with the headline “Plummeting insect numbers 

'threaten collapse of nature'”, and the tagline “insects could vanish within a century at current 

rate of decline” (Carrington 2019). Sánchez-Bayo & Wyckhuys (2019) has since been subject 

to multiple critiques regarding its methodology and language (Komonen et al. 2019, Simmons 

et al. 2019, Thomas et al. 2019). In short, the conclusions it draws, and much of the 

subsequent media coverage, are not supported by the breadth of evidence. Pollinator 

biodiversity is clearly highly important, but if apocalyptic language is used when it is not 

warranted, the public will not pay attention when it is. Perhaps more importantly, if and when 

apocalyptic language is warranted, it needs to acknowledge better the heterogeneity of risks 

to both pollinator biodiversity change and ecosystem services. In reality some geographic 

regions and some taxonomic groups will be more susceptible to environmental changes, and 

only some crops at higher risk in consequence. 

Conclusion 

The Earth’s biosphere is changing rapidly. Animal pollinators have not escaped this change. 

Climate change and anthropogenic land use are largely responsible, driving significant shifts 

in pollinator biodiversity. The work I present in this thesis provides a significant advance in our 

understanding of the causes of pollinator biodiversity change, and the potential consequences 

for crop pollination risk. I also contribute towards the developing field of conservation 

culturomics, introducing a new metric of public biodiversity awareness derived from Wikipedia 

page views. Such metrics will likely become increasingly useful in the future as internet 

penetration increases and pollinator biodiversity continues to experience rapid change. Over 

the coming decades the consequences of climate change and land use for pollinator 

biodiversity will grow, and so too will risk for the ecosystem service these animals provide. 

These risks are big, but they’re not insurmountable. If carbon emissions and intensive 

agriculture can be kept in check, and if agriculture shifts such that it avoids the more severe 



 
162 

effects of climate change, then humanity’s ability to adapt will be greater. Life on Earth will 

undoubtedly look quite different by 2050. But I take solace in the hope that, however fast 

biodiversity changes, the ingenuity and generosity of people will change faster. 
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Figure S1.1 PRISMA diagram for pollination paper selection. 37895 abstracts were 

returned through entering the search term pollinat* in Scopus. These abstracts were 

filtered for English language (“Filter non English”), primary research articles (“Filter 

non Article”), any potential species records (“Filter non potential species record”), 

confirmed animal species (“Filter non animal species record”), geographic locations 

(“Filter non potential geographic record”), and those that do not contain only a 

continental, oceanic, and incorrect locations. 
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Figure S1.2 Distribution of all animal genera, with the exception of Apis and Bombus, 

occurring in 10 or more studies related to pollination. Apis and Bombus have been 

excluded here to better represent distribution for less well studied genera (see Figure 

2.3 for comparable values for Apis and Bombus). 

 

 

 

 

 



 
189 

 

 

 

 

 

 

Figure S1.3 Global study density of animal pollinator related studies, aggregated at 

country level and adjusted for country area. Study densities were calculated by counting 

the number of abstracts with their “major” focus in each country, and then dividing this 

value by country area. All oceanic and otherwise obviously incorrect “minor” mentions, 

as well as “minor” mentions that could only be resolved to a unit larger than a country, 

were removed. Densities were log10-transformed. Partially transparent blue points 

(“minor” mentions) represent the number of abstracts in which CLIFF-CLAVIN resolved 

that location. 
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Table S1.4 Summary output for a poisson generalised linear model, predicting annual 

study count against year (1961-2017) and taxonomic genera (Apis, Bombus, Other). 

 Estimate Std. Error P value 
 

Intercept -1.069e+02 2.561e+00 
 

<2e-16 
 

Year 5.357e-02 
 

1.274e-03 
 

<2e-16 
 

Apis 3.178e+00 
 

3.166e-02 
 

<2e-16 
 

Bombus 3.130e+00 
 

3.224e-02 
 

<2e-16 
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Validation 

I carried out a series of checks of the validity of the outputs of our text analysis methods. I 

validated my outputs at three levels: first, the accuracy of the extraction of animal species 

names; second, at the level of abstract subject area, to determine whether we had selected 

abstracts that are typically related to animal pollination ecology; and third, the accuracy and 

potential bias of the geographic locations as determined by CLIFF-CLAVIN. 

I estimated the completeness and accuracy of the animal species extraction by sampling and 

manually searching approximately 1% of the original full set of abstracts (300 in total). For any 

random samples, I used the R function set.seed() to seed the random number generator, and 

then sampled abstracts at random. Given that the taxonomic extraction algorithm attempts to 

resolve each animal as its accepted name, in order to fairly judge its effectiveness, any manual 

searching would have to attempt to resolve accepted names in a similar way. For each 

potential animal species record identified manually, I searched for the species in the COL 

hoping to confirm as an accepted name. If the species was not accepted but recognised by 

the COL as a synonym, I changed the species record for that abstract to the accepted name. 

If the COL did not recognise the potential animal species as either an accepted name or a 

synonym, I then searched the website Discover Life (http://www.discoverlife.org/) for the 

accepted name and changed the record if appropriate. I removed any potential species 

records that I could not confirm as either an accepted name or a synonym verified by either 

the COL or Discover Life. 

After manually confirming accepted animal species, I then compared these outputs to the 

performance of the algorithm. 79.5% of the animal species records manually extracted were 

found by the automated algorithm (i.e. a 20.5% omission error). Precision on the other hand 

was high at 100%, meaning that the algorithm found no animals which were not in that given 

abstract (i.e. a 0% commission error).  

http://www.discoverlife.org/
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I also conducted a validation to investigate whether considering only Latin binomial names 

influenced the taxonomic bias in the pollination literature (Figure S1.5). This analysis shows 

that the abstract count for honey bees and bumble bees is underestimated by searching for 

Latin binomials, potentially by a factor of ~2. This is because honey bees and bumblebees are 

referred to by their common name more often than other species. I counted the number of 

“pollinat*” abstracts mentioning two typical common name spellings for Apis and Bombus, and 

then to control for string number, analogous strings for both Osmia and Megachile: Apis - 

“honey bee” and “honeybee”; Bombus - “bumble bee” and “bumblebee”; Osmia - “mason bee” 

and “mason-bee”; Megachile - “leafcutter bee” and “leaf-cutter bee”. I included Osmia and 

Megachile as a control, to investigate common name frequency for less well-known species. 

For Apis and Bombus, including abstracts mentioning a common name doubles their 

respective abstract count. For Osmia and Megachile, the inclusion of common names 

increases abstract count by 4.6% and 7.2% abstracts respectively. These results would 

indicate that whilst Apis and Bombus study count is underestimated, for other less well-known 

taxa the Latin binomial will be an effective indicator of study effort. I also reasoned that, whilst 

my analysis might underestimate for Apis and Bombus, including only the Latin binomial would 

help to reduce false positive rate. 

I conducted an additional validation to investigate whether excluding taxonomic names above 

the level of species influenced the taxonomic bias in the pollination literature. This analysis 

indicates that although representation for some families (hummingbirds, fig wasps, and 

hoverflies) may be underestimated, the overall trend is likely similar (Figure S1.6). I counted 

the number of “pollinat*” abstracts mentioning family names for each of 4 well-known 

pollination-related families (hummingbirds, fig wasps, hoverflies, hawk-moths, and leaf-nosed 

bats), selected from each of the top 5 orders (Hymenoptera, Lepidoptera, Diptera, 

Apodiformes, and Chiroptera). For each family, I searched for four common, Latin, and 

pluralised family names: hummingbirds ("humming-bird", "hummingbird", "Hummingbird", 

"Trochilidae"); fig wasps ("fig wasp", "Fig wasp", "fig-wasp", "Agaonidae"); hoverflies 
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("Hoverfly", "hoverflies", "hoverfly", "Syrphidae"); hawk-moths ("Hawk-moth", "hawk moth", 

"hawk-moth", "Sphingidae") and leaf-nosed bats ("Phyllostomidae", "leaf-nosed bat", "leaf 

nosed bat", "Leaf-nosed bat"). The number of abstracts for hummingbirds, hoverflies, and fig 

wasps all increased by more than a factor of ~2 with the inclusion of family names, with the 

leaf-nosed bats making only a marginal increase in total abstract number (Figure S1.6). 

 

 

 

Figure S1.5 Frequency of “pollinat” Scopus abstracts containing a common name and 

Latin binomial for each of Apis (honey bee), Bombus (bumblebee), Osmia (mason bee), 

and Megachile (leafcutter bee). Grey bars represent abstracts containing both a Latin 

binomial and common name for that genus. Orange bars represent abstracts containing 

only a Latin binomial for a species in that genus. Red bars represent abstracts 

containing only a common name for that genus.  
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Figure S1.6 Frequency of “pollinat” Scopus abstracts containing a family name (either 

common or Latin) and Latin binomial for each of the hummingbirds (Trochilidae), fig 

wasps (Agaonidae), hoverflies (Syrphidae), hawk-moths (Sphingidae), and leaf-nosed 

bats (Phyllostomidae). Grey bars represent abstracts containing both a Latin binomial 

and the family name for that family. Orange bars represent abstracts containing only a 

Latin binomial for a species in that family. Red bars represent abstracts containing only 

the family name for that family. 
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To validate the subject areas of the identified abstracts, I randomly sampled 100 abstracts 

from the subset of original abstracts that also mentioned an animal species (approximately 

2.5% of the total). I then read each abstract and title, assigning the subject area as any of 

three categories: general pollination ecology, pollinator status or habitat disturbance, and 

other pollinator related literature (Figure S1.7). No abstracts were totally unrelated to 

pollination. Abstracts on general pollination ecology included any studies on visitation, 

efficiency, pollinator movement ecology, pollinator foraging behaviour, pollination syndromes, 

plant-pollinator networks, and pollination dependent crop yields. Abstracts on pollinator status 

included any studies on pollinator population trends, diversity, abundance, ecological impacts, 

and habitat disturbance. All “other” abstracts concerned analyses of population genetics, 

pest/disease management, pollinator predation, invasive species management, animal floral 

mimicry, pollinator mating behaviour, pollinator awareness, pollinator learning behaviour, and 

pollinator nesting behaviour. 
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Figure S1.7 Distribution of study types for a random sample of 100 of the subset of 

abstracts that mentioned an animal species. Abstracts on general pollination ecology 

included any studies related to pollinator flower visitation. Abstracts on pollinator 

status included any studies on population status and disturbance. All “other” abstracts 

concerned analyses of genetics, species management, and behaviours/evolution not 

directly related to pollinator flower visitation. 
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To assesses whether CLIFF-CLAVIN introduced geographic biases, I manually geoparsed the 

100 abstracts previously sampled for study topic. Initially I identified and recorded all text 

locations in each abstract. I then geocoded each of these locations using Google Maps, 

recording the respective coordinates. Both the automatically geoparsed (after removal of 

obvious mistakes, continental, and oceanic “minor” mentions) and the manually geoparsed 

map show very similar distributions (Figure S1.8), with high densities in North America, South 

America, Europe, south and South East Asia, and Australia. CLIFF-CLAVIN appears to have 

slightly over-estimated the number of locations in North America and Europe. The geographic 

distribution for CLIFF-CLAVIN appears particularly similar in Africa, with clusters in South 

Africa and Kenya for both automatic and manual geoparsing. The similarity between the 

automatic and manually geoparsed data is likely genuine and not a sampling effect. The 

manually geoparsed abstracts are a randomly sampled subset of those that have already been 

automatically geoparsed, meaning the manual and automatic geoparse compares like-with-

like. 
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Figure S1.8 The geographic distribution of a random sample of 100 abstracts related to 

pollination and containing an animal species, geoparsed automatically and manually. 

Continental, oceanic, and obviously incorrect “minor” mentions were removed from 

the automatically generated locations.  
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Given Germany, a country previously reported as a key contributor of pollinator disturbance 

data (Archer et al. 2014), didn’t appear in the top 15 countries for pollination-related study in 

our analysis, I performed a separate check to ensure this was not a mistake in the geoparsing 

(Figure S1.9). Specifically, I performed a character string match between each abstract and a 

set of strings representing the exact names of all countries. I assumed that the number of 

abstracts mentioning a country string would provide a coarse indication of relative study 

frequency, albeit through an approach less sophisticated than CLIFF-CLAVIN. In other words, 

I assumed that if the term “Germany” appeared frequently across abstracts, this would indicate 

that CLIFF-CLAVIN likely underestimated its importance. I found that CLIFF-CLAVIN ranked 

Germany as the 22nd most important country for pollination related studies, whilst an exact 

character string match ranked it at 17th. This suggests that CLIFF-CLAVIN hasn’t greatly 

underestimated the frequency of studies occurring in Germany. The United States has a much 

lower representation through character string matches, likely reflecting a tendency in US 

abstracts to mention the specific locality without the country string.  
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Figure S1.9 Geographic distribution of the pollination literature, resolved through exact 

character string matches and CLIFF-CLAVIN. I deemed exact character string matches 

a coarse and imperfect check on CLIFF-CLAVIN. The red dotted line represents the 

study proportion midpoint. Consistent with CLIFF-CLAVIN, exact character string 

matches also return Germany outside of the top 15 countries, at 22nd for CLIFF-CLAVIN 

and 17th for exact character string matches. 
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Supplementary Figures 

 

Figure S2.1 Response of pollinator biodiversity to land-use type and land-use 

intensity for species richness and total abundance, both fit using generalised linear 

mixed-effects models. A) species richness, fit using a poisson error generalised linear 

mixed-effects model; and B) total abundance, fit using a zero-inflated negative 

binomial error generalised linear mixed-effects model. Colours represent land-use 

type: orange (primary vegetation, Primary), green (mature secondary vegetation, 

MSV), yellow (intermediate secondary vegetation, ISV), blue (young secondary 

vegetation, YSV), dark orange (plantation forest, Plantation), pink (pasture), grey 

(cropland), and black (urban), and point shape represents land-use intensity: circle 

(minimal uses), triangles (light use), and squares (intense use). Effect sizes were 

adjusted to a percentage by drawing fixed effects 1,000 times based on the variance-

covariance matrix, expressing each fixed effect as a percentage of the baseline 

(primary vegetation minimal use), and then calculating the median value (shown as 

points), and 2.5th and 97.5th percentiles (shown as error bars). 
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Figure S2.2 Response of pollinator biodiversity to land-use type and land-use 

intensity for species richness and total abundance (fit using the approach in the main 

text), jack-knifed by UN regions (Africa, Americas, Asia, Europe, and Oceania). 

Colours represent land-use type: orange (primary vegetation), green (mature 

secondary vegetation), yellow (intermediate secondary vegetation), blue (young 

secondary vegetation), dark orange (plantation forest), pink (pasture), grey (cropland), 

and black (urban), and point shape represents land-use intensity: circle (minimal 

uses), triangles (light use), and squares (intense use). Effect sizes were adjusted to a 

percentage by drawing fixed effects 1,000 times based on the variance-covariance 

matrix, expressing each fixed effect as a percentage of the baseline (primary 

vegetation minimal use), and then calculating the median value (shown as points), 

and 2.5th and 97.5th percentiles (shown as error bars).
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Figure S2.3 Fixed effects for a model including climate covariates (max temperature of 

the hottest month and the total precipitation of the wettest month, both over the 12 

months previous to the end data of each sample), predicting either species richness 

(left panel) or abundance (right panel), plotted against the same fixed effects for the 

LUI-only model fitted in the main text. Crosses for each point represent the standard 

error for both the LUI + climate and LUI-only models. Here the diagonal dotted red line 

represents a line gradient of 1 (i.e. y=x), showing that the inclusion of climate 

covariates does not markedly change the predictions. 
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Figure S2.4 Response of pollinator Chao’s species richness to land-use type and 

land-use intensity. Colours represent land-use type: orange (primary vegetation, 

Primary), green (mature secondary vegetation, MSV), yellow (intermediate secondary 

vegetation, ISV), blue (young secondary vegetation, YSV), dark orange (plantation 

forest, Plantation), pink (Pasture), grey (Cropland), and black (Urban), and point shape 

represents land-use intensity: circle (minimal uses), triangles (light use), and squares 

(intense use). Effect sizes were adjusted to a percentage by drawing fixed effects 

1,000 times based on the variance-covariance matrix, expressing each fixed effect as 

a percentage of the baseline (primary vegetation minimal use), and then calculating 

the median value (shown as points), and 2.5th and 97.5th percentiles (shown as error 

bars). 
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Figure S2.5 The distribution of P values for a set of one-sided Moran’s I tests for 

spatial autocorrelation, calculated for each study for species richness (left panel) and 

total abundance (right panel). The red dotted line in both panels represents a P value 

of 0.05. For species richness p < 0.05 in 2.33% of studies, and for total abundance p < 

0.05 in 4.65% of studies. By chance, in the absence of spatial autocorrelation, we 

would expect 5% of studies to return a P value < 0.05. 
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Figure S2.6 Response of pollinators to land-use intensity on cropland, for non-tropical 

and tropical sites, when the primary vegetation minimal use baseline is shifted 

between high and low forest cover. Each panel represents a linear or generalised 

linear mixed-effects model for a given biodiversity metric. Left-hand panels (low forest 

cover baseline) represent species richness and total abundance predictions for 

cropland between tropical and non-tropical regions when the baseline is subset for 

only low forest cover sites (<=40% forest cover). Right-hand panels (high forest cover 

baseline) represent species richness and total abundance predictions for cropland 

when the baseline is subset for only high forest cover sites (>=60% forest cover). 

Effect sizes were adjusted to a percentage by sampling fixed effects 1,000 times 

based on the variance-covariance matrix, expressing each fixed effect as a 

percentage of the value in primary vegetation for that geographical zone, and then 

calculating the median value (shown as points), and 2.5th and 97.5th percentiles 

(shown as error bars). 
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Figure S2.7 Resampled 95% confidence interval ranges for total abundance for 

tropical and non-tropical sites. 1000 sites were resampled from each of the tropical 

and non-tropical sites a total of 100 times, and then for each group of 2000 (tropical 

and non-tropical), total abundance was fitted as a function of land-use intensity, 

geographical zone, and their interaction. Each violin represents the distribution of the 

95% confidence interval size for all samples in each land-use intensity—geographical 

zone combination (the black line represents the median for all samples), indicating 

that there is greater variation in non-tropical responses even when sample size is 

controlled. For tropical sites, the distribution of the violin is close to the median since 

total site number (from which the sample is taken) is 1052, meaning each re-sample 

for the tropics is effectively all sites. 
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Figure S2.8 Response of the main crop pollinators (bees, wasps, beetles, thrips, flies, 

birds, and bats) to land-use intensity on cropland, for non-tropical and tropical sites. 

Each panel represents a linear or generalised linear mixed-effects model for a given 

biodiversity metric: A, species richness; and B, total abundance. Colours represent 

the land-use intensity level, with primary vegetation (minimal use) as the reference 

factor: black (primary vegetation, minimal use); yellow (cropland, minimal use), 

orange (cropland, light use), and red (cropland, intense use). Effect sizes were 

adjusted to a percentage by sampling fixed effects 1,000 times based on the variance-

covariance matrix, expressing each fixed effect as a percentage of the value in 

primary vegetation for that geographical zone, and then calculating the median value 

(shown as points), and 2.5th and 97.5th percentiles (shown as error bars). 
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Figure S2.9 Site level total fertiliser application rate (+1) for cropland sites in PREDICTS 

that contain pollinating species, a pair of geographical coordinates, and a fertiliser 

application rate for that coordinate (n=1560).  
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Figure S2.10 Site level total pesticide application rate (+0.01) for cropland sites in 

PREDICTS that contain pollinating species, a pair of geographical coordinates, and a 

pesticide application rate for that coordinate (n=1560). 
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Figure S2.11 The structure of primary vegetation minimal use intensity sites in 

PREDICTS that contain pollinating species (i.e. the baseline for Figures 2, 3, and 4). A) 

The global geographic distribution of’ ‘forest’ (green) and ‘grassland & shrubland’ 

(yellow) sites according to the terrestrial ecoregions of the world (Olson et al 2001). 

The dashed lines represent latitudes of 23.5 and -23.5, which divide tropical from non-

tropical regions. B) Boxplots for the distribution of forest cover (Hansen et al 2013) 

between ‘grassland’ and ‘forest & shrubland’ sites in the tropical and non-tropical 

zones. Here the box extends from the 25th  to the 75th percentiles, the dark black inner 

line corresponds to the median, the upper and lower whiskers to 1.5 x IQR, and black 

dots to any sites beyond 1.5 x IQR. Sample size number for each grouping is 

represented above each boxplot. C) The frequency of ‘forest’ and ‘grassland & 

shrubland’ sites between the tropical and non-tropical zones. 
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Figure S2.12 The global geographic distribution of forest cover (Hansen et al 2013) for 

primary vegetation minimal use intensity sites in PREDICTS that contain pollinating 

species. Here the dashed lines represent latitudes of 23.5 and -23.5, which divide 

tropical from non-tropical regions. 
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Figure S2.13 Schematic of the nested structure of the PREDICTS database. A) The 

PREDICTS database is nested at four levels: ‘source’, ‘study’, ‘block’, and ‘site’, 

represented in the database as the columns S, SS, SSB, and SSBS. A source represents a 

unique paper, a study an experiment within a source that has a consistent sampling 

methodology, a block a collection of sites in a distinct spatial cluster, and site a geographic 

location at which biodiversity was sampled. B) The structure of the PREDICTS database is 

such that there can be multiple studies, blocks, and sites nested within each other. 
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Supplementary Tables 
 

Table S2.15 List of the 7 pollination ecologists consulted as a check-and-balance on 

our approach for identifying pollinating species in the PREDICTS database. 

Pollination ecology expert Taxonomic speciality Continental speciality 

Opeyemi Adedoja Insects Africa 

Sabrina Gavini Broad South America 

Esther Kioko Insects Africa 

Michael Kuhlmann Bees Europe 

Jeff Ollerton Broad Europe 

Zong-Xin Ren Insects Asia 

Manu Saunders Insects Australasia 

 

 

Table S2.16 The total number of animal pollinating species in the PREDICTS database, 

aggregated by taxonomic order and class (see Figure 3.1). 

Order Class N (species) 

Lepidoptera Insecta 2398 

Hymenoptera Insecta 988 

Passeriformes Aves 412 

Coleoptera Insecta 247 

Diptera Insecta 228 

Apodiformes Aves 99 

Chiroptera Mammalia 51 

Psittaciformes Aves 23 

Soricomorpha Mammalia 13 

Primates Mammalia 11 

Dasyuromorphia Mammalia 7 

Rodentia Mammalia 6 

Squamata Reptilia 5 

Columbiformes Aves 4 

Didelphimorphia Mammalia 3 

Diprotodontia Mammalia 3 

Macroscelidae Mammalia 2 

Scandentia Mammalia 1 

Thysanoptera Insecta 1 
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Table S2.17 ANOVA tables for species richness, log(total abundance + 1), and 

log(Simpson diversity + 1) predicted as a function of land use-type, land-use intensity, 

and their interaction, and the random intercepts study (SS), block (SSB), and site 

(SSBS). Statistics are for either a two-sided mixed-effects generalised linear model 

(species richness) or a two-sided mixed-effects linear model (total abundance and 

species richness). P values are not included here for species richness since deriving 

these for mixed effects generalised linear models is problematic. 

Response 

variable 

Explanatory 

variable 

df Sum Sq Mean Sq F value P value 

S
p

e
c
ie

s
 r

ic
h

n
e

s
s
 

Land-use type 7  62.608   8.9440   8.9440 - 

Land-use intensity 2 
 

18.877 
 

9.4384 
 

9.4384 
 

- 

Type * Intensity 12 
 

99.648 
 

8.3040 
 

8.3040 
 

- 

T
o

ta
l 

a
b

u
n

d
a

n
c
e
 Land-use type 7  32.173   4.5962 8.0346 9.196e-10 

Land-use intensity 2 5.500 2.7502 4.8075 0.008192 

Type * Intensity 12 80.646 6.7205 11.7481 < 2.2e-16 

S
im

p
s

o
n

 d
iv

e
rs

it
y
 

Land-use type 7 2.6035 
 

0.37193 
 

4.4150 
 

6.648e-05 
 

Land-use intensity 2 
 

1.9661 
 

0.98303 
 

11.6691 
 

8.749e-06 
 

Type * Intensity 12 
 

4.6201 
 

0.38501 
 

4.5703 
 

2.122e-07 
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Table S2.18 AIC values for all the models presented in Figures 3.2, 3.3, 3.4, and 3.5, as 

well as the insignificant model fitting fertiliser and geographical zone as an 

interaction.  Models in which AIC is lowest are indicated by †. Significant full models 

are highlighted in bold.  

 
Figure Fixed effect structure AIC 

L
U

I 
o

n
ly

 m
o

d
e
ls

 

(F
ig

u
re

 3
.2

) 

Richness ~ LUI 33734.62 † 

Richness ~ 1 33871.57 

Abundance ~ LUI 20110.66 † 

Abundance ~ 1 20237.72 

Diversity ~ LUI 3698.13 

Diversity ~ 1 3641.20 † 

L
U

I 
* 

z
o

n
e
 m

o
d

e
ls

 

 (
F

ig
u

re
 3

.3
) 

Richness ~ LUI * zone 13318.63 † 

Richness ~ LUI 13333.56 

Richness ~ 1 13375.75 

Abundance ~ LUI * zone 8093.51 † 

Abundance ~ LUI 8101.58 

Abundance ~ 1 8126.23 

Diversity ~ LUI * zone 1841.00 

Diversity ~ LUI 1830.72 † 

Diversity ~ 1 1843.73 

F
e

rt
il

is
e

r 
* 

z
o

n
e

 m
o

d
e

ls
 

 (
n

o
 m

a
in

 t
e

x
t 

fi
g

u
re

) 

Richness ~ fertiliser * zone 12757.00  

Richness ~ fertiliser 12756.18 † 

Richness ~ 1 12833.61 

Abundance ~ fertiliser * zone 9903.95  

Abundance ~ fertiliser 9902.60 † 

Abundance ~ 1 9967.06 

Diversity ~ fertiliser * zone 1293.94 

Diversity ~ fertiliser 1285.62 † 

Diversity ~ 1 1289.99 
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L
U

I 
* 

o
rd

e
r 

m
o

d
e

ls
 (

F
ig

u
re

 3
.4

) 
Richness ~ LUI * order 14838.27 † 

Richness ~ LUI 15957.05 

Richness ~ 1 16002.50 

Abundance ~ LUI * order 10604.53 † 

Abundance ~ LUI 11132.19 

Abundance ~ 1 11156.47 

Diversity ~ LUI * order 1808.68 † 

Diversity ~ LUI 1817.79  

Diversity ~ 1 1829.32 
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Richness ~ fertiliser * order 10520.86 † 

Richness ~ fertiliser 11599.57 

Richness ~ 1 11598.16 

Abundance ~ fertiliser * order 8034.78 † 

Abundance ~ fertiliser 8508.81 

Abundance ~ 1 8505.94 

Diversity ~ fertiliser * order 1325.33 † 

Diversity ~ fertiliser 1345.22 

Diversity ~ 1 1339.64 
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Table S2.19 Overall site representation for Figure 3.2, the overall response of 

pollinator biodiversity to LUI (land-use intensity and land-use type combined). The 

land-use types categories are as follows: PV (Primary vegetation), MSV (mature 

secondary vegetation), ISV (intermediate secondary vegetation), YSV (young 

secondary vegetation), PF (plantation forest) P (pasture), C (cropland), and U (urban). 

The intensity categories are as follows: MU (minimal use), LU (light use), and IU 

(intense use).   

LUI N (sites) 

PVMU 1560 

PVLU 996 

PVIU 381 

MSVMU 212 

MSVLU 179 

ISVMU 276 

ISVLU 155 

YSVMU 312 

YSVLU 97 

YSVIU 260 

PFMU 214 

PFLU 674 

PFIU 110 

PMU 446 

PLU 532 

PIU 122 

CMU 426 

CLU 649 

CIU 658 

UMU 173 

ULU 136 

UIU 43 
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Table S2.20 Model summary for species richness predicted as a function of a 

combined factor for land-use intensity and type (LUI) and the random intercepts study 

(SS), block (SSB), and site (SSBS) with a two-sided mixed-effects generalised linear 

model (see Figure 3.2 for predicted values). 

Term estimate std.error statistic p.value 

(Intercept) 1.32896397 0.09640307 13.7854939 3.116264e-43 

LUI-PVLU 0.16226839 0.03122186 5.1972684 2.022382e-07 

LUI-PVIU 0.14887082 0.05095798 2.9214428 3.484143e-03 

LUI-MSVMU 0.06379620 0.05242243 1.2169638 2.236180e-01 

LUI-MSVLU 0.21482279 0.06615476 3.2472766 1.165151e-03 

LUI-ISVMU 0.15557023 0.04056605 3.8349856 1.255717e-04 

LUI-ISVLU 0.20433055 0.05091357 4.0132829 5.988009e-05 

LUI-YSVMU 0.02190840 0.03809628 0.5750797 5.652374e-01 

LUI-YSVLU -0.11002557 0.08427108 -1.3056149 1.916835e-01 

LUI-YSVIU -0.17073604 0.05050497 -3.3805792 7.233322e-04 

LUI-PFMU 0.24269714 0.05451398 4.4520166 8.506757e-06 

LUI-PFLU 0.05463885 0.03714311 1.4710359 1.412814e-01 

LUI-PFIU -0.11853355 0.06879615 -1.7229678 8.489436e-02 

LUI-PMU 0.15678740 0.04408967 3.5561029 3.763967e-04 

LUI-PLU -0.03122227 0.04119039 -0.7579990 4.484516e-01 

LUI-PIU 0.01590149 0.06782871 0.2344359 8.146466e-01 

LUI-CMU -0.01540370 0.04786049 -0.3218458 7.475695e-01 

LUI-CLU -0.11717122 0.05037602 -2.3259323 2.002216e-02 

LUI-CIU -0.13700839 0.04998200 -2.7411547 6.122367e-03 

LUI-UMU 0.23228075 0.06259899 3.7106150 2.067564e-04 

LUI-ULU 0.03215269 0.06336714 0.5074032 6.118719e-01 

LUI-UIU -0.22080354 0.08463465 -2.6089024 9.083313e-03 
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Table S2.21 Model summary for log(total abundance + 1) predicted as a function of a 

combined factor for land-use intensity and type (LUI) and the random intercepts study 

(SS) and block (SSB) with a two-sided mixed-effects linear model (see Figure 3.2 for 

predicted values). 

term estimate std.error statistic p.value 

(Intercept) 3.066663564 0.13047422 23.50398104 1.441767e-66 

LUI-PVLU 0.328309492 0.04936891 6.65012621 3.125781e-11 

LUI-PVIU 0.371272193 0.07205361 5.15272138 2.631861e-07 

LUI-MSVMU 0.026126195 0.08501411 0.30731599 7.586111e-01 

LUI-MSVLU 0.361740682 0.09563360 3.78256885 1.563882e-04 

LUI-ISVMU 0.217422866 0.07366012 2.95170376 3.169719e-03 

LUI-ISVLU 0.310991569 0.07822650 3.97552697 7.089066e-05 

LUI-YSVMU 0.149413495 0.07011363 2.13101940 3.311893e-02 

LUI-YSVLU -0.008061529 0.13255730 -0.06081543 9.515078e-01 

LUI-YSVIU 0.110668437 0.08303010 1.33287130 1.826132e-01 

LUI-PFMU 0.362561497 0.08599708 4.21597432 2.516897e-05 

LUI-PFLU 0.063777193 0.06055574 1.05319819 2.922826e-01 

LUI-PFIU 0.189445958 0.12859996 1.47314167 1.407558e-01 

LUI-PMU 0.584565062 0.05851292 9.99035868 2.329859e-23 

LUI-PLU 0.254135112 0.05423478 4.68583282 2.837077e-06 

LUI-PIU 0.041868650 0.10917168 0.38351202 7.013506e-01 

LUI-CMU 0.006691476 0.06373908 0.10498232 9.163925e-01 

LUI-CLU -0.066291107 0.07378357 -0.89845354 3.689713e-01 

LUI-CIU -0.217808927 0.07491060 -2.90758476 3.653874e-03 

LUI-UMU 0.424397518 0.09029529 4.70010712 2.644965e-06 

LUI-ULU 0.408046211 0.12605275 3.23710689 1.212531e-03 

LUI-UIU -0.096260227 0.16519365 -0.58271142 5.601051e-01 

 

 

Table S2.22 Cropland site representation for Figure 3.3, the overall response of 

pollinator biodiversity to land-use intensity between the non-tropical and tropical 

zones 

Geographical zone LUI N (sites) 

Non-tropical Primary vegetation 893 

Non-tropical Minimal use cropland 245 

Non-tropical Light use cropland 492 

Non-tropical Intense use cropland 578 

Tropical Primary vegetation 634 

Tropical Minimal use cropland 181 

Tropical Light use cropland 157 

Tropical Intense use cropland 80 
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Table S2.23 Model output for species richness predicted as a function of a combined 

factor for land-use intensity and type (LUI), geographical zone (tropics/non-tropics), 

and the random intercepts study (SS), block (SSB), and site (SSBS) with a two-sided 

mixed-effects generalised linear model  (see Figure 3.3 for predicted values). 

Term estimate std.error statistic p.value 

(Intercept) 1.2092244 0.1822545 6.634814 3.249122e-11 

LUI-Minimal use 0.3735829 0.1303490 2.866020 4.156686e-03 

LUI-Light use 0.1965426 0.1779420 1.104532 2.693624e-01 

LUI-Intense use 0.3271289 0.1769412 1.848800 6.448668e-02 

zone-Tropics 0.2388790 0.2471688 0.966461 3.338136e-01 

LUI-Minimal use:zone-Tropics -0.5307787 0.1477803 -3.591674 3.285612e-04 

LUI-Light use:zone-Tropics -0.6940822 0.2054538 -3.378289 7.293833e-04 

LUI-Intense use:zone-Tropics -0.9160952 0.1980057 -4.626611 3.716984e-06 

 

 

Table S2.24 Model output for log(total abundance + 1) predicted as a function of a 

combined factor for land-use intensity and type (LUI), geographical zone (tropics/non-

tropics), and the random intercepts study (SS) and block (SSB) with a two-sided 

mixed-effects linear model  (see Figure 3.3 for predicted values). 

Term estimate std.error statistic p.value 

(Intercept) 2.7469928 0.2460986 11.1621626 8.118052e-23 

LUI-Minimal use 0.4692762 0.1790959 2.6202502 8.831766e-03 

LUI-Light use 0.3010843 0.2895618 1.0397928 2.990043e-01 

LUI-Intense use 0.2816584 0.2848026 0.9889603 3.232719e-01 

zone-Tropics 0.5182296 0.3380493 1.5330002 1.270054e-01 

LUI-Minimal use:zone-Tropics -0.8576550 0.2028786 -4.2274302 2.434102e-05 

LUI-Light use:zone-Tropics -0.9745301 0.3161887 -3.0821156 2.146717e-03 

LUI-Intense use:zone-Tropics -0.9607852 0.3106910 -3.0924140 2.083223e-03 
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Table S2.25 Cropland site representation for Figure 4, the response of 6 taxonomic 

orders (Hymenoptera, Diptera, Lepidoptera, Coleoptera, Passeriformes, and 

Apodiformes) to land-use intensity on cropland. Note that the total number of sites for 

each order-intensity group will not sum to the total of 3006, since some sites are 

represented across multiple groups. 

Taxonomic order LUI N (sites) 

Hymenoptera Primary vegetation 186 

Hymenoptera Minimal use cropland 180 

Hymenoptera Light use cropland 564 

Hymenoptera Intense use cropland 578 

Diptera Primary vegetation 25 

Diptera Minimal use cropland 50 

Diptera Light use cropland 91 

Diptera Intense use cropland 72 

Lepidoptera Primary vegetation 317 

Lepidoptera Minimal use cropland 76 

Lepidoptera Light use cropland 112 

Lepidoptera Intense use cropland 44 

Coleoptera Primary vegetation 342 

Coleoptera Minimal use cropland 90 

Coleoptera Light use cropland 112 

Coleoptera Intense use cropland 44 

Passeriformes Primary vegetation 637 

Passeriformes Minimal use cropland 120 

Passeriformes Light use cropland 53 

Passeriformes Intense use cropland 61 

Apodiformes Primary vegetation 108 

Apodiformes Minimal use cropland 33 

Apodiformes Light use cropland 20 
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Table S2.26 Model output for species richness predicted as a function of taxonomic 

order and a combined factor for land-use intensity and type (LUI), and the random 

intercepts study (SS), block (SSB), and site (SSBS) with a two-sided mixed-effects 

generalised linear model  (see Figure 3.4 for predicted values). 

Term estimate std.error statistic p.value 

(Intercept) 2.20840153 0.1991447 11.0894288 1.411863e-28 

Order-Diptera -0.83341036 0.1530930 -5.4438158 5.215114e-08 

Order-Lepidoptera -1.13968603 0.1506288 -7.5661918 3.843246e-14 

Order-Coleoptera -1.55508820 0.1592342 -9.7660458 1.574787e-22 

Order-Passeriformes -1.14836510 0.2985974 -3.8458648 1.201280e-04 

Order-Apodiformes -0.93317182 0.3072722 -3.0369547 2.389814e-03 

LUI-Minimal use 0.37282903 0.2126349 1.7533761 7.953747e-02 

LUI-Light use -0.17614884 0.1930156 -0.9126147 3.614452e-01 

LUI-Intense use -0.04344631 0.1967355 -0.2208362 8.252200e-01 

Order-Diptera:LUI-
Minimal use 

-3.18780581 0.4359546 -7.3122431 2.627192e-13 

Order-Lepidoptera:LUI-
Minimal use 

-0.69525855 0.2226143 -3.1231526 1.789249e-03 

Order-Coleoptera:LUI-
Minimal use 

-0.59864325 0.2378589 -2.5168001 1.184260e-02 

Order-
Passeriformes:LUI-
Minimal use 

-0.15672200 0.2441114 -0.6420102 5.208665e-01 

Order-
Apodiformes:LUI-
Minimal use 

-0.54035561 0.2681862 -2.0148525 4.392011e-02 

Order-Diptera:LUI-
Light use 

-0.18953673 0.1934202 -0.9799221 3.271246e-01 

Order-Lepidoptera:LUI-
Light use 

-0.54235377 0.1986485 -2.7302187 6.329232e-03 

Order-Coleoptera:LUI-
Light use 

-0.48525618 0.2173994 -2.2320957 2.560864e-02 

Order-
Passeriformes:LUI-
Light use 

0.07107473 0.2844426 0.2498737 8.026850e-01 

Order-
Apodiformes:LUI-Light 
use 

-0.77090778 0.3367013 -2.2895892 2.204514e-02 

Order-Diptera:LUI-
Intense use 

-0.91597731 0.1926870 -4.7537046 1.997228e-06 

Order-Lepidoptera:LUI-
Intense use 

-0.91324565 0.2345930 -3.8928932 9.905577e-05 

Order-Coleoptera:LUI-
Intense use 

-0.27001790 0.2304695 -1.1715992 2.413580e-01 

Order-
Passeriformes:LUI-
Intense use 

-0.40540007 0.2270651 -1.7853916 7.419781e-02 
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Table S2.27 Model output for log(total abundance + 1) predicted as a function of 

taxonomic order and a combined factor for land-use intensity and type (LUI), and the 

random intercepts study (SS) and block (SSB) with a two-sided mixed-effects linear 

model (see Figure 3.4 for predicted values). 

term estimate std.error statistic p.value 

(Intercept) 4.73922131 0.2829571 16.7489059 6.296397e-47 

Order-Diptera -1.44912912 0.2550315 -5.6821574 1.438105e-08 

Order-Lepidoptera -1.73354917 0.2270221 -7.6360361 2.999194e-14 

Order-Coleoptera -1.80793239 0.2292210 -7.8872900 4.291811e-15 

Order-Passeriformes -2.30268897 0.4118455 -5.5911479 7.372749e-08 

Order-Apodiformes -2.11948413 0.4227288 -5.0138155 1.094958e-06 

LUI-Minimal use -1.10153763 0.2873542 -3.8333794 1.291541e-04 

LUI-Light use -1.69955568 0.2656710 -6.3972204 1.875913e-10 

LUI-Intense use -1.40296862 0.2701440 -5.1934097 2.223549e-07 

Order-Diptera:LUI-
Minimal use 

-0.99823141 0.3047054 -3.2760539 1.062431e-03 

Order-Lepidoptera:LUI-
Minimal use 

0.12833239 0.2894333 0.4433920 6.575106e-01 

Order-Coleoptera:LUI-
Minimal use 

0.43580445 0.2891418 1.5072346 1.318455e-01 

Order-
Passeriformes:LUI-
Minimal use 

1.32596000 0.3318642 3.9954900 6.598938e-05 

Order-
Apodiformes:LUI-
Minimal use 

0.92948978 0.3435239 2.7057499 6.848714e-03 

Order-Diptera:LUI-
Light use 

1.03211340 0.2820608 3.6591877 2.566325e-04 

Order-Lepidoptera:LUI-
Light use 

0.39551699 0.2543970 1.5547232 1.201104e-01 

Order-Coleoptera:LUI-
Light use 

0.44574567 0.2562287 1.7396399 8.201790e-02 

Order-
Passeriformes:LUI-
Light use 

1.69308440 0.3458009 4.8961252 1.025282e-06 

Order-
Apodiformes:LUI-Light 
use 

0.98890956 0.3481864 2.8401732 4.536227e-03 

Order-Diptera:LUI-
Intense use 

-0.18244690 0.2881395 -0.6331894 5.266497e-01 

Order-Lepidoptera:LUI-
Intense use 

-0.16831841 0.2791143 -0.6030447 5.465186e-01 

Order-Coleoptera:LUI-
Intense use 

0.05306171 0.2808995 0.1888993 8.501829e-01 

Order-
Passeriformes:LUI-
Intense use 

1.05068214 0.3225579 3.2573444 1.136272e-03 
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Table S2.28 Model output for log(Simpson diversity + 1) predicted as a function of 

taxonomic order and a combined factor for land-use intensity and type (LUI), and the 

random intercepts study (SS) and block (SSB) with a two-sided mixed-effects linear 

model (see Figure 3.4 for predicted values). 

Term estimate std.error statistic p.value 

(Intercept) 1.58383270 0.09627049 16.4519030 2.162291e-45 

Order-Diptera -0.06544099 0.09414709 -0.6950930 4.870580e-01 

Order-Lepidoptera -0.16830797 0.08304914 -2.0266070 4.282549e-02 

Order-Coleoptera -0.27585315 0.08486779 -3.2503870 1.170032e-03 

Order-Passeriformes -0.34473774 0.13620897 -2.5309473 1.217500e-02 

Order-Apodiformes -0.25772117 0.14095948 -1.8283351 6.885026e-02 

LUI-Minimal use 0.12659585 0.11562792 1.0948553 2.738108e-01 

LUI-Light use -0.08470655 0.10185990 -0.8315986 4.057828e-01 

LUI-Intense use -0.03002987 0.10306170 -0.2913776 7.708067e-01 

Order-Diptera:LUI-
Minimal use 

-0.50068423 0.16753455 -2.9885431 2.828102e-03 

Order-Lepidoptera:LUI-
Minimal use 

-0.09384230 0.13338019 -0.7035700 4.817930e-01 

Order-Coleoptera:LUI-
Minimal use 

-0.20716970 0.12646894 -1.6381074 1.015956e-01 

Order-
Passeriformes:LUI-
Minimal use 

-0.02003844 0.12992647 -0.1542290 8.774498e-01 

Order-
Apodiformes:LUI-
Minimal use 

-0.10811138 0.13493663 -0.8012011 4.231267e-01 

Order-Diptera:LUI-
Light use 

-0.15765579 0.10769809 -1.4638680 1.433469e-01 

Order-Lepidoptera:LUI-
Light use 

-0.10832984 0.10223874 -1.0595772 2.894413e-01 

Order-Coleoptera:LUI-
Light use 

-0.10885346 0.10298404 -1.0569935 2.906226e-01 

Order-
Passeriformes:LUI-
Light use 

0.05550724 0.13072949 0.4245962 6.711757e-01 

Order-
Apodiformes:LUI-Light 
use 

-0.13518246 0.14040177 -0.9628259 3.357357e-01 

Order-Diptera:LUI-
Intense use 

-0.11398265 0.11574556 -0.9847691 3.248249e-01 

Order-Lepidoptera:LUI-
Intense use 

-0.26533172 0.11391675 -2.3291720 1.992766e-02 

Order-Coleoptera:LUI-
Intense use 

0.06450120 0.11161580 0.5778859 5.633927e-01 

Order-
Passeriformes:LUI-
Intense use 

-0.26787298 0.11890101 -2.2529076 2.438168e-02 
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Table S2.29 Cropland site representation for Figure 5, the response of 6 taxonomic 

orders (Hymenoptera, Diptera, Lepidoptera, Coleoptera, Passeriformes, and 

Apodiformes) to total fertiliser application rate (kg/ha) on cropland. Note that the total 

number of sites for each order-intensity group will not sum to the total of 2190, since 

some sites are represented across multiple groups. 

Taxonomic order N (sites) 

Hymenoptera 1355 

Passeriformes 683 

Lepidoptera 258 

Coleoptera 246 

Apodiformes 244 

Diptera 213 

 

Table S2.30 Model output for species richness predicted as a function of 

log10(fertiliser application rate), taxonomic order, and the random intercepts study 

(SS), block (SSB), and site (SSBS) with a two-sided mixed-effects generalised linear 

model (see Figure 3.5 for predicted values. 

term estimate std.error statistic p.value 

(Intercept) -4.952880 1.9133878 -2.588539 9.638395e-03 

log10(fert) 1.763928 0.6462196 2.729610 6.340926e-03 

Order-Coleoptera 4.066850 2.1788416 1.866519 6.196874e-02 

Order-Diptera -6.581990 2.2395758 -2.938945 3.293316e-03 

Order-Hymenoptera 7.782467 1.9674357 3.955640 7.633008e-05 

Order-Lepidoptera 6.816010 2.1208452 3.213818 1.309829e-03 

Order-Passeriformes 5.717434 1.7523151 3.262789 1.103217e-03 

log10(fert):Order-
Coleoptera 

-1.397608 0.7389379 -1.891374 5.857445e-02 

log10(fert):Order-Diptera 2.184480 0.7458250 2.928945 3.401149e-03 

log10(fert):Order-
Hymenoptera 

-2.044201 0.6595253 -3.099504 1.938449e-03 

log10(fert):Order-
Lepidoptera 

-2.372238 0.7163021 -3.311784 9.270311e-04 

log10(fert):Order-
Passeriformes 

-1.753834 0.5951118 -2.947067 3.208041e-03 
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Table S2.31 Model output for log(total abundance + 1) predicted as a function of 

log10(fertiliser application rate), taxonomic order, and the random intercepts study 

(SS) and block (SSB) with a two-sided mixed-effects linear model (see Figure 3.5 for 

predicted values. 

Term estimate std.error statistic p.value 

(Intercept) 1.54088771 1.6289045 0.94596564 3.443103e-01 

log10(fert) -0.05127043 0.5798805 -0.08841551 9.295537e-01 

Order-Coleoptera 1.73923685 2.0015144 0.86896046 3.852573e-01 

Order-Diptera -8.43201071 1.9876442 -4.24221343 2.316702e-05 

Order-Hymenoptera 4.91168470 1.8050664 2.72105487 6.581797e-03 

Order-Lepidoptera 3.02481460 1.9954106 1.51588579 1.300592e-01 

Order-Passeriformes 0.37425442 1.3446391 0.27833076 7.807799e-01 

log10(fert):Order-
Coleoptera 

-0.41448339 0.6991881 -0.59280667 5.534798e-01 

log10(fert):Order-
Diptera 

3.07974048 0.6879237 4.47686346 7.887758e-06 

log10(fert):Order-
Hymenoptera 

-0.99775501 0.6265387 -1.59248750 1.114068e-01 

log10(fert):Order-
Lepidoptera 

-0.88228527 0.6962327 -1.26722749 2.053937e-01 

log10(fert):Order-
Passeriformes 

-0.03415814 0.4917438 -0.06946330 9.446260e-01 
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Table S2.32 Model output for log(Simpson diversity + 1) predicted as a function of 

log10(fertiliser application rate), taxonomic order, and the random intercepts study 

(SS) and block (SSB) with a two-sided mixed-effects linear model (see Figure 3.5 for 

predicted values. 

term estimate std.error statistic p.value 

(Intercept) 0.31314652 0.9728151 0.32189726 0.7475667 

log10(fert) 0.31316180 0.3390191 0.92372904 0.3557465 

Order-
Coleoptera 

0.06297832 1.0489090 0.06004174 0.9521328 

Order-Diptera -0.75504668 1.5538186 -0.48592974 0.6270741 

Order-
Hymenoptera 

1.39980252 1.0140713 1.38037886 0.1676404 

Order-
Lepidoptera 

1.25212031 1.0516298 1.19064739 0.2339989 

Order-
Passeriformes 

0.78924098 0.9157879 0.86181636 0.3889024 

log10(fert):Order-
Coleoptera 

-0.05337955 0.3650140 -0.14623974 0.8837564 

log10(fert):Order-
Diptera 

0.23220352 0.5204045 0.44619817 0.6555056 

log10(fert):Order-
Hymenoptera 

-0.39618381 0.3504534 -1.13048915 0.2584168 

log10(fert):Order-
Lepidoptera 

-0.46442622 0.3650117 -1.27235982 0.2034519 

log10(fert):Order-
Passeriformes 

-0.26699620 0.3178015 -0.84013513 0.4009433 
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Table S2.33 Pseudo R squared for all main models included in the main text. 

 Model Conditional 

pseudo R squared 

Marginal pseudo R 

squared 

Figure 3.2 Richness ~ LUI 0.706 0.004 

Abundance ~ LUI 0.876 0.009 

Figure 3.3 Richness ~ LUI * zone 0.714 0.009 

Abundance ~ LUI * 

zone 

0.887 0.010 

Figure 3.4 Richness ~ LUI * order 0.753 0.149 

Abundance ~ LUI * 

order 

0.850 0.094 

Diversity ~ LUI * order 0.828 0.055 

Figure 3.5 Richness ~ fertiliser * 

order 

0.775 0.169 

Abundance ~ fertiliser * 

order 

0.841 0.114 

Diversity ~ fertiliser * 

order 

0.700 0.058 
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Table S2.34 Crops for which fertiliser application rate estimates are available in the 

Earthstat data, each with estimates of nitrogen, phosphorus, and potassium. 

Crop 

Barley 

Cassava 

Cotton 

Groundnut 

Maize 

Millet  

Oilpalm 

Potato 

Rapeseed 

Rice 

Rye 

Sorghum 

Soybean 

Sugarbeet 

Sugarcane 

Sunflower 

Wheat 
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Figure S3.1 Total pollination dependent production for the 20 crops with the highest 

pollination dependent production. Total production values are for the year 2000, taken 

from Monfreda et al (2008). Pollination dependent production is calculated by 

multiplying total crop production for each crop by the pollination dependence ratios for 

that crop, as reported in Klein et al (2007). For any Monfreda crop represented by 

multiple dependence ratios, I took the pollination dependence to be the mean of the 

ratios for that crop. 
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Figure S3.2 Projected change in total production risk under three RCP scenarios (8.5, 

6.0, and 2.6), for the average of four climate models (GFDL, HadHEM2, IPSL, and 

MIROC5). Here circles represent a projection in which abundance loss is extrapolated 

beyond the maximum standardised temperature anomaly (STA) (as in Figure 4.3), 

whereas triangles represent a projection in which abundance loss is capped at an STA 

of 1.58 (2dp). Colour refers to the percentage of cells at each time step that have been 

extrapolated beyond the maximum STA in Figure 4.3, which in the projection in which 

abundance loss is capped (triangles) will always be 0. 
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Figure S3.3 Change in proportional production risk for each crop, projected under RCP 

scenario 8.5 from the average of four climate models (GFDL, HadGEM2, IPSL, and 

MIROC5), for the top 20 crops by total pollination dependent production (ordered by 

rate of change). For each crop global standardised temperature anomaly was projected 

for all areas of pollination-dependent cropland to 2050, using the 3-year average 

approach as described in Figure 4.3. For each value of standardised temperature 

anomaly, insect pollinator abundance was predicted according to the model in Figure 

1. Insect pollinator abundance at each cell at each time step was then expressed as 

proportional loss compared to cropland that has experienced no warming (i.e. 

standardised temperature anomaly of 0). Animal pollination-dependent production at 

each cell for each crop was then adjusted for the predicted proportional loss of insect 

pollinator abundance, and then summed for all cells at each time step. The sum at each 

time step was then divided by the total production for that crop and multiplied by 100, 

giving a percentage of total production at risk. 
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Figure S3.4 Change in production risk for the average of four climate models (GFDL, 

HadHEM2, IPSL, and MIROC5) under RCP 8.5, here adjusted to an index for each of 4 

data quality subsets. For each coloured line crop production was subsetted according 

to four levels of data quality reported in Monfreda et al (2008), before the projection was 

then rerun: 1, county level census data; 0.75, state level census data; 0.5, regional 

interpolation from census data; 0.25, country level census data; 0, no census data. For 

each simulation here I converted total production risk to an index by calculating the 

percentage change between each time point, and then calculating the cumulative 

product of these percentage changes (starting at an initial index of 1). 
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Figure S3.5 Response of pollinating dipteran and hymenopteran total abundance to 

standardised temperature anomaly on cropland (note that abundance is plotted on a 

loge scale), predicted using a linear mixed-effects model. Each pale orange line 

represents the predicted change in total abundance with one family removed from the 

overall dataset (i.e. jack-knife removal with replacement). The darker  orange line 

represents the overall predicted change in total abundance with all families included (n 

= 61). 
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Extended methodology for pollinator dataset construction 

I first created a list of possible pollinating animal genera through automatic text analysis of 

the pollination literature. I considered the pollination literature to be any primary research 

article published in English returned through a search for the term “pollinat*” in Scopus, and 

which mentioned an animal species in the abstract. I considered a possible pollinating genus 

to be any animal genus appearing as part of a Latin binomial in a pollination-related abstract 

returned from Scopus. Genera scraping was accomplished using the Taxonfinder and Neti 

Neti algorithms implemented in the ‘taxize’ R package (Chamberlain 2013), with animal 

species confirmed through a series of character string matches to the Catalogue of Life (see 

Millard et al 2020a for a detailed methodology).  

For each possible pollinating genus, I then read the abstracts in which these animals 

appeared, searching for evidence confirming that genus as pollinating. For any situation in 

which the abstract was inconclusive, I also searched the full text of the paper for more 

definitive evidence. For each confirmed pollinating genus, I then assigned a level of 

experimental confidence between 1 and 4 based on the type of evidence (following (Ollerton 

and Liede 1997)): 1) experimental evidence confirming pollination; 2) evidence of pollen 

carrying; 3) evidence of nectar/pollen feeding; 4) evidence of non-destructive/non-predatory 

flower visitation. My process of assigning evidence was one of maximisation: I read 

abstracts for each genera searching for the highest level of evidence, either until I could be 

sure that the confidence value should be 1, or I ran out of abstracts for that genera. Non-

destructive flower visitor refers to any animal which visits a flower without causing damage to 

the plant. This meant the exclusion of most ants, which are typically referred to as poor 

pollen vectors, given that they damage pollen through secretions from the meta-pleural 

gland (Dutton and Frederickson 2012). Non-predatory flower visitor refers to any animal 

which visits for some purpose other than predation. This meant the exclusion of animals 

such as crab spiders, which predate on pollinators during visitation, and therefore contribute 
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minimally or negatively to pollination (Dukas and Morse 2003). I did not classify broad 

statements as evidence for pollination—for example, one study stated that Phylidonyris 

novaehollandiae is a “key pollinator” (Myers et al 2012)—unless it was associated with 

specific evidence reinforcing that statement, or some claim that pollination in that genus is 

“well-known” or “widely acknowledged”.  

Given that we only had direct evidence for a sample of all pollinating genera, I then searched 

for higher-level clades of pollinators.  From the confirmed pollinators in the original list of 

genera, I identified all unique families with at least one pollinator. For each family, I assessed 

the breadth of evidence for pollination through consulting the abstracts and taxonomic 

reference books. For any family with evidence of pollination across multiple branches of that 

family, and no evidence of any species definitely not pollinating, I assumed that the whole 

family is pollinating. If unable to extrapolate across the whole family, I then searched 

progressively lower taxonomic clades (i.e. subfamily, tribe, subtribe), searching for the point 

at which I could be relatively confident that the entire clade contributes to pollination. If 

unable to extrapolate for a given clade, I kept only the genera with direct evidence. For 

example, within the family Formicidae (ants), I found no clade across which I could 

confidently extrapolate, and so kept only those genera for which we had direct evidence. I 

assigned a level of confidence for these extrapolated clade designations, which varied 

between 5.1 and 5.4, reflecting the quality of evidence available for most species in that 

clade. The ‘5’ indicates an extrapolated clade: 5.1, experimental evidence across multiple 

groups within that clade; 5.2, evidence of pollen carrying across multiple groups; 5.3, 

evidence of nectar/pollen feeding across multiple groups; 5.4, evidence of non-

destructive/non-predatory flower visitation across multiple groups. After checking all families 

represented by the original list of genera, I then inspected additional resources, searching for 

any pollinating families I may have missed. Each of these resources included evidence of 

only nectar/pollen feeding or flower visitation, meaning all families extrapolated through 

additional resources were assigned a confidence level of either 5.3 or 5.4. 
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Weighting the Species Awareness Index (SAI) 

In addition to the un-weighted index presented in the main text, I also explored 2 types of 

weighting approach (a sample weighting and a user weighting) for an overall SAI including 

all 10 Wikipedia languages and 41,197 IUCN species. My sample weighting accounts for 

species occurring in very few or many languages, whilst my user weighting adjusts either for 

the number of people using each language on the internet, or the number of views for each 

language on Wikipedia. Given the limitations inherent in each of these approaches, I present 

the results of weighting the SAI here. Future work should further explore the benefits of 

weighting the SAI, aiming to derive a metric both robust to the inclusion of languages and 

representative of the global population.  

I explored a sample weighting to account for the uneven distribution of unique species in 

each language (see Figure S4.16). After averaging each species across languages, I then 

multiplied each averaged species by a weighting according to the number of languages in 

which that species occurred. A species occurring in one language was assigned a weighting 

of 0.1, a species in 2 languages a weighting of 0.2, up to a weighting of 1 for a species 

occurring in 10 languages. I then bootstrapped these sample weighted species using the 

approach described in the main text. 

I explored a user weighting to derive a metric representative of the global population, aiming 

to increase the relevance of the SAI to global policy. For my internet user weighting, I 

converted internet users by language from the Internet World Stats 

(https://www.internetworldstats.com/stats7.htm) to a proportion, and then used that 

proportion to weight the mean for each species across languages. The Internet World Stats 

internet user data is calculated from the total number of speakers for each language 

(counting each speaker once), multiplied by the internet penetrance of the countries in which 

those people reside (Table S11). I supplemented the Internet World Stats data with data for 

the Italian language, which falls outside the top 10 languages on the internet. I took internet 

https://www.internetworldstats.com/stats7.htm
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penetrance data for Italy from Statista (www.statista.com), and population data for Italy from 

Istat (https://www.istat.it/). My values for the Italian language will therefore be a slight 

underestimate, since I do not include first language speakers outside of Italy. For my 

Wikipedia user weighting, I converted the total number of species views for each language to 

a proportion (Table S12), and then used those proportions to weight the mean for each 

species across languages. 

Given my sample weighting adjusts after a species average is taken across languages, and 

our user weighting adjusts during the average, I was able to combine the approaches to 

explore their effect in combination and independently (Figure S4.16). Here the sample 

weighting approaches (left panel) drop markedly less at the start of the series, indicating that 

the high magnitude change caused by the French reptiles (see Figure S4.15, Figure 5.7, and 

‘Extended Discussion’) has been mitigated. Similarly, both user weightings drop markedly 

less at the start of the series, with the internet user rating running marginally higher. 

Preliminarily, it looks like a sample weighted approach may be a feasible alternative to the 

exclusion of the French Wikipedia. More work is required to investigate the robustness of a 

sample weighted approach to language exclusion. 

There are limitations associated with user weighting the SAI, which will need to be 

addressed before such an approach becomes workable. The primary problem for a user 

weight is the difficulty in extrapolating awareness for a given language to all speakers of that 

language. For example, weighting for the number of internet users of the Chinese 

(Mandarin) language makes the assumption that views predominantly coming from Taiwan 

and Hong Kong are representative of all of mainland China, which may be unlikely. Further 

work is required to determine the validity of extrapolating views for a given language to all 

speakers of that language. 

 

 

http://www.statista.com/
https://www.istat.it/
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Supplementary figures 

 

 

 

 

 

 

Figure S4.1 The number of complete Wikipedia view series for each taxonomic class in each 

language. Red bars represent species with complete series (i.e. data for each month over the 

period July 2015-March 2020), from which the SAI was calculated. Black bars represent the 

total species for each taxonomic class in each language, including species for which the 

series of views is incomplete. 
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Figure S4.2 The top 5 viewed species in each Wikipedia language. Each colour fill refers to a taxonomic class, consistent 

across all 10 panels: black (mammals), yellow (insects), green (ray-finned fish), orange (reptiles), and blue (birds). 
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Figure S4.2 The total number of Wikipedia views for the set of random pages in each 

language, before removing incomplete series. 
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Figure S3.4 The total number of complete series pages for each set of random pages 

in each language. Red bars represent pages with complete series (i.e. data for each 

month over the period July 2015-March 2020), from which the random index was 

calculated. Black bars represent the total number of random pages in each language, 

including pages for which the series of views is incomplete. 
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Figure S4.5 The random index for the set of complete series random pages in each language. Black 

lines represent the mean of the bootstrapped indices at each timestep, and grey bars the 2.5 th and 

97.5th percentiles. The random index provides an estimate of the overall change in popularity for 

each Wikipedia language (i.e. a decrease in the random index for a given language would imply that 

the popularity of Wikipedia in that language has decreased). This will differ from the trend in the 

total number of views for each language, which is heavily influenced by particularly popular pages, 

and confounded by increasing page number. To calculate the species page SAI, the rate of change 

in the mean random index is subtracted from the rate of change in each species page.  
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Figure S4.4 The overall SAI for all species pooled, jack-knifed for language. Each line 

represents the mean of the bootstrapped indices, and each band the 2.5th and 97.5th 

percentiles. The colour of each line represents the overall SAI if that language is 

excluded, providing an indication as to how single languages influence the overall 

SAI: black (Arabic), red (Chinese), blue (English), green (French), purple (German), 

orange (Italian), yellow (Japanese), brown (Portuguese), pink (Russian), and grey 

(Spanish). Here the French language has a significant effect on the overall trend, 

meaning it was removed in the main text. This marked effect is driven by the large 

number of reptiles in the French Wikipedia (Figure S4.1), which decrease rapidly at 

the start of the series (Figure 5.6). This decrease is compounded by the large number 

of reptiles in the French Wikipedia appearing in only that Wikipedia (Figure S4.15). 
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Figure S4.5 The overall SAI for each taxonomic class in each language before a final loess smooth (span = 0.3) is applied to each 

species page SAI. More tortuous trends are those for which the page views in that grouping tend to be lower. The “Random” column 

represents the random index adjusted for itself, indicating that the adjustment is functioning correctly.  
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Figure S4.8 The overall SAI for each taxonomic class, jack-knifed for language. Each 

line represents the mean of the bootstrapped indices, and each band the 2.5th and 

97.5th percentiles. The colour of each line represents the overall SAI if that language is 

excluded, providing an indication as to how single languages influence the overall 

SAI: black (Arabic), red (Chinese), blue (English), green (French), purple (German), 

orange (Italian), yellow (Japanese), brown (Portuguese), pink (Russian), and grey 

(Spanish). Here the French language had a significant effect on the trend for 

amphibians and reptiles, meaning it was removed in the main text.  
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Figure S4.9 The overall SAI and SAI without a random adjustment for each taxonomic class. Each line 

represents the mean of the bootstrapped indices, and each band the 2.5th and 97.5th percentiles. Blue 

lines represent the trend without subtracting the random index, and orange lines represent the trend 

with the random index subtracted. In other words, the orange line represents the overall trend in 

awareness without the underlying residual trend of Wikipedia. Importantly, the random adjustment 

here cuts across multiple languages, which differ in their underlying trend of random pages. Each 

species page trend is adjusted for the language of that species page, which means when adjusted 

species are averaged across languages, that species then captures random adjustment moving in 

multiple directions. 
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Figure S4.10 The overall SAI for each taxonomic class, based on the average monthly 

views per year. Here all languages (Arabic, Chinese, English, French, German, Italian, 

Japanese, Portuguese, Russian, are Spanish) are included, with no additional loess 

smoothing of the species page SAI. Although annual trends may be more useful in 

the future, given this current time series is represented by only four points I opted not 

to include the annual trends in the main text. 
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 Figure S4.11 The distribution of page views for each taxonomic class in each language over the period 1st July 2015- 31st March 

2020, as an indication of absolute awareness. 
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Figure S4.12 The distribution of views for traded and non-traded species in each taxonomic class in each language, for the period 1st 

July 2015- 31st March 2020. Blue boxplots represent species that are known to be traded, and red boxplots represent species that are 

not known to be traded. 
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Figure S4.13 Average monthly rate of change for the species page SAI for 6 taxonomic classes across 10 Wikipedia languages. 

Errors bars represent the predicted values of a linear model, fitting average monthly change in the species page SAI as a 

function of taxonomic class, Wikipedia language, trade contribution (Y/N), and their interaction. Black bars refer to species that 

are traded, whereas orange bars refer to species which are not traded. The red circle highlights the Chinese ray-finned fish, in 

which both traded and non-traded species have a similar rate of change (see Discussion).   
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Figure S4.14 Average monthly rate of change for the species page SAI as a function of 

pollination contribution and trade contribution. Top: a mixed effects model for 

average rate of change in species page SAI as a function of taxonomic class, 

pollination contribution (Y/N), their interaction, and language (random effect). Bottom: 

a mixed effects model for average rate of change in species page SAI as a function of 

taxonomic class, traded species, and language (random effect). Effect sizes were 

calculated for both panels by drawing fixed effects 1,000 times based on the variance-

covariance matrix, and then calculating the median value (shown as points), and 2.5 th 

and 97.5th percentiles (shown as error bars). Note that monthly rate of change for 

reptiles is much lower here given the inclusion of the French Wikipedia (see jack-knife 

figures S6 and S8). 
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Figure S4.15 The total number of species appearing in only one language, for each of the 

top 10 languages (by active user) on Wikipedia. Fill colour represents the taxonomic class 

for species in only one language: reptiles (black), ray-finned fishes (orange), mammals 

(blue), birds (green), insects (pink), and amphibians (brown). The French Wikipedia 

contains the largest number of unique species, a high proportion of which are reptiles.  
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Figure S4.16 The Species Awareness Index (SAI) for 6 taxonomic classes (reptiles, ray-

finned fish, mammals, birds, insects, and amphibians) and 10 Wikipedia languages 

(Arabic, Chinese, English, German, Italian, Japanese, Portuguese, Russian, and Spanish) 

for the period July 2015-March 2020, weighted according to a series of approaches. Each 

line represents the mean of the bootstrapped indices, and each band the 2.5th and 97.5th 

percentiles. Left: a set of sample weighted approaches, in which the average change for a 

single species is adjusted for the number of languages in which that species occurs. 

Right: the non-sample weighted approach explored in the main text. Colours in both the 

left and right panel refer to an additional user weighting, adjusting each species page for 

either the number of people using that language on the internet (green), or searching for 

animal species in that language on Wikipedia (blue). The black line represents the non-

user weighted approach explored in the main text. 
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Figure S4.17 The Species Awareness Index (SAI) for 6 taxonomic classes (reptiles, 

ray-finned fish, mammals, birds, insects, and amphibians) and 9 Wikipedia languages 

(Arabic, Chinese, English, German, Italian, Japanese, Portuguese, Russian, and 

Spanish) for all potential baselines in the period July 2015-March 2020. Here the 

colour of each point represents the average rate of change from that point to the end 

of the series, providing an indication of robustness to variable baselines. The dashed 

lines represent the 2.5th and 97.5th percentiles for the overall SAI. 
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Supplementary tables 

Table S4.18 ANOVA table for a mixed effects linear model predicting the log10(total 

views) for each species page as a function of taxonomic class, pollination 

contribution, their interaction, and a random effect for language. 

Fixed effect Sum of 

squares 

Mean square F value P value 

Pollination contribution 0.18 0.178 0.3869 0.5339 

Taxonomic class 889.74 296.579 645.8999 <0.001 

Pollination contribution 

*  Taxonomic class 78.57 26.192 57.0409 <0.001 

 
 
 
 
Table S4.19 ANOVA table for a mixed effects linear model predicting the log10(total 

views) for each species page as a function of taxonomic class, trade contribution, 

their interaction, and a random effect for language. 

Fixed effect Sum of 

squares 

Mean square F value P value 

Trade contribution 5212.6 5212.6 15206.44 <0.001 

Taxonomic class 5813.2 1453.3 4239.59 <0.001 

Trade contribution * 

Taxonomic class 401.5 100.4 292.78 <0.001 
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Table S4.20 ANOVA table for a mixed effects linear model predicting the average rate 

of change in species page SAI as a function of taxonomic class, pollination 

contribution, their interaction, and a random effect for language. 

Fixed effect Sum of 

squares 

Mean square F value P value 

Pollination contribution 0.00013237  0.00013237  4.3662   0.036662 

Taxonomic class 0.00198949  0.00066316 21.8750  <0.001 

Pollination contribution 

* Taxonomic class 

0.00047564 0.00015855 5.2299 0.001314 

 

 

Table S4.21 ANOVA table for a mixed effects linear model predicting the average rate 

of change in species page SAI as a function of taxonomic class, trade contribution, 

their interaction, and a random effect for language. 

Fixed effect Sum of 

squares 

Mean square F value P value 

Trade contribution 
0.0000017 
 

0.00000165 
 

0.0422 
 

0.8373260 
 

Taxonomic class 
0.0118755 
 

0.00296888 
 

75.6620 
 <0.001 

Trade contribution 

* Taxonomic class 
0.0008680 
 

0.00021699 
 

5.5301 
 <0.001 
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Table S4.22 ANOVA table for a linear model predicting the average rate of change in 

species page SAI as a function of taxonomic class, language, and their interaction. 

Fixed effect Degrees of 

freedom 

Sum of 

squares 

Mean square F value P value 

Taxonomic 

class 

5 0.0321 0.0064104 162.044 < 0.001 

Language      9 0.0631 0.0070092 177.181 < 0.001 

Taxonomic 

class * 

Language      

45 0.0599 0.0013317   33.662 < 0.001 

 

 

Table S4.23 AIC and ΔAIC values for a set of mixed effects generalised linear models: 

one fitting log10(total views) as a function of an interaction between pollination 

contribution and taxonomic class, and three a series of candidate null models. All 

models were fit with one random effect (language).  

Model fixed effects AIC ΔAIC 

Pollination 
contribution * 
Taxonomic class 

183919.7 0 

Pollination 
contribution 

188112.0 4192.25 

Taxonomic class 184245.5 325.76 

Intercept (1) 188306.3 4386.6 
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Table S4.24 AIC and ΔAIC values for a set of mixed effects generalised linear models: 

one fitting log10(total views) as a function of an interaction between trade 

contribution and taxonomic class, and three a series of candidate null models. All 

models were fit with one random effect (language). 

Model fixed effects AIC ΔAIC 

Trade contribution * 
Taxonomic class 

254981.1 0 

Trade contribution 276230.9 2124.98 

Taxonomic class 276276.0 2129.48 

Intercept (1) 295182.9 4020.18 

 

Table S4.25 AIC and ΔAIC values for a set of mixed effects generalised linear models: 

one fitting the average monthly rate of change in species page SAI as a function of an 

interaction between pollination contribution and taxonomic class, and three a series 

of candidate null models. All models were fitted with one random effect (language). 

Model fixed effects AIC ΔAIC 

Pollination 
contribution * 
Taxonomic class 

-583810.4 0 

Pollination 
contribution 

-583776.7 33.7 
 

Taxonomic class -583865.6 -55.2 

Intercept (1) -583796.0 14.4 
 

 

 

 

 

 

 

 



 
266 

Table S4.26 AIC and ΔAIC values for a set of mixed effects generalised linear models: 

one fitting the average monthly rate of change in species page SAI as a function of an 

interaction between trade contribution and taxonomic class, and one candidate null 

model. Only one candidate null model was fit given the models for taxonomic class 

only and intercept only were fit to a different number of observation (trade data was 

not found for Squamate reptiles).  All models were fit with one random effect 

(language). 

Model fixed effects AIC ΔAIC 

Trade contribution * 
Taxonomic class 

-914369.5 0 

Trade contribution -914065.2 304.2876 

 

Table S4.27 AIC and ΔAIC values for a set of linear models: one fitting the average 

monthly rate of change in species page SAI as a function of an interaction between 

taxonomic class and language, and three a series of candidate null models. 

Model fixed effects AIC ΔAIC 

Taxonomic class * 
Language      

-950543.4 0 

Taxonomic class -947577.1 2966.3 

Language      -948712.2 1831.2 
 

Intercept (1) -946797.9 3745.5 
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Table S4.28 The total number of internet users in each language, both in absolute 

terms and as a proportion. 

Language Total internet users Proportion 

English 1,186,451,052 0.35202835 

Chinese (Mandarin) 888,453,068 0.26361026 

Spanish 363,684,593 0.10790777 

Arabic 237,418,349 0.07044369 

Portuguese 171,750,818 0.05095967 

French 151,733,611 0.04502043 

Japanese 118,626,672 0.03519737 

Russian 116,353,942 0.03452303 

German 92,525,427 0.02745294 

Italian 43,330,632 0.01285650 
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Table S4.29 The total number of species page views for each Wikipedia, both in 

absolute terms and as a proportion.  

Language Total internet users 

(millions) 

Proportion 

English (en) 1081.51 
 

0.48551984 

German (de) 233.18 
 

0.10468097 

Spanish (es) 199.68 
 

0.08964189 

Russian (ru) 193.15 0.08671039 

Japanese (ja) 155.27 0.06970501 

French (fr) 137 0.06150310 

Italian (it) 86.17 0.03868410 

Portuguese (pt) 63.13 0.02834081 

Chinese (zh) 53.52 0.02402661 

Arabic (ar) 24.92 0.01118728 

 

 

 

 

 


