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Abstract

87.5% of wild plant species are thought to be pollinated to some extent by animals, with an
estimated global value of $235-577 billion US dollars per annum to crop pollination. Across
North America and Europe numerous studies have documented declines in pollinating
animals. A number of anthropogenic drivers—primarily land-use and climate change—have
been associated with these losses. However, the extent to which land-use and climate act
individually and synergistically to drive changes, and how this might risk the contribution
pollinators make to crop pollination, is still unclear. In this thesis | explore the causes and
potential consequences of pollinator biodiversity change. First, | use a set of hame-entity
recognition algorithms to quantify the geographic and taxonomic distribution of the animal
pollination literature, confirming that although the pollination literature does over-represent the
honey bees and bumblebees of North America and Europe, there is also pollination
information across a range of other taxa and locations. Second, | then apply these same
algorithms in combination with a manual literature check to identify a set of likely pollinating
species. | then use this set of likely pollinating species and a database of local biodiversity
records to model the global response of pollinator biodiversity to land-use type and intensity,
showing how response differs among taxonomic groups, biodiversity metrics, and geographic
regions. Third, | then use my set of likely pollinating species to investigate the interactive
effects of land use and climate change on pollinator abundance, demonstrating a strongly
negative synergistic interaction between climate change and land use. Using this model,
estimations of global pollination dependent production, and future climate scenarios, | then
project temporal and spatial changes in crop pollination risk. Fourth, | develop a new metric of
biodiversity awareness using Wikipedia page views, which | use to show that public interest
in pollinators has likely not increased. | conclude by discussing the core findings of my thesis
in the context of the current debate around pollinator biodiversity change and conservation

culturomics, with some suggestions as to how these respective fields might move forward.
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Impact statement

Pollinator biodiversity is highly important to humanity, both through the way in which it
underpins the structure of many ecosystems, and through the contribution it makes to crop
production. Numerous studies have indicated that pollinator biodiversity is undergoing rapid
change, driven primarily by climate change and land use, but the magnitude of change and
the extent to which it differs among taxonomic groups, biodiversity metrics, and geographic
regions, remains unclear. Moreover, how these changes might affect crop pollination is an
ongoing question, with a large body of research indicating losses of crop yield can result from
pollinator biodiversity change. The primary aim of this thesis is to further our understanding of
both the causes and potential consequences of pollinator biodiversity change, in this present
epoch of unprecedented human activity. | make a number of novel contributions to the field,

which could potentially help to inform the future conservation of pollinator biodiversity.

In Chapter 3, | model the effect of land-use intensity on global pollinator biodiversity, using the
most comprehensive space-for-time model to date, showing strong effects of land use on
tropical pollinator biodiversity and a differential effect among pollinating taxa. The results of
this chapter are published in Nature Communications, where it was selected for an editor’s

highlight in the category ‘Ecology and Evolution’.

In Chapter 4 | further develop the models in Chapter 3, here focussing on the interactive effects
of climate change and land use. Using future scenarios of climate change and estimations of
global pollination dependent agriculture, | show that crop pollination risk will likely be highest
in northern South America and sub-Saharan Africa, and that under RCP 8.5 rapid change in
pollination production risk could occur in the 2030s. As far as | know this work represents the
broadest study of the interactive effects of climate change and land use on pollinator
biodiversity, and the first attempt to project how this interaction might relate to the spatial and
temporal distribution of crop pollination risk. The results of this chapter are currently in

preparation for submission in a high-impact journal. In addition | have also developed an



interactive web app to present the findings of this paper

(https://joemillard.shinyapps.io/pollinator dependence_visualisation/), which can be used to

inform both crop pollination risk to individual countries and global crop production.

In addition to Chapters 3 and 4, | also contribute towards developing our understanding of the
pollination literature, and efforts to develop online metrics for public biodiversity awareness,
both of which are important in contextualising the causes and consequences of pollinator
biodiversity change. For example, Chapter 2 confirms that the pollination literature is
concentrated in the honey bees and bumble bees of North America and Europe, with a set of
name-entity recognition tools rarely applied in ecology and conservation. The results of this
chapter are published in Ecography, and were presented at SCCS Europe 2019, the RSPB
Annual Science Meeting 2019, and the Linnean Student Conference 2019. In Chapter 5, |
introduce a new metric of public biodiversity awareness using Wikipedia page views, and
suggest how this might be combined with other online metrics already in existence. The results
of this chapter are published in a special section of Conservation Biology, entitled ‘Advancing

Conservation Culturomics’, and were presented at the BES Festival of Ecology 2020.


https://joemillard.shinyapps.io/pollinator_dependence_visualisation/
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Thesis outline

Chapter 1: Introduction

Chapter 2. Text-analysis reveals taxonomic and geographic biases in pollinator

information

As anthropogenic activity has driven changes in global biodiversity, concerns have arisen for
the prospects of pollinators and the services they provide humanity. Such changes have driven
a significant push for further research. Much of this growth in research is said to have occurred
in the honeybees and bumblebees of North America and Europe, but the extent of this bias is
unclear. In Chapter 2 | carry a text-analysis systematic review of the animal pollinator
literature, using name-entity recognition algorithms to quantify the temporal, taxonomic, and
geographic distribution of the animal pollinator literature. The work for this chapter is published
in Ecography (Millard et al. 2020a), in collaboration with Dr. Robin Freeman and Dr. Tim
Newbold. | conceived and designed the review (with Dr Robin Freeman and Dr Tim Newbold),
carried out all the analysis, produced the figures, wrote the initial draft of the manuscript, and
handled the manuscript through submission and review. Thanks also to Prof. Richard D.

Gregory, Adrienne Etard, and Patrick Molgaard for suggestions, edits, and advice.
Chapter 3: Global effects of land-use intensity on local pollinator biodiversity

Anthropogenic land-use intensity is well known as a driver of pollinator biodiversity change,
but at the global scale the magnitude of its effect among taxonomic groups, geographic
regions, biodiversity metrics, and forms of intensity is unclear. In Chapter 3 | use the name-
entity recognition algorithms of Chapter 2, in conjunction with manual checking from both
myself and a panel of experts, to build a database of likely pollinating species. | then subset
this set of likely pollinating species from a database of local biodiversity records (the
PREDICTS database), before building a set of space-for-time models predicting pollinator

biodiversity response to land-use intensity and type. The work for this chapter is published in



Nature Communications (Millard et al. 2021a), in collaboration with Dr. Charlotte L. Outhwaite,
Robyn Kinnersley, Dr. Robin Freeman, Prof. Richard D. Gregory, Dr. Opeyemi Adedoja, Dr.
Sabrina Gavini, Dr. Esther Kioko, Dr. Michael Kuhlmann, Prof. Jeff Ollerton, Dr. Zong-Xin Ren,
and Dr. Tim Newbold. | conceived and designed the analysis (with Dr Tim Newbold), led all
the analysis and figure design, wrote the initial draft of the manuscript, and handled the
manuscript through submission and review. Thanks also to Dr Manu Saunders and Bruna
Abreu for advice and comments, and Dr Monica Ortiz for aggregating the forest cover data in

the supplementary information (Appendix 2).

Chapter 4: Worldwide vulnerability of local pollinator abundance and crop pollination

to land-use and climate change

Although anthropogenic land use has been a significant driver of pollinator biodiversity
change, its effect is predicted to be surpassed by climate change over the coming decades.
These climate effects likely interact with the structure of the land, such that the effects of both
land use and climate change together have a magnified effect on biodiversity. In the future
therefore, places in which cropland and rapid climate change intersect may be most vulnerable
to significant pollinator biodiversity change. For regions that experience this interactive effect
in combination with a high dependence on pollination for crop production, one might expect
crop pollination shortfall. In Chapter 4 | use the PREDICTS database subset from Chapter 3
to model the response of pollinator abundance to land-use type (cropland and primary
vegetation) and a standardised climate anomaly. | then apply my model of insect pollinator
abundance in conjunction with global crop data, ratios for crop production dependence on
animal pollination, and future projections of climate change, to predict temporal and spatial
patterns of future crop pollination risk. The work for this chapter was undertaken in
collaboration with Dr. Abbie Chapman, Dr. Silvia Ceausu, Dr. Robin Freeman, Prof. Richard
D. Gregory, Dr. Charlotte L. Outhwaite, and Dr. Tim Newbold, and is being prepared for
submission. | conceived and designed the analysis (with Dr Tim Newbold), led all the analysis

and figure design, and wrote the initial draft of the manuscript as a thesis chapter.



Chapter 5: The species awareness index as a conservation culturomics metric for

public biodiversity awareness.

Given the recent media attention afforded to pollinator biodiversity change, and biodiversity
change more generally, one might expect that public awareness of biodiversity and its threats
has experienced a concomitant increase. Conservation culturomics has emerged as a means
through which such awareness can be measured, with online data sources such as social
media, online newspapers, and search trends used to quantity human-nature interactions. In
Chapter 5 | introduce a new conservation culturomics metric for public biodiversity awareness,
using Wikipedia page views and a methodology inspired by the Living Planet Index. Here |
show that although awareness of biodiversity has likely marginally increased, awareness of
the value of biodiversity likely has not, since both pollinating and traded species do not have
significantly greater rates of change in awareness than their non-pollinating or non-traded
counterparts. The work for this chapter is published in Conservation Biology in a special
section entitled ‘Advancing Conservation Culturomics’ (Millard et al. 2021b), in collaboration
with Dr. Robin Freeman, Prof. Richard Gregory, and Prof. Kate Jones. | conceived and
designed the analysis (with Dr Robin Freeman), carried out all the analysis, produced the
figures, wrote the initial draft of the manuscript, and handled the manuscript through
submission and review. Thanks also to Dr. Yan Wong and Dr James Rosindell for providing
taxonomic mapping data and Dr Tim Newbold, Dr Rory Gibb, and the CBER Journal Club and

Data Club for discussions and comments on earlier drafts of the manuscript.

Chapter 6: Discussion and synthesis



Chapter 1: Introduction

A brief introduction to animal pollination

Pollination facilitates the reproduction of many plant species (IPBES 2016). Its importance to
the continuing functioning of the biosphere, as it currently exists today, is undoubtedly highly
significant. Specifically, pollination describes the transfer of pollen—the male plant gamete—
from the male anther structure of the plant to the female stigma, causing fertilisation and the
production of a fruit and seed (Proctor 1996). This fruit and seed forms the basis of the

following generation, dispersed by either the plant itself or some animal vector (Proctor 1996).

Pollen can be transferred either among the sexual structures of a single plant, or across
individual plants. When pollen is transferred from the male to female structures of the same
flower, or across flowers within the same individual, it's described as self-pollination (Proctor
1996). Such a reproductive strategy is present at least to some extent in many flowering
plants, with some species having evolved to reproduce entirely through self-pollination
(Schoen et al. 1996). When pollen is transferred across individual plants, it's described as
cross-pollination (Proctor 1996). Since self-pollination increases inbreeding and reduces
genetic diversity, in many flowering plants selection has favoured the evolution of cross-
pollination (Barrett 2010). In order to achieve cross-pollination however, given the distance
between individual plants, many plants have evolved to recruit some external means of pollen
transfer (Proctor 1996). For many flowering plants this means abiotic pollination, using either
wind or water (Ackerman 2000). These flowering plants release large quantities of pollen into
their immediate surroundings, with the pollen then carried in wind or water currents to
neighbouring plants (Ackerman 2000). Wind pollination is typical of grass species, and more
common at temperate than tropical latitudes (Ollerton et al. 2011). Water pollination is less

common, but an important mechanism for many seagrass species (Ackerman 2000).



Since releasing large quantities of pollen is energetically expensive, if they exist within an
environment in which they can, many flowering plants have evolved to recruit animal vectors
for the transfer of pollen (Proctor 1996). Such a reproductive strategy is thought to have
evolved perhaps as early as the Carboniferous (300 mya) (van der Kooi and Ollerton 2020).
Since then, animal pollination has been a hugely successful evolutionary innovation for
flowering plants. At tropical latitudes approximately 95% of all flowering plants are animal
pollinated (Rech et al. 2016), and at the global level, 87.5% of wild plant species are thought
to be pollinated to some extent by animals (Ollerton, Winfree and Tarrant 2011). These
pollinators are represented across a variety of taxonomic groups, including but not limited to
insects, bats, birds, lizards, and rodents (Ollerton 2017). The greatest contributors globally are
the insects (Wardhaugh 2015). Insect pollinators include the bees (Anthophila), beetles
(Coleoptera), butterflies and moths, (Lepidoptera), bugs (Hemiptera), flies (Diptera), and
multiple wasp groups (Wardhaugh 2015). Spatial differences in pollinator importance for wild
and crop plants do exist (Ollerton 2017), but of these pollinating groups, today the bees are
likely the most important pollinators (Potts et al. 2010). A relatively small group at
approximately 20,000 species (Michener 2000), the bees are almost completely reliant on
floral resources in both the larval and adult developmental stages, meaning the frequency with

which they visit flowers is relatively high (Michener 2000).

The importance of animal pollinators to people

Over roughly the past 10,000 years, humans have domesticated a number of plant species in
the development of agriculture, artificially selecting desirable plant traits for large-scale
production and consumption (Harlan 1992). At the global level today, by both total production
and the number of crops, production of these species is in the main not reliant on animal
pollination (Aizen et al. 2009). Staple crops such as wheat, rice, maize, and barley are all
wind-pollinated (Klein et al. 2007). Root vegetable crops such as potatoes, carrots, turnips,
and cassava are propagated from tubers of previous generations, often only requiring self or

cross pollination for the production of new crop varieties (Aizen et al. 2009). Indeed, owing to



the contribution of wind, self-pollination, and propagation, only 5-8% of global crop production

(by tonnage) is said to be dependent on animal pollinators (Aizen et al. 2009).

Given the relatively low contribution animal pollination makes to global crop production, it is
tempting to conclude that pollinators are unimportant to humanity. However, for a number of
reasons this conclusion is misguided. First, although the extent to which crop production is
reliant on animal pollination is relatively low, the importance of pollinators in maintaining the
terrestrial ecosystems in which we have evolved is not (Ollerton 2021). With the instantaneous
disappearance of animal pollinators, one would expect the environment in which we live to
change abruptly, with unknown consequences for our own future (Potts et al. 2016). Second,
although total crop production dependent on animal pollinators is relatively low, this production
forms an important nutritional component in the diets of many people. Wind-pollinated crop
species more often produce a high-calorie crop (Richards 2001; Prescott-Allen and Prescott-
Allen 1990; Ghazoul 2005); a core dietary component, but not sufficient alone for a healthy
diet. Animal-pollinated fruits, on the other hand, tend to provide a higher density of many
essential vitamins and minerals (Eilers et al. 2011). Third, although total crop production has
low dependence on animal pollination, for some crops animal pollination is essential (Klein et
al. 2007). For example, production of atemoya, Brazil nuts, cantaloupes, cocoa, kiwis,
macadamia nuts, passion fruit, pawpaw (Asimina fruit), rowanberries, sapodilla, squashes and
pumpkins, vanilla and watermelons is wholly reliant on animal pollination (Klein et al. 2007).
Since the spatial distribution of these crops is not even, there is therefore variation in the extent
to which agricultural regions are dependent on animal pollination. Many tropical crops, for
example, have a higher reliance on animal pollination than crops grown elsewhere (Klein et
al. 2007). Reliance in the tropics is such that, via the production of cocoa alone, the national
economies of countries such as Ivory Coast and Ghana are in theory highly vulnerable to

changes in animal pollinator biodiversity (Schroth et al. 2016).



Animal pollinator biodiversity change in the Anthropocene

Pollinators exist within a world that’s experiencing an abrupt—at least on geological time-
scales—period of environmental change. A period of change driven by the activities of
humanity on Earth, often referred to as the Anthropocene (Schroth et al. 2016). Typically,
these human activities are associated with the Industrial Revolution and the Great
Acceleration (Lewis and Maslin 2015), but likely go back much further (Mottl et al. 2021).
Indeed, current anthropogenic impacts are now seen in the context of a period of disturbance
going back thousands of years (Mottl et al. 2021). Since the Great Acceleration however,
effects on the Earth have increased rapidly (Steffen et al. 2015). Over the past ~40 years,
average global temperature has increased at a rate of 0.2°C per decade (IPCC 2018). This
upward trend is projected to continue and accelerate, with a potential 4°C rise by 2100 (IPCC
2018). (Models also indicate precipitation will experience regional changes, leading to novel
conditions of both temperature and aridity (IPCC 2018). Anthropogenic land use has also
grown significantly, with more than 75% of the terrestrial world nhow showing evidence of
historical or current transformation (Ellis and Ramankutty 2008), and just over 50% currently
used by humans (Le B. Hooke, et al. 2012). And land-use will continue to grow, particularly in
the tropics where agriculture is expected to expand quickly over the coming decades

(Laurance et al. 2014).

The consequences of human activity for biodiversity have been great. The clearest effects are
seen in species extinction rates, currently thought to be ~100-1000 times the background rate
(Pimm et al. 1995), which has been said could lead to a sixth mass extinction (Ceballos et al.
2015). Specifically, 28% of all assessed species are currently threatened with extinction (IUCN
2021), and at least 778 animal species have gone extinct since 1500 (IUCN 2021). Most likely
this total is an underestimate, given the difficulties associated with recording a species as
extinct (Dirzo et al. 2014), and the many species we know very little or nothing about (Pimm
et al. 1995). Local change is more complex, owing to the multiple ways in which local

biodiversity can be measured, and the complexities associated with taxonomic, spatial, and



temporal scale (Gonzalez et al. 2016). Space-for-time models of local biodiversity indicate that
anthropogenic land use tends to reduce site-level species richness and total abundance, and
homogenise biodiversity between sites (Newbold et al. 2018; Newbold et al. 2015a).
Assemblage trends indicate that local diversity has experienced no net change and community
composition a reduction, both since the late 1800s (Dornelas et al. 2014). Vertebrate
population trends specifically have tended to decrease on average since the 1970s (McRae
et al. 2017), but again there is variation in the direction and magnitude of change among taxa

and geographic regions (Leung et al. 2020)

Animal pollinators have not escaped the effects of the Anthropocene. A number of recent
studies have found evidence of change in pollinator biodiversity, typically referred to in the
literature as “pollinator decline” (Lever et al. 2014; Garibaldi et al. 2009; Gallai et al. 2009),
and in the media as an “ecological Armageddon” (Embury-Dennis 2017). For the evidence
currently available, the term “pollinator decline” is well-founded, at least for average change
in abundance, species richness, and biomass (Ollerton 2017; see below for a summary of the
evidence). But there are still quite profound differences among taxonomic groups and
geographic regions (Powney et al. 2019), and data still tends to be biased towards select
taxonomic groups in North America and Europe (Saunders et al. 2020). For “pollination
crises”, it's an open question as to whether declines yet warrant this term (Ghazoul 2005;
Ghazoul 2015), or if the term “crisis” could still be warranted if global pollinator biodiversity
change is found to be highly heterogeneous. Indeed, for the services pollinators provide in the
form of crop pollination and ecosystem functioning, a negative net-change in some metric of

biodiversity doesn’'t necessarily have to mean a negative impact on people.

One of the core distinctions for pollinator biodiversity change is between domesticated and
wild pollinators (Ollerton 2021; Potts et al. 2010), both in terms of the difference in change and
the extent to which we can be confident that our evidence of change is representative.
Domesticated pollinators refer to those that humans deliberately rear for the production of

honey and the pollination of crops, and wild pollinators those that have no history of deliberate



and direct human use (IPBES 2016). For domesticated pollinators, that typically means the
western honey bee (Apis mellifera; Linnaeus, 1758) (Potts et al. 2016). The western honey
bee is a highly important generalist crop pollinator, providing much of the pollination service
in many crop species (Rucker et al. 2012). The convenience of the western honey bee as a
pollinator is such that hives are brought onto cropland in large humbers to meet pollination
demand and maximise crop yield (Degrandi-Hoffman et al. 2019). For example, in the USA,
hives are shipped into California in February for almond pollination, then onto Oregon and
Washington for apple, cherry, and pear pollination, and then by May-June for pollination of
crops such as strawberries and raspberries (Rucker et al. 2012). The importance of the honey
bee to agriculture means it has reasonably good estimates of biodiversity change, typically
inferred from the total number of hives (Aizen and Harder 2009; vanEngelsdorp and Meixner
2010). Total hive numbers indicate that the western honey bee is not globally declining (Aizen
and Harder 2009), despite fears that colony collapse disorder—a quite sudden breakdown of
the colony driven by a number of interacting factors (van Engelsdorp et al. 2009)—in European
and North American colonies could become more widespread (Williams et al. 2010). In fact,
the total number of honey bee hives increased by ~45% between 1961 and 2007 (Aizen and
Harder 2009). There is again heterogeneity in this change, with decreases in some parts of
Europe and North America, and large gains in China (Aizen and Harder 2009), but taken

together it appears that honey bee populations are not currently of global concern.

Unlike domesticated pollinators, the extent to which wild pollinator biodiversity has changed is
less clear, but from research that does exist it is reasonable to conclude that wild pollinators
have undergone more extensive change than domesticated pollinators, and in many cases
decline (Powney et al. 2019; Burkle et al. 2013; Biesmeijer et al. 2006; Hallmann et al. 2017).
Uncertainty in the existence and magnitude of pollinator declines stems in part from the much
greater range of taxonomic groups involved (Wardhaugh 2015; Ollerton 2017), making it both
a bigger task to evidence change in all groups, and far more likely that there will be differences

in the direction and magnitude of change. Moreover, it's also true that wild insect pollinators



tend to experience significant inter-annual population fluctuations, meaning detecting real
population change requires research intensive, long-term time series (Roubik 2001).
Nevertheless, despite these uncertainties and difficulties, the drivers of wild pollinator
biodiversity change are at least now well-known. Change in land cover, chemical application
(e.g. pesticides, fertilisers, herbicides, and fungicides), disease, domesticated pollinator
management, the introduction of invasive species, and climate change have all been linked to

wild pollinator biodiversity change to varying degrees (IPBES, 2016).

Evidence for wild pollinator decline has been found in a number of groups, and continues to
grow. Pollinator declines in Europe and North America are some of the best studied. 3
bumblebee species in the UK, and at least 4 species across 11 European countries, have
become extinct (Kosior et al. 2007; Goulson et al. 2008). In Britain and the Netherlands, wild
bee species richness declined significantly in ~52% and ~67% of spatial cells between a set
of observations pre-1980 and a set of observations post-1980 (Biesmeijer et al. 2006). In the
UK, such richness declines have occurred in conjunction with bee and flower-visiting wasp
extinctions, which began increasing rapidly in the 1920s following a period of agricultural
expansion (Ollerton et al. 2014). Also in the UK, butterflies have experienced significant net
losses, with a median change in occupancy of -13% (Thomas et al. 2004). For UK pollinators
more broadly, occupancy models suggest a net loss of wild pollinator range, with the most
significant losses seen in rare species (Powney et al. 2019). Declines have also been reported
for biomass, particularly in Germany where flying insect biomass was found to have declined
by 75% between 1989 and 2016 (Hallmann et al. 2017). Such declines are concerning, but
apparently do not represent a consistent trend for all regions and taxonomic groups, given that
moth biomass change in the UK was found to have no difference in mean biomass between
the 1960s and 2010s (Macgregor et al. 2019). In North America, change in plant-pollinator
interaction networks between 1888 and 2010 was associated with a significant reduction in
bee species richness (Burkle et al. 2013), and a study of historical bumblebee records found

significant reductions in range and relative abundance (Cameron et al. 2011). Bumblebees in



particular have been associated with strong climatic effects, with frequency of warmer
temperatures predicting extinction risk and change in local species richness (Soroye et al.
2020). Given the importance of insect pollinators to crop pollination (Potts et al,. 2010), insects
have typically been the focal point of study, but vertebrate pollinators have also been found to
have declined. Indeed, bird and mammal pollinators have on average moved 1 IUCN category
towards extinction every 2.5 years, although on average this is still less threatened than non-

pollinators (Regan et al. 2015).

Outside western Europe and North America long-term data on pollinator biodiversity change
are fewer, but for studies that do exist declines also represent the average trend. In Argentina
significant reductions in range for native bumblebees have occurred, driven in part by
competition from Bombus terrestris (Linnaeus, 1758), a species introduced in much of the
world for crop pollination (Morales et al. 2013). A similar process of bumblebee
homogenisation has occurred historically in a number of other locations, including but not
limited to Japan and Tasmania (Matsumura et al. 2004; McQuillan and Hingston 1999). In
China, wild bee abundance, diversity, and occupancy have fallen in a number of agricultural
localities (Teichroew et al. 2017; Williams and Osborne 2009). In South Africa, declines in
some pollinating bees have been inferred from reduced orchid seed set (Pauw 2007). Outside
North America and Europe, hoverfly, butterfly, and vertebrate pollinator trends represent a
significant gap, perhaps with the exception of bat and bird island extinctions (Ollerton 2017).
Such island extinctions have been reported for birds in Hawaii, and two bat species in New

Zealand (Ollerton 2017).

Average trends in biodiversity change hide variation among taxonomic groups, with some
groups of wild pollinators experiencing increases in biodiversity (Powney et al. 2019;
Biesmeijer et al. 2006). Hoverflies, for example, experienced no significant change in richness
in Britain between pre- and post- 1980, and a significantly increasing trend in the Netherlands

(Biesmeijer et al. 2006). Dominant crop pollinators also appear to be more resilient (e.qg.



Bombus terrestris, Osmia Bicornis) with an increase in occupancy from 1980-2013 (Powney

et al. 2019).

The drivers of pollinator biodiversity change

Of the threats described by IPBES (2016), wild pollinator biodiversity change has primarily
been linked to land use, land-use intensity (including the effects of pesticide application),
climate change (Kerr et al. 2015; Kerr 2001; Goulson et al. 2015), and the interaction between
land-use and climate change (Dalsgaard 2020). Here | will briefly review the effects of land-
use, land-use intensity, and the interaction between land-use and climate change. | will not
discuss climate change alone in detail, since this is not directly relevant to the aims of this
thesis. | will also not discuss the effects of anthropogenic activity on domesticated pollinators
(e.g. colony collapse disorder), since these have been studied extensively elsewhere (e.g. van
Engelsdorp et al. 2009) and are again not directly relevant to the aims of this thesis (i.e. large-

scale, cross-taxa effects on wild pollinators).

A number of studies have documented a negative impact of anthropogenic land use on wild
pollinator populations (Tscharntke et al. 2002; Kennedy et al. 2013; IPBES 2016; Goulson et
al. 2015; Klein et al. 2003; Ricketts et al. 2008). Such effects have typically been associated
with reduced floral availability on managed land (Goulson et al. 2015). Modern agricultural
practice often means monoculture cropland and infrequent crop-rotation, resulting in land
which provides a lower diversity of the floral resources required by pollinating species
(Goulson et al. 2005). Fragmentation of the land through disturbance will also be detrimental
to some species (Tews et al. 2004). Patchy habitat isolates populations through acting as a
barrier to migration (Saunders et al. 1991), leaving pollinators less able to exploit neighbouring

floral resources.

Some studies have shown positive effects of land-use change, finding that moderate
anthropogenic pressure and the creation of more open and diversified habitats can also benefit

some pollinators (Winfree et al. 2011). Such effects likely relate to two key factors: first, that



at low levels of intensity, human activity can increase niche diversity by making habitats more
heterogeneous (Baldock et al. 2015; Tscharntke et al. 2002; Tews et al. 2004; Hagen and
Kraemer 2010; Winfree et al. 2011); and second, that some species happen to be better able
to adapt to the environments humans create, with these species tending to move into
anthropogenic habitats (McKinney 2006). The conjunction of these two points means
increased pollinator biodiversity for some groups on low-intensity managed land. For example,
some bees, butterflies, syrphid flies, and nectarivorous pollinating birds have been found to
favour open, less forested areas of semi-natural grassland or agroforestry (Deans et al. 2007;
Kuussaari et al. 2007; Michener 2000; Tscharntke et al. 2008). Globally however, for many
pollinators it's unclear the extent to which the direction and magnitude of response to land use

differs among biodiversity metrics, taxonomic groups, scale, and geographic regions.

Climate change has been highlighted in the literature as a concern for the current and future
prospects of pollinating animals. IPBES (2016) summarised the effects of climate on
pollinators at three levels: spatial range shifts, changes in abundance, and shifts in seasonal
and daily activity patterns. These changes are well-known in butterflies (Chen et al. 2011;
Parmesan 2007) and bumblebees (Kerr et al. 2015), but less well understood in hoverflies,
bats and birds (see IPBES (2016) for a thorough review of the evidence). Climate change is
also thought to interact multiplicatively with land-use, such that the effects of climate change
and land use are greater together than individually (Oliver and Morecroft 2014). Such
interactive effects are thought to occur through two means: first, through one driver altering
the magnitude of another; and second, through the effect of one driver on biodiversity being
moderated by change in another (Oliver et al. 2014). Recent research has begun to investigate
these potential interactions broadly (Mantyka-Pringle et al. 2011; Spooner et al,. 2018), and
in the context of pollination services specifically (Marshall et al. 2017), but our understanding

is far from complete (see Chapter 4).

The extent to which a species is impacted by environmental change will depend on the traits

of that species (Marini et al. 2014; Vanbergen 2014), since traits are indicative of a species’



ability to adapt to a new environment. Responses to environmental change will also be
experienced indirectly, through effects at the level of interactions among species (Lever et al.
2014). Such effects refer to concepts of trophic cascade and co-extinction, both of which don'’t
directly relate to individual response characteristics, but rather the strength of the connection
between one species and another (Colwell et al. 2012; Polis et al. 2000). At the trait level,
body size, dietary and habitat specialism, mobility (wing length), tongue length, nesting
behaviour, and sociality have all been highlighted as important traits in determining pollinator
response to environmental change (Winfree et al. 2011; Goulson et al. 2015; Ockinger et al.
2010; De Palma et al. 2015; Newbold et al. 2013; Newbold et al. 2014b; Burivalova et al. 2015;
Montero-Castafio and Vila 2012). However, there is an ongoing challenge associated with
broad cross-taxa trait-based predictions (Bartomeus et al. 2017). Indeed, for these broader
studies, with the exception of specialism and body size, traits appear to weakly predict overall
response to land-use (Bartomeus et al. 2017). Although trait-based research represents an
interesting area of work, in the remainder of this thesis | do not consider the predictive nature
of these traits specifically, meaning | will not discuss them in further detail here. | will return to
them in Chapter 3, since across taxonomic groups traits likely still underpin response to

anthropogenic activity.

Public awareness of pollinator biodiversity change

In tackling pollinator biodiversity change, public awareness is a key factor. Through high-
carbon lifestyles and dietary choices, and more indirectly through the way in which the public
votes, the choices people make continue to have a significant impact on biodiversity change
(McCrea et al. 2015; Machovina et al. 2015; Garnett 2013). Admittedly the link between
awareness and behaviour can be weak, but nevertheless awareness is likely still important to
some extent in leveraging behaviour change (Asvatourian et al. 2018). Aichi Biodiversity
Target 1 encapsulates this need, aiming that “by 2020, at the latest, people are aware of the
values of biodiversity and the steps they can take to conserve and use it sustainably” (CBD

2011). However, although important to recognise, quantifying progress on this target at the



global level is difficult. In part the problem has been the logistical and financial difficulties in
surveying the opinions of large groups of people globally (Leadley et al. 2013), and the biases

associated with such an approach (Mcowen et al. 2016).

One emerging option for the quantification of biodiversity awareness, and pollinator
awareness more specifically, is in the field of conservation culturomics (Ladle et al. 2016).
Coined by Michel et al. (2011) in a study in which the authors built a dataset comprised of over
5 million books, culturomics refers to the process of extracting insights from large bodies of
text. Later Ladle et al. (2016) introduced the term to conservation, suggesting that culturomics
could be used to quantify changes in public biodiversity interest. The digital age of the internet
is largely driving interest, with Google Trends, Google Books, Twitter, Weibo, and website
crawling all having been suggested as potential data sources (Ladle et al. 2016). Recently
efforts have been made to calculate changes in biodiversity awareness at the global scale
using Twitter, online newspapers, and Google Trends (Cooper et al. 2019). However, this
study focused on awareness of conservation issues rather than species themselves, meaning
there is still not a means through which to quantify awareness of biodiversity itself. For
pollinators therefore, in the first instance we need a metric with which to quantify change in
awareness for all species, which we can then use to focus in on changes in pollinator

awareness.

Thesis aim

The main aim of my thesis is to understand better the causes of global pollinator biodiversity
change, and the potential consequences for future crop pollination risk. To this end, my thesis
will address four key research questions, with each question addressed in one of four core
data chapters: 1) how disparate temporally, taxonomically, and geographically is the
information available in the animal pollination literature, and what approaches can we use to
utilise it better? 2) to what extent is land-use type and intensity associated with changes in

local pollinator biodiversity (species richness, total abundance, and diversity) at the global



scale? 3) to what extent are interactive effects between land-use type (cropland and primary
vegetation) and climate change associated with changes in local pollinator abundance, and
how might these interactions relate to potential crop pollination risk in the future? and 4) using
Wikipedia page view data, how might we measure changes in public awareness of biodiversity
itself, and what can we learn from these metrics about change in awareness of pollinators and

the value of biodiversity?



Chapter 2: Text-analysis reveals taxonomic and

geographic disparities in animal pollination literature

Abstract

Ecological systematic reviews and meta-analyses have significantly increased our
understanding of global biodiversity decline. However, for some ecological groups, incomplete
and biased datasets have hindered our ability to construct robust, predictive models. One such
group consists of the animal pollinators. Approximately 88% of wild plant species are thought
to be pollinated by animals, with an estimated annual value of $230-410 billion dollars. Here |
apply text-analysis to quantify the taxonomic and geographical distribution of the animal
pollinator literature, both temporally and spatially. | show that the publication of pollinator
literature increased rapidly in the 1980s and 1990s. Taxonomically, | show that the distribution
of pollinator literature is concentrated in the honey bees (Apis) and bumble bees (Bombus),
and geographically in North America and Europe. At least 25% of pollination-related abstracts
mention a species of honey bee and at least 20% a species of bumble bee, and approximately
46% of abstracts are focussed on either North America (32%) or Europe (14%). Although
these results indicate strong taxonomic and geographic biases in the pollinator literature, a
large number of studies outside North America and Europe do exist. | then discuss how text-
analysis could be used to shorten the literature search for ecological systematic reviews and
meta-analyses, and to address more applied questions related to pollinator biodiversity, such
as the identification of likely interacting plant-pollinator pairs and the number of pollinating

species.



Introduction

The number of publications and journals in the academic sciences is vast and continuing to
increase (Ferreira et al. 2015). The field of ecology and biodiversity is no exception. Between
1990 and 2014, the total number of ecological research articles increased more than tenfold,
from fewer than 10,000 in 1989 to at least 125,000 in 2014 (Nunez-Mir et al. 2016). In
conjunction with this increase, digitisation of the literature, indexing tools (such as Scopus,
Web of Science, and Google Scholar), and the research structures of systematic review and
meta-analysis have all become standard practice (Lortie 2014, Gurevitch et al. 2018).
Understanding of global biodiversity decline in particular has reaped the benefits of these
changes (Loh et al. 2005, Butchart et al. 2010, Pereira et al. 2010, Tittensor et al. 2014,
Newbold et al. 2015a). However, for some important ecological and taxonomic groups,
incomplete and biased datasets have hindered our ability to construct robust, predictive

models (De Palma et al. 2016, Bartomeus et al. 2018).

One such important ecological group consists of the animal pollinators, animals that act as a
vector for the transfer of pollen from the male to the female reproductive parts of a flowering
plant, causing fertilisation and the production of a fruit and seed (Proctor et al. 1996). Animal
pollination is highly important, especially in tropical humid and warm environments where
approximately 95% of flowering plant species are animal pollinated (Rech et al. 2016).
Globally, approximately 88% of wild plant species are thought to be pollinated by animals
(Ollerton, Winfree and Tarrant 2011), providing an ecosystem service valued at $230-410
billion dollars per annum (Lautenbach et al. 2012). Although disputed by some on the basis
of taxonomic and geographic biases in the data used (Ghazoul 2005, Ghazoul 2015), many
papers have suggested that pollinators are declining in the face of several environmental
pressures (Biesmeijer et al. 2006, Steffan-Dewenter and Westphal 2007, Potts et al. 2010b,

Winfree, Bartomeus and Cariveau 2011, Goulson et al. 2015, Woodcock et al. 2016).



IPBES (2016) summarised the anthropogenic threats to pollinators as change in land cover,
chemical application (pesticides, fertilisers, herbicides, and fungicides), disease, pollinator
management, the introduction of invasive species, and climate change. Through the
interacting effect of these threats, populations of wild invertebrate pollinators have declined
(see Ollerton (2017) for a summary of the evidence for pollinator decline), although we know
little about the status of wild pollinators outside North America and Europe (IPBES 2016). In
Britain and the Netherlands, wild bee species richness has declined over ~50-70% of the total
land area (Biesmeijer et al. 2006). Bumble bee declines are some of the best studied, with at
least 3 bumble bee species having gone extinct in the UK, and at least 4 species across 11
European countries (Kosior et al. 2007, Goulson, Lye and Darvill 2008). Regional colony
losses in European (1985-2005) and USA (1947-2005) honey bees have also been well
documented (Stokstad 2007, Potts et al. 2010a), at 25% and 60% respectively, despite a

global increase in managed colonies (Aizen and Harder 2009).

Predictive models are important in understanding pollinator biodiversity change, but are a
challenge to implement robustly. This difficulty is in part driven by the geographical and
taxonomic distribution of available pollinator biodiversity data (De Palma et al. 2016).
Pollinators are represented across a variety of taxonomic groups, including bats, birds, and
multiple insect taxa, but many of the key syntheses of pollinator decline have been restricted
to the bees of North America and Europe (Winfree, Bartomeus and Cariveau 2011, Ghazoul
2015, Goulson et al. 2015, De Palma et al. 2016), but see Regan et al. (2015) for a global
study on the status of mammal and bird pollinators. Although widely accepted, the degree of
this bias and the extent to which it might influence biodiversity models is uncertain (Ghazoul
2005, Ghazoul 2015, De Palma et al. 2016, Ollerton 2017). Some studies have made progress
towards quantifying the geographical or taxonomic distribution of the animal pollination
literature (Archer et al. 2014, Ollerton 2017), but the way in which taxonomy interacts with
spatial distribution globally has not to our knowledge been the subject of a thorough review.

This lack of research is in part a symptom of article indexing tools, which despite their



contribution, still have significant limitations, a problem not confined to the animal pollination
literature (Westgate et al. 2018b, Westgate and Lindenmayer 2016, Westgate et al. 2015).
Indexing search tools such as Scopus do have functions to account for differences in spelling
(fuzzy-matching), and variable suffixes for the same family of words (stemming), but searching
for geographical and taxonomic names and identifying overall text topic, is only possible
through discrete search terms and phrases. As a result, returning literature fully representative
of a particular theme, geographical region, or taxonomic group is difficult to accomplish, given
the semantic ambiguity of search terms across academic fields (Westgate and Lindenmayer
2016, Roll, Correia and Berger-Tal 2017). In the context of the animal pollination literature,
better tools for extracting pollinator information could be used as the basis for more
taxonomically and geographically representative meta-analyses and systematic reviews, in

turn increasing the robustness of synthetic analyses.

Text-analysis could help to mitigate the problem of biased and incomplete pollinator response
data. Also often called text-mining, text-analysis refers to the automated extraction of
information from large volumes of text (Cohen and Hunter 2008), most notably across multiple
documents (Griffiths et al. 2004, Grimmer and Stewart 2013, Westgate et al. 2015). Given the
very large numbers of published papers containing potentially useful information, such
technologies are invaluable in automatically drawing together results across lots of studies
(Grimmer and Stewart 2013), thereby reducing the duration of the “synthesis gap”, or in other
words the lag between the practice of science and the synthesis of evidence (Westgate et al.
2018hb). Text-analysis tools can be used to optimise the systematic review and meta-analysis
literature search path. For example, topic categorisation algorithms can be used to allocate
articles automatically to particular fields of study, enabling the curator to discard articles of low
relevance (O’Mara-Eves et al. 2015, Westgate 2018a). In the context of pollinator data, the
application of such tools could increase recall of the relevant literature and decrease the effort
required, in turn reducing data biases in systematic reviews and meta-analyses. These tools

could be particularly beneficial for pollinator literature, given the effect of taxonomic and



geographic biases on predictions of pollinator response to human land-use (De Palma et al.
2016). Here | briefly discuss two tools that could be particularly useful in the context of

pollination ecology: geoparsing and taxonomic entity extraction.

Geoparsing allows place names in text to be identified, resolved, and assigned geographical
coordinates (Leidner and Lieberman 2011). Geoparsing can therefore be broken into two
steps: firstly, the identification of geographical mentions (known as toponyms); and secondly,
the resolution of mentions as the most likely physical coordinates (D’Ignazio et al. 2014). The
first step is a key obstacle; the problem being semantic (D’lgnazio et al. 2014). Identical words
can be used to describe both place and non-place information, interpretable only in the context
the term is written (Leidner and Lieberman 2011). For example, the words “Rio” and
“Alexandria” could be used to describe both a geographic location and the name of a person.
High performance machine learning algorithms will therefore attempt to resolve locations
through contextual information (Leidner and Lieberman 2011, Gritta et al. 2018). CLIFF-
CLAVIN is one such tool (D’Ignazio et al. 2014, Gritta et al. 2018). An open-source geoparser,
CLIFF-CLAVIN was developed for extracting geographical information from news articles
(D’lgnazio et al. 2014). CLIFF-CLAVIN also has an implementation of focus, meaning it
attempts to resolve the primary country location of a given piece of text, even when the country
is not mentioned (D’Ignazio et al. 2014). CLIFF-CLAVIN estimates focus on the basis of the
most frequently mentioned country, and in the absence of country mentions, the frequency of
specific locations within countries (D’lgnazio et al. 2014). CLIFF-CLAVIN will attempt to find
geographical locations from the local to continental level. For example, CLIFF-CLAVIN is able
to find correctly the records “Krakatoa”, “Sumatra”, “Indonesia”, and “Asia”. Although still in
the early stages of development, and requiring significant improvements in accuracy and
speed (Gritta et al. 2018), geoparsers have previously been used to identify the main
geographical location of news reports (Imani et al. 2017), to geotag museum specimens

(Beaman and Conn 2003), and to digitise historical maps (Chiang 2017).



Taxonomic entity extraction refers to the identification of taxonomic names (in theory of any
taxonomic rank) from blocks of text (Sarkar 2007). Such algorithms tend to use taxonomic
dictionary string matches, rule-based inference, and machine learning, either independently
or in combination (Akella, Norton and Miller 2012). Dictionary match algorithms search for
each word (unigram) and pair of words (bigram) in a taxonomic database such as NameBank
(Leary et al. 2007), returning a record if the strings match. Similarly, rule-based inference
searches for regular expressions indicating a form often associated with a species record,
such as bigram capitalisation and abbreviation. Machine learning approaches identify text
likely to represent a taxonomic record, inferring from both context and string structure (Akella,
Norton and Miller 2012). The R package ‘taxize’ has implementations for two of these
algorithm types in the function scrapenames: dictionary string match (Taxonfinder) and
machine-learning (Neti Neti) (Chamberlain and Szdcs 2013). Scrapenames will search for
strings resembling taxonomic records at any taxonomic rank, including abbreviated records,
hybrids, and higher taxa. For example, scrapenames is able to correctly find the records “A.
manicatum”, “Apidae”, and “Viburnum macrocephalum f. Keteleeri”. Many authors have
emphasised the value of extracting taxonomic information (Sarkar 2007, Guralnick and Hill
2009, Parr et al. 2012, Thessen, Cui and Mozzherin 2012), and others its associated
methodological difficulties (Correia et al. 2018), but to my knowledge few studies have

explored potential applications.

Here | demonstrate how CLIFF-CLAVIN and taxize can be used in combination to quantify the
taxonomic and geographical distribution of the animal pollinator literature. This analysis builds
on the reviews of Archer et al. (2014) and Ollerton (2017), introducing new text-analysis
methods, examining temporal changes in pollinator publications, and investigating the
interaction between the taxonomic and geographical distributions of pollinator studies. | reveal
disparities in pollinator literature, reinforcing the problem of biases in the context of pollinator
biodiversity modelling. Finally, in exploring future directions, | discuss how these tools may be

used to decrease data biases in biodiversity meta-analyses and systematic reviews. |



summarise by emphasising two different although related points: firstly, the geographical and
taxonomic distribution of the animal pollination literature is indeed highly concentrated in North
America and Europe in the honey bees and bumble bees, although many studies do exist for
other species and geographic regions; and secondly, the development of text-analysis tools
shows significant promise in optimizing the search for information on animal pollination, both
through capturing data on underrepresented regions and taxa, and through speeding up the

search process.



Methods

| scraped the pollination literature for mentions of animal species and location data to
investigate the taxonomic, geographical, and temporal distribution of studies on animal
pollination. | considered any primary research article published in English returned through a
search for the term “pollinat*” in Scopus, that mentioned an animal species in the abstract.
Animal species scraping and geographical entity extraction were accomplished through a
methodology built on the ‘taxize’ R package and the geoparser CLIFF-CLAVIN. My rationale
for applying this semi-automatic approach, rather than manually checking all abstracts, was
that identifying all Latin binomials and geographic locations would not be feasible given the
volume of text. | first describe the methodology applied (see Appendix 1 for additional
validation), before discussing change over time, the taxonomic breakdown of the animal
pollinator literature, overall geographical distribution of information, and finally geographical

distribution for individual taxonomic groups.
Taxonomic extraction

| queried Scopus using the stemmed term “pollinat*” (28/03/18 - 29/03/18), before subsetting
for primary research articles in English (Appendix 1, Figure S1.1). Duplicated records were
filtered out by removing duplicated titles. Any records without titles were also removed. | then
retained any papers with abstracts that mentioned a taxonomic name, applying in conjunction
both the Neti Neti and Taxonfinder algorithms implemented in the package ‘taxize’ (Appendix
1, Figure S1.1). Taxonfinder represents a dictionary match algorithm, searching against
dictionaries of multiple taxonomic levels (built from NameBank?) for potential taxonomic
records. The Neti Neti algorithm applies a machine learning approach to extract strings

deemed likely to be taxonomic records.

! http://ubio.org/index.php?pagename=namebank



I then carried out a series of data-cleaning steps to identify Latin binomial animal species
within our initial scrape. | chose to use the Catalogue of Life (COL) in validating species
records as animal species, due to its greater coverage (84% of all described species: Roskov
et al. 2017). Animal species were validated by performing character string matches against
the Latin binomials of a Metazoan subset of the COL (Appendix 1, Figure S1.1). Matches with
the COL were carried out at two levels (1 and 2). Level 1 represented direct string matches,
and level 2 any matches with an abbreviated record. Within level 1, | distinguished a series of
sub-levels, reflecting the approach used to resolve a record as an animal species: level 1a
represents any direct match with the original string, level 1b any direct match following the
removal of punctuation, and level 1c any direct match following the removal of punctuation
and the string “spp”. An abbreviated record refers to an abbreviated genus and full species
picked up by taxize. For example, Apis mellifera would be abbreviated in the form A. mellifera.
| also encountered problems regarding accepted and synonymous species names. In
attempting to mitigate this issue, | substituted any record picked up by the COL as a synonym
with its corresponding accepted name. For any further analysis, | then worked only from

accepted names.

For all studies related to pollination that mention an animal species, | initially calculated change
over time in publication of pollination related studies mentioning an animal species (‘Temporal
distribution’). | then investigated change over time in mentions of the animal genera Apis,
Bombus, and all other pollination-related animal genera (henceforth “other genera”). | opted
to cluster all other genera to test the hypothesis that publications concerning Apis and Bombus

species are largely responsible for the rapid increase in pollination-related papers.

| also calculated the frequency of taxonomic mentions at the level of genera (‘Taxonomic
distribution’, Appendix 1, Figure S1.2). | opted to investigate the frequency of mentions at the
level of genera given the hypothesized dominance of studies on Apis and Bombus species. |
included only those genus names associated with a Latin binomial, given the increased

ambiguity with just genus names. For example, Prunella is both a genus of plants and a genus



of birds. | presented taxonomic mentions as a raw count rather than a proportion since
mentions of different genera are not necessarily independent of one another: one study
abstract may mention multiple genera (see Millard et al. 2020b for the full list of pollination

related animal genera).

Geoparsing

Following the verification of animal species, | then anchored each abstract mentioning an
animal species to a geographic location, using an approach called geoparsing. Geoparsing
refers to the resolution of ambiguous free-text place name descriptions as specific geographic
coordinates. Not all abstracts will mention a location, but | assume that those that did were

representative of the geographic distribution of the animal pollination literature as a whole.

I chose to use the open-source geoparser CLIFF-CLAVIN, due to the high accuracy of its
focus implementation, relative to commercial geoparsers such as Yahoo Placespotter and
OpencCalais. The main focal country for a given text will henceforth be referred to as “major”
mentions, and any specific locations found in an abstract as “minor” mentions. “Minor”
mentions can therefore be of any geographical scale, from the continental to the local level. |
used vagrant—a software tool for leveraging virtual environments—and the GitHub repository

CLIFF-up to host CLIFF-CLAVIN (https://github.com/ahalterman/CLIFF-up).

After geoparsing the pollination-related abstracts, | carried out a series of verification steps to
improve the quality of the data. First, | plotted the data on a global map to check for any
unusual-looking patterns, which revealed that continental “minor” mentions were distorting the
apparent geographic distribution of studies. For example, the continental “minor” mention
‘Europe’ appeared in a number of abstracts, which CLIFF-CLAVIN had assigned to a single
coordinate in central Europe. | was also not interested in oceanic “minor” mentions, since
these would not relate to the study of terrestrial animal pollinators. Before proceeding with any
further analysis, | therefore removed any continental or oceanic “minor” mentions. Second, in

initial runs of CLIFF-CLAVIN | also noticed that the geoparser was picking up geographic


https://github.com/ahalterman/CLIFF-up

information associated with copyright details, typically included at the end of the Scopus
abstract following a copyright symbol. | therefore removed any characters following the
copyright, before rerunning the geoparser. Third, after removing any low-resolution
geographic locations, I then visually inspected the whole raw dataset, searching for any place
names that were either questionable or clearly wrong. For example, place names that had
been incorrectly disambiguated by CLIFF-CLAVIN, such as “Ilvory” and “Hay Meadows”, as
well as locations that seem overly specific or strange, such as “Blue Ridge Parkway Milepost
234 ca. 886 m”. Fourth, given CLIFF-CLAVIN was originally trained on news articles, | was
aware that performance might be reduced when applied to academic texts, particularly those
mentioning Latin binomial species names. For example, the “Linnaeus Terrace”, a rock terrace
in the Antarctic, was incorrectly identified from Linnaeus, the species authority, while
taxonomic names such as “Peia” and “Pavonia” were also incorrectly identified as place
names. | therefore also manually inspected any locations that could have been referred to in
text as a species or genera, and removed any that we identified as mistakes. After the removal
of text following the copyright symbol, CLIFF-CLAVIN identified geographic locations in
2087/3974 (53%) of the pollination-related abstracts containing an animal species (Appendix
1, Figure S1.1). After further verification of the geoparsed data, geographic locations were
identified in 2072 abstracts (Appendix 1, Figure S1.1), meaning 2072/2087 (~99%) of those

abstracts with a location contained a usable sub-continental geographical location.

| calculated a study count through counting the number of “major” mentions coordinates within
each set of country polygons, and a study density by dividing this value by the area of those
polygons (Appendix 1, Figure S1.3). Beforehand | removed duplicated study-country
combinations for both “minor” and “major” mentions, accounting for abstracts mentioning a
given location more than once. Given focus describes the algorithm’s estimation of the main
geographic focus of an abstract, | reasoned that “major” mentions would provide an indication

of primary study location. Due to the highly right-skewed distribution of the country study



counts, | logio transformed the values. “Minor” mentions were also plotted onto this map, with

the size of each point representing the number of unique study-location combinations.

For abstracts mentioning an animal species and a geographic location, | examined the way in
which taxonomy and geographic location interact. | assumed that all geographic locations
mentioned within a given abstract related directly to all animal species mentioned within that
same abstract. Consistent with our investigation of overall taxonomic distribution, | examined

taxonomy-geography interaction for Latin binomial species at the level of genera.



Results and Discussion

Temporal distribution

Over time, the number of studies on pollination has increased substantially, with a particularly
rapid increase beginning in the mid-1990s and 2000s (Figure 2.1), occurring in conjunction
with widespread incidences of colony collapse disorder (CCD) in the early 2000s (van
Engelsdorp et al. 2008, Genersch et al. 2010). Much of this increase can be attributed to
studies of Apis and Bombus species (Figure 2.2, Appendix 1, Table S1.4). From 1980-2017,
the number of studies mentioning Apis and Bombus species increased non-linearly. The rapid
increase for Apis coincided with the introduction of the parasite Varroa destructor to the United
States in the 1980s (Oldroyd 1999), and for Bombus with the first commercialisation of
Bombus pollination in the late 1980s (Velthuis and van Doorn 2006). Over this period, the
general trend in publication number for other pollination-related genera increased marginally,
with a slight non-linear increase from the year 2000. Given that Apis and Bombus are often
referred to by their common name, it is likely that | underestimate the disparity in publication

rate between Apis, Bombus, and other genera (see ‘Limitations’ and Appendix 1, Figure S1.5).
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Figure 2.1 Annual study count for pollination-related studies mentioning an animal

species, years 1961-2017.
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Figure 2.2 Annual study count for Apis, Bombus, and all other genera 1961-2017. Black
lines represent the fit of a generalized linear model with Poisson errors for Apis and
Bombus, relating study count to year. Red lines represent the output of the same model
for all other genera, presented in dotted form in the Apis and Bombus facets. Counts
have been binned as a density to represent multiple counts at the same study-year
combination, from dark blue to yellow (150 studies). The model for both Apis and
Bombus deviates from all other pollination-related animal genera in the 1980s, with a

rapid and non-linear increase.



Taxonomic distribution

Of the abstracts related to pollination mentioning an animal species (3974), the Hymenoptera
were overwhelmingly the most frequently mentioned of all taxonomic orders, in approximately
65% of all abstracts (Figure 2.3). Of the 13 most frequently mentioned genera, 11 were
hymenopteran genera, all but one (Ceratosolen) of which were bees. This is to be expected,
since bees are regarded as the most important pollinating group (Potts et al. 2010b, Ollerton
2017). Unsurprisingly, Apis and Bombus figure highly. Approximately 1/4 of abstracts mention
a species of honey bee (Apis) and 1/5 a species of bumble bee (Bombus) (Figure 2.3), which
is likely an underestimate given we do not consider common names (see ‘Limitations’ and
Appendix 1, Figure S1.5). The disparity for Apis and Bombus is consistent with more anecdotal
descriptions in the literature, describing honey bees and bumble bees as the main study
groups (i.e. Ghazoul 2015). This taxonomic pattern probably to a large extent reflects
commercial value: both Apis and Bombus are economically important commercial pollinators
(Goulson 2003, Klein et al. 2007), with bumble bees in particular providing a unique
contribution in the form of buzz-pollination (Goulson 2003). Moreover, 4 out of 13 other top-
mentioned genera (Osmia, Megachile, Melipona, Trigona) are also managed commercially to
some extent, either for pollination services or honey production (Vit, Medina and Eunice

Enriquez 2004, National Research Council 2007, Velthuis and van Doorn 2006).

More generally, the insects are dominant in the pollination literature. Five of the top eight
orders are insects (in decreasing order: Hymenoptera, Lepidoptera, Diptera, Coleoptera, and
Hemiptera), the first four of which are well-known pollinating groups. The greater number of
studies mentioning lepidopteran than dipteran species probably reflects a bias in study effort.
Although flies are likely the second most important pollinators today—behind only the
Hymenoptera (Ssymank et al. 2008)—and evolved as one of the first angiosperm pollinators
(Endress 2001), lepidopteran flower-visitors are often deemed more conspicuous and
attractive (New 2004), making them likely study candidates. The smaller number of studies

mentioning beetles is more likely a true reflection of pollination importance. Although beetles



are important ecosystem service providers on the whole (Noriega et al. 2018) and evolved as
some of the earliest gymnosperm pollinators (Labandeira, Kvacek and Mostovski 2007,
Ollerton 2017), modern beetles are widely recognised as less important pollinators relative to
the Diptera, Hymenoptera, and Lepidoptera (Ollerton 2017). A surprising result was the
appearance of the moth Manduca in the top 13 genera, given the reputation of the moths as
understudied relative to other lepidopterans (Hahn and Brihl 2016). Most likely this is an
artefact of model taxa rather than pollinator importance. Although Manduca species can be
agricultural pests and pollinators, with the larval stage feeding on a variety of plant species in
the Solanacae family (Kessler and Baldwin 2002), and the adult stage a generalist nectar
feeder (Raguso and Willis 2002), mentions are driven by Manduca sexta (Linnaeus, 1763), an
important model species for molecular and genetic studies (Riddiford et al. 2003). The
hemipterans are represented primarily by aphid genera: ~1/4 of the hemipteran genera in the
pollination literature are aphids. Despite being flower visitors, hemipterans more often feed on
plant stem sap, making them incidental pollinators (Wardhaugh 2015). Broadly, the extent to
which absolute distribution of mentions might predict pollinator importance for the five insect
orders is an interesting point. Although the Hymenoptera are likely the most important
pollinating order, it seems unlikely that this would be by a factor of ~7 globally. Probably there

will be a signal of importance, but confounded by geography and study biases.

Vertebrates are also mentioned relatively frequently in pollination studies. Three vertebrate
orders fall in the top eight: two avian, Apodiformes and Passeriformes; and one mammalian,
Chiroptera. The Apodiformes are entirely represented by the Trochilidae (hummingbirds), a
well-known nectar-feeding (and thus pollinating) family. The Passeriformes are represented
more diversely, with approximately 75% of identified species coming from six nectar-feeding
families: the sun birds (Nectarinidae), honey-eaters (Meliphagidae), Icteridae, honey-creepers
(Thraupidae), white-eyes (Zosteropidae), and sugar birds (Promeropidae) (Proctor et al.
1996). Many species of bats are known to feed on fruit or nectar (Fleming, Geiselman and

Kress 2009). The bat genus Glossophaga, the only vertebrate genus falling in the top 13, is a



common lowland nectar-feeding group distributed in central and South America (Fleming,

Geiselman and Kress 2009).

Interestingly, some groups are associated with pollination through their nature as pollinator
parasites and predators. For example, the Mesostigmata (an order containing the Varroa
mites, 41 abstracts) and Araneae (spiders, 27 abstracts) are primarily parasites and predators
respectively. Varroa mites parasitize honey bees, and are implicated in colony collapse
disorder (van Engelsdorp et al. 2009). Araneae, such as crab spiders, prey on pollinators

through hiding on the flower and ambushing at visitation (Dukas and Morse 2003).
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Figure 2.3 Order-level distribution of animal species in the pollination literature across

3974 studies. Given a study may mention multiple genera or orders, each bar is not

independent, meaning study count values will not sum to the total of 3974. “Other”

orders are represented by 55 orders, with 29/55 of these appearing in 2 or fewer

abstracts. Inset shows genus-level distribution of animal species in the pollination

literature. “Other genera” are represented by 1000 genera across the Hymenoptera,

Lepidoptera, Diptera, Apodiformes, Chiroptera, Passeriformes, Coleoptera, Hemiptera,

and “other” orders. Colours are the same in the main panel and the inset.



Geographical distribution

| also investigated the geographical distribution of the animal pollinator literature, inferred by
extracting place names with the geoparser CLIFF-CLAVIN. The top five countries for animal
pollination studies are the United States, Brazil, Australia, Canada, and China (Figure 2.4),
together representing ~50% of all studies. Previous systematic reviews of the distribution of
pollinator data identified Australia, Brazil, the United States, Germany, and Spain, as the top
five contributors (Archer et al. 2014). Germany is notable by its absence in our analysis.
However, exact character string matches of the term “Germany” with each of the abstracts
indicate that Germany is indeed less strongly associated with the animal pollination literature
(Appendix 1, Figure S1.9). Potentially lower representation of Germany is explained by the
confounding effect of study subject. Archer et al. (2014) found that German studies were
frequently represented among studies of pollinator perturbation, but relatively infrequently
among general pollination studies. Habitat perturbation studies represented a relatively small
percentage of the pollination-related papers analysed here (Appendix 1, Figure S1.7), while
general pollination studies accounted for a much higher proportion. In general, my results
suggest that overall pollinator information is less restricted to western Europe and North
America than was previously thought (Mayer et al. 2011), although | recognise that my
analysis likely underestimates geographic disparities (see ‘Limitations’). Indeed, only three
European countries appear in the top 15 (United Kingdom, Spain, and Greece). However,
although study count in European countries is relatively low, density is higher since European

countries tend to have small areas (Appendix 1, Figure S1.3).
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Figure 2.4 Distribution of the animal pollinator literature among countries. The “major”
focus of each abstract, as resolved by CLIFF-CLAVIN, was used as an indicator of the
geographical location likely representing the main study area. The red dotted line
represents the study proportion midpoint. Half of all animal pollinator related studies

fall in only five countries. “Rest of the world” is represented by 238 countries.



The global distribution of study counts reveals geographic disparities in animal pollination
literature (Figure 2.5). Study counts are particularly low across large regions of Africa, with the
exception of Kenya, South Africa, and Madagascar. Central Asia is also underrepresented,
with no studies returned for any of Afghanistan, Turkmenistan, Uzbekistan, Kazakhstan, and
Tajikstan. It is probable that some Central Asian pollination studies were published in Russian,
meaning they were missed in the initial download. Interestingly, and as you might expect, the
geographical distribution of animal pollinator-related studies to some extent reflects the global
crop production, as shown by the high research effort in Eastern Brazil, India, Europe, and
North America (Potts et al. 2016). Indeed, the largely unproductive region of North Africa has
low study density with the exception of the Nile Delta, a fertile region of the Sahara Desert

(Elbasiouny et al. 2014).
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Figure 2.5 Global study counts for animal pollinator related studies, aggregated at
country level. Study counts were derived from the number of abstracts with their
“major” focus in each country. All oceanic and otherwise obviously incorrect mentions,
as well as mentions that could only be resolved to a unit larger than a country, were
removed. Study counts were logio-transformed. Partially transparent blue points
(“minor” mentions) represent the number of unique abstracts in which CLIFF-CLAVIN
resolved that location. “minor” mentions include all specific geographical locations
geoparsed by CLIFF-CLAVIN, with the exception of continents, oceans, and incorrectly

geoparsed locations.



Interactions between taxonomy and geography

\I also investigated the geographical distribution of pollination studies across taxa (Figure 2.6).
I assumed that a taxonomic record in an abstract was related to any geographical location in
the same abstract, and then plotted all unique abstract-species-location combinations (Figure
2.6) for the top five taxonomic orders. My analysis shows clear spatial patterns in pollination
studies for different taxa, which probably reflects some combination of the actual distribution
of pollinator species, study biases, and methodology-induced biases (see ‘Limitations’ for
more details). Given the inaccuracies inherent in CLIFF-CLAVIN, and the problem in assuming
all taxonomic names are associated with all locations in an abstract, my results should be

interpreted with caution.

Genus-level study distributions for the Hymenoptera are associated with North America, South
America, and Europe, reflecting some signal of actual distribution, although in my analysis
Africa is conspicuous by its absence. My analysis indicates Apis has the largest study
distribution, associated with North America, Europe, South and South-East Asia, Australia,
and eastern South America, with some “minor” mentions in Kenya, South Africa, and Ghana.
These results are consistent with the almost-global distribution of Apis (Han, Wallberg and
Webster 2012), an important pollinating genus non-native to large portions of its current range
(Whitfield et al. 2006). Bombus also appears to be associated with a global study distribution,
albeit reduced in Africa, Central and South-East Asia, and Australia. This is to some extent
concordant with the actual distribution of Bombus as a genus of the temperate regions, with
anthropogenic introductions to New Zealand and Tasmania in the late 1800s and early 1990s
respectively (Semmens, Turner and Buttermore 1993, Velthuis and van Doorn 2006).
However, its association with studies in Africa and Australia is surprising, given it has no
known distribution in either region. | found that all three Bombus abstracts associated with
Africa, and all three with mainland Australia were false positives. Although each mentions a
species of Bombus, the locations were inaccurate (either being mistakenly georeferenced

taxonomic names or incorrect identification of a location). In all other top hymenopteran



genera, my results show some signal of actual distribution: Centris and Melipona are found
naturally in the Neotropic and Neartic realms, Trigona in the Neotropic and Indo-Australian,
Andrena and Osmia in the Holarctic and North America, and Megachile the Western

Hemisphere and Palearctic (Michener 2007).

Order-level trends likely indicate spatial patterns of pollinator importance, in part confounded
by geographical study biases. For example, study records for dipterans are absent from
Brazil—in a region highly populated with hymenopteran studies—but concentrated in Europe
and North America. This would suggest some signal of lower ecological importance for
dipterans in Brazil relative to hymenopterans. Indeed, previous studies have suggested an
opposing latitudinal relationship for dipteran and hymenopteran pollination importance, with
fly visitation decreasing at low latitude and hymenopteran increasing at low latitude (Ssymank
et al. 2008). Similarly, chiropteran studies are concentrated in Central America, and the
Apodiformes in South America, both regions within part of their respective native distribution
(Fleming and Muchhala 2008). Some localities however are again conspicuous by their
absence. Although hummingbirds went extinct in Africa in the Miocene, nectar-feeding fruit
bats do occur in Africa and much of the tropics (Fleming and Muchhala 2008), which appears
not to be represented in my analysis. Potentially also my outputs are influenced by the
taxonomic spread of vertebrate pollinators in the Old and New World. The New World
vertebrate pollinators are more diverse, but this diversity is concentrated in the hummingbirds
and leaf-nosed bats, whereas in the Old World diversity is represented across multiple avian
orders (Fleming and Muchhala 2008). For example, Old World pollinators include nectar-
feeding Psittaciformes and Passeriformes, both of which are not considered major pollinators

in the New World (Fleming and Muchhala 2008).
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Figure 2.6 Distribution of the animal pollinator literature broken down into
taxonomic groups, for the top 12 genera and top 5 orders. Taxonomic orders are
indicated here by fill colour, consistent across top and bottom panels:
Hymenoptera (blue), Lepidoptera (pink), Diptera (orange), Apodiformes (green),
and Chiroptera (grey). Point size represents the frequency of unique abstract-
genera-location combinations. “Other genera” here consists of 1001 genera

across the Hymentopera, Lepidoptera, Diptera, Apodiformes, and Chiroptera.



Limitations

Although taxonomic and geographical entity extraction are exciting developments, and show
promise in both synthesising systematic review findings and prioritising the search path, these

technologies are not without their limitations.

I acknowledge that applying a single academic indexing tool (Scopus) will mean my initial
search likely overlooked relevant literature. Notably, relative to indexing tools such as Web of
Science (WoS) or Scopus, Google Scholar has been shown to return a greater proportion of
the relevant literature for a given search term (Beckmann and von Wehrden 2012). Both
Scopus and Web of Science have also been shown to exhibit geographical and language
biases (Mongeon and Paul-Hus 2016), which could potentially influence my outputs. However,
| reasoned that although an academic indexer might favour some geographical regions,
taxonomic groups, or years over another, and Google Scholar would give greater coverage,
an academic indexer would return a text corpus | could be confident had undergone peer-
review (Mongeon and Paul-Hus 2016). Given the underlying motive—to identify studies more
efficiently for systematic review and meta-analysis—I decided that as a proof of concept, there
was greater value in excluding the grey literature. In minimising the potential for biases, | opted
for Scopus over WoS given its greater coverage (Mongeon and Paul-Hus 2016), and a single
indexer to minimise the potential for duplication, a non-trivial risk in systematic reviews

(Rathbone et al. 2015).

Potentially, my restriction to abstracts from English-language articles biased the outputs of my
results. Articles of any language can be indexed in Scopus, with the caveat that an English
version of the abstract must be included (Scopus 2018). Choice of language should not
significantly change my outputs, for two key reasons: firstly, English is the dominant language
of the scientific literature (Tardy 2004, Hamel 2008), independent of the nationality of
researcher, meaning articles published in English are representative of a geographical

distribution greater than just native English speaking countries; and secondly, options for other



languages within Scopus are minimal—meaning their inclusion would likely not significantly
influence the distribution of our results—with the greatest contributors after English (for the
term pollinat*, returned on 16/08/18) being Portuguese (~1.7%), Chinese (~1.6%), Spanish
(~0.9%), German (~0.5%), and Russian (~0.4%). However, | cannot exclude the possibility
that the exclusion of some key languages may have biased the outputs, particularly given that

35.6% of the biodiversity conservation literature is not written in English (Amano et al. 2016).

Biases may also have been introduced by the taxonomic entity extraction algorithms, Neti Neti
and Taxonfinder. Because the scrape for taxonomic information only picks up Latin binomial
names, any species more often referred to by its common name, or any species more often
referred to in the abstract through a higher taxonomic level, will likely be underrepresented.
This may be the case for the western honey bee, Apis mellifera, which is often referred to by
its common name, and possibly also for bumble bees. | briefly explored this limitation through
investigating the frequency of common names for each of the top 4 genera (Apis, Bombus,
Osmia, and Megachile), finding that the taxonomic disparity between honey bees, bumble
bees and other taxa is likely even greater than suggested by our results, potentially by a factor
of ~2 (Appendix 1, Figure S1.5). Given the strong association of Apis and Bombus studies
with North America, Europe, and East Asia, | also expect that our analysis underestimates
geographic disparity. Groups such as hummingbirds, which are more often mentioned in the
abstract without an accompanying Latin binomial species name, may also be
underrepresented. | explored this limitation through investigating the frequency of family
names for 5 families with well-known common names (fig wasps, hawk-moths, hoverflies,
hummingbirds, and leaf-nosed bats), selected from each of the top 5 orders (Hymenaoptera,
Lepidoptera, Diptera, Apodiformes, and Chiroptera). | found that three of these families
(hummingbirds, fig wasps, and hoverflies) were likely under-represented by considering only

Latin binomials (Appendix 1, Figure S1.6).

My findings were also influenced by the approach used to verify animal species records. In

particular, in counting only Latin binomials | will have missed records. However, | reasoned



that the unambiguity of the Latin binomial would help to reduce noise. Moreover, | assumed
that, with the possible exception of taxa referred to by widely accepted common names, the
frequency of mentions for the full species record would likely correlate with higher taxonomic

levels (Correia et al. 2017).

Spelling mistakes and failure to resolve as an accepted name are two different although
closely-related limitations. Failure to resolve as an accepted name could potentially be caused
by a spelling mistake in a synonym or accepted name, or by that record being absent from the
COL as either an accepted name or synonym. Although | investigated fuzzy-matching for non-
matched records, | opted not to include this implementation here because taxonomic name
resolution became more ambiguous as a result. Fuzzy-matching returned multiple potential
matches for a given record, requiring significant input to exclude false positives. Moreover,
spelling mistakes would only be problematic for my conclusions if unevenly distributed among

taxonomic groups, which is unlikely to be the case.

CLIFF-CLAVIN may also have introduced geographical biases in the distribution of our
outputs, through the way in which it is trained and its probabilistic nature. Given that CLIFF-
CLAVIN is trained on news articles, its effectiveness on academic texts is unclear. During my
analysis, | noticed that CLIFF-CLAVIN would occasionally mistake Latin taxonomic entities for
geographic locations. For example, the genus Pavonia was mistaken for a geographical
location. There may be instances in which the algorithm’s training interacts with taxonomy to
bias our outputs. Relatedly, since CLIFF-CLAVIN is trained on news outlets based primarily
in the US, US-based studies may be overestimated (Imani et al. 2017). However, my results
for the representation of US pollination studies are consistent with Archer et al. (2014), which
applied a different methodology. The probabilistic nature of CLIFF-CLAVIN may also have
influenced my results to a small degree (indeed, running the algorithm a second time led to a

reduced number of “minor” mentions in Brazil).



Future directions

Here | have used two text-analysis tools to quantify the geographical and taxonomic
distribution of the animal pollinator literature. | showed that the literature is heavily
concentrated in the honey bees and bumble bees of North America, albeit less biased than

some authors have implied (Mayer et al. 2011).

The skewed taxonomic and geographical distribution of pollinator literature is a problem for
the robustness of animal pollinator biodiversity models. Unfortunately, solving this problem is
hard. Well-designed, long-term, and resource-intensive studies on little known taxonomic and
geographical regions are needed. However, such studies are logistically difficult, expensive,
and may not be achievable in time to inform important decisions. Another option—although
not mutually exclusive—could be mitigating the problem through fully engaging with the
available literature. Here | explore how this could be achieved by using the same text-analysis
tools to yield a more representative and comprehensive set of studies for systematic reviews
and meta-analyses. | briefly describe the conventional literature search path, as used for

example in systematic reviews, before introducing a new search process.

The conventional literature search process for a systematic review can be conceptualised as
three key phases, with the first two concerning literature retrieval (Figure 2.7): the search-term
phase, in which key words in an online database are optimised to return literature deemed
representative of the given research question; and the manual filtering phase, in which each
article is assessed according to a series of specific criteria, and then excluded if it is deemed
irrelevant. This manual filtering phase can be long and labour-intensive (Haddaway and
Westgate 2018); some authors will assess >10,000 papers (Lavoie, Verbeek and Pahwa
2014, O’Mara-Eves et al. 2015), with one review as high as 800,000 papers (Shemilt et al.
2014). The manual filtering phase is followed by a third phase: the appraisal of each selected

article, in which data are extracted to quantify the main findings of the study (Pullin and Stewart



2005). Although article appraisal can in part be addressed through text analysis (Lajeunesse

2016), here | focus on optimising the manual filtering and data-extraction phases.

Text-analysis has been introduced as a useful tool in optimising the literature filtering phase,
but uptake in ecology is still low (Westgate et al. 2015). This is in part a symptom of unintuitive
text-analysis tools, and insufficient technical skills required to use them (Westgate 2018a).
However, arguably the bigger barrier is the lack of understanding as to how text-analysis tools
relate practically to the literature search process. Although text-analysis approaches in
ecology have advanced (Nunez-Mir et al. 2016, Westgate et al. 2018b, Roll et al. 2017), as
far as | know there are no clear recommendations as to how ecological researchers should
implement these approaches in the literature search. Here, taking inspiration from the
‘revtools’ package (Westgate 2018a), | propose a text-analysis search path in the context of
the systematic review (Figure 2.7). The technology is available for this path, but not yet the
specific intuitive tools or validation in the context of pollination ecology. My proposed synthesis
path can be conceptualised as five key phases: search term, topic similarity, taxonomic and
geographic identification, manual filtering, and appraisal. Below | briefly describe each of the

first three modified phases:

1. Initial search terms should be used to return a broad body of literature for a given field.
Fewer and less specific search terms should be used across multiple databases,
aiming to return all of the relevant literature irrespective of a potentially high false
positive rate. This less restrictive initial search will require less researcher input, thus
reducing the time required. Such an approach will also reduce the likelihood of
overlooking relevant literature through overly specific search terms.

2. The key filtering step should be shifted downstream to a text-analysis filter. Topic-
clustering algorithms should be used to exclude irrelevant articles. For example, in the
context of the potential pollination literature returned by Scopus, topic-clustering can
be used to exclude papers on the flower-pollination algorithm, an area of computer

science unrelated to pollination ecology. Topic clustering is more reproducible than



database search terms, less subject to researcher methodology, more representative
of overall content, and not subject to differences across database.

Taxonomic and geographical entity extraction algorithms should be used to indicate
the geography and taxonomy of each study. Taxonomic group and geography can be
used to prioritise for underrepresented taxa or regions, as well as to identify likely

literature for regional or taxonomic systematic reviews.
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Figure 2.7 Reducing the length of the “synthesis gap” for ecological systematic
reviews. The conventional synthesis gap (a) proceeds through three primary steps: the
search term phase, manual filtering, and appraisal. My proposed, more efficient
synthesis gap (b) proceeds through five steps: a less-exclusionary search term phase;
text-analysis prioritisation (topic similarity and taxonomic/geographic filtering or
prioritization); manual filtering, and appraisal, with both the search term and manual
filtering stages shortened. Solid lines represent the research volume between each
stage, which in my proposed process is greater, owing to the increased taxonomic and
geographic representativeness. Dotted lines represent the change in research volume
for each selection step. Red lines represent the beginning and ends of the synthesis

gap, from the practice of science to the synthesis of evidence.



Text-analysis tools could also be applied to answer other research questions in the field of
animal pollination, such as the identification of likely plant-pollinator interactions and the
estimation of the number of pollinating species. Here | briefly explore how these research

guestions might be addressed.

Likely plant-pollinator interactions could be identified through investigating the strength of
animal-plant associations across the pollination literature. For example, a plant and animal
species frequently occurring in the same abstract would imply a closely-related pair, while an
animal-plant combination occurring infrequently would imply a weak or non-existent
interaction. These animal-plant networks could then be validated with observational plant-
pollinator interaction data, using an approach similar to Tamaddoni-Nezhad et al. (2013), who
showed that text-derived food web networks approximated empirical data. Such a database
of likely interacting plant-pollinators could be invaluable for pollinator biodiversity modelling.
For example, we might be able to predict better the likelihood of co-extinctions, as well as

improve estimations of global and regional pollinator importance.

| also envisage that an accurate lower bound for the number of pollinating species could be
estimated through text-analysis. This would build on the work of Ollerton (2017) and
Wardhaugh (2015), who estimated there to be ~350,000 described species of animal
pollinator, based on the number of species in key pollinating groups. | propose that within
taxonomic groups, the number of pollinating species could be estimated through quantifying
the rate at which unique animal species accumulate as pollination text volume increases. This
would be analogous to the species-effort rarefaction curve; a mathematical relationship
between pollinator text volume (effort) and species number, revealing how the number of
unique pollinators increases as a function of research volume (effort). Such work would likely
require scraping of full articles, rather than just abstracts as presented here. Full-text scraping

presents additional problems regarding rapid article download and permissions, file format,



text volume quantity, but the benefits relative to abstract scraping are known (Westergaard et
al. 2018). Similar methodologies have been applied to quantify the number of species on
Earth, both for the flowering plants (Joppa, Roberts and Pimm 2011) and for all Eurkaryotes
(Mora et al. 2011). In the context of pollinator biodiversity models, good estimates of the
diversity and number of pollinating species are fundamental for understanding how

ecosystems will respond to future environmental change (Ollerton 2017).

Summary

Here | have shown—using a novel combination of informatics tools—how text-analysis can be
used to quantify the taxonomic and geographical distribution of the animal pollinator literature.
In doing so | have confirmed that the literature is heavily focused on the honey bees and
bumble bees of North America and Europe, although many studies also exist for other taxa
and regions. This skewed taxonomic and geographical distribution likely has a large impact
on the robustness of systematic reviews and meta-analyses of animal pollinator decline. | have
shown how text-analysis might to some degree mitigate these data biases. Text-analysis could
be used to make the literature search process more efficient, as well as increase the
taxonomic and geographic representativeness of the studies fed into systematic reviews and
meta-analyses. To this end, | briefly outlined a new literature search process, using an
ecological systematic review as an example for how text-analysis might contribute. | have also
explored some potential broader applications of text-analysis in pollination ecology, such as
the identification of likely plant-pollinator interactions and the estimation of the number of
pollinating species, both of which could feed into more robust systematic reviews and meta-
analyses in the future. Text-analysis undoubtedly shows promise in increasing our
understanding of the rapidly growing pollination ecology literature, and in turn the robustness

of studies estimating pollinator decline.



Chapter 3: Global effects of land-use intensity on local

pollinator biodiversity

Abstract

Pollinating species are reported to be in decline globally, with land use an important driver.
However, most of the evidence on which these claims are made is patchy, and generally
based on studies with low taxonomic and geographic representativeness. Further research
incorporating a broader spectrum of taxa and geographies is required. Here, | model the
effect of land-use type and intensity on global pollinator biodiversity, using a database of
local-scale biodiversity covering 303 studies, 12,170 sites, and 4,502 unique species judged
to be pollinating animals. Relative to a primary vegetation baseline, | show that low and
intermediate levels of intensity can have beneficial effects on pollinator biodiversity. Within
most anthropogenic land-use types however, intensity is associated with reductions in
pollinator species richness and total abundance, particularly in urban (43% richness and
62% abundance reduction compared to the least intensive urban sites), plantation (38%
richness reduction), and pasture (75% abundance reduction) areas. | further show that on
cropland, the strongly negative response to intensity is restricted to tropical areas, and that
the direction and magnitude of response differs among taxonomic groups, with significantly
higher pollinator biodiversity for some taxonomic groups (e.g. flies) on intensively fertilised
cropland. My findings confirm widespread effects of land-use intensity on pollinator
biodiversity, most significantly in the tropics, where climate and land use are predicted to

change rapidly in the coming decades.



Introduction

Pollinating species, particularly insect pollinators, are reported to be in decline, with change
in land-cover, land-use intensity, and climate thought to be the primary drivers (Potts et al.
2010; Steffan-Dewenter and Westphal 2007; Woodcock et al. 2016; Winfree et al. 2011;
Soroye et al. 2020; IPBES 2017; Biesmeijer et al. 2006). In the media, insect pollinator
biodiversity change has been reported to constitute an “ecological Armageddon” (Embury-
Dennis 2017). However, the evidence on which these claims are made is patchy and
contested, based on studies with low taxonomic and geographic representativeness
(Sanchez-Bayo and Wyckhuys 2019; Martin et al. 2019; Powney et al. 2019; Lister and
Garcia 2018; Hallmann et al. 2017). For pollinators more broadly, declines have been
reported in wild bees, honeybees, hoverflies, butterflies and moths, flower-visiting wasps,
birds, and mammals (see Ollerton 2017 for a summary of the evidence), but comprehensive
studies of change tend to be biased towards North America and Europe (Saunders et al.
2020), which are unlikely to be globally representative (De Palma et al. 2016). Moreover,
even within well-studied taxonomic groups and regions, the magnitude and direction of
change can vary depending on methodological approach, spatial scale, and metric of
biodiversity change (Kunin 2019; Macgregor et al. 2019). Recent research indicates there
may be pollinator information for other geographic regions and taxonomic groups, previously
untapped in synthetic analyses of pollinator biodiversity change (Millard et al. 2020a). Given
the value of animal pollination to the global economy, at an estimated $235-577 billion US
dollars per annum (IPBES 2017), further research considering multiple metrics of

biodiversity, across a broader spectrum of taxa and geographies, is required.

The reliance of global crop production on animal pollinators makes pollinator biodiversity
research highly relevant to policy-makers. More than 75% of globally important food crops
are at least partially reliant on animal pollination, including fruits, vegetables, coffee, cocoa
and almonds (Klein et al. 2007). Three recent policy initiatives demonstrate recognition from

the international community that pollinator biodiversity change represents a significant



problem, and needs to be addressed: 1) the EU Pollinators Initiative (European Commission
2018) called for improved knowledge of declines and causes, action to tackle drivers, and
raised awareness across society on the importance of pollinators; 2) the International
Pollinator Initiative plan of action aims to coordinate global action for pollinator conservation
(FAO 2018); and 3) more broadly, the draft post-2020 framework of the Convention on
Biological Diversity (Secretariat of the Convention on Biological Diversity 2020) describes

the need for the sustainable use of biodiversity to support the productivity of ecosystems.

Much of the Earth’s terrestrial surface is subject to anthropogenic use. Maore than 75% of the
terrestrial world exhibits direct evidence of historical or current transformation (Ellis and
Ramankutty 2008), with just over 50% (~67 million km?) currently used by humans (Hooke et
al. 2012). This area is comprised of ~44% for agriculture and forestry, and ~7% for
infrastructure including urban areas (Hooke et al. 2012). Within both natural and disturbed
land-use types, intensity of human use varies markedly. Broadly capturing the inputs used in
managing land, high-intensity farming refers to a suite of technological practices designed—
although not always successfully—to increase yield (Donald et al. 2001). Treatments of the
land are often in the form of chemical applicants, such as pesticides, fungicides, herbicides,
and fertilisers, as well as mechanical management (tillage). Such intensive agricultural
practices are commonplace in much of the modern world (Benton et al. 2002; Benton et al.

2003).

Anthropogenic land-use and land-use intensity are interrelated drivers of pollinator
biodiversity change (Tscharntke et al. 2002; Kennedy et al. 2013; IPBES 2017). Much of the
research investigating land-use effects on pollinator biodiversity has demonstrated the
importance of landscape-level habitat composition, often as distance to natural habitat
(Ricketts et al. 2008) and distance to managed land (Klein et al. 2003; Kennedy et al. 2013),
or habitat fragmentation (Xiao et al. 2016) and edge density (Martin et al. 2019). Land-use
intensity effects are generally typified by chemical application (Woodcock et al. 2016;

Goulson 2013; Pisa et al. 2015; Sanchez-Bayo and Goka 2014; Pilling and Jepson 1993).



Pesticides such as neonicotinoids have been a focal point of study, given their association
with declining bee populations (Goulson 2013; Pisa et al. 2015; Woodcock et al. 2016),
honey bee health (Sanchez-Bayo and Goka 2014), and bumblebee behaviour (Crall et al.
2018). Other chemical inputs such as fungicides and herbicides have also been subject to
investigation, tending to have indirect effects on pollinator biodiversity by increasing
pesticide toxicity (Schmuck et al. 2003; Pilling and Jepson 1993) and reducing floral diversity
(Morandin and Winston 2005). Similar indirect effects have also been shown for fertiliser
application. For example, nitrogen-based fertilisers reduce plant species diversity (Ridding et
al. 2020), and dispense with the requirement for clover field crop rotation, further reducing

floral availability for pollinators (Goulson et al. 2008).

Pollinator response to landscape-level land use is mixed, with the magnitude and direction of
change differing among taxonomic groups. For example, some bees, butterflies, syrphid
flies, and nectarivorous pollinating birds have been found to favour open, intermediate-level
forested areas of semi-natural grassland or agroforestry (Michener 2007; Deans et al. 2007;
Kuussaari et al. 2007; Tscharntke et al. 2008). Similarly, species rich and abundant wild bee
communities have been found in urban environments, indicating that for some species
anthropogenic activity can be beneficial (Hall et al. 2017). For both open forested and urban
areas, benefits to pollinators can in part be attributed to floral availability (Goulson et al.
2008; Hall et al. 2017). More broadly however, differences in pollinator response are often
attributed to traits (Ockinger et al. 2010; Burivalova et al. 2015; Montero-Castafio and Vila
2012; De Palma et al. 2015), such as dietary specialism, mobility, and nesting behaviour
(Aguirre-Gutiérrez et al. 2016; Shuler et al. 2005). Trait data are not available for many
pollinating species, but given that phylogeny to some extent predicts traits, one would expect

broad differences in response among taxonomic groups (Cusser et al. 2018).

Differences in pollinator response to intensity are also likely between tropical and non-
tropical regions. There are a number of reasons why this is the case. First, temperate non-

tropical regions have a longer history of agricultural activity, which may have acted to filter



more sensitive species (Balmford 1996), meaning more recent shifts towards intensive
agriculture may have a smaller effect. Second, with the exception of high laititude Arctic
pollinators (Haye et al. 2013), tropical biodiversity has been reported to be more sensitive to
the effects of climate change (Barlow et al. 2018), which may magnify the effect of land-use
(Williams et al. 2020b). In terms of insect pollinators specifically, tropical insects are thought
to exist closer to their thermal tolerance limits, meaning small magnitude changes in
temperature have a disproportionate effect on biodiversity (Deutsch, et al. 2008). Third,
functional specialisation tends to be higher in tropical pollination systems (i.e. there is a
narrower breadth of visitors to a flower across broad taxonomic levels), which may also
relate to community sensitivity to land-use change. Although recent research has addressed
patterns of overall biodiversity change between geographical zones (Blowes et al. 2019;
Newbold et al. 2020), for pollinating taxa the extent to which response to land-use intensity

differs between tropical and non-tropical regions is unclear.

| present the most comprehensive global space-for-time synthesis of pollinator responses to
land-use intensity. For the first time, | test for global differences in responses among land-
use types, taxonomic groups, geographic regions, and biodiversity metrics. | do so using two
global compilations of data: 1) The PREDICTS database, a global compilation of site-level
ecological survey data across different land uses and land-use intensities (Hudson et al.
2017), which was originally built to model the overall effect of human-land use on global
terrestrial biodiversity (e.g. Newbold 2015a); and 2) a new database of animal species
judged to be animal pollinators (see Millard et al. 2020a and ‘Methods’). My final dataset
included 3,862 invertebrate and 640 vertebrate species identified as potential pollinators,
across 303 studies and 12,170 sites, primarily across North and South America, Europe, and
Africa. | hypothesised that land-use intensity would decrease site-level biodiversity (species
richness, Simpson diversity, and total abundance) for pollinating species overall, but that
response would differ between taxonomic orders, and would be more negative in the tropical

zone than elsewhere. Specifically, | set out to answer three questions related to land-use



intensity and global pollinator biodiversity: 1) What are the overall effects of land-use
intensity on pollinator biodiversity across all land-use types? Then focusing on croplands, for
which there is the most extensive data: 2) How does the effect of land-use intensity on
pollinator biodiversity differ between tropical and non-tropical areas? and 3) How does

pollinator response to land-use intensity vary among taxa?

Methods

Pollinator dataset construction

I built an animal pollinator dataset through a semi-automatic approach, combining an
automatic text-analysis method (see Millard et al. 2020a) with manual inspection of the

automated output. Here | describe the full methodology used to derive this dataset.

| first created a list of possible pollinating animal genera through automatic text analysis of
the pollination literature. | used an initial automated search to avoid biasing towards well-
known pollinators, and to markedly reduce the input required in searching. | considered the
pollination literature to be any primary research article published in English returned through
a search for the term “pollinat*” in Scopus, and which mentioned an animal species in the
abstract. | considered a possible pollinating genus to be any animal genus appearing as part
of a Latin binomial in a pollination-related abstract returned from Scopus. Genus scraping
was accomplished using the Taxonfinder and Neti Neti algorithms implemented in the
‘taxize’ R package (CRAN 2018), with animal species confirmed through a series of
character string matches to the Catalogue of Life (see Millard et al. 2020a for a detailed

methodology).

For each possible pollinating genus, | then read the abstracts in which these animals
appeared, searching for evidence confirming that genus as pollinating. For any situation in
which the abstract was inconclusive, | also searched the full text of the paper. For each
confirmed pollinating genus, | then assigned a level of confidence between 1 and 4 based on

the type of evidence, following Ollerton and Liede (1997): 1) experimental evidence



confirming pollination; 2) evidence of pollen carrying; 3) evidence of nectar/pollen feeding; 4)
evidence of non-destructive/non-predatory flower visitation. | read abstracts for each genus
searching for the highest level of evidence, either until | could be sure that the confidence
value should be 1, or | ran out of abstracts for that genus. Non-destructive flower visitor
refers to any animal which visits a flower without causing damage to the plant. This meant
the exclusion of ants, which are typically referred to as poor pollen vectors, given that they
damage pollen through secretions from the meta-pleural gland (Dutton and Frederickson
2012). Non-predatory flower visitor refers to any animal which visits for some purpose other
than predation. This meant the exclusion of animals such as crab spiders, which predate on
pollinators during visitation, and therefore contribute minimally or negatively to pollination
(Dukas and Morse 2003). | did not classify broad statements as evidence for pollination—for
example, one study stated that Phylidonyris novaehollandiae (Latham, 1790) is a “key
pollinator” (Myers et al. 2012)—unless it was associated with specific evidence reinforcing
that statement, or some claim that pollination in that genus is “well-known” or “widely

acknowledged”.

Given that | only had direct evidence for a sample of all pollinating genera, | then searched
for higher-level groups of likely pollinators. From the confirmed pollinators in the original list
of genera, | identified all unique families with at least one pollinator. For each family, |
assessed the breadth of evidence for pollination through consulting the abstracts and
taxonomic group reference books. For any family with evidence of pollination across multiple
branches of that family, and no evidence of any species definitely not pollinating, | assumed
that the whole family is pollinating. If unable to extrapolate across the whole family, | then
searched progressively lower taxonomic groups (i.e. subfamily, tribe, subtribe), searching for
the point at which we could be relatively confident that the entire group contributes to
pollination. If unable to extrapolate for a given group, | kept only the genera with direct

evidence. For example, within the family Macroscelididae (elephant shrews), | found only



one genus (Elephantulus) with pollination evidence, and no evidence across the rest of the

family, meaning | kept only that genus.

To compile the final list of pollinators, | merged all genera identified directly as pollinators,
and then all taxonomic groups identified indirectly, with all biodiversity records in the
PREDICTS database. Any record in the PREDICTS database not for a pollinating genus or
extrapolated taxonomic group was thereby filtered out. As a result, specific sites or studies
were only kept of it they were represented by at least 1 pollinator record. | merged direct
evidence (i.e. confidence levels 1-4) first to pick up each species record at its highest level of
confidence, and to ensure that each species record is assigned only one confidence value.
PREDICTS does not record additional taxonomic ranks between family and genus, so for
any species extrapolated at a taxonomic level below the level of family (i.e. subfamily, tribe,
subtribe), | consulted compiled genera lists for each group, using taxonomic references and
Wikispecies (see ‘Supplementary Data 2’ in Millard et al. 2021a for the list of taxonomic
references), and then filtered these genera from PREDICTS. As an additional check of our
final list of likely pollinating species, | sought the opinion of experts in pollination ecology.
Initially | shortlisted a set of pollination experts, using my knowledge of the pollination
literature and contacts made through conferences. From this initial shortlist, | then selected a
group of individuals such that | had expert opinion across a breadth of geographic regions
and taxonomic groups. From this abridged list, | then sent lists of the likely pollinating genera
in PREDICTS to 7 experts (OA, SG, EK, MK, JO, Z-XR, MS; see Appendix 2, Table S2.15),

and removed any taxa identified as highly unlikely pollinators.

Effect of land use and land-use intensity on global pollinator biodiversity

| used the PREDICTS database to model responses of animal pollinators to land-use type
and intensity (Hudson et al. 2017). The PREDICTS database is structured such that each
site is nested at a series of levels (Appendix 2, Figure S2.13), allowing one to account for
variation owing to study methodology. The database contains variables for land-use intensity

(minimal, low, and high) and land-use type (primary vegetation, mature secondary



vegetation, intermediate secondary vegetation, young secondary vegetation, plantation,
pasture, cropland, and urban). Land-use intensity for each land-use type is defined
according to a series of variables, such as fertiliser and pesticide application, mechanisation,

and hunting (see Newbold et al. 2015a for more details).

After merging the PREDICTS database with my set of likely pollinating species | performed a
series of data-processing steps. | removed any sites for which land-use type and land-use
intensity was unknown. | also removed sites in secondary vegetation at an unknown stage of
recovery. | combined the factors for land-use intensity and type to create a single variable
(henceforth referred to as LUI), following the methodology of De Palma et al. (2016). After
combining land-use intensity and type, | then removed the class “Mature secondary
vegetation-Intense use”, which was represented by only 5 sites, and “Intermediate
secondary vegetation-Intense use”, which was represented by only 23 sites. After removing
these factors, site representation was = 43 sites for all land use type and land-use intensity
combinations (see Appendix 2, Table S2.19). | then calculated site-level species richness
(the number of uniquely named species sampled at a site), Chaol-estimated species
richness (the number of species at a site controlled for abundance; Chao et al. 2005), total
abundance (the sum of all species sampled abundances at a site), and the Simpson
diversity index (the reciprocal of the sum of squared proportional abundances for all species
sampled at a site). Sampling effort was accounted for by dividing the abundance values for
each measurement by the sampling effort (rescaled to a max value of 1 for each study) for
that record, as in De Palma et al. (2016). For any subsequent analyses | worked only from
the sampling effort adjusted measurements. Given sampling effort adjustments, and that raw
abundances were in some cases measured as densities, many total abundances will be

non-integer values.

| built generalised linear mixed-effects models with a Poisson error distribution for species
richness and Chaol-estimated species richness (Chao et al. 2005), and linear mixed-effects

models for Simpson diversity and total abundance. In an initial set of models all biodiversity



metrics were fitted as a function of land-use intensity, land-use type, and their interaction, for
all likely pollinators in PREDICTS (see Appendix 2, Table S2.17). | then built a set of models
predicting each biodiversity metric as a function of LUI, for the same set of pollinators. | did
not use a generalised model with Poisson errors for total abundance or Simpson diversity
because most recorded measurements are not integer counts of individuals. Instead | loge-
transformed all total abundance and Simpson diversity values (adding one because of zero
values) to normalise the model residuals. Due to the nested nature of the database (see
Appendix 2, Figure S2.13 and Hudson et al. (2017)), | included a random intercept of study
identity to account for variation in sampling methods, sampling effort and broad geographical
differences among studies, and a random intercept of spatial block within study to account
for the spatial structuring of sites. An additional (observation-level) random intercept of site
identity was included in the species richness model, to control for the over-dispersion
present in species richness estimates (Rigby et al. 2008). Random-effects structures were
selected to minimise AIC values. | checked for overdispersion in the species richness
models using the function GLMEROverdispersion in the R package StatisticalModels
(Newbold 2015b). | compared each model against an intercept-only model, and discarded
any main model for which AIC was greater than the null model (see Appendix 2, Table S2.18

for pseudo R squared values for all significant models).

| carried out a series of additional validation analyses for our set of LUl models. 1) | checked
for study-level spatial autocorrelation in the residuals of any significant model, using the
Moran’s | test (Appendix 2, Figure S2.5). 2) | checked the extent to which a negative
binomial zero-inflated model for total abundance would have differed from a linear model
approach (Appendix 2, Figure S2.1). 3) | checked the extent to which the fixed effects would
have differed if we had fit a model with climatic variables as potentially confounding
covariates (Appendix 2, Figure S2.3), including both the maximum temperature of the hottest
month and the total precipitation of the wettest month—both over the 12 months previous to

the end data of each sample—which have previously been indicated as important biological



variables (Williams et al. 2020a). 4) | jack-knifed the sites for each significant model by
continental region to check the extent to which geographic biases influenced our predictions
(Appendix 2, Figure S2.2). 5) | checked the extent to which an abundance-controlled
estimate of species richness (Chaol-estimated species richness; Chao et al. 2005) would

have differed from species richness alone (Appendix 2, Figure S2.4).

Effect of land-use intensity on cropland pollinator biodiversity

| focused on cropland in our remaining analyses, given the importance of animal pollination
to crop production. | built 3 models for all potential pollinating species, modelling each of
three biodiversity metrics (species richness, total abundance, and Simpson diversity) in
cropland as a function of land-use intensity (minimal, low, high), geographical zone
(temperate/tropical), and their interaction. | included minimally used primary vegetation in
these models as a baseline. Given that the structure of this baseline differs among sites—
particularly between tropical and non-tropical areas (see Appendix 2, Figures S2.11 and
S2.12)—and that this may affect our predictions for pollinator biodiversity, | also built a set of
models with a high (>= 60% cover) and low (<= 40% cover) forest cover baseline, using
Hansen (2013) forest cover data (Appendix 2, Figure S2.6). | also carried out two additional
validation analyses. 1) | checked whether unequal site number between our tropical and
non-tropical data predicted the size of our 95% confidence intervals. Specifically, |
resampled 1,000 sites from each of the tropical and non-tropical sites a total of 100 times,
and then for each group of 2,000 (tropical and non-tropical) fitted total abundance as a
function of land-use intensity, geographical zone, and their interaction. | then plotted the
distribution of the size of the 95% confidence intervals for all models (Appendix 2, Figure
S2.7). 2) | checked whether response to land-use intensity between the tropics and non-
tropics would have been the same if we had analysed only the main crop pollinating groups
(Appendix 2, Figure S2.8; i.e. bees, wasps, beetles, thrips, flies, birds, and bats; see Ollerton

2021).



| also built 3 models for a vertebrate and invertebrate cropland subset of the database,
modelling the same biodiversity metrics as a function of land-use intensity, taxonomic order,
and their interaction, again including minimally used primary vegetation as a baseline. My
taxonomic subset included the better-sampled invertebrate orders Hymenoptera,
Lepidoptera, Diptera, and Coleoptera, and the vertebrate orders Apodiformes and
Passeriformes, and represented 3006 sites in total (see Appendix 2, Table S2.25). For both
my geographical zone and taxonomic order models, | selected from the same set of random-
effects structures (as in the main models), aiming to minimise AIC values. | tested each
model against an intercept-only model and a model with one fixed effect for land-use
intensity, and discarded any main model for which AIC was greater than the null model (see

Appendix 2, Table S2.18).

| also explored the effect of a continuous variable describing a specific aspect of land-use
intensity (fertiliser application rate) on pollinator biodiversity, specifically for cropland. | used
Earthstat fertiliser data at a spatial scale of 5 x 5 minutes—equivalent to 10 x 10 km at the
equator—Ilargely for the years 1999-2000 (Mueller et al. 2012; West et al. 2014), aggregated
as the total application in kg per hectare for nitrogen, phosphorous, and potassium on 17
major crops (see Appendix 2, Table S2.34 for the full list crops). | aggregated the Earthstat
fertiliser data by summing the per hectare application rate rasters for all crop/fertiliser
combinations, and then extracting the summed fertiliser values at each site (see Appendix 2,
Figure S2.9, note that site-level geographic distribution is lesser relative to our overall
pollinator biodiversity models). Given that the spatial scale of this aggregated application
rate data is greater than that of specific sites, my fertiliser metric refers to application rate in
the surrounding landscape, rather than at that specific site. | chose to use fertiliser data
given its availability at the global scale, reasoning that its application would both drive
change itself, and broadly act as a surrogate for intensity. | built models for all potential
pollinating species, modelling each of three biodiversity metrics (species richness, total

abundance, and Simpson diversity) in cropland as a function of log10(fertiliser application



rate + 1), geographical zone (temperate/tropical), and their interaction. | also built models for
the invertebrate and vertebrate subset (Hymenoptera, Lepidoptera, Diptera, Coleoptera,
Apodiformes, and Passeriformes), modelling each of three biodiversity metrics as a function
of total fertiliser application rate, taxonomic order, and their interaction. | compared each
model against an intercept model and a model with one fixed effect for total fertiliser
application rate, and excluded any main model for which AIC was greater than the null
model. As a supplement to our total fertiliser application rate analyses, | also used PEST-
CHEMGRIDS to build an analogous set of total pesticide application rate models (Figure 3.6;
Maggi et al. 2019). PEST-CHEMGRIDS represents 20 of the most common pesticides for 6
individual crops and 4 aggregated crop groups, again at a scale of 5 x 5 minutes (Appendix
2, Figure S2.10). All analysis and data processing were carried out in R v.4.0.3 (R Core

Team 2020).



Results

Pollinator dataset

| identified 1,013 possible pollinating genera across 3,974 abstracts in the initial automatic
search of the pollination literature. After reading the abstracts associated with each genus, |
confirmed 545 genera as likely pollinators at confidence levels 1-4. These 545 genera
represented 141 unique families, of which 46 families, 10 subfamilies, and 5 tribes were
judged to consist entirely of pollinators. Whilst consulting literature prioritised by the
automatic search, | also identified an additional 51 genera with direct pollination evidence,
which | assigned a confidence level between 1 and 4, and 18 additional families with
extrapolated evidence. Filtering all expert-assessed pollinators from the PREDICTS
database returned records for 4502 species in total, sampled at 12, 170 sites (see Millard et
al. 2021a ‘Data availability’ for the final list of pollinating species in PREDICTS). After
selecting only sites in which land-use intensity and type were recorded in the PREDICTS
database, a total 8,639 sites remained. The number of sites was highest in Europe (26.2%),
North America (24.4%), and Africa (20%), and lowest in South America & the Caribbean

(12.3%), Oceania (15.2%), and Asia (8.6%) (Figure 3.1).
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Figure 3.1 Data on species in the PREDICTS database identified as likely pollinators, after

automatic text-mining, manual filtering, and expert consultation. A) The global distribution

of PREDICTS sites containing likely pollinating species, for which both the land-use type

and intensity of that site are known (nsies = 8639). B) The taxonomic distribution of likely

pollinating species in PREDICTS for all sites (Nspecies = 4502). The number of species

indicated here will be an underestimate of the number of pollinating species in PREDICTS,

since this figure only includes records for which there is a full scientific binomial in the

database. Some biodiversity records in the PREDICTS database are recorded above the

level of species. C) The source of information (direct evidence at the genus level or

extrapolated to groups based on information for groups at higher taxonomic levels) for

pollinators in PREDICTS, broken down by taxonomic class. In both B and C, there are four

taxonomic Classes: Insecta (black), Aves (purple), Mammalia (red), and Reptilia (yellow).

The reptiles are represented by only 5 species with ‘Direct’ confidence (see Appendix 2,

Table S2.16).



Effect of land use and land-use intensity on global pollinator biodiversity

With human land-use type, land-use intensity, and their interaction fitted separately,
increasing land-use intensity from minimal to intense use was associated with a significant
change in pollinator biodiversity (species richness, F = 9.4384; total abundance, F = 4.8075,
p <0.01; Simpson diversity, F = 11.6691, p < 0.01; Figure 3.2; see Appendix 2, Table S2.17
for ANOVA tables of land-use intensity and type fitted separately). Land-use type was also a
significant predictor (species richness, F = 8.9440; total abundance, F = 8.0346, p < 0.01;
Simpson diversity, F = 4.4150, p < 0.01; see Appendix 2, Table S2.17), although declines
occur more strongly within a land-use type as opposed to among land-use types (note that p
values are not included for species richness since deriving these from F values for mixed

effects generalised linear models is problematic).

Fitting human land-use type and intensity as a combined ‘LUI' variable, relative to the
primary vegetation minimal use baseline, biodiversity was often higher at low intensity
(Figure 3.2). Indeed, with the exception of cropland and young secondary vegetation, all
land-use types had species richness and total abundance significantly greater than the
baseline, for at least one of low or intermediate intensity (Figure 3.2). Effects of land-use
intensity were strongest in urban areas, with a 43% reduction for species richness and 62%
for total abundance, between minimal and intense use. Plantation forest also experienced
strong declines, decreasing by 38% for species richness. For anthropogenic land uses the
weakest effects of land-use intensity were seen in pasture and cropland. Species richness
did not decline significantly for pasture—although there was a 75% decline for total
abundance—or for cropland for both total abundance and species richness. Young
secondary vegetation did not significantly differ for total abundance, but for species richness
declined between minimal and high intensity by 16%. All other secondary-vegetation types
(mature and intermediate secondary vegetation) did not show significant differences in

pollinator biodiversity among intensity levels (Figure 3.2). The AIC value for my Simpson



diversity LUI model was greater than the intercept-only model, meaning it was excluded from
further analysis (see Appendix 2, Table S2.18). A zero-inflated negative binomial model for
total abundance did not markedly change my predictions (Appendix 2, Figure S2.1).
Similarly, neither did jack-knifing total abundance and species richness by continent
(Appendix 2, Figure S2.2), including environmental covariates (Appendix 2, Figure S2.3), or
controlling for abundance in our measure of species richness (Figure S2.4). There was
significant spatial-autocorrelation in the residuals of only a small proportion of studies (2.33%

of species richness studies and 4.65% of total abundance studies; Appendix 2, Figure S2.5).
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Figure 3.2 Responses of pollinator biodiversity to LUl (a combined variable of land-use type
and intensity). Each panel represents a linear or generalised linear mixed-effects model for: A)
species richness; and B) total abundance. | excluded Simpson diversity here since AIC was
greater for the main model than the intercept-only model. Colours represent land-use type:
orange (primary vegetation, Primary), green (mature secondary vegetation, MSV), yellow
(intermediate secondary vegetation, ISV), blue (young secondary vegetation, YSV), dark orange
(plantation forest, Plantation), pink (Pasture), grey (Cropland), and black (Urban), and point
shape represents land-use intensity: circle (minimal use), triangles (light use), and squares
(intense use). Effect sizes were adjusted to a percentage by drawing fixed effects 1,000 times
based on the variance-covariance matrix, expressing each fixed effect within each random
draw as a percentage of the baseline (primary vegetation minimal use), and then calculating
the median value (shown as points) and 2.5™ and 97.5™ percentiles (shown as error bars). See
Appendix 2, Table S2.19 for the number of sites and Tables S2.20 and S2.21 for the model

summaries.




Effect of land-use intensity on pollinator biodiversity within croplands

Land-use intensity had a divergent effect on cropland pollinator biodiversity between the
non-tropical and tropical geographical zones (Figure 3.3). In the non-tropical zone, species
richness and total abundance did not differ significantly among cropland intensity classes,
and were significantly higher in minimal-intensity cropland compared to the primary-
vegetation baseline. In contrast, in the tropical zone, species richness and total abundance
decreased between primary vegetation and high-intensity cropland by 44% and 49%
respectively. Forest cover of the baseline did effect change relative to cropland, with
relatively bigger declines from a low forest cover baseline, although the relative difference
within cropland remains largely unchanged (Appendix 2, Figure S2.6. Greater variation in
non-tropical areas is not predicted by high sample size (Appendix 2, Figure S2.7), and
response for the main crop pollinators is likely consistent with all pollinators (Appendix 2,
Figure S2.8). The AIC value for my Simpson diversity zone model was greater than the
intercept-only model, meaning it was excluded from further analysis (see Appendix 2, Table
S2.18). Response to total fertiliser application rate between the non-tropical and tropical
zones was also insignificant for all of species richness, total abundance, and Simpson

diversity (Appendix 2, Table S2.18), meaning it was excluded from further analysis.

Increasing land-use intensity in croplands had varying effects among taxa (Figure 3.4).
Relative to primary vegetation, abundance declines at high intensity for the invertebrate
pollinators were greater than 70% for all orders, and as high as 80% for the Lepidoptera and
Diptera. The most consistent invertebrate declines were in the Lepidoptera, exhibiting a
negative response across a gradient of intensity for species richness, total abundance, and
Simpson diversity. For flies on the other hand, relative to minimally used cropland,
intermediate levels of intensity were associated with higher species richness and total
abundance. For the vertebrates, the Apodiformes exhibited a strong negative response to

land-use intensity, declining by at least 20% from medium-intensity cropland to primary



vegetation for all three metrics (high-intensity cropland was not sampled for this taxonomic
group). The Passeriformes experienced a significant reduction from the baseline to high
intensity, of 30% for total abundance, 36% for species richness, and 26% for Simpson

diversity.

Response to total fertiliser application rate in surrounding cropland landscape differed
strongly in magnitude and direction (Figure 3.5). Both Hymenoptera and Lepidoptera
showed a strong negative response to increasing fertiliser application rate for both species
richness and total abundance. In particular, an increase of 1000kg/ha in fertiliser application
rate was associated with a reduction of 44% in hymenopteran total abundance, whereas
lepidopteran abundance fell 50% over the same range. Dipteran richness and abundance,
on the other hand, increased markedly by 760% and 374% respectively. Coleopteran
response to total fertiliser application rate was insignificant for all of species richness, total
abundance, and Simpson diversity. For the vertebrates, the Apodiformes increased by 163%
for species richness, whereas the Passeriformes experienced no marked change for any of
species richness, total abundance, or Simpson diversity. Although the AIC value for my
Simpson diversity model was less than the null model (Appendix 2, Table S2.18), all
interactions between total fertiliser application rate and taxonomic order for Simpson
diversity were insignificant (Figure 3.5). On the whole the direction and magnitude of the
response for pesticide application rate is similar to that of fertiliser application rate (Figure

3.6).
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Figure 3.3 Response of pollinators to land-use intensity on cropland, for non-tropical and
tropical sites. Each panel represents a linear or generalised linear mixed-effects model for
a given biodiversity metric: A, species richness; and B, total abundance. | excluded
Simpson diversity here since AIC was greater for the main model than the intercept-only
model. Colours represent the land-use intensity level, with primary vegetation (minimal
use) as the reference factor: black (primary vegetation, minimal use); yellow (cropland,
minimal use), orange (cropland, light use), and red (cropland, intense use). Effect sizes
were adjusted to a percentage by sampling fixed effects 1,000 times based on the
variance-covariance matrix, expressing each fixed effect as a percentage of the value in
primary vegetation for that geographical zone, and then calculating the median value
(shown as points), and 2.5" and 97.5" percentiles (shown as error bars). See Appendix 2,

Table S2.22 for the number of sites and Tables S2.23 and S2.24 for the model summaries.
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Figure 3.4 Response of different pollinator groups to land-use intensity in cropland.
Each panel represents a linear or generalised linear mixed-effects model for a given
biodiversity metric: A, species richness; B, total abundance; and C, Simpson diversity.
Colours represent the land-use intensity level, with primary vegetation (minimal use)
as a reference factor: black (primary vegetation, minimal use); yellow (cropland,
minimal use), orange (cropland, light use), and red (cropland, intense use). Effect sizes
were adjusted to a percentage by sampling fixed effects 1,000 times based on the
variance-covariance matrix, expressing each fixed effect within each random sample
as a percentage of the value in primary vegetation for that taxonomic order, and then
calculating the median value (shown as points), and 2.5" and 97.5" percentiles (shown
as error bars). See Appendix 2, Table S2.25 for the number of sites and Tables S2.26,

S2.27, and S2.28 for the model summaries.
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Figure 3.5 Response of pollinator biodiversity in cropland sites to total fertiliser application
rate in the landscape (kg/ha) (note that each metric is plotted on a log scale), predicted
across 95% of the range of sampled fertiliser values for each taxonomic order. Each panel
represents a linear or generalised linear mixed-effects model for a given biodiversity metric
for four invertebrate orders: A, C, and E, invertebrate species richness, total abundance,
and Simpson diversity respectively; and B, D, and F vertebrate species richness, total
abundance, and Simpson diversity respectively. Coloured lines represent median fitted
estimates for each taxonomic order, with shading representing 95% confidence intervals:
light blue (Coleoptera), light orange (Diptera), dark blue (Hymenoptera), pink (Lepidoptera),
green (Apodiformes), and black (Passeriformes). Dashed lines represent significant
interactions between taxonomic order and total fertiliser application rate, and solid lines
non-significant interactions. See Appendix 2, Table S2.29 for the number of sites, Tables
S2.30, S2.31, and S2.32 for the model summaries, and Appendix 2, Figure S2.10 for the

global distribution of total fertiliser application rate.
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Figure 3.6 Response of pollinator biodiversity in cropland sites to total pesticide
application rate in the landscape (kg/ha) (note that each metric is plotted on an
absolute value log scale), predicted across 95% of the range of pesticide values for
each taxonomic order. Each panel represents a linear or generalised linear mixed-
effects model for a given biodiversity metric for four invertebrate orders: A, C, and E,
invertebrate species richness, total abundance, and Simpson diversity respectively;
and B, D, and F vertebrate species richness, total abundance, and Simpson diversity
respectively. Coloured lines represent median fitted estimates for each taxonomic
order, with shading representing 95% confidence intervals: light blue (Coleoptera),
light orange (Diptera), dark blue (Hymenoptera), pink (Lepidoptera), green
(Apodiformes), and black (Passeriformes). Each biodiversity metric is predicted

across 95% of the range of its values, meaning each response is not estimated across

the same range of total pesticide application rate.



Discussion

Using a space-for-time approach, here | showed that land-use intensity is associated with
significant changes (both positive and negative) in pollinator species richness, total
abundance, and Simpson diversity, particularly for invertebrate pollinators. This study
represents, as far as | know, the largest global analysis of the response of animal pollinator
biodiversity to land-use type and intensity, and the first to consider large-scale differences in
responses among taxa, geographic regions, and biodiversity metrics. My results are
consistent with previous analyses showing reductions in overall pollinator biodiversity at high
land-use intensity (Clough et al. 2014), and increases at low-intermediate intensity (Lazaro
et al. 2016). In particular, low-intensity urban sites (villages and green spaces; Hudson et al.
2017) have higher pollinator biodiversity than the primary vegetation baseline, but at high
intensity urban pollinator species richness is significantly lower than the baseline (although
this was not the case for abundance). This is concordant with previous research
demonstrating that urban areas can support species-rich and abundant pollinator
populations (Hall et al. 2017; Baldock et al. 2019). | also highlight that strong negative
responses to land-use intensity within croplands are largely restricted to the tropics, with no
apparent effect (and even increases at low intensity) in non-tropical cropland. This is an
important result, given the dominance of animal pollinated plants in tropical environments
(Ollerton et al. 2011; Rech et al. 2016), and that rapid agricultural expansion is predicted to
occur in the tropics in the near future (Hurtt et al. 2011). Furthermore, | show pronounced
differences in response among taxonomic groups, consistent with time-series studies
showing differential trends among UK invertebrate taxa (Outhwaite et al. 2020). Pollinator
biodiversity change resulting from land-use intensity may have consequences for pollination
(Rader et al. 2014) and crop yields (Woodcock et al. 2019), especially in the tropics:
Although the abundance of some pollinating groups (i.e. flies) is greater on intensively
fertilised cropland, increases may not compensate for overall losses across other pollinating

groups.



Differences in response to intensity between tropical and non-tropical areas are likely driven
by the interacting effects of historical land-use and climate sensitivity, which differ between
the temperate and tropical zones. Non-tropical temperate regions have a long history of
anthropogenic land-use, which has likely filtered out many sensitive species (Balmford
1996), meaning that contemporary differences in land use and land-use intensity may be
weakly associated with pollinator biodiversity. Indeed, historical land-use has been shown to
be strongly associated with current species richness and abundance of insect pollinators
(Cusser et al. 2018; Cusser et al. 2015; Bommarco et al. 2014), and may contribute towards
an overall increase in pollinator biodiversity at low land-use intensity (Tscharntke et al.
2005). The tropical zone, on the other hand, has a shorter history of intensive agricultural
land-use (DeFries and Rosenzweig 2010), meaning recent intensification has stronger
effects on pollinator community composition. Tropical biodiversity is also thought to be more
sensitive to the effects of climate change (Deutsch, et al. 2008), which may be exacerbating
the effects of land use (Williams et al. 2020a). Further research is required to tease out the
relative contribution of historical land-use and climate change to tropical pollinator

biodiversity.

Pollinating insects across multiple geographic locations and taxonomic groups have been
reported to have declined, particularly for biomass and abundance (Seibold et al. 2019;
Hallmann et al. 2017). In my space-for-time analysis, | found significantly lower abundance
on high-intensity cropland—relative to primary vegetation—for all insect orders, especially
for the hymenopterans, lepidopterans, and coleopterans. | also found significant reductions
in insect abundance and richness in response to increasing fertiliser application rate on
croplands, particularly for the hymenopterans and lepidopterans. Sensitivity to land-use for
butterflies has previously been attributed to dietary specialism: relative to flies, butterflies are
known to be dietary specialists as larvae, making a reduction in lepidopteran species
richness and diversity likely when plant species richness is reduced (Weiner et al. 2011;

Weiner et al. 2014; Winfree et al. 2011; Scoble 1992), which is known to occur at high



fertiliser application rates (Woodcock et al. 2016; Jones and Chapman 2011; Kleijn et al.
2009; Ridding et al. 2020). Previous research in the temperate zone has indicated beetle
flower visitors are sensitive to land-use change (Weiner et al. 2011; Weiner et al. 2014).
Although | found a decrease in coleopteran abundance relative to the primary vegetation
baseline, response to fertiliser application rate was mixed and insignificant. It may be that
fertiliser application buffers against the more negative effects of associated intensity, since
some pollinating coleopterans are known to have a larval preference for fertile soils (Parker
and Howard 2001). For the hymenopterans, sensitivity to land-use has been reported
previously, particularly for solitary bees (Rader et al. 2014; Gathmann and Tscharntke 2002)

which are on average highly specialised (Weiner et al. 2011).

Dipteran abundance and species richness increased with fertiliser application rate,
concordant with previous studies demonstrating increased dipteran biodiversity on managed
land (Kuhsel and Blithgen 2015; Jauker et al. 2009; Biesmeijer et al. 2006; Weiner et al.
2011; Weiner et al. 2014). Dipteran resilience to land use and land-use intensity has been
attributed to a number of traits, including low dietary specialisation on floral resources
(Weiner et al. 2014; Weiner et al. 2011), high mobility (Haenke et al. 2009), absence of
parental care (Jauker et al. 2009), and larval preference for agricultural habitats (Jauker et
al. 2009). Syrphid fly larval development in agricultural land is particularly of note. Semi-
aquatic syrphid larvae are known to favour eutrophic or manure-contaminated habitats
(Speight 2017), which is consistent with the strong positive gradient for fly richness and
abundance in response to increasing fertiliser application rate. In contrast, the response of
fly abundance and species richness to my overall measure of land-use intensity was
negative, suggesting that fertiliser application does not sufficiently capture all aspects of
land-use intensity on cropland. Neonicotinoids such as imidacloprid, for example, have
adverse effects on flies, given their association with declines in insects in general (Wood and
Goulson 2017; Goulson 2013), and visitation rate in flies specifically (Easton and Goulson

2013). | used the PEST-CHEMGRIDS global estimation of pesticide application rate (Maggi



et al. 2019) to build additional models of pollinator response between tropical and non-
tropical croplands, finding that the response for flies to pesticide application rate is in fact
similar to fertiliser (Appendix 2, Figures S2.10 and S2.11), the cause of which is unclear.
Further analysis is required to tease out the relative effects of fertiliser and pesticide

application at the global scale.

Compared to invertebrates, vertebrate pollinators appear to be less sensitive to the effects of
land-use intensity, particularly with respect to change in total abundance. Relatively higher
resilience to land-use intensity has been found for vertebrate pollinators in tropical forests
(Tscharntke et al. 2008), and suggested in broad comparisons across taxa (Winfree et al.
2011). However, although previous work found that vertebrate resilience diminishes after
controlling for study design (Winfree et al. 2011), my results suggest that vertebrate
pollinators are indeed less sensitive than invertebrate pollinators to increasing land-use
intensity. Such relative vertebrate resilience likely relates to body size and mobility (Henle et

al. 2004; Bommarco et al. 2010), both of which are typically greater in vertebrate pollinators.

Change in global pollinator biodiversity resulting from land-use intensity may have
consequences for crop pollination. Since the loss in pollination service provided by sensitive
crop-pollinating taxa (Hymenoptera) will likely not be offset by gains in more resilient taxa
(Passeriformes), the service will experience a net loss. Four lines of evidence indicate losses
in sensitive taxa will not be buffered by gains in more resilient taxa: first, relative to bees,
those species which are increasing (i.e. dipterans) are known to contribute less to crop
pollination (Ollerton 2021), and do not necessarily pollinate the same set of crops; second,
response to land-use intensity of the main crop pollinating groups (bees, flies, beetles,
wasps, thrips, birds, and bats) appears consistent with responses across all pollinators
(Appendix 2, Figure S2.8); third, there is evidence from multiple historical localities that
significant pollinator deficits can result from the losses associated with intensive agriculture
(Watanabe 1994; Kevan 1977; Stephen 1955), irrespective of differences among taxonomic

groups; and fourth, significant crop-yield reduction has been linked to overall changes in



pollinator biodiversity in multiple studies (Kremen et al. 2002; Garibaldi et al. 2013; Garratt et
al. 2014; Blitzer et al. 2016; Holzschuh et al. 2012; Klein, et al. 2003), again irrespective of

taxonomic differences.

My analysis of pollinator biodiversity change is subject to limitations. First, the nature of our
study as a space-for-time analysis means we may overlook extinction-debt effects (De
Palma et al. 2018). Such effects can be controlled for by assessing change over time at a
specific location or region (Seibold et al. 2019; Hallmann et al. 2017). However, at the global
scale, given that long-term studies are lacking, space-for-time analyses represent a
necessary alternative (Purvis et al. 2018). Second, most of the results | present here are
relative to a baseline of primary vegetation with minimal human use, which inevitably varies
in nature, especially between tropical and non-tropical sites (Appendix 2, Figures S10 and
S11). In particular, we might expect non-tropical primary habitats to be more open than
tropical primary habitats, which is likely to be more favourable to pollinators, and thus might
partly explain the absence of responses to land-use intensity in non-tropical areas. Indeed, |
show that the margin of reduction from a low forest-cover baseline is greater than from a
high forest-cover baseline (Appendix 2, Figure S2.6). Nevertheless, the overall responses for
tropical and non-tropical areas remain unchanged. Third, | analyse raw species richness
which | recognise may be confounded by abundance. However, since my validation model
predicting estimated species richness (using the Chaol estimator) does not differ markedly
from raw richness, a confounding effect of abundance is unlikely (Appendix 2, Figure S2.4).
Fourth, my dataset of pollinator biodiversity responses is spatially biased towards the non-
tropics, particularly Europe and North America. Given that tropical pollinators are affected
more negatively, my overall results therefore likely underestimate the impact of land-use
intensity. However, my continental jack-knife for my overall LUl models showed that the
exclusion of any of the Americas, Europe, or Africa (the continents for which we have the
most sites) did not markedly influence our predictions. Moreover, my additional validation

analysis in which | re-sampled 1000 sites from each of the tropics and non-tropics would



indicate that greater variation in non-tropical regions is likely not predicted by greater sample
size (Appendix 2, Figure S2.7). Fifth, total fertiliser application rate was estimated at a
relatively coarse spatial scale, which for some pollinators—particularly those such as insect
pollinators which respond strongly to more localised change—will not be meaningful. Since
spatial scale is known to predict pollinator response to land-use intensity (Brittain et al.
2010), | could infer a different response if more localised fertiliser estimates were available
globally. Sixth, | recognise that evidence for a given species will not always be
representative of all species in a whole genus, or all life-history stages within a species. For
example, the species Crocidura cyanea (Duvernoy, 1838; Common name: Reddish-gray
musk shrew; Order: Eulipotyphla; Family: Soricidae) has been found to feed on and carry
pollen, but most other Crocidurans are insectivorous (Melidonis et al. 2015). As a result,
pollination confidence for many species in the genus Crocidura will be less than the genus-
level evidence would imply. In the main, | assumed evidence for a single species would be
representative of whole genera, given the association between phylogeny and traits (Cusser
et al. 2018). | also reasoned that for some insect groups, searching at the species level
would be ineffective, given the large number of species with little evidence. Seventh, species
confirmed as pollinating one flowering plant will not necessarily make an important

contribution to all flowering plants, or to the pollination of crops.

Anthropogenic activity has significantly altered the biosphere. Such changes have had, and
will continue to have, profound consequences for animal pollinator biodiversity. Here |
demonstrated significant pollinator biodiversity change in response to land-use intensity, with
both negative and positive effects. Within an anthropogenic land-use type, | showed that
intensity often decreases pollinator biodiversity. But relative to the primary vegetation
minimal-use baseline, pollinator biodiversity was often greater at low and intermediate levels
of intensity, suggesting that some level of disturbance can be beneficial. Across taxa within
croplands, | again showed a mixed response to intensity, varying according to both facet of

intensity and taxonomic group. Specifically in the tropics however, pollinators appear highly



sensitive to land-use intensity; a situation that may worsen as intensive agriculture continues
to expand. Moreover, it is also likely that climate change will drive further changes in tropical
pollinator biodiversity, particularly for insects which respond strongly to changes in ambient
temperature (Soroye et al. 2020; Kilhsel and Blithgen 2015). Further research is required to
resolve better the way in which these threats interact at the global level. For crop pollination
services in the tropics, the repercussions of land-use and climate change could be great,
with a growing body of evidence indicating high wild pollinator biodiversity is required to
sustain productive yields (Winfree et al. 2018). Although the complexities of this relationship
are not yet fully understood, there is sufficient evidence to suggest that pollination shortfalls

in the tropics could result from continuing anthropogenic intensification and expansion.



Chapter 4: Worldwide vulnerability of local pollinator
abundance and crop pollination to land-use and climate

change

Abstract

Global climate and agricultural extent are predicted to change rapidly over the coming
decades, with potential consequences for ecosystem services. For pollinators, it is unclear
how the combined effects of land-use and climate change will drive shifts in biodiversity and
the service they provide in the form of crop pollination. Here | model the response of pollinating
insect and vertebrate abundance to agricultural land use, historical climate change, and their
interaction. Given future scenarios of climate change (RCP 2.6, 6.0, and 8.5), and the global
distribution of crops that depend on animal pollination, | then use my models to explore
potential changes in global crop pollination risk. | show that insect pollinators experience
strongly negative declines where cropland coincides with high levels of historical climate
change. Under RCP 8.5—a high emissions future climate scenario—my total crop production
risk index is predicted to increase by ~70% between 2016 and 2048. Again under RCP 8.5,
the rate of change in total crop production risk could be up to ~25% higher than that of RCP
2.6 and 6.0, with abrupt periods of increased exposure in the 2030s. | further show that crop
pollination risk is highest, and predicted to increase most rapidly, in regions of sub-Saharan
Africa and northern South America, primarily for cocoa, mango, pumpkin, melon, watermelon,
and coffee. This study provides the first global framework for predicting current and future crop
pollination risk from land-use and climate change. Mitigating this risk will be a key challenge

of the 215 Century.



Introduction

Global climate and agriculture are predicted to change rapidly in the coming years (IPCC 2018;
Laurance et al. 2014). In 2015, the international community agreed on a set of policies aiming
to keep change in climate to below 1.5°C, but recent research indicates this threshold will
likely be exceeded by 2050 (IPCC 2018). Over the same period agriculture is expected to
expand significantly, meeting an increasing global demand for both food and bioenergy
(Laurance et al. 2014). The effects of future agriculture and climate change on the biosphere
could be great. Although there is a debate regarding the magnitude of local change (Dornelas
et al. 2014), on average agricultural activity has been shown to reduce and homogenise local
biodiversity (Newbold et al. 2015a, 2018), such that agriculture likely represents the single
greatest current threat to terrestrial mammals and birds (Joppa et al. 2016). Climate change
on the other hand has been associated with elevational, latitudinal, and phenological shifts
(Bellard et al. 2012), as well as predicted abrupt future changes in the species composition of

communities (Trisos et al. 2020).

The individual effects of climate change and agricultural land use on biodiversity are great, but
in combination they have been shown to have synergistic interactive effects (Frishkoff et al.
2016; Hendershot et al. 2020; Oliver et al. 2016; Williams et al. 2020b). Such interactive effects
act through either ‘chain effects’ or ‘modification effects’ (Didham et al. 2007; Oliver &
Morecroft 2014). Chain effects occur when one driver alters the magnitude of another. For
example, areas of agricultural land use tend to be warmer and drier (Frishkoff et al. 2018),
meaning on average degree of climate change is magnified on anthropogenic land.
Modification effects refer to situations where the effect of one driver on biodiversity is
moderated by change in another (Didham et al. 2007; Oliver et al. 2014). For example,
biodiversity responses to extreme climatic events are modified by the structure of the
landscape, with woodland patches reducing insect susceptibility to droughts (Oliver et al.

2012).



The interactive effects of climate change and agricultural land use on biodiversity have been
the focus of a growing number of studies, but there are still at least two big research gaps.
First, for important ecosystem service providers such as pollinators, it's unclear how climate
change and agricultural land use might interact globally to drive biodiversity change (although
there have been localised studies e.g. Oliver et al. 2012; Zaragoza-Trello et al. 2021). Given
the sensitivity of insects to changes in microclimate (Boggs 2016) one might expect that,
relative to vertebrate pollinators, insect pollinators will respond strongly to the interactive effect
of climate change and land-use. Within the insects, one might also expect that pollinators will
respond more strongly than non-pollinators, since insect pollinators tend to be associated with
a set of traits that predict high sensitivity (e.g. high dietary specialism) (Winfree et al. 2011).
Second, given the uncertainty around interactive effects on service providers, there is an
ongoing question as to the extent to which the actual service to people may be affected,
particularly with regards to the temporal and spatial scale at which consequences might play
out. Since the interactive effects of land use and climate change on biodiversity are non-linear,
one potential scenario is that future anthropogenic activity leads to rapid biodiversity change,
with knock-on socio-economic effects that ripple out from agricultural areas that are highly
dependent on animal pollinators (Garibaldi et al. 2016; Silva et al. 2021). Insufficient data for
pollinating insects has previously made addressing both the first and second of these research

gaps difficult, but appropriate datasets are now more widely available (Millard et al. 2021a).

Crop pollination is one service that could be affected following rapid change in agricultural
land use and climate. For example, as agricultural regions with high dependence on animal
pollination begin to be exposed to novel extreme temperatures, and pollinators experience an
associated change in biodiversity, these localities may be at sudden risk of pollination shortfall.
Shortfalls will likely be best predicted by changes in pollinator abundance, given that a large
guantity of the pollination service tends to be provided by a relatively small group of dominant
species (Kleijn et al. 2015). Shortfalls will also relate to measures of taxonomic and functional

biodiversity, given the connection between these measures and crop yield (Dainese et al.



2019; Woodcock et al. 2019), but since abundance has a consistent relationship with crop
pollination service (Woodcock et al. 2019), here | focus on change in pollinator abundance as

a measure of risk.

Given the uneven global distribution of crops dependent on animal pollination, and the spatial
heterogeneity of climate change and agricultural activity, the likelihood of future crop
pollination shortfall will not fall evenly. This is for three primary reasons. First, tropical
agriculture is more dependent on animal pollination, with animal pollinators an essential
requirement for the production of tropical crops such as cocoa, vanilla, Brazil nuts, Macadamia
nuts, and kiwifruit (Klein et al. 2007). Temperate agriculture does benefit to some extent from
animal pollination (e.g. apples, pears, cherries, apricots, raspberries; see Klein et al. 2007),
but the proportion of agricultural production dependent on pollination is markedly lower (Aizen
et al. 2019). Second, climate change is occurring fastest at high latitudes (IPCC, 2018), but
the greatest rate of exposure to novel extreme temperatures is taking place in the tropics
(IPCC 2018). Although Arctic pollinators have been shown to respond strongly to high latitude
warming (Schmidt et al. 2016), a growing body of evidence indicates that novel temperatures
are more important to insect pollinator biodiversity change in the tropics, since novel
temperatures act to push insects beyond their upper thermal limits (Boggs 2016). Third, during
this century the tropical regions of sub-Saharan Africa and South America will experience the
greatest relative growth in intensive agriculture (Laurance et al. 2014), which will likely lead to
particularly strong changes in pollinator biodiversity (Millard et al. 2021a). In the tropics, then,
there is a conjunction of high pollination dependence, high vulnerability to climate change, and
high potential for agricultural expansion, meaning if significant shortfalls are to occur

anywhere, it is likely that they will occur at tropical latitudes.

Global production of crops dependent on animal pollination today exists within a network of
international trade, meaning the consequences of pollination shortfall will not necessarily be
localised (Silva et al. 2021). For localities producing animal-pollinated crops for local

consumption, any shortfall resulting from pollinator loss will play out at a local scale (Garibaldi



et al. 2016). But for localities that ordinarily export large quantities of pollination-dependent
crop production to multiple countries, one might expect fluctuations in global supply and
consequent volatility of crop price. China, for example, is one of the main global exporters of
crops dependent on animal pollination (Teichroew et al. 2017), by both the quantity of exports
and the number of importing countries (Silva et al. 2021). As a result, one might expect crop
pollination shortfalls in China to have consequences that extend beyond the country itself
(Teichroew et al. 2017). Predicting when these rippling effects may occur, however, is
complicated. One indicator might be high reductions in pollinator abundance in regions that
produce a high quantity of animal pollination dependence crops, and the future year at which
this occurs most rapidly. Some objective measure incorporating these factors would be a

significant step towards an index of global risk to crop pollination shortfall.

Here, | model the effect on pollinator abundance of agricultural land use and its interaction
with historical climate change, before exploring potential risk to the production of crops that
depend on animal pollination. | construct my initial models using the PREDICTS database
(Hudson et al. 2017) and a set of likely pollinating and non-pollinating species derived
previously (Millard et al. 2021a). | then use future scenarios of climate change (Frieler et al.
2017), a set of rasters for global crop production (Monfreda et al. 2008), and estimates of the
proportional dependence of different crops on animal pollination (Klein et al. 2007), to explore
potential scenarios of change in crop pollination risk. Specifically, | address two core
guestions: 1) What is the difference in response to the interactive effects of agricultural land
use and climate change between those species that pollinate (insects and vertebrates) and
those that do not? And 2) given predicted changes in abundance of insect pollinators on
cropland (based on scenarios of future climate change), and the global distribution of crops
production that depends on animal pollination, where and when might we expect a risk of
shortfalls for crop pollination in the future? | hypothesise that the interactive effect of climate
change and agricultural land use will be stronger in insect pollinators relative to vertebrate

pollinators, and that this interactive effect will be such that decline in abundance is greater on



cropland than primary vegetation. | also hypothesise that crop pollination vulnerability to future
climate change will be greatest in the tropics, and that rate of change in crop pollination risk
will experience abrupt increases as regions of high pollination-dependent crop production are

exposed to novel extreme temperatures.

Methods

Pollinator dataset construction

| used the PREDICTSs database, and a set of likely pollinating species identified in PREDICTS
(see Chapter 3 for a detailed background on the development of this PREDICTS database
subset), to model the response of local pollinator abundance to the interactive effect of climate
change and agricultural land use. PREDICTS is a global database of local biodiversity records,
with a hierarchical structure such that each record is nested according to a series of levels
(i.e. ‘source’, ‘study’, ‘block’, and ‘site’; see Chapter 3 Appendix 2 Figure S2.14, and Hudson
etal. 2017). Each record in PREDICTS is associated with a land use type (primary vegetation,
mature secondary vegetation, intermediate secondary vegetation, young secondary
vegetation, plantation, pasture, cropland, and urban) and land use intensity (high, low and
minimal), meaning change in biodiversity can be predicted as a function of anthropogenic
land-use disturbance (e.g. Newbold et al. 2015a; also see Chapter 3 ‘Methods’). Land-use
type categories in PREDICTS are defined according to the Representative Concentration
Pathway land-use estimates (Hurtt et al. 2011), plus plantation and a gradation of stages
according to age within secondary vegetation (Hudson et al. 2014). Land-use intensity for
each land-use type is defined according to a series of variables, such as fertiliser and pesticide

application, mechanisation, and hunting (see Newbold et al. 2015a for more details).

| identified pollinating species in PREDICTS through a semi-automatic approach combining
text-mining, manual inspection, and expert consultation. | first used the stemmed term
‘pollinat® on Scopus to return all abstracts for English language primary research papers.

From this set of abstracts, | then used a set of name-entity recognition algorithms to extract



all animal species Latin binomial names (see Chapter 2 ‘Methods’; Millard et al. 2020a for
details). For each animal genus returned by the name-entity recognition algorithm, | then read
the corresponding abstracts searching for evidence confirming that genus as pollinating.
Given my set of pollinators identified from Scopus abstracts could only ever be a sample, |
then searched for higher-level taxonomic groups, aiming to identify broader groups of animals
that we could be confident would pollinate (see Chapter 3 ‘Methods’ for more details). After
compiling my list of pollinators from automated text-analysis and manual searching, | then
consulted a group of 7 expert pollination ecologists, and removed or added any groups at their

suggestion (see Chapter 3 ‘Methods’ for details).

| then built four separate datasets with different subsets of the original set of species in
PREDICTS: pollinating vertebrates, non-pollinating vertebrates, pollinating insects, and non-
pollinating insects. My set of non-pollinating species are not strictly a set of confirmed non-
pollinators, rather a set of species not confirmed as pollinators (see Discussion for an
exploration of this limitation). For each of my four data subsets, | then calculated site-level
total abundance (the sum of all species sampled abundances at a site). Sampling effort was
accounted for by dividing the abundance values for each measurement by the relative
sampling effort among sites within a study, rescaled to a maximum value of 1 in each study,

as in (Newbold et al. 2014a).

Climate change data

| used Climatic Research Unit Time Series (CRU TS) v4.03 (Harris et al. 2020) mean daily
temperature estimates per month at a spatial resolution of 0.5° to calculate a global
standardised temperature anomaly (STA) for the year of each PREDICTS sample, using an
approach developed previously (Outhwaite et al. in review; see full details on methodology
below). Although extreme temperatures have been shown to predict contemporary changes
in biodiversity (Mantyka-Pringle et al. 2011), | used mean temperatures since they provide a

measure of the overall change in temperature per month. Mean temperatures have been used



in a similar manner for a number of other studies on insect thermal tolerance (e.g. Deutsch et
al. 2008; Johansson et al. 2020). To calculate my standardised temperature anomaly, | first
calculated a 30-year baseline temperature for the years 1901-1930 as the grand mean
temperature over all 360 monthly mean daily temperatures for each cell. For each PREDICTS
site, | then extracted the sample end date (i.e. the last date at which that measurement was
taken) for the measurements at each site, and then for the month of that end date and the 11
months previously | calculated the grand mean temperature over all monthly mean daily
temperatures for that sample. | then calculated a climate anomaly for each site as the
difference between the 30-year baseline mean and the mean annual temperature at the time
of the sample. | then standardised this climate anomaly by dividing the anomaly at each site
by the standard deviation of the baseline, calculated as the standard deviation across monthly
mean daily temperatures for the same 30-year baseline period. A standardised temperature
anomaly of less than 0 indicates a region that has cooled since the baseline. A value between
0 and 1 indicates a region that has warmed, but current average temperature remains within
1 standard deviation of the variability in baseline temperatures. A value greater than 1
indicates a region in which average warming is 1 standard deviation greater than the variability
in the baseline (i.e. it is now experiencing high novel temperatures). Again, using CRU TS
v4.03, | also calculated a global standardised temperature anomaly independent of
PREDICTS sites (for an average of the 36 monthly mean temperatures in the period 2004-
2006), which | mapped globally for context (Figure 4.2). | chose the period 2004-2006 to
coincide with the temporal distribution of most records in the PREDICTS database (Hudson

et al. 2017).

Interactive effects of land-use and climate change on pollinator biodiversity

To model the effects of land-use and climate change on pollinator abundance, | built linear
mixed-effects models predicting total abundance as a function of land-use type (primary
vegetation and cropland), standardised temperature anomaly, and their interaction. | did not

use a generalised linear model with Poisson errors because most recorded measurements



are non-integer values (also see Chapter 3, showing that log-linear and negative binomial
models for land use intensity yielded similar results). | focussed on primary vegetation and
cropland given my interest in the interactive effects of land-use and climate change between
natural and anthropogenic land. | chose primary vegetation since it best represents natural
vegetation, and cropland since it is both an anthropogenic land-use type and most relevant to
crop production that depends on animal pollination. Since the interactive effect of land-use
and climate change is likely greater between natural and anthropogenic land than among
levels of intensity within a land-use type (Outhwaite et al. in review), for both cropland and
primary vegetation | grouped together all levels of intensity. | loge-transformed all total
abundance values (adding one because of zero values) to normalise the model residuals. Due
to the nested nature of the database (Hudson et al. 2017), | included a random intercept of
study identity to account for variation in sampling methods, sampling effort, and broad
geographical differences among studies, and a random intercept of spatial block within study
to account for the spatial structuring of sites. Random-effects structures were selected to
minimise AIC values. To test how sensitive my predictions were to the inclusion of particular
taxonomic groups, | ran an additional analysis in which | predicted change in total abundance
on cropland following the removal of each taxonomic family (i.e. jack-knife removal with

replacement).

Potential future risk to crop pollination from land-use and climate change

Given the importance of insect pollinators to global crop production, | used my model of insect
pollinator abundance to predict geographic and temporal patterns of pollination shortfall risk,
based on a combination of estimated crop production dependent on animal pollination, and
projections of future climate change. | focus on two forms of risk: production risk, and
proportional production risk. Production risk is a measure of the total crop production that
could be at risk of shortfall. Proportional production risk is a measure of the crop production at
risk as a proportion of the total production for a given cell (i.e. a single pixel in a gridded data

layer), crop, or country. For both measures of risk, | specifically focussed on insect pollinator



abundance given that insects make a bigger contribution than vertebrates to global crop

pollination (Klein et al. 2007).

My projections assume that a projected loss in pollinator abundance combined with crop
dependence on pollination is a good proxy for risk to crop production. There are three core
uncertainties associated with these projections (also see Discussion). First, | do not know if
there is a mechanistic link between the interactive effects of land-use and climate change on
pollinator abundance. | reason that a significant interactive effect is at least likely however,
given prior localised studies demonstrating a synergistic effect of climate change and
anthropogenic land use in insects (Outhwaite et al. in review; Zaragoza-Trello et al. 2021).
Second, | do not account for changes in the distribution of crops from the effects of climate
change alone. Third, it remains unclear how local abundance change will impact crop
pollination, and in turn how crop pollination will relate to yield change. Given these
uncertainties my projections should not be interpreted as absolute projections of yield loss,
but rather as a relative measure of crop production risk. Such a measure of global risk does

not yet exist, despite its marked importance to policy-makers (IPBES, 2016).

| first used a global dataset of crop production (Monfreda et al. 2008), in combination with the
animal pollination dependencies reported in Klein et al. (2007), to build a map of global crop
production dependent on animal pollination for the year 2000 (the date for which Monfreda et
al. 2008 estimated global crop production). For each crop in Monfreda et al. (2008), | adjusted
total production for the pollination dependence ratios reported in Klein et al (2007) (essential,
0.95; great, 0.65; modest/great, 0.45; modest, 0.25; little, 0.05; no increase, 0). Given some
Monfreda crops are represented by multiple crops in Klein et al (2007), for each Monfreda et
al (2008) crop | first calculated the mean pollination dependence ratio among Klein crops. |
then adjusted each crop for its pollination dependence and summed dependence-adjusted

production for all crops at each cell as



c=n
PollinationProd; = Z Prod.d.
c=1

where PollinationProd = animal pollination dependent crop production, Prod = crop production,
¢ = Monfreda crop category, d = average animal pollination dependence ratio, and i = a given
cell. | also calculated the total production in any given cell (independent of animal pollination

dependence) for the same set of crops, as

c=n

TotalProd; = z Prod,;

c=1

where TotalProd = total crop production. In any further work, | assumed that the distribution of
pollination-dependent production in 2000 will be representative of that in 2050 (see
‘Discussion’ for an exploration of this limitation). | also did not exclude pollination-dependent
production which relies on either vertebrates or non-insect invertebrates. Although there are
some crops recorded in Klein et al (2007) as reliant on either vertebrate or non-insect
pollinators, after reconciling these crops with Monfreda et al (2008) there are no crop groups

that are exclusively dependent on vertebrates or non-insect invertebrates.

| then used ISIMIP temperature anomalies from Frieler et al (2017) to project potential future
change in standardised temperature anomaly under three RCP (Representative
Concentration Pathway) scenarios (8.5, 6.0, 2.6), using an ensemble mean of the climate
models GFDL, HadGEM2, IPSL, and MIROC5. RCP scenarios describe how global climate
might change in the future, according to the volume of greenhouse gases emitted by humans
(van Vuuren et al. 2011). Each of these emission pathways are based on a set of
socioeconomic assumptions (e.g. technological improvements, policy changes) about the
future (van Vuuren et al. 2011). RCP 8.5 represents a worst-case high-emissions scenario,
6.0 a pathway with some degree of mitigation, and 2.6 a pathway with significant reductions
in emissions (van Vuuren et al. 2011). ISIMIP temperature anomalies were added onto a

historical baseline for the period 1979-2013 (inclusive), calculated as the grand mean over all



monthly mean daily CRU temperatures for each cell. For each year, the standardised
temperature anomaly was projected across the terrestrial surface of the globe (for the years
2016-2048), using a 3-year rolling average to smooth change in risk over time. For each 3-
year projection window, insect pollinator abundance on cropland was predicted according to
the model in Figure 4.1 (top left panel) for all cells containing crop production dependent on
animal pollination. These abundance values were then expressed as the proportional loss of
abundance compared to the abundance expected on croplands that have experienced no

warming (i.e. standardised temperature anomaly of 0) as

where | = abundance loss, t = each 3-year time window, aw = predicted abundance on cropland
under projected warming, and ao = predicted abundance on cropland under no warming. In
each cell, animal-pollination-dependent crop production was then adjusted for the percentage
reduction in abundance at that time step, before summing production at risk for all cells as

i=n

ProdRisk; = PollinationProd;l;;

i=1
where ProdRisk = the total crop production risk (i.e. production risk). To check the influence
of single climate models on our projections, | calculated one projection as the average of all
models for that RCP scenario, and a set of additional jack-knifed projections, dropping each
climate model in turn. For the average of all climate models at RCP 8.5, | also checked the
extent to which extrapolating abundance loss beyond the lowest fitted abundance value (i.e.
greatest abundance loss) of our PREDICTS models affected my projections. Specifically, |
projected change in total pollination-dependent crop production at risk when the greatest loss
in predicted abundance is capped at the largest fitted value of standardised temperature
anomaly (Appendix 3, Figure S3.2). For my projection in which abundance loss is not capped,
| also calculated the percentage of cells where abundance loss was extrapolated beyond the

maximum fitted value (Appendix 3, Figure S3.2).



To identify geographic regions in which a high proportion of crop production could be at risk
under a worst-case climate scenario (i.e. RCP 8.5), | projected pollination risk for each cell as
above (using the average of all four climate models), and then expressed pollination risk as a
proportion of all crop production within each cell

PollinationProd,;l;;
TotalProd;

PropRisk,; =

where PropRisk = the proportion of total crop production at risk (i.e. proportional production
risk). A value of 1 therefore indicates a hypothetical region in which all crop production in that
cell is dependent on pollination, and predicted insect pollinator abundance loss is 100% (i.e.
one would expect a very high risk of pollination shortfall). | projected this dependence risk for
2006 and 2050, and mapped these projections globally. | also plotted the change in risk for
the 10 countries with the highest overall risk (calculated as the average over the whole time
series), and the change in risk for the 10 countries with the highest rate of change (the
difference between the lowest and highest over the whole time series). For each of these high-
risk countries, | took the overall risk to be the median of all cells in that country at each time
step, onto which | overlaid the 2.5" and 97.5" percentiles as a measure of the variation in risk

across the cou ntry.

Using the same approach as above, | also projected proportional production risk for each of
the top 20 crops by total pollination-dependent production (i.e. PropRiskci). Again, | took the
overall risk to be the median of all cells in which that crop appears at each time step, onto
which | overlaid the 2.5" and 97.5" percentiles as a measure of the variation in risk across
locations where the crop is grown. | also calculated a change in total production risk for the
same top 20 crops (i.e. ProdRiskc), which | then adjusted to a percentage of total production
for each crop (i.e PropRiske). This measure therefore estimates the total proportion of global
production at risk for a given crop. All analyses were carried out in R v4.0.5 (R Core Team
2020). All core analyses can be visualised interactively in a Shiny app currently hosted online

(joemillard.shinyapps.io/pollinator dependence visualisation/).



https://joemillard.shinyapps.io/pollinator_dependence_visualisation/

Results

Interactive effects of agricultural land use and climate change on pollinator biodiversity

For both pollinating and non-pollinating insects, standardised temperature anomaly (STA) and
land-use type had a strong interactive effect on local abundance (Figure 4.1; F = 23.3195, p
<0.001; F = 10.5764, p <0.01). For vertebrates, there was no interactive effect for pollinators
but a significant effect for non-pollinators (Figure 4.1; F = 2.1599, p = 0.14; F = 10.6743, p <
0.01). In both insect groupings, the effect of STA diverges significantly between primary
vegetation and cropland (Figure 4.1), such that abundance increases with greater STA on
primary vegetation, and decreases with greater STA on cropland. The interactive effect is
stronger for pollinating insects than for non-pollinating insects (Figure 4.1). Relative to
croplands that experienced no warming, at the most extreme level of STA (1.58) at sampled
cropland sites, insect pollinators experienced declines of up to ~75%. An STA value this
extreme indicates a region that has warmed such that the average temperatures occurring

now would only be expected to occur in ~1/18 years under baseline conditions.
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Figure 4.1 Response of pollinating and non-pollinating total abundance to standardised
temperature anomaly on primary vegetation and cropland (note that abundance is
plotted on a loge scale). Each panel represents a linear mixed-effects model for

pollinating or non-pollinating insects and vertebrates. Coloured lines represent mean



fitted estimates for each interaction, and shading 95% confidence intervals around that

prediction: green, primary vegetation; orange, cropland.

Potential future effects of land-use and climate on crop pollination

Total production risk is predicted to increase under all climate scenarios (Figure 4.3). Rate of
change in production risk is highest under RCP 8.5, rising from ~80 million to ~138 million
metric tonnes by 2050. Rate of change is marginally lower under RCP 2.6 than RCP 6.0,
although both are predicted to result in a production risk of ~110 million metric tonnes by 2050.
Change for RCP 8.5 experiences a consistent year on year increase, with a period of
increased exposure rate in the 2030s as a significant quantity of watermelon production is
exposed to novel extreme temperatures (see Shiny app,

https://joemillard.shinyapps.io/pollinator_dependence_visualisation/). My projections were not

overly influenced by the prediction of single climate model (Figure 4.3), and they do not change

markedly when abundance loss is capped at the maximum model-fitted value (Figure S3.2).

Cell-level proportional production risk (i.e. PropRisks) is highest, and predicted to increase
most rapidly, in regions of sub-Saharan Africa and northern South America (Figure 4.4). All
10 countries with the highest median proportional production risk, and all 10 with the highest
increase in this risk, are in the tropics (Figure 4.4). Rwanda has the highest overall risk with a
median index value of ~0.45 in 2020, rising to ~0.5 by 2050. Eritrea and Madagascar have the
highest rates of change in this risk, increasing from ~0.27 to ~0.5 in Eritrea and ~0.02 to ~0.2
in Madagascar. In order of rate of change, median cell-level proportional production risk (i.e.
PropRiskc) is highest for cocoa, mango, pumpkin, melon, watermelon, and coffee (Figure 4.5).
Change in total proportional production risk (i.e. PropRiskc) is such that—according to the one
in which | define risk—~60% of cocoa production and ~30% of mango production could be at

risk by 2050 (Appendix 3, Figure S3.3).
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Figure 4.2 Crop production that depends on animal pollination (A), and standardised
temperature anomaly (in regions of animal pollination-dependent production; B) for the
years 2000 and an average of 2004-2006, respectively. For the temperature anomaly, |
show an average for the years 2004-2006 to coincide with the temporal distribution of
most records in the PREDICTS database, and therefore the results in Figure 4.1. A)
Animal pollination-dependent production is calculated as total crop production,
adjusted for the degree of dependence on animal pollination according to Klein et al
(2007). B) Standardised temperature anomaly is the change in the grand mean of
monthly mean daily temperatures between a baseline period (1901-1930) and 2004-
2006, divided by the standard deviation across monthly mean daily temperatures, for

the same 30-year baseline period.
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Figure 4.3 Projected change in total production risk (ProdRisk:) under three RCP
scenarios (8.5, 6.0, and 2.6), either as the average across all climate models, or
dropping each climate model in turn. For each year into the future, the standardised
temperature anomaly was projected globally for all cells of pollination-dependent
production, using a 3-year rolling average. | used data on crop production from the year
2000 (the latest year when such data are available for all crops), therefore assuming
that the distribution of the production of these crops does not change. For each annual
projection of standardised temperature anomaly, insect pollinator abundance on
cropland was predicted according to the model in Figure 4.1 (top left panel), and then
expressed as proportional abundance loss compared to cropland that has experienced
no warming (i.e. standardised temperature anomaly of 0). In each cell, animal
pollination-dependent production was then adjusted for the percentage reduction in
abundance at that cell, before summing animal-pollination-dependent production for
all cells at each time step. Colours refer to the climate model excluded in that jack-knife

projection with the projection for all models shown in black.
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Figure 4.4 Cell-level proportional production risk (i.e. PropRisky) projected under RCP
8.5, from the ensemble-average of four climate models (GFDL, HadGEM2, IPSL, and
MIROCS), for the whole world as well as 10 countries with the highest overall risk and
change in risk. Global standardised temperature anomaly was projected to 2050 for all
areas of animal-pollination-dependent crop production, using the 3-year average
approach as described in Figure 4.3. | used crop production data from the year 2000
(the latest year for which such data are available for all crops), therefore assuming that
the distribution of the production of these crops does not change. For each value of

standardised temperature anomaly, insect pollinator abundance was predicted



according to the model in Figure 4.1, expressed as proportional loss compared to
cropland that has experienced no warming (i.e. standardised temperature anomaly of
0). Animal-pollination-dependent production at each cell was then adjusted for the
predicted loss of insect pollinator abundance, and then converted to a proportion of
the total production at that cell. Top: global maps of proportional production risk for
2006 and 2050. A value of 1 indicates a hypothetical region in which all crop production
in that cell is dependent on animal pollination, and predicted insect pollinator
abundance loss is 100%. Bottom: each panel represents predicted change in
proportional production risk under RCP 8.5 for a set of the most at risk countries.
Coloured lines indicate the median across cells within that country, and grey dashed
lines the 2.5th and 97.5th percentiles, providing an indication of variation in risk across
locations within a country. The upper set of panels represents the 10 countries with the
highest overall risk (average over the whole series), whereas the lower set of panels
represents the 10 with the highest rate of change (difference between minimum and

maximum).



Proportional production risk
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Figure 4.5 Cell-level proportional production risk (i.e. PropRiskc:) projected under RCP
8.5, from the ensemble-average of four climate models (GFDL, HadGEM2, IPSL, and
MIROCS), for the top 20 crops by total animal-pollination-dependent crop production
(ordered by rate of change in risk to highlight crops of potential future concern). Global
standardised temperature anomaly was projected for all areas of animal-pollination-
dependent cropland to 2050, using the 3-year average approach as described in Figure
4.3. 1 used crop production data from the year 2000 (the latest year for which such data
are available for all crops), therefore assuming that the distribution of the production
of these crops does not change. For each value of standardised temperature anomaly,
insect pollinator abundance was predicted according to the model in Figure 4.1,
expressed as proportional loss compared to cropland that has experienced no warming
(i.e. standardised temperature anomaly of 0). Animal-pollination-dependent production
at each cell for each crop was then adjusted for the predicted loss of insect pollinator

abundance, and then converted to a proportion of the total production for that crop at




that cell. Colours correspond to the median proportional risk for all the cells in which
that crop appears, and grey dashed lines the 2.5" and 97.5™ percentiles, providing an
indication of variation in risk across the locations in which a crop is grown. Total
proportional production risk (i.e. PropRiske) rank for the final year in the series is

indicated in brackets.



Discussion

Here | showed that land-use type and a standardised anomaly of temperature change have a
significant interactive effect on local insect pollinator abundance, and a significant although
less pronounced effect in non-pollinating insects. Change in abundance for insect pollinators
on cropland was such that, relative to croplands that have not warmed (i.e STA = 0), at an
STA of ~1.5 insect pollinator abundance was ~75% lower. In contrast on primary vegetation
across the same gradient of STA, insect pollinator abundance increased by ~100%. For
vertebrate pollinators and non-pollinators, these interactive effects of STA and land-use type
appear to be weak or non-existent. On the basis of my predictions for insect pollinator
abundance, and estimates of the global distribution of animal-pollination-dependent
agriculture, | showed that the rate of change in crop production risk under RCP 8.5 could be
25% greater than under RCP 2.6 or 6.0. Under RCP 8.5, according to the way in which | define
risk, total crop production risk is predicted to increase by ~70% between 2016 and 2048. |
further showed that proportional production risk is greatest and predicted to increase most
rapidly in regions of northern South America and sub-Saharan Africa. Although | cannot predict
when actual pollination shortfalls will occur—due to the uncertainties associated with the link
between local pollinator abundance change and crop yield—my results suggest that they will
be most likely in the tropics, where pollinator biodiversity and animal-pollination-dependent

crop production will be increasingly exposed to extreme novel temperatures.

Previous work has shown that insects are vulnerable to the interactive effects of land-use and
climate change (Halsch et al. 2021; Oliver et al. 2016; Outhwaite et al. in review). Here | show
that this effect is likely greater in insect pollinators than other insects. However, whether
sensitivity to climate change and land-use interactions for insect pollinators relates to their
actual reliance on floral resources, or to other correlated traits such as dispersal ability, body
size, voltinism, or specialism, is unclear. Most likely some combination of both is true. For

example, insect-pollinated plants have been shown to respond more strongly to warming than



wind-pollinated plants, suggesting that plant-pollinator interactions are highly sensitive to
thermal changes (Fitter & Fitter, 2002). Pollinator pilosity (i.e. hairiness), on the other hand,
has been shown to affect an insect’s ability to adapt to changes in climate (Roquer-Beni et al.
2020), and given its nature as a trait typical of bees and hoverflies, tends to be correlated with
a reliance on floral resources (Stavert et al. 2016). Reproductive behaviour change under
warm temperatures may also be of relevance (Zaragoza-Trello et al. 2021). Recent work on
Osmia bicornis (Linnaeus, 1758), a species of solitary bee, indicates that floral abundance
and mean temperature interact such that sex ratios are skewed towards males when
temperature is high and floral abundance is low. For this species at least, one might expect
such a phenomenon to reduce local abundance (Zaragoza-Trello et al. 2021), since population

growth rate is limited by the number of females (Bessa-Gomes et al. 2004).

Given that tropical agriculture has strong effects on pollinator biodiversity (Millard et al. 2021a),
and is expected to increase expand rapidly in the coming decades, a significant interactive
effect such that insect pollinator abundance is lower on rapidly warming croplands, is
concerning. Tropical agriculture’s ability to cope with pollinator losses will likely depend on the
biology of specific crop-pollinator interactions. For example, tropical crops that can be
pollinated by generalist domesticated pollinators will likely cope better with wild pollinator
abundance decline, given the relative ease with which honey-bee hives can be transported to
supplement local losses (Goodrich, 2019), although this does still come at a cost (Degrandi-
Hoffman et al. 2019; Lee et al. 2019). For crops such as cocoa however, which is reliant on
Ceratopogonid midges (Claus et al. 2018), the cost of pollinator abundance decline will be
greater (although see limitations paragraph for the caveat of missing data for Ceratopogonid
midges). Mass rearing of Forcipomyia midges has been proposed to buffer population size,
but given their requirement for a blood-meal for the production of eggs, their low dispersal
ability, and their regional specificity (Claus et al. 2018), commercialising such an approach to
supplement local losses would be challenging. Recent work has also shown that hand-

pollination can act to significantly increase yields and profit in cocoa, but it's unclear whether



such an approach is sustainable long-term (Toledo-Hernandez et al. 2020), or whether it would
be profitable in other localities as local pollinator abundance continues to change. It is
therefore of particular concern that cocoa falls within a region that will experience particularly
high novel temperatures, and that in the countries in which it is grown—primarily Ivory Coast
and Ghana—it so important for the livelihoods of many small-scale farmers (Claus et al. 2018;

ICCO, 2014).

The difference in total pollination risk under RCP 8.5 compared with RCPs 2.6 and 6.0 further
reinforces the importance of avoiding a high-warming future for Earth (Lobell et al. 2008;
Thomas et al. 2004; Thuiller et al. 2005). My models project that, under RCP 8.5, crop
pollination risk could change abruptly as regions of high pollination-dependent production
suddenly become exposed to novel extreme temperatures. In the 2030s, for example, | predict
that total production risk could increase rapidly. This may translate into a change in the
availability and price of crops. However, many factors determine crop production and crop
price, and so even if impacts on crop production occur, conclusive attribution to pollinator
abundance changes is likely to be challenging (Khanal et al. 2018; Santeramo et al. 2018).
These complications likely explain why identifying a strong effect of pollinator losses on global
crop yield and price has thus far been so difficult (Aizen et al. 2008, 2009; Garibaldi et al.

2011).

There are a set of limitations associated with the approach we use in my study. First, | assume
here that dynamic processes of local pollinator change can be inferred from a space-for-time
model of the impacts of climate change and agricultural land use. Ideally, | would use insect
trends over time, but since long-term insect studies are sparse at the global scale (see Klink
et al. (2020) for one example), space-for-time inferences represent a necessary alternative
(Purvis et al. 2018). Second, my set of non-pollinating species were not confirmed as such,
but rather a set of species not identified as pollinators. This is not a major problem for this
study, since non-pollinators were used simply as a reference group. Third, | assume that both

the spatial scale and temporal scale of the temperature anomaly | use is relevant to insect



pollinators. The temperature data | use is coarse by necessity. Finer-scale temperature data,
if they were available globally, may derive a different result. Moreover, | also recognise that
the interactive effect of climate change and agricultural land use may differ according to the
active season of insects, which is known to vary between tropical and non-tropical insects
(Johansson et al. 2020). Work is currently underway investigating this effect of active seasons,
indicating that the interactive effect of climate change and land use is similar when considering
either only the months in which insects are most active, or all months of the year (Outhwaite
et al. in review). Fourth, the crop data | used is for the year 2000. In my projections | assume
that the distribution of these crops has not changed since then, and will not continue to change
between now and 2050. This assumption is clearly wrong. However, although the distribution
of animal-pollination-dependent crops over the next 30 years will change, it seems unlikely
that the temperate and tropical zones will experience a complete reversal in pollination
dependence, meaning my rates of change in total production risk and proportional production
risk will likely still be informative. Moreover, long-term agricultural investment in particular
geographic regions may mean time-lags between crop yield loss and the subsequent
movement of agriculture from that region, and even if agriculture does move, for those people
that remain local livelihoods will be impacted Fifth, in many regions the crop data | use is
highly uncertain, due to the way in which it was interpolated for regions with insufficient
reporting. Such interpolation means production of some pollination-dependent crops is
predicted for regions of the world in which it is highly unlikely, such as small quantities of cocoa
production across large areas of Europe. In Appendix 3 (Figure S3.4) | carried out a sensitivity
analysis in which | reran my production risk projections at a series of data quality levels
(according to Monfreda et al (2008)). This additional analysis indicates that overall change is
not sensitive to data quality. Sixth, the pollination-dependence ratios (Klein et al. 2007) | use
are averaged across multiple crops to align with Monfreda et al (2008), which | do not account
for in my risk projections. However, since only 6/67 of the animal pollination dependent crops
in Monfreda et al (2008) have a standard deviation greater than O for their set of Klein et al

(2007) pollination dependence ratios, accounting for this variation would have only a minimal



impact. Seventh, there is an ongoing debate as to what level of wild pollinator abundance is
required to sustain yields. Here | reason that crop production risk will be predicted as a function
of pollinator abundance; an assumption based on evidence from a number of studies (Blaauw
& Isaacs 2014; Dainese et al. 2019; Hayter & Cresswell 2006). However, the assumption |
make is that risk will be proportional to an average loss in insect pollinator abundance, which
does not account for potential variation among localities/taxonomic groups, or threshold
relationships between pollinator abundance and crop pollination. This is particularly relevant
in the context of cocoa pollinating midges, which are absent from my set of PREDICTS
pollinator data (i.e. the predictions | make are not directly representative of cocoa pollination
risk). | would argue, however, that my assumption is likely still sufficient to quantify overall
relative risk, since my taxonomic family jack-knife analysis shows that the negative response
of pollinators to the interaction of climate change and land-use is likely consistent across
families (Figure S3.5). Regardless, future work should incorporate any new empirical evidence
on the relationship between local pollinator abundance, crop pollination, and yields. Future
work should also associate risk for a given crop with change in only the species known to
pollinate that crop. As yet the data required to make both of these developments either does

not exist or is incomplete.

Climate change and anthropogenic land use have had significant effects on the biosphere.
These effects will likely accelerate over the coming decades as human activity continues to
increase. The consequences of such change on pollinators and the service they provide could
be great. In this study | showed that climate change and agricultural land use have a strong
interactive effect on insect pollinator abundance. Insect pollinators experience strongly
negative declines where cropland coincides with high levels of historical climate change. |
show that change in crop pollination risk could be ~25% times greater under RCP 8.5 than 2.6
or 6.0, and that the tropics will likely experience the greatest risk of future pollination shortfalls.
Crop pollination risk is highest, and predicted to increase most rapidly, in regions of sub-

Saharan Africa and northern South America, primarily for cocoa, mango, pumpkin, melon,



watermelon, and coffee production. These results further stress the importance of avoiding a
high-warming future on Earth, and potential future risk for crop pollination in the global south
(Dicks et al. 2021). The health, well-being, and livelihoods of billions of people to some extent
depends upon the availability and affordability of animal pollination dependent crops (Potts et
al. 2016). Climate change and agricultural land use could risk this contribution. Mitigating this

risk will be a key challenge of the 21 Century.



Chapter 5: The species awareness index as a conservation

culturomics metric for public biodiversity awareness

Abstract

Threats to global biodiversity are well-known, but slowing currents rates of biodiversity loss
remains an ongoing challenge. The Aichi Targets set out 20 goals on which the international
community should act to alleviate biodiversity decline, one of which (Target 1) aimed to raise
public awareness of the importance of biodiversity. Whilst conventional indicators for Target
1 are of low spatial and temporal coverage, conservation culturomics has demonstrated how
biodiversity awareness can be quantified at the global scale. Following the Living Planet
Index methodology, here | introduce the Species Awareness Index (SAl), a metric of change
in species awareness derived from Wikipedia views. | calculated this index at the page level
for 41,197 IUCN species across 10 Wikipedia languages, incorporating over 2 billion views. |
then explored overall changes in species awareness, and tested the extent to which change
in views is predicted by the language, taxonomic class, pollination contribution, and trade
contribution of a species page. Bootstrapped indices for the page level SAl show that overall
awareness of biodiversity is marginally increasing, although there are differences among
taxonomic classes and languages. Among taxonomic classes, overall awareness is
increasing fastest for reptiles and slowest for amphibians. Among languages, overall species
awareness is increasing fastest for Japanese and slowest for Chinese and German users.
Although awareness of species as a whole is increasing, and is significantly higher for traded
species, over the period 2016-2020 change in awareness appears not to be strongly related
to the trade of species or pollination contribution. As a data source for public biodiversity

awareness, the SAI could be integrated into the Biodiversity Engagement Indicator.



Introduction

Threats to global biodiversity are well-known, but slowing current rates of biodiversity loss
remains an ongoing challenge (IPBES 2019; Mace et al. 2018). One problem is the
requirement for transformational behavioural and economic change (IPBES 2019), and the
difficulty in leveraging this change at a global level (IPBES 2019). The Strategic Plan for
Biodiversity 2011-2020, underpinned by the Aichi Targets, represents an effort to guide
these changes (UNEP CBD 2010). Specifically, the Aichi Targets set out 20 goals on which
the international community should act to alleviate biodiversity decline (UNEP CBD 2010).
Three of the Aichi Targets have sufficient and suitable indicators (6, 9, and 11), four have
intermediately sufficient indicators (4, 7, 12, and 14), ten have insufficient indicators (1, 5, 8,
10, 13, 16, 17-20), and 3 have none (Mcowen et al. 2016). Concerned with public awareness
of biodiversity, Aichi Target 1 states that by 2020 the public should be aware of the value of
biodiversity. Conventional indicators for Target 1 (i.e. the Biodiversity Barometer, UEBT
2019)) are of low spatial and temporal coverage (Leadley 2013, Mcowen et al. 2016), and do
not incorporate awareness of biodiversity itself (i.e. species). Without robust metrics
capturing evidence towards Target 1, understanding whether this target has been met is

hard.

Conservation culturomics has emerged as a field concerned with digitised data and human
nature interactions (Sherren et al. 2017; Ladle et al. 2016). Quantifying public awareness of
biodiversity is an area of active interest. Using data sources such as Twitter, Facebook,
Flickr, Wikipedia, and Google Trends, a number of researchers have shown how online data
can be used to better understand how the public perceives biodiversity and
environmentalism (Roberge 2014; Papworth et al. 2015; Tenkanen et al. 2017; Roll et al
2016; Mccallum & Bury 2013). More recently, research has explored how online data
sources can be combined to build a single indicator of biodiversity awareness. For example,

Cooper et al. (2019) examined frequencies of biodiversity keywords across social media,



online newspapers, and internet searches, reasoning that relative frequencies reflect public
awareness of conservation issues. A significant step forward in applying culturomic
approaches to the development of indicators, Cooper et al. (2019) provided a global
framework for future research. Given Cooper et al. (2019) focuses on conservation issues,

one potential improvement could be to incorporate changing awareness of biodiversity itself.

Wikipedia page views represent a powerful data source for quantifying change in public
awareness of biodiversity itself. Page views have previously been applied to quantify reptile
public interest (Roll et al. 2016) and species phenology (Mittermeier et al. 2019). In the
context of awareness, Wikipedia is valuable in that pages are linked explicitly to biodiversity
across scales. Pages on Wikipedia exist for taxa at multiple taxonomic levels, Red List
statuses, and ecological systems, with an unambiguous link between the taxon and page
identity (Mittermeier et al. 2019). Previous research has shown Wikipedia can reveal
changes in public awareness in response to natural history documentaries, demonstrating
that the data source could be informative of long-term changes in awareness
(Ferndndez-Bellon & Kane 2019). Moreover, since species characteristics provide a
mechanistic link to ecosystem services, change in awareness for a particular species on
Wikipedia could be used as a proxy for awareness of its contribution. For example,
increasing awareness for species which contribute significantly to pollination or trade could
indicate greater public awareness of biodiversity importance. For pollination specifically,
such changes in awareness are particularly important, given the global economic importance
and reported declines of animal pollinators (Lautenbach et al. 2012, Powney et al. 2019,
Hallmann et al. 2017, IPBES 2016). Although using Wikipedia for quantifying awareness is
not without its limitations and caveats (see Discussion), it provides the basis for a useful new

indicator.

An awareness metric using Wikipedia page views could be thought of as analogous to The
Living Planet Index (LPI). The LPI represents an aggregation of vertebrate population trends

(Loh et al. 2005, Collen 2009, McRae 2017), showing an average rate of change for multiple



species populations. Treating species page-views as a population size, the LPI methodology
could be similarly applied to Wikipedia to derive a rate of change for species awareness.
Multiple studies have used page views or search trends to infer change in awareness of
specific species (Fink et al. 2020, Fukano et al. 2020, Lenda et al. 2020, Sorian-Redondo et
al. 2017, Mittermeier et al. 2019, Verissimo et al. 2020), but as far as | know no studies have
calculated such an aggregated index for overall awareness. Here, | introduce and evaluate
an approach based on the frequency of views for IUCN species on Wikipedia, naming it the
Species Awareness Index (SAIl). | then explore variation in this metric, aiming to assess
whether awareness of biodiversity has changed. Specifically, | explore the overall SAI for
41,197 IUCN species pooled, 6 distinct taxonomic classes—including the core pollinating
groups (insects, birds, and mammals) and the most heavily traded vertebrates (reptiles,
mammals, birds, amphibians, and ray-finned fishes)—and for each taxonomic class in each
of the top 10 languages (by active user) on Wikipedia (Arabic, Chinese, English, French,
German, Italian, Japanese, Portuguese, Russian, and Spanish). | then model rate of change
in the page level SAl as a function of taxonomic class, Wikipedia language, trade
contribution, and pollination contribution, using a pollinator dataset derived from the
academic literature through named-entity recognition. | conclude by discussing the
limitations of the SAI, suggesting potential avenues for future research, and demonstrating
how the SAI might be combined with other approaches for a more holistic understanding of

changing biodiversity awareness.



Methods

Wikipedia data

| used the Wikipedia pageview API*, and software written in Python, to download daily user
views of IUCN species for the period 1%t July 2015 — 30*s March 2020 (downloaded on the
16"-215' April 2020). | downloaded views for all IUCN species with Wikipedia pages in the
taxonomic groups reptiles, ray-finned fishes (Actinopterygii), mammals, birds, insects, and
amphibians, from 10 Wikipedia language projects (Arabic, Chinese, English, French,
German, ltalian, Japanese, Portuguese, Russian, Spanish). | retrieved my list of IUCN
species on Wikipedia from OneZoom (Rosindell & Wong 2020), who used the Wikipedia
API2 to map between a species’ Latin binomial, [IUCN ID, Wikidata Q identifier®, and the main
Wikipedia page name for each species in each language. Downloading views from only the
main page name of each species excludes redirect views, controlling for potential variation
caused by the URL used to reach a page. Each IUCN ID is unique to a species on the IUCN
database, whereas each Wikidata Q identifier is unique to one page, for all the Wikipedia
languages in which that page appears. Each individual Wikipedia page for a particular
species in a given language | henceforth refer to as a “species page”, distinguishing from my

use of the term “species” to refer to a particular species among languages.

For each species page | retrieved only user views (i.e. views for which the visitor to that
page was recorded as human, excluding automated views from bots). As in Mittermeier et al.
(2019), | was not able to retrieve views from before 1% July 2015, since views from before
this date are not archived by Wikipedia at the pageview API. For each species page
returned, | calculated the daily average views for each month, and then kept only those
species pages for which the series was represented for all months (see Appendix 4, Figure

S4.1 for the number of complete series). | used daily average views rather than total views

! https://wikitech.wikimedia.org/wiki/Analytics/AQS/Pageviews
2 https://www.mediawiki.org/wiki/APl:Main_page
3 https://www.wikidata.org/wiki/Q43649390
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since the Wikipedia pageview AP| does not always return views for all days in a given

month.

To account for the overall change in Wikipedia's popularity and use, | also downloaded the
daily user views for a random set of 11000 pages in each language, using the Wikipedia
Random API* to request random pages. | then aggregated these views in the same manner
as the daily average species views, and again kept only pages represented across the whole
time series. From this random set of views, | then removed any page also appearing in the
set of species pages for that language. | initially sampled 11,000 pages to maximise the

number of remaining pages after removing incomplete series and species pages.

Pollinator and wildlife trade datasets

To explore how species awareness varied with pollination contribution, | built a list of animal
pollinators with an approach combining text-analysis and manual inspection of the pollination
literature (see Appendix 4 and Millard et al. (2020a) for a detailed methodology). | also used
the list of traded vertebrate species released in Scheffers et al. (2019) and FAO fisheries
statistics (FAO, 2020) to compile a dataset of traded mammals, birds, squamate reptiles,
and harvested ray-finned fish. | then retrieved the Wikidata Q ID for each of these traded
species using the Wikipedia API, which | merged onto each species page. | henceforth refer
to any species that pollinates as providing a “pollination contribution”, and any species in

either Schefers et al. (2019) or the FAO statistics as “traded”.

Calculating absolute awareness of biodiversity

Before calculating the SAI | briefly explored absolute awareness of biodiversity among
taxonomic classes, pollination contribution, and trade contribution. | defined “absolute
awareness” as the total views for a species page on Wikipedia in the period 1% July 2015 —

30%st March 2020. | joined the total views for each species page onto the taxonomic class,

4 https://www.mediawiki.org/wiki/API:Random
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trade contribution, and pollination contribution of that species, and then built two generalised
linear mixed-effects model: 1) modelling logio total article views as a function of taxonomic
class, trade contribution (Y/N), the interaction of class and trade, and a random effect for
language; and 2) modelling logio total article views as a function of taxonomic class,
pollination contribution (Y/N), the interaction of class and pollination, and a random effect for
language. Rather than attempting to find the most parsimonious model, | present full model
predicted values, with AIC values for these and a set of candidate null models included in
Appendix 4 (Tables S4.23 and S4.24). In Appendix 4 (Figures S4.11 and S4.12) | also

present boxplots for the distribution of total views among taxa for each language.

Deriving the SAI

The SAl is a new measurement of change in species awareness, calculated at the species
page level from the rate of change in daily average Wikipedia views per month. The SAl
could act as a counterpart to the Biodiversity Engagement indicator, a metric of biodiversity
awareness derived from change in interest on Twitter, online newspapers, and Google
Trends (see ‘Discussion’ for more details). Since the SAlI measures the rate of change in
views within a species page, species are weighted equally irrespective of their popularity,
meaning highly viewed species do not dominate the SAIl. In the remainder of this paper | use
the term ‘SAl’ or ‘Species Awareness Index’ to refer to the overall change in awareness for a
given species page, species, or group of species on Wikipedia. Specifically, | use the term
“species page SAIl” to refer to rate of change at the page level, the term “species SAI” to
refer to the average of all species page SAls for a unique species among languages, and
“overall SAI” to refer to a bootstrapped group of species SAls (see Figure 5.1). | also use the
term “average monthly rate of change in the species page SAI” to refer to the average rate of
change for a single species page across a given time period. All of the above are distinct
from absolute interest in a given species or group of species (i.e. the total Wikipedia views

over the whole time series).
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Figure 5.1 A schematic describing how the species page, species, and overall SAl were derived using Wikipedia views. The species
page SAI represents the random adjusted trend for a given species in a given language, the species SAl is the average of species

page SAls for a single species across languages, and the overall SAl is a group of bootstrapped species SAls.



To construct the species page SAl, | used the R package “rlpi” to calculate an index of
change over time for each species in 6 taxonomic groups (amphibians, birds, insects,
mammals, ray-finned fish, and reptiles) on 10 Wikipedia languages (Arabic, Chinese,
English, French, German, Italian, Japanese, Portuguese, Russian, Spanish). The “rlpi”
package applies a generalised additive model (GAM) to smooth the daily average species
page view trends, using k = N/2 for the degrees of freedom parameter, following Collen
(2009). In ‘rlpi’, these smoothed values are then used to calculate a rate of change in views

for a species page article, as

where As = the rate of change in a species page, N = the smoothed number of daily average

page views per month, and t = month.

To account for the overall change in popularity of Wikipedia itself over the same time period,
| adjusted the rate of change for each species page using the rate of change in a random set
of complete series Wikipedia pages (see Appendix 4 for the number of complete series,
Figures S4.1 and S4.4). For each species page, this adjustment was made with a random
set of pages in the Wikipedia language of that species page. For example, the Wikipedia
page for Panthera tigris (Linnaeus, 1758) in the English language would be adjusted for a
set of random pages in the English Wikipedia, whereas the page for Panthera tigris in
French would be adjusted for a set of random pages in the French Wikipedia. To do so, |
firstly calculated the rate of change for each random page in each language using ‘rlpi’, as in
species pages. | then used a bootstrap resampling approach to calculate the average rate of
change for all random pages in a given language at each timestep. The average rate of
change in the random pages (1,;) was calculated by bootstrapping the monthly rates of
change 1000 times, and then extracting the bootstrapped mean. At each timestep, | then
adjusted the species page rate of change by subtracting the monthly bootstrap estimated

random rate of change (4,;) as



Aat = At — At

where A = the rate of change, t = month, r = the bootstrapped random trend for a given
language, s = the species page trend for that same language, and a = the adjusted species

trend.
For each species page the SAl is then
Ioe =Ig-1) * 10%ae,
lpo = 1
where lat = the species page SAI at time t.

To account for differences in the tortuosity of trends among Wikipedia languages (see
Appendix 4, Figure S4.7), | also smoothed the species page SAIl in each Wikipedia language
using a loess regression (span = 0.3), before transforming the smoothed species page SAl

back into a rate of change.

After smoothing the species page SAIl as above, | then calculated a species SAI for each
species (across languages) by averaging rates of change at each time step across all
languages. For example, the species Panthera tigris has the uniqgue Wikidata ID ‘Q19939’,
meaning the average rate of change in SAI for all species pages (irrespective of language)

identified as ‘Q19939’ provides the overall rate of change for the species Panthera tigris.

| then calculated an overall SAlI combining all species across 10 Wikipedia languages by
averaging rates of change across all species SAls. Bootstrap confidence intervals were
calculated by taking the 2.5" and 97.5" percentiles of 1000 bootstrapped indices at each
timestep. To check the extent to which single languages influence the overall SAl, | then
jack-knifed the overall SAI for language, and removed any languages with a marked effect

on the overall trend (see Appendix 4, Figure S4.6).



Using the same approach as above, | also calculated an overall SAI for each taxonomic
class for all languages combined, and each taxonomic class in each language. For each
taxonomic class | again averaged the loess smoothed rate of change in species page SAl
among languages, and then bootstrapped the species rate of change in SAI at each time
step for each taxonomic class, as above. To check the extent to which single languages
influence class level trends, | again jack-knifed the overall SAI for language, and removed
any languages with a marked effect on the overall trend (see Appendix 4, Figure S4.8). To
calculate an overall SAI in each taxonomic class in each language, | bootstrapped the rate of
change in species page SAl for the set of species pages in a given class-language

combination.

Modelling average monthly rate of change in the SAI

After calculating the SAI for all species pages on Wikipedia, | then calculated an average
monthly rate of change in each smoothed species page SAl for the period January 2016 —
January 2020. This average monthly rate of change was calculated across complete yearly
periods to control for the effect of seasonality. To robustly explore whether change in
awareness differs for various groups, | constructed 1 linear model and 2 mixed effects linear
models fitting average monthly rate of change in species page SAl: 1) a linear model for
average rate of change in species page SAl as a function of taxonomic class, language, and
their interaction; 2) a mixed effects model for average rate of change in species page SAl as
a function of taxonomic class, pollination contribution (Y/N), their interaction, and a random
effect for language; and 3) a mixed effects models for average rate of change in species
page SAl as a function of taxonomic class, traded status, and a random effect for language.
Rather than attempting to find the most parsimonious model, | present full model predicted
values, with AIC values for these and a set of candidate null models included in Appendix 4

(Tables S4.25, S4.26, and S4.27).



Results

Wikipedia view dataset

Before removing incomplete series, my initial Wikipedia dataset included ~2.23 billion page
views for IUCN species across the Arabic, Chinese, English, French, German, ltalian,
Japanese, Portuguese, Russian, and Spanish Wikipedias. These views were represented
across 41,197 IUCN species, over a period of 1735 days between the 1st July 2015 and
31st March 2020. Views for each language varied from ~24.92 million views in the Arabic
Wikipedia to ~1.08 billion views in the English Wikipedia (Figure 5.2). For all languages
unique species number was highest in the ray-finned fishes at 13,571 and lowest in the
insects at 2,743 (Figure 5.2, see Appendix 4, Figure S4.1 for a full language breakdown).
After subsetting for series represented for every month, the proportion of complete series
was lowest in the Arabic Wikipedia, specifically the ray-finned fishes (~35%) and the reptiles
(~38%). Most taxonomic classes for most languages had complete series in at least 80% of

the species in that grouping (Appendix 4, Figure S4.1).

After removing pages also present in the species set, my set of random views consisted of
~2.82 billion views across 113,622 random pages (Appendix 4, Figure S4.3), again for the
same 1735 day period. The total number of random views was highest for the English
Wikipedia at ~629.85 million views, and lowest in the Arabic Wikipedia at ~87.94 million
views (Appendix 4, Figure S4.3). After subsetting for only random pages represented for all
months, total random pages varied from 3486 in the Arabic Wikipedia to 9174 in the

Japanese Wikipedia (Appendix 4, Figure S4.4).
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Figure 5.2 The total number of views and unique species for the initial Wikipedia view
dataset, before removing incomplete series. Top: the total number of views for [IUCN
species in each Wikipedia language, in order of magnitude. Bottom: the total number
of unique IUCN species (n = 41,197) with Wikipedia pages in each of 6 taxonomic

classes, across all 10 languages of the top panel.



Absolute awareness of biodiversity

Among taxonomic classes, reptiles have consistently higher absolute awareness, appearing
in the top 2 classes for 7/10 languages (Appendix 4, Figure S4.11). Amphibians on the other
hand have consistently lower awareness, appearing in the bottom 2 classes for 8/10
languages. Some languages appear to have uniquely high absolute awareness for specific
classes. For example, the ray-finned fish have the highest absolute awareness in the
Japanese Wikipedia (Appendix 4, Figure S4.11). Across all languages, absolute awareness
(total views) is significantly higher in traded species (Figure 5.2; F = 15206.44, p < 0.001,
Appendix 4, Table S4.19), but not significantly different in pollinating species (F = 0.3869, p

= 0.5339, Appendix 4, Table S4.18).
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Figure 5.3 Total Wikipedia article views for traded and non-traded species across 6 taxonomic
classes and 10 Wikipedia languages (Arabic, Chinese, English, French, German, Italian, Japanese,
Portuguese, Russian, Spanish). Predicted values were generated using a generalised linear
mixed-effects model, modelling total article views as a function of the fixed effects taxonomic
class, the presence of trade (Y/N), and their interaction, and the random effect language. Effect
sizes were calculated by drawing fixed effects 1,000 times based on the variance-covariance
matrix, and then calculating the median value (shown as points), and 2.5" and 97.5" percentiles
(shown as error bars). Black error bars represent species that are known to be traded, and red
error bars represent species that are not known to be traded or harvested. Taxonomic classes are

ordered by the magnitude of total article views, from highest on the left to lowest on the right.



The SAI

The overall SAI for all taxa and languages was markedly affected by the inclusion of the
French Wikipedia (see Appendix 4, Figure S4.6, and ‘Discussion’), meaning it was excluded
from analyses presenting aggregated change at the overall level. With the exclusion of the
French Wikipedia, the overall SAI increased from July 2015-March 2020, with marked
declines in mid 2016 and 2018 (Figure 5.4). This overall increase in the SAl is largely robust
to variable baselines (See Appendix 4, Figure S4.17, and ‘Discussion’), although average

rate of change is marginally negative from mid 2017 and highly negative from mid 2019.

At the level of taxonomic class, jack-knifing trends by language again showed that the
French Wikipedia was markedly affecting the overall trend (see Appendix 4, Figure S4.8,
and ‘Discussion’). With the exclusion of the French Wikipedia, over the period July 2015-
March 2020 all of the reptiles, ray-finned fish, mammals, and birds appear to have increased
in awareness, whilst the amphibians and insects appear to have decreased (Figure 5.5).
Birds experienced a peak in early 2017 (Figure 5), driven by an increase across multiple
languages (Figure 5.6). The mammals appear to be experiencing a consistent and steady
increase in awareness, particularly in the Japanese Wikipedia (Figure 5.6). The amphibians
and insects both experienced a pronounced drop in awareness from the start of the series to
mid 2016 before increasing, the cause of which is unclear. The trend for both the reptiles
and insects is highly seasonal for multiple languages, peaking in July-August of each year,

with the notable exception of the English language for insects (Figure 5.6).
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Figure 5.4. The SAI for 6 taxonomic classes (reptiles, ray-finned fish, mammals, birds,
insects, and amphibians) and 9 Wikipedia languages (Arabic, Chinese, English,
German, ltalian, Japanese, Portuguese, Russian, and Spanish) for the period July
2015-March 2020. The French Wikipedia was removed here given its marked influence
on the aggregated SAIl (see Appendix 4, Figure S4.6). Here the black line represents
the mean of the bootstrapped indices at each monthly timestep, and the grey band the

2.5 and 97.5" percentiles.
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Figure 5.5 The SAI for 6 taxonomic classes (reptiles, ray-finned fishes, mammals, birds, insects, and
amphibians) and 9 Wikipedia languages (Arabic, Chinese, English, German, Italian, Japanese,
Portuguese, Russian, and Spanish), for the period July 2015-March 2020. The French Wikipedia was
removed here given its marked influence on the aggregated SAI (see Appendix 4, Figure S4.8).
Coloured lines represent the mean of the bootstrapped indices at each monthly time step, and
coloured bands the 2.5 and 97.5™ percentiles: reptiles (black), ray-finned fishes (orange), mammals
(blue), birds (green), insects (pink), and amphibians (brown). Taxonomic class panels are ordered

by the magnitude of overall increase in each taxonomic class.
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Figure 5.6 The SAI for 6 taxonomic classes across 10 Wikipedia languages, for the period July 2015-March 2020. Coloured lines represent
the mean of the bootstrapped indices at each monthly each time step, and coloured bands the 2.5" and 97.5™ percentiles: reptiles (black),
ray-finned fishes (orange), mammals (blue), birds (green), insects (pink), and amphibians (brown). Taxonomic class panels are ordered by

the magnitude of overall increase in each taxonomic class, and for language alphabetically.



Modelling average monthly rate of change in species page SAIl

Average monthly rate of change in species page SAI for the period January 2016-January
2020 differed significantly for taxonomic class, language, and their interaction (Figure 5.7,
Appendix 4, Table S4.22). At the level of taxonomic class, the reptiles and ray-finned fishes
are increasing in awareness the fastest, and the insects and amphibians are either
increasing slowly or declining (with the exception of the Japanese Wikipedia). Among
languages, rate of change in species page SAl is highest in the Japanese and Portuguese
Wikipedias, and lowest in the German and Chinese Wikipedias. Although absolute interest is
significantly greater in traded species (See Figure 5.3, Appendix 4, Table S4.19), over the
period January 2016-January 2020 average monthly rate of change in the species page SAI
appears not to be related to either trade contribution (Appendix 4, Figure S4.14, Table

S4.21) or pollination contribution (Appendix 4, Figure S4.14, Table S4.20).
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Figure 5.7 Average monthly rate of change for the species page SAIl for 6 taxonomic classes

across 10 Wikipedia languages. Errors bars represent the predicted values of a linear model,

fitting average monthly change in the species page SAl as a function of taxonomic class,

Wikipedia language, and their interaction. Fitted values were generated from the linear model

with the R function predict (represented as points), and 95% confidences intervals from the

fitted values +/-1.96 * standard error. The colour of error bars refers to taxonomic class: reptiles
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Discussion

In this study | introduced the SAl, an index of change in public awareness of biodiversity.
The SAl is derived from views of individual Wikipedia species pages, enabling investigation
according to a variety of variables, such as taxonomy, language, geographic distribution, and
ecosystem service provision. | show that awareness of biodiversity overall has marginally
increased, with increases highest in the reptiles and ray-finned fish. Although biodiversity
awareness is increasing overall, we also show that some groups (i.e. the amphibians and
insects) are decreasing or only marginally increasing in awareness. Among languages,
increases are highest in the Japanese and Portuguese Wikipedias, and lowest in the
Chinese and German Wikipedias. Although my results suggest that awareness of
biodiversity has increased since July 2015, increases do not appear to be related to a
species’ trade contribution or pollination contribution. As an indicator for biodiversity
awareness, a Wikipedia derived metric such as the SAI represents a useful additional data
source, given its explicit and unambiguous link to biodiversity itself at multiple scales (i.e.

species, family, class).

The link between culture and perceived biodiversity value or awareness is widely recognised
(Daniel et al. 2012, Cooper et al. 2019, Roll et al. 2016, Ladle et al. 2019), but for a
culturomics metric such as the SAI the drivers of change are complex. Overall trends
capture many different drivers of awareness, making it difficult to isolate the causes for a
given increase or decrease. The Chinese Wikipedia, for example, shows a consistent
decrease in awareness for 5 taxonomic classes, but a consistent increase for ray-finned fish.
I hypothesised that this increase for ray-finned fish may be driven by increasing fish
consumption, since seafood demand in China has increased significantly in recent years
(FAO 2020). However, in a brief additional analysis, | found no significant difference between
the rate of change for traded and non-traded ray-finned fish in the Chinese Wikipedia

(Appendix 4, Figure S4.13). This would indicate that the greater rate of change for the



Chinese ray-finned fish may not be driven by consumption alone. The Japanese Wikipedia is
also of note, given its consistent increase in awareness across all 6 taxonomic classes. This
awareness increase is concordant with the results of conventional surveys, in which Japan
has amongst the largest percentage point increases for familiarity with the term ‘biodiversity’
(UEBT 2019). However, it is unclear what may be driving this change in awareness.
Counterfactual scenario modelling could help to better understand such relationships,
previously demonstrated in a number of recent conservation culturomics studies (Acerbi et

al. 2020, Verissimo et al. 2020, Fernandez-Bellon & Kane 2019).

Although drivers of overall change in the SAI are complex, it is conspicuous that absolute
awareness and change in awareness do not differ between pollinating and non-pollinating
animals. Since traded species have high absolute awareness relative to non-traded species,
biodiversity awareness likely does relate to its value. But for pollination contribution this
relationship appears to be weak or non-existent. For three main reasons this may be the
case: first, the impact pollination contribution has on biodiversity awareness will be highly
taxa dependent, with groups more strongly associated with pollination experiencing a bigger
increase in awareness; second, unlike a species traded for direct consumption (i.e. food),
pollinators make an indirect contribution to people, making their benefit less intuitive to
understand; and third, the nature of a pollinator is that it is often not deliberately sought by
those that benefit from its contribution. Given its central role in the value of biodiversity, more
work is required to understand the contribution ecosystem service provision makes to public
biodiversity awareness. Since pollinators have been so well-publicised (Smith and Saunders
2016), one would expect that if awareness is not relatively high for pollinating species, it

likely will not be for other service providing species.

Change in biodiversity awareness reflected by the SAl is related to, but largely distinct from
absolute awareness. In other words, for a given group of species, high rate of change in
awareness does not necessarily also mean high absolute awareness. Instead, one might

expect that groups of high absolute awareness would often be stable or increasing slowly,



since the margin within which they can continue to increase is smaller. In the Japanese
Wikipedia, for example, ray-finned fish have the highest absolute awareness, but the lowest
average monthly rate of change in species page SAI. Future work should further explore the
relationship between absolute and change in awareness, particularly for variables previously
applied in absolute awareness research, such as threat status and venomosity (Roll et al.

2016), and geographic range and phenotypic distinctiveness (Ladle et al. 2019).

Strong seasonal patterns in awareness are apparent in the bootstrapped trends for some
taxonomic groups (e.g. insects and reptiles) and languages (e.g. Japanese). Seasonality in
species interest on Wikipedia has been demonstrated previously, with high levels of
seasonality in organisms that tend to have a strong phenological component to their life-
history (e.g. insects and flowering plants) (Mittermeier et al. 2019). In my analysis,
languages such as English and Spanish have a conspicuous lack of a seasonal trend for all
bootstrapped taxonomic classes. Most likely this results from the nature of English and
Spanish as languages that are used widely in both the northern and southern hemispheres.
Opposing peaks of interest in the northern and southern hemisphere summers will tend to

cancel each other out, acting to smooth the overall bootstrapped trends.

The significant effect of the French Wikipedia on the overall SAl is surprising, given the low
species page and random page views for the French Wikipedia. Inspection of the French
Wikipedia shows that reptile species pages are primarily the cause of this problem. The
French Wikipedia contains a large number of reptiles (Figure S4.1), which decrease rapidly
at the start of the series (Figure 5.6). This decrease is compounded by the large humber of
reptiles in the French Wikipedia appearing in only that Wikipedia (Figure S4.15). This means
that when an average is taken across languages, the large negative trends of the French
reptiles are not mitigated against other less negative trends, meaning they come to dominate

the index.
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Figure 5.8 Schematic adapted from Cooper et al (2019), demonstrating one method through
which the SAI might be incorporated into the Biodiversity Engagement Indicator for a single
indicator of country-level biodiversity awareness. All text squares in white represent the
methodological pathway for the original Biodiversity Engagement Indicator, and all squares in
pale blue represent a potential additional pathway for combining the SAI. Box 1 (top right)
represents the overall SAl scaled starting at 1. Box 2 represents the overall SAI rescaled

between 0-100, consistent with the Biodiversity Engagement Indicator.



The SAIl and Biodiversity Engagement have value as independent metrics, but as in Cooper
et al. (2019) | emphasise the importance of combining multiple online platforms for inferring
public biodiversity awareness. Particularly since the SAIl provides an explicit link to
biodiversity itself, its inclusion could provide a more holistic understanding as to how
biodiversity awareness is changing. Combining the SAI with the Biodiversity Engagement
Indicator presents two core challenges. First, both the Biodiversity Engagement Indicator
and SAl are measured on different units, inherent to their underlying methodology. The
Biodiversity Engagement Indicator is scaled on a 0-100 scale in a manner analogous to
Google Trends. The SAIl on the other hand is scaled relative to a benchmark index of 1, in
an approach inspired by the LPI. Second, there are problems of geographic scale in
combining the Biodiversity Engagement Indicator and SAl. Namely, the Biodiversity
Engagement Indicator is aggregated at the country-level, whereas the SAIl cuts across

countries at the language-level.

Given differences in units and geographic scale, combining a Wikipedia metric and the
Biodiversity Engagement Indicator is not simple. One potential solution could be to rescale
the SAIl on a 0-100 scale, disaggregate by language, and then calculate a weighted average
among languages to reflect the proportion of users for a given country (Figure 5.8). The data
for calculating such a weighting language level trend is provided by Wikipedia, in a format
amenable to web-scraping (Wikimedia Traffic Analysis Report 2018). Such an approach
would solve both the problem of differing units and geographic scale, transforming the SAl
into a national metric amenable to averaging alongside a Twitter, Newspaper, and Google

Trends score (Figure 5.8).

Despite providing a novel approach, online-derived metrics for biodiversity awareness are
subject to limitations. Primarily, online metrics are proxies rather than direct measures of
awareness. For the SAI, we can show whether views increased or decreased on average for
a given grouping, from which we can infer exposure to species-related information. However,

we cannot tell why a given page was visited, or whether information related to that page was



retained. Previous research has shown how on-site Google Analytics can be used to return a
suite of metrics intimating as to the reasons for a given visit (Soriano-Redondo et al. 2016),
such as the site used to reach a page, but for Wikipedia this data is not publicly available.
Text-mining could help to quantify the type of information users are exposed to on Wikipedia.
For example, calculating a text similarity for each species page to a reference text on
pollination would provide an indication as to the pollination salience of a given species page.
Similar approaches have been applied in the context of climate change and invasive
species, using rate of threat-related terms as an indicator of threat salience (Jari¢ et al.

2020).

There are other limitations associated with the SAI. First, the short length of my Wikipedia
time series presents a problem for the interpretation of our index. Future iterations of the SAl
should aim to include views archived from before 2015, which presents additional problems
in reconciling views aggregated across multiple formats. Second, an index based on internet
activity will only be representative of those that have access to the internet, and use the
internet to access Wikipedia. Given ~50% of the global population has access to the internet
(The World Bank 2020), and ~15% of those regularly access Wikipedia (Graham et al.
2014), the SAI cannot be globally representative. In mainland China for example, the
dominant online encyclopaedia is Baidu Baike, with Wikipedia views for the Chinese (zh)
Wikipedia coming predominantly from Taiwan and Hong Kong (Wikimedia Traffic Analysis
Report 2018). Future iterations of the SAI could incorporate page views for species on Baidu
Baike, although this presents problems in requiring a distinct computational approach. Third,
conclusions drawn from the SAIl are susceptible to variations in the chose baseline month. |
therefore carried out an additional analysis to explore the robustness of my overall Species
Awareness Index to variable baselines. For all potential baselines of the SAI (i.e. months), |
recalculated the average rate of change from that point to the end of the series, and then
superimposed these rates of change onto the overall SAI (Figure S4.17). Here | show that

the average rate of change is stable or greater than 0 for all baselines between July 2015



and February 2017. The average rate of change then goes negative from the baselines of
mid 2017, and highly negative from mid 2019 to the end of the series. Although my
additional analysis shows that the SAI for all 6 taxonomic classes is largely robust to variable
baselines, further research is required to fully understand the effect among all taxa and

languages.

As global internet penetration increases and biodiversity continues to experience decline,
digital metrics for public biodiversity awareness will become both more informative and more
important. Here | presented the SAl, a metric derived from Wikipedia views depicting change
in awareness for biodiversity online. | used this metric to show that overall awareness of
biodiversity is increasing marginally, although this increase is inconsistent among taxonomic
groups and languages. | also showed that such increases appear not to be related to either
the pollination contribution or trade contribution of a species. | concluded by suggesting one
approach through which the SAIl could be combined with the Biodiversity Engagement
Indicator, providing a more holistic understanding of public biodiversity awareness in the

digital realm.



Chapter 6: Discussion and synthesis

Pollinator biodiversity has undergone significant change in the Anthropocene (Biesmeijer et
al. 2006, Burkle et al. 2013, Potts et al. 2010). Such changes have often been associated with
climate change and anthropogenic land use (Potts et al. 2010, Vanbergen, 2013, Winfree et
al. 2011), both of which will continue to increase and expand over the coming decades (IPCC
2018; Laurance et al. 2014). Given the importance of animal pollinators to humanity, both to
the structure of terrestrial ecosystems and crop pollination, understanding the extent to which

pollinator biodiversity will change in the future is highly important (Brown et al. 2016).

In this thesis | applied a number of computational methods to investigate the causes and
consequences of pollinator biodiversity change in the Anthropocene. First, | carried out a text-
analysis review of the pollination literature, showing that although there is a marked bias
towards the honey bees and bumblebees of North America and Europe, there is still pollination
information for other geographic regions and taxonomic groups (Chapter 2). Second, | then
used the output of this text-analysis (i.e. the set of animal genera extracted from a set of
pollination related abstracts) to identify a set of potentially pollinating species in the PREDICTS
database, which | then confirmed as likely pollinators using a manual check by myself and a
group of pollination ecology experts (Chapter 3). | then used this pollinating subset of the
PREDICTS database to investigate the global response of local pollinator biodiversity and
land-use type and intensity (Chapter 3). Specifically, | showed that low levels of intensity can
increase pollinator biodiversity, but that within a land use type increasing intensity tends to
lead to decreases in pollinator biodiversity (Chapter 3). | also showed that pollinator responses
to intensity differ among taxonomic groups, geographic region, and between analogues of
intensity (i.e. total fertiliser application rate and a coarse categorical factor of intensity)
(Chapter 3). Third, using the same set of likely pollinating species in PREDICTS, | then
investigated the interactive effects of climate change and land use on local pollinator
abundance (Chapter 4). | showed that land use and climate change have a significant

interactive effect on insect pollinator abundance, such that climate change is associated with



a decrease in abundance on cropland, and an increase on primary vegetation (Chapter 4). |
then used my interactive models, estimations of global crop production that is dependent on
animal pollination, and projections of future climate change, to predict potential temporal and
spatial regions of crop pollination risk (Chapter 4). Here | showed that under RCP 8.5—a high
emissions future climate scenario—my total crop production risk index is predicted to increase
by ~70% between 2016 and 2048. Again under RCP 8.5, | showed that the rate of change in
total crop production risk could be up to ~25% higher than that of RCP 2.6 and 6.0, with abrupt
periods of increased exposure in the 2030s. | further showed that crop pollination risk is
highest, and predicted to increase most rapidly, in regions of sub-Saharan Africa and northern
South America, primarily for cocoa, mango, pumpkin, melon, watermelon, and coffee
production (Chapter 4). Fourth, | finished by introducing a new metric of public biodiversity
awareness, derived from page views of animal species on Wikipedia (Chapter 5). | use this
metric to show that, although awareness of biodiversity appears to be marginally increasing,
these increases are likely not related to the contribution animals make to pollination (Chapter
5). In this last chapter, | highlight the core contributions | make to four areas of work, as well

as the main challenges and future directions for each of these research areas.

Quantifying the geographic and taxonomic distribution of the animal pollination

literature and improving tools for automated reviews

Contribution

Many studies make claims that most pollinator biodiversity change research concerns only the
honey bees and bumble bees of North America and Europe (Ghazoul 2005, 2015; Goulson et
al. 2015). However, attempts to quantify this extent are few, especially for the distribution of
research among pollinating groups (although see Saunders et al. 2020). My work in Chapter
2 aimed to address this problem. | showed that at least 25% of pollination-related abstracts
mention a species of honey bee and at least 20% a species of bumble bee, and approximately
46% of abstracts are focussed on either North America or Europe. This research builds on the

work of Archer et al. (2014) and Ollerton (2017) through investigating taxonomic change over



of time, and investigating the interaction between taxonomy and geography in animal
pollinators. Importantly, this research showed that there is a large quantity of animal pollinator
related research based outside of North America and Europe, which could be used to
supplement global models of pollinator biodiversity change. This work also used two named-
entity recognition tools which are rarely applied in ecology and conservation: CLIFF-CLAVIN,
a geoparser which attempts to resolve the main geographic focus of a piece of text (D’lgnazio
et al. 2014); and the function scrapenames from the package taxize, a piece of software that
extracts a taxonomic names from text (Chamberlain & Szdcs 2013). In Chapter 2 | discuss
that named-entity recognition algorithms could be used to estimate a lower-bound for the

number of pollinating species, and to predict likely plant-pollinator interactions.

As the quantity of literature in the field of pollination ecology continues to grow, incorporating
all relevant literature in systematic maps and synthetic analyses will become increasingly
difficult. In Chapter 2 | made some suggestions as to how this problem might be approached,
using a novel synthesis path and text-analysis algorithms to shorten the synthesis gap, or in
other words the lag between the practice of primary research and the synthesis of evidence
(Westgate et al. 2018). A number of other papers have explored ways of shortening this
synthesis gap, such as automating the identification of relevant texts (Cornford et al. 2021),
and building software tools for article screening (Westgate 2019), but widespread uptake of

these tools is still low.

Challenges and future directions

For the quantification of biases in the ecological literature, there are some key challenges that
need to be overcome before such text-analysis of abstracts can be relied upon to make robust
estimates. First, biases caused by the text-analysis algorithms themselves need to be more
thoroughly checked, and where biases are found, these need to be accounted for in estimates
of geographic and taxonomic distribution. In the context of the work | presented in Chapter 2,
these biases will likely be strongest for the geoparser. CLIFF-CLAVIN was built for geoparsing

online news articles, meaning it will likely perform less well when applied to ecological texts,



and may favour locations that tend to appear in the news articles from which it was trained
(Imani et al. 2017). As mentioned in Chapter 2, one would expect that such biases likely favour
the United States, meaning the actual disparity between the United States and the rest of the
world may be smaller than suggested by my analysis. One approach to account for this
potential bias could be to run CLIFF-CLAVIN on a set of texts with a known geographic
distribution, and then use this to adjust any subsequent distributions outputted by CLIFF-
CLAVIN. Work is currently underway exploring this approach with the Living Planet Database,
preliminarily indicating that CLIFF-CLAVIN does indeed identify locations in the United States
more often than expected by chance (Cornford et al. 2021). Second, biases caused by the
extent to which abstracts represent full text need to be tested and accounted for in estimates
of taxonomic and geographic distribution. For example, it could be that researchers have a
tendency to over-emphasise certain taxa in abstracts, perhaps to increase the impact of their
study. Understanding this bias is particularly important given the number of studies that
assume the content of an abstract is representative of the taxa studied in that paper (Millard,
et al. 2020a, da Silva et al. 2020, Santos et al. 2020). If taxonomic and geographic information
in abstracts is not consistently representative of the research content of the full paper, then
the distribution implied by these papers would be biased. Work is also underway exploring
this, again with the Living Planet Index, although results at this stage are inconclusive

(Cornford et al. 2021).

The causes of pollinator biodiversity change

Contribution

A number of prior studies have examined the effect of land use on pollinator biodiversity
change (Biesmeijer et al. 2006, Goulson et al. 2015, Winfree et al. 2011), described by some
as likely the greatest driver of change (Goulson et al. 2015). Climate change and its interaction
with land use has also been described as a significant driver of pollinator biodiversity change

(Settele et al. 2016, Vanbergen, 2013), often investigated in the context of localised studies



(e.g. (Zaragoza-Trello et al. 2021). However, for both land use and the interaction of climate

change with land use, as far as | know there are no cross-taxonomic global studies.

In Chapter 3 | used a set of likely pollinating species in the PREDICTS database to model the
response of pollinator biodiversity to land-use type and intensity, using a space-for-time
approach. Counter to many studies which suggest consistently negative effects of
anthropogenic activity on pollinator biodiversity, | show that pollinator biodiversity change is
likely more heterogenous. First, | demonstrate that pollinator biodiversity change follows a
‘hump-shaped’ response, with low disturbance associated with higher biodiversity (relative to
primary vegetation), and high intensity associated with lower biodiversity (relative to primary
vegetation). Such a relationship has been shown in a number of other localised studies (e.g.
Lazaro et al. 2016), and likely relates to the increased heterogeneity of habitats at low intensity
(the intermediate disturbance hypothesis) (Connell 1978). Second, | show that vertebrate
pollinators are more resilient to anthropogenic land use (and intensity) than invertebrate
pollinators. Vertebrate pollinator resilience has been found in a number of localised studies
(e.g. Tscharntke et al. 2008), but not in previous synthetic studies where the effect diminishes
when accounting for differences in methodology among studies (Winfree et al. 2011). My work
in Chapter 3 indicates that vertebrate pollinators are indeed less sensitive, likely resulting from
their nature as bigger bodied, more mobile species (Henle et al. 2004). Third, | show that
tropical pollinator biodiversity is more sensitive to the effects of land use intensity on cropland,
with high anthropogenic intensity associated with significant declines on tropical cropland, and
no change in non-tropical cropland. Relative to the non-tropics, tropical pollinator biodiversity
has previously been found to be more sensitive (e.g. Newbold et al. 2020), but as far as | know
my work here represents the first time this has been confirmed at large-scale. Such sensitively
is likely predicted by the combined effects of novel extreme climate and historical
anthropogenic land use. The tropical zone is both being exposed to extreme novel
temperatures more quickly, and has a shorter history of anthropogenic land use, which in the

temperate zone has likely already filtered out the more sensitive species (Balmford 1996).



Fourth, | show that the effects of anthropogenic land use are not always negative, with some
groups (e.qg. flies) experiencing an increase in pollinator biodiversity in response to land use
intensity. Such a positive response of flies to anthropogenic land use intensity has been found
previously in local studies (Biesmeijer et al. 2006, Jauker et al. 2009, Weiner et al. 2011), here

confirmed at the global scale.

In Chapter 4 | used the same set of pollinating species to investigate the interactive effect of
climate change and land use on local pollinator abundance. For insects, this interactive effect
is such that abundance declines in regions where cropland coincides with high historical
temperature change, and increases in regions of primary vegetation. Such a response has
been found previously (Outhwaite et al. in review), likely relating to the nature of tropical
insects as highly sensitive to novel extreme temperatures that fall outside their thermal limits
(Deutsch et al. 2008). | show that this response is likely stronger in pollinating insects than
non-pollinating insects and also vertebrates. From my analysis the mechanisms of this
sensitivity are unclear, but as | describe in Chapter 4, it’s likely that some combination of traits

and a reliance on floral resources predicts this high sensitivity.

Challenges and future directions

There is a lot we understand about the causes of pollinator biodiversity change, but still some
key challenges and questions for future research. Here | briefly highlight three areas which

require additional work.

The primary challenge for pollinator biodiversity change research | feel lies in the geographical
distribution of research. In Chapters 3 and 4 | showed that tropical pollinator biodiversity is
highly sensitive. In the tropics, high agricultural intensity is associated with much greater
declines than in the non-tropical zone (Chapter 3). The tropics are also being exposed to novel
extreme temperatures more quickly, with this change associated with significant declines in
local pollinator abundance on croplands (Chapter 4). Given that many prior synthetic studies

on pollinator biodiversity change focus on the temperate zone, it therefore seems likely that



these previous studies have underestimated the effects of anthropogenic activity on pollinator
biodiversity. Although the two studies | carried out here help to reduce this bias, there is still a
significant bias in the data towards non-tropical regions, and within the tropics towards a select
few countries (e.g. South Africa, Kenya, Ghana, Madagascar). Moving forward we need to
integrate more primary research from the tropics into global models of pollinator biodiversity

change.

Second, the models | present in both Chapters 3 and 4 are correlative, meaning they do not
reveal the mechanisms of biodiversity change, with the observed patterns potentially
explained by a set of correlated variables that | did not consider. This is particularly the case
for the interaction between climate change and land use tested in Chapter 4. Standardised
temperature change could be correlated with recent land-use intensity, or some measure of
current climate. Future work therefore needs to establish the extent to which change in climate,
current climate, historical land use, and current land-use intensity predict variation in pollinator
biodiversity between tropical and non-tropical regions, with all variables included in a single
model. Estimations of historical and current climate are feasible for much of the world (e.qg.
Frieler et al. 2017, Harris et al. 2020), but data for historical land use is, as far as | know, not

available for much of the world.

Third, for historical land use there is a related challenge associated with baselines for pollinator
biodiversity change. The baseline for the models | present in this thesis, which used the
PREDICTS database, is ‘primary vegetation’, or in other words vegetation that has not been
disturbed by humans. However, as | discuss in Chapter 3, the nature of this baseline differs
between the tropical and temperate zone, meaning it does not necessarily represent a
consistent, perfectly natural baseline. Research increasingly shows that human activity goes
back thousands of years (Mottl et al. 2021), meaning the land-use factor described here as
‘primary vegetation’ will often not be a truly undisturbed habitat. Conservation biology more
broadly has real difficulties with baselines, notably in the Living Planet Index that is anchored

to a baseline of 1970 (McRae et al. 2017). Often it is either unclear where baselines should



be set, or the most logical baseline is clear but the relevant data are unavailable (Mihoub et
al. 2017). One potential way forward is to test the sensitivity of predictions to changes in the
baseline, as | did in Chapters 3 and 5 for pollinator biodiversity and changes in biodiversity
awareness (see Figure S2.6 and Figure S4.17), and then quantify some degree of uncertainty
according to the variation among baselines. Although such an approach still means model
uncertainty, it is at least transparent that baselines are a cause of variation, and it enables the

researcher to test the influence of arbitrary baseline selection on their model predictions.

The consequences of pollinator biodiversity change

Contribution

One of the core questions for pollinator biodiversity research concerns the extent to which
future changes in pollinator biodiversity might relate to the stability of crop production and the
availability of animal pollination dependent crops (Potts et al. 2016). A number of studies have
found that localised reductions in yield can occur through reductions in local pollinator
abundance (Kevan 1977, Stephen 1955, Watanabe 1994), whilst others have suggested that
we risk widespread shortfalls from continued pollinator losses (Aizen et al. 2008, Winfree,
2008). Although large shortfalls are not yet thought to have occurred on a broad scale
researchers postulate that as pollinator biodiversity continues to change we risk them become
increasingly common (Winfree 2008). My work in Chapter 4 uses a model of the interactive
effects of climate change and land-use on local pollinator abundance to make the first
systematic predictions of the temporal and spatial distribution of crop pollination risk. Although
there are a number of studies and reviews examining the interactive effects of climate change
and land-use on pollinators (e.g. Settele et al. 2016, Vanbergen, 2013), as far | know there
are none that combine models with estimates of animal pollination dependent crop production

to predict risk to global crop pollination.

Challenges and future directions



The models | present here make coarse predictions on the temporal and spatial distribution of
crop pollination risk. To increase the robustness of crop pollination risk scenarios there are a
number of challenges that need to be addressed. Here | highlight three challenges, and
suggest ways in which each may be overcome. Each of these points are in addition to the

limitations | discuss in Chapter 4 itself.

First, we need to understand better how the interactive effect of climate change and land use
differs between wild and managed pollinators, since the resilience of managed pollinators will
likely predict a locality’s ability to adapt to wild pollinator losses. In the future, as localities lose
wild pollinator abundance through the interactive effects of climate change and land use, there
will likely be an increased demand and incentive for shipping in pollinators (vanEngelsdorp &
Meixner 2010). If the response for managed pollinators (e.g. Apis, Bombus, Osmia,
Megachile) is similar to all pollinators (i.e. farmers are unable to maintain managed bee
abundance in croplands that are experiencing extreme high novel temperatures), shipping in
these bees will likely experience a diminishing return, such that production of the crop
becomes more expensive, and at worst economically unviable. But if the response of
domesticated pollinators differs (i.e. farmers are able to maintain managed bee abundance),
it may be the case that crop pollination can be buffered against the effects of wild pollinator
losses, albeit with some increase in cost associated with managed bee shipping. Here | did
not distinguish between wild and managed pollinators in the development of my models.
Future work needs to tease these two groups apart for a more refined understanding of our

ability to adapt to changing crop pollination risk.

Second, we need higher quality and more recent estimates of global crop production.
Monfreda et al. (2008) is a valuable resource, but the data represents crop production from
over 20 years ago, and relies on country-level interpolations for many highly pollination-
dependent crops (e.g. cocoa). To understand better how these crops will be affected, we need
better estimates of where they tend to grow and at what relative quantity. To be of use to crop

pollination risk models, these estimates need to be at the level of spatial cells. Climate change



and land use do not occur at the spatial scale of countries, meaning FAO national reports

alone are of minimal use, especially for large countries (e.g. Brazil, China, India).

Third, to better understand how localised shortfalls might affect globalised supply of crops
dependent on animal pollination, we need to link models of localised crop pollination risk to
estimates of global trade networks. Virtual pollination trade flows (see Silva et al. (2021))
represent a means through which this could be achieved. Silva et al. (2021) released data for
the flow of animal-pollination-dependent crop production between countries, with quantities
for the flow between each exporter and its corresponding importers. Each metric tonne of
production risk | describe in Chapter 4 (see Figure 3) has a country in which it was produced
(i.e. export risk), which can be ascribed to an importer (i.e. import risk) according to the
proportional flow reported by Silva et al. (2021). Such work would provide a coarse estimate
as to how many countries could be indirectly affected by changes in crop pollination risk, and
to what extent. One might expect that countries that have low export production risk (e.g. the
United Kingdom) could have high import production risk. Given the relationship between
supply diversity and food-shock incidence (Gomez et al. 2021), countries of high import
production risk that import from only a few countries will likely be most vulnerable to the knock-

on consequences of localised pollinator losses.

Developing online metrics for pollinator biodiversity awareness

Contribution

Pollinator biodiversity has undoubtedly undergone significant change through the effects of
climate change and anthropogenic land use. In regions of high agricultural dependence on
pollinators, such change in agricultural intensity and climate change could have consequences
for crop pollination. Although the potential for these effects has been well publicised
(Carrington 2013, Milman 2020), it is unclear the extent to which publicity has translated into
changes in awareness of the importance of biodiversity and pollinators. In Chapter 5, |

developed a new approach for quantifying changes in awareness of biodiversity, which | use



to show that awareness of biodiversity has likely increased, but not awareness of pollinating
species. | then suggest an approach through which this metric could be combined with the

Biodiversity Engagement Indicator (Cooper et al. 2019).

Challenges and future directions

My work provides a novel means through which to quantify changes in biodiversity awareness,
and therefore pollinator biodiversity. Regardless, the field still has a long way to go before it
can claim to make broad, robust conclusions that are of genuine use to policy-makers. Here |
highlight some of the problems associated with quantifying biodiversity awareness more
broadly, before discussing some potential areas of research and concern in the context of

pollinator biodiversity specifically.

To understand how attempts to quantify changes in global biodiversity awareness might move
forward, it is first helpful to understand their current state. At present there are effectively two
main philosophies relating to the way in which culturomics—the quantitative study of human
culture and behaviour using digitised data—can be used to infer biodiversity awareness: in the
first, the frequency of biodiversity and conservation related key words online are used to try
and infer directly awareness of issues (e.g. Cooper et al. 2019); in the second, awareness is
guantified at the level of species through either online page views (e.g. the Species Awareness
Index in Chapter 5) or a frequency of species names in text (e.g. Ladle et al. 2019) from which
awareness of the importance of biodiversity is indirectly inferred. For example, a greater rate
of change in page views for ecosystem service providing species, relative to non-service
providers, might suggest that awareness of the importance of biodiversity is increasing. The
first of these approaches (i.e. keyword level inference) works well across platforms at scale,
but is disconnected from biodiversity itself, and tracks a set of words that are not in the lexicon
of most people. Or in other words, it tracks changes in awareness for individuals that tend to
use these words already, which will more often be those working in the biodiversity sciences.
The second of these approaches (i.e. species level inference) overcomes this problem by

focussing on biodiversity itself, but for page views is limited due to the difficulty in



understanding why a particular page was visited. As | discuss in Chapter 5, owners of websites
can retrieve visit statistics for their own site through services such as Google Analytics, which
intimate as to the reason for a given visit, but such data are unavailable for Wikipedia. For
example, Google Analytics can show which other sites tend to be used to reach a site, and for

how long a site is visited (Soriano-Redondo et al. 2017).

Although understanding the reason for a given species page view on Wikipedia is challenging,
recent research indicates that one of the core drivers is physical encounters with species
(Mittermeier et al. 2021). For example, Mittermeier et al. (2021) showed that for a given
Wikipedia language, species found within countries of that language tend to get more views,
and that the frequency of sightings reported online explained a significant quantity of the
variation in pageviews. An interesting complement to my work in Chapter 5, therefore, could
be an index of change in awareness derived from the frequency of animal species photos
uploaded online. A photo uploaded online, assuming it is of an organism which can be
accurately identified, represents an unambiguous physical encounter with that species. Each
photo has a timestamp indicating the approximate period of encounter, and typically 25% are
geotagged such that the location of the species can be resolved to an unambiguous location
(August et al. 2020). In combination with the Species Awareness Index, an online photo index
would help to establish the extent to which change in species page views are predicted by
physical encounters with biodiversity. Such an index could be built using an approach similar
to August et al. (2020), in which photos are pulled from Flickr, and then identified using a
species identifying algorithm such as PlantNet. Developing a species identifying algorithm for
insects will be challenging, however with advances in technology (e.g. Buschbacher et al.
2020) it may be that such an approach is feasible in the future. In the manner of the Species
Awareness Index (Chapter 5), the frequency of identified species could then be converted to
a rate of change, adjusted for the background rate of change in uploaded photos, and then

bootstrapped for groups of species.



In tackling pollinator biodiversity change, and biodiversity change more generally, there is also
the question of how changes in online awareness relate to changes in behaviour in the
physical world. Given that the link between awareness and behaviour can be weak
(Asvatourian et al. 2018), it may be that aggregate changes in online awareness are poorly
correlated with aggregate changes in behaviour. Assuming this is the case, conservation
culturomics researchers need to develop means through which behaviours can be tracked
online as well as awareness. This represents a much tougher challenge, since behaviours
relevant to pollinator biodiversity change more often leave only a minimal trace online. The
localised application of pesticides or fertiliser (e.g. in urban green spaces), for example, or the
destruction of wild flower habitats, do not as far as | know leave a digital footprint. One proxy
for these sorts of behaviour, however, could be online purchases. An online purchase
represents an unambiguous action, which depending on the nature of the purchase, could be
defined as either a negative or positive action on behalf of pollinator biodiversity. For example,
the purchase of weed-killers or insecticides might indicate negative actions on behalf of
pollinator biodiversity, whereas purchases of bee hotels or wild flower seed mixes positive
actions. Purchase data is not made available by companies such as Amazon, but it could
potentially be inferred from the frequency of reviews. Such an approach would require a robust
methodology for filtering out fake reviews, but it could be a fruitful approach for quantifying
large-scale changes in pollinator beneficial behaviours, and how these changes relate to

awareness and conservation campaigns.

More broadly for awareness of pollinator biodiversity change, | think the field of pollinator and
insect conservation needs to challenge the language it uses, and think carefully about the way
in which this language is interpreted by the online and print media. | feel that the language
used, particularly in press releases and in some papers, will likely have caused some
confusion for members of the public with respect to insect pollinator conservation. Such
confusion is most recently exemplified by S&nchez-Bayo & Wyckhuys (2019) and the

subsequent media coverage following this paper. Sanchez-Bayo & Wyckhuys (2019) carried



out a review of the evidence of insect declines, drawing some quite apocalyptic conclusions,
such as that “insects as a whole will go down the path of extinction in a few decades”. This
paper was picked up by the Guardian, who ran with the headline “Plummeting insect numbers
'threaten collapse of nature™, and the tagline “insects could vanish within a century at current
rate of decline” (Carrington 2019). Sanchez-Bayo & Wyckhuys (2019) has since been subject
to multiple critiques regarding its methodology and language (Komonen et al. 2019, Simmons
et al. 2019, Thomas et al. 2019). In short, the conclusions it draws, and much of the
subsequent media coverage, are not supported by the breadth of evidence. Pollinator
biodiversity is clearly highly important, but if apocalyptic language is used when it is not
warranted, the public will not pay attention when it is. Perhaps more importantly, if and when
apocalyptic language is warranted, it needs to acknowledge better the heterogeneity of risks
to both pollinator biodiversity change and ecosystem services. In reality some geographic
regions and some taxonomic groups will be more susceptible to environmental changes, and

only some crops at higher risk in consequence.

Conclusion

The Earth’s biosphere is changing rapidly. Animal pollinators have not escaped this change.
Climate change and anthropogenic land use are largely responsible, driving significant shifts
in pollinator biodiversity. The work | present in this thesis provides a significant advance in our
understanding of the causes of pollinator biodiversity change, and the potential consequences
for crop pollination risk. | also contribute towards the developing field of conservation
culturomics, introducing a new metric of public biodiversity awareness derived from Wikipedia
page views. Such metrics will likely become increasingly useful in the future as internet
penetration increases and pollinator biodiversity continues to experience rapid change. Over
the coming decades the consequences of climate change and land use for pollinator
biodiversity will grow, and so too will risk for the ecosystem service these animals provide.
These risks are big, but they’re not insurmountable. If carbon emissions and intensive

agriculture can be kept in check, and if agriculture shifts such that it avoids the more severe



effects of climate change, then humanity’s ability to adapt will be greater. Life on Earth will
undoubtedly look quite different by 2050. But | take solace in the hope that, however fast

biodiversity changes, the ingenuity and generosity of people will change faster.
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Figure S1.1 PRISMA diagram for pollination paper selection. 37895 abstracts were
returned through entering the search term pollinat* in Scopus. These abstracts were
filtered for English language (“Filter non English”), primary research articles (“Filter
non Article”), any potential species records (“Filter non potential species record”),
confirmed animal species (“Filter non animal species record”), geographic locations
(“Filter non potential geographic record”), and those that do not contain only a

continental, oceanic, and incorrect locations.
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Figure S1.2 Distribution of all animal genera, with the exception of Apis and Bombus,
occurring in 10 or more studies related to pollination. Apis and Bombus have been
excluded here to better represent distribution for less well studied genera (see Figure

2.3 for comparable values for Apis and Bombus).
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Figure S1.3 Global study density of animal pollinator related studies, aggregated at
country level and adjusted for country area. Study densities were calculated by counting
the number of abstracts with their “major” focus in each country, and then dividing this
value by country area. All oceanic and otherwise obviously incorrect “minor” mentions,
as well as “minor” mentions that could only be resolved to a unit larger than a country,
were removed. Densities were logie-transformed. Partially transparent blue points
(“minor” mentions) represent the number of abstracts in which CLIFF-CLAVIN resolved

that location.



Table S1.4 Summary output for a poisson generalised linear model, predicting annual

study count against year (1961-2017) and taxonomic genera (Apis, Bombus, Other).

Estimate Std. Error P value
Intercept -1.069e+02 2.561e+00 <2e-16
Year 5.357e-02 1.274e-03 <2e-16
Apis 3.178e+00 3.166e-02 <2e-16
Bombus 3.130e+00 3.224e-02 <2e-16




Validation

| carried out a series of checks of the validity of the outputs of our text analysis methods. |
validated my outputs at three levels: first, the accuracy of the extraction of animal species
names; second, at the level of abstract subject area, to determine whether we had selected
abstracts that are typically related to animal pollination ecology; and third, the accuracy and

potential bias of the geographic locations as determined by CLIFF-CLAVIN.

| estimated the completeness and accuracy of the animal species extraction by sampling and
manually searching approximately 1% of the original full set of abstracts (300 in total). For any
random samples, | used the R function set.seed() to seed the random number generator, and
then sampled abstracts at random. Given that the taxonomic extraction algorithm attempts to
resolve each animal as its accepted name, in order to fairly judge its effectiveness, any manual
searching would have to attempt to resolve accepted names in a similar way. For each
potential animal species record identified manually, | searched for the species in the COL
hoping to confirm as an accepted name. If the species was not accepted but recognised by
the COL as a synonym, | changed the species record for that abstract to the accepted name.
If the COL did not recognise the potential animal species as either an accepted name or a

synonym, | then searched the website Discover Life (http://www.discoverlife.org/) for the

accepted name and changed the record if appropriate. | removed any potential species
records that | could not confirm as either an accepted name or a synonym verified by either

the COL or Discover Life.

After manually confirming accepted animal species, | then compared these outputs to the
performance of the algorithm. 79.5% of the animal species records manually extracted were
found by the automated algorithm (i.e. a 20.5% omission error). Precision on the other hand
was high at 100%, meaning that the algorithm found no animals which were not in that given

abstract (i.e. a 0% commission error).


http://www.discoverlife.org/

| also conducted a validation to investigate whether considering only Latin binomial names
influenced the taxonomic bias in the pollination literature (Figure S1.5). This analysis shows
that the abstract count for honey bees and bumble bees is underestimated by searching for
Latin binomials, potentially by a factor of ~2. This is because honey bees and bumblebees are
referred to by their common name more often than other species. | counted the number of
“pollinat*” abstracts mentioning two typical common name spellings for Apis and Bombus, and
then to control for string number, analogous strings for both Osmia and Megachile: Apis -
“‘honey bee” and “honeybee”; Bombus - “bumble bee” and “bumblebee”; Osmia - “mason bee”
and “mason-bee”; Megachile - “leafcutter bee” and “leaf-cutter bee”. | included Osmia and
Megachile as a control, to investigate common name frequency for less well-known species.
For Apis and Bombus, including abstracts mentioning a common name doubles their
respective abstract count. For Osmia and Megachile, the inclusion of common names
increases abstract count by 4.6% and 7.2% abstracts respectively. These results would
indicate that whilst Apis and Bombus study count is underestimated, for other less well-known
taxa the Latin binomial will be an effective indicator of study effort. | also reasoned that, whilst
my analysis might underestimate for Apis and Bombus, including only the Latin binomial would

help to reduce false positive rate.

I conducted an additional validation to investigate whether excluding taxonomic names above
the level of species influenced the taxonomic bias in the pollination literature. This analysis
indicates that although representation for some families (hummingbirds, fig wasps, and
hoverflies) may be underestimated, the overall trend is likely similar (Figure S1.6). | counted
the number of “pollinat*” abstracts mentioning family names for each of 4 well-known
pollination-related families (hummingbirds, fig wasps, hoverflies, hawk-moths, and leaf-nosed
bats), selected from each of the top 5 orders (Hymenoptera, Lepidoptera, Diptera,
Apodiformes, and Chiroptera). For each family, | searched for four common, Latin, and
pluralised family names: hummingbirds (*humming-bird”, "hummingbird”, "Hummingbird",

"Trochilidae"); fig wasps ("fig wasp", "Fig wasp", "fig-wasp", "Agaonidae"); hoverflies



("Hoverfly", "hoverflies", "hoverfly", "Syrphidae"); hawk-moths ("Hawk-moth", "hawk moth",

"hawk-moth", "Sphingidae") and leaf-nosed bats ("Phyllostomidae”, "leaf-nosed bat", "leaf
nosed bat", "Leaf-nosed bat"). The number of abstracts for hummingbirds, hoverflies, and fig
wasps all increased by more than a factor of ~2 with the inclusion of family names, with the

leaf-nosed bats making only a marginal increase in total abstract number (Figure S1.6).
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Apis Bombus Osmia Megachile

Figure S1.5 Frequency of “pollinat” Scopus abstracts containing a common name and
Latin binomial for each of Apis (honey bee), Bombus (bumblebee), Osmia (mason bee),
and Megachile (leafcutter bee). Grey bars represent abstracts containing both a Latin
binomial and common name for that genus. Orange bars represent abstracts containing

only a Latin binomial for a species in that genus. Red bars represent abstracts

containing only a common name for that genus.
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Figure S1.6 Frequency of “pollinat” Scopus abstracts containing a family name (either
common or Latin) and Latin binomial for each of the hummingbirds (Trochilidae), fig
wasps (Agaonidae), hoverflies (Syrphidae), hawk-moths (Sphingidae), and leaf-nosed
bats (Phyllostomidae). Grey bars represent abstracts containing both a Latin binomial
and the family name for that family. Orange bars represent abstracts containing only a
Latin binomial for a species in that family. Red bars represent abstracts containing only

the family name for that family.



To validate the subject areas of the identified abstracts, | randomly sampled 100 abstracts
from the subset of original abstracts that also mentioned an animal species (approximately
2.5% of the total). | then read each abstract and title, assigning the subject area as any of
three categories: general pollination ecology, pollinator status or habitat disturbance, and
other pollinator related literature (Figure S1.7). No abstracts were totally unrelated to
pollination. Abstracts on general pollination ecology included any studies on visitation,
efficiency, pollinator movement ecology, pollinator foraging behaviour, pollination syndromes,
plant-pollinator networks, and pollination dependent crop yields. Abstracts on pollinator status
included any studies on pollinator population trends, diversity, abundance, ecological impacts,
and habitat disturbance. All “other” abstracts concerned analyses of population genetics,
pest/disease management, pollinator predation, invasive species management, animal floral
mimicry, pollinator mating behaviour, pollinator awareness, pollinator learning behaviour, and

pollinator nesting behaviour.
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Figure S1.7 Distribution of study types for a random sample of 100 of the subset of
abstracts that mentioned an animal species. Abstracts on general pollination ecology
included any studies related to pollinator flower visitation. Abstracts on pollinator
status included any studies on population status and disturbance. All “other” abstracts
concerned analyses of genetics, species management, and behaviours/evolution not

directly related to pollinator flower visitation.



To assesses whether CLIFF-CLAVIN introduced geographic biases, | manually geoparsed the
100 abstracts previously sampled for study topic. Initially | identified and recorded all text
locations in each abstract. | then geocoded each of these locations using Google Maps,
recording the respective coordinates. Both the automatically geoparsed (after removal of
obvious mistakes, continental, and oceanic “minor’” mentions) and the manually geoparsed
map show very similar distributions (Figure S1.8), with high densities in North America, South
America, Europe, south and South East Asia, and Australia. CLIFF-CLAVIN appears to have
slightly over-estimated the number of locations in North America and Europe. The geographic
distribution for CLIFF-CLAVIN appears particularly similar in Africa, with clusters in South
Africa and Kenya for both automatic and manual geoparsing. The similarity between the
automatic and manually geoparsed data is likely genuine and not a sampling effect. The
manually geoparsed abstracts are a randomly sampled subset of those that have already been
automatically geoparsed, meaning the manual and automatic geoparse compares like-with-

like.



Automatic Manual
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Figure S1.8 The geographic distribution of a random sample of 100 abstracts related to
pollination and containing an animal species, geoparsed automatically and manually.
Continental, oceanic, and obviously incorrect “minor” mentions were removed from

the automatically generated locations.



Given Germany, a country previously reported as a key contributor of pollinator disturbance
data (Archer et al. 2014), didn’t appear in the top 15 countries for pollination-related study in
our analysis, | performed a separate check to ensure this was not a mistake in the geoparsing
(Figure S1.9). Specifically, | performed a character string match between each abstract and a
set of strings representing the exact names of all countries. | assumed that the number of
abstracts mentioning a country string would provide a coarse indication of relative study
frequency, albeit through an approach less sophisticated than CLIFF-CLAVIN. In other words,
| assumed that if the term “Germany” appeared frequently across abstracts, this would indicate
that CLIFF-CLAVIN likely underestimated its importance. | found that CLIFF-CLAVIN ranked
Germany as the 22" most important country for pollination related studies, whilst an exact
character string match ranked it at 17". This suggests that CLIFF-CLAVIN hasn'’t greatly
underestimated the frequency of studies occurring in Germany. The United States has a much
lower representation through character string matches, likely reflecting a tendency in US

abstracts to mention the specific locality without the country string.
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Figure S1.9 Geographic distribution of the pollination literature, resolved through exact
character string matches and CLIFF-CLAVIN. | deemed exact character string matches
a coarse and imperfect check on CLIFF-CLAVIN. The red dotted line represents the
study proportion midpoint. Consistent with CLIFF-CLAVIN, exact character string
matches also return Germany outside of the top 15 countries, at 22" for CLIFF-CLAVIN

and 17" for exact character string matches.
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Figure S2.1 Response of pollinator biodiversity to land-use type and land-use
intensity for species richness and total abundance, both fit using generalised linear
mixed-effects models. A) species richness, fit using a poisson error generalised linear
mixed-effects model; and B) total abundance, fit using a zero-inflated negative
binomial error generalised linear mixed-effects model. Colours represent land-use
type: orange (primary vegetation, Primary), green (mature secondary vegetation,
MSV), yellow (intermediate secondary vegetation, ISV), blue (young secondary
vegetation, YSV), dark orange (plantation forest, Plantation), pink (pasture), grey
(cropland), and black (urban), and point shape represents land-use intensity: circle
(minimal uses), triangles (light use), and squares (intense use). Effect sizes were
adjusted to a percentage by drawing fixed effects 1,000 times based on the variance-
covariance matrix, expressing each fixed effect as a percentage of the baseline
(primary vegetation minimal use), and then calculating the median value (shown as

points), and 2.5 and 97.5™ percentiles (shown as error bars).
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Figure S2.2 Response of pollinator biodiversity to land-use type and land-use
intensity for species richness and total abundance (fit using the approach in the main
text), jack-knifed by UN regions (Africa, Americas, Asia, Europe, and Oceania).
Colours represent land-use type: orange (primary vegetation), green (mature
secondary vegetation), yellow (intermediate secondary vegetation), blue (young
secondary vegetation), dark orange (plantation forest), pink (pasture), grey (cropland),
and black (urban), and point shape represents land-use intensity: circle (minimal
uses), triangles (light use), and squares (intense use). Effect sizes were adjusted to a
percentage by drawing fixed effects 1,000 times based on the variance-covariance
matrix, expressing each fixed effect as a percentage of the baseline (primary
vegetation minimal use), and then calculating the median value (shown as points),

and 2.5M and 97.5t percentiles (shown as error bars).
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Figure S2.3 Fixed effects for a model including climate covariates (max temperature of

the hottest month and the total precipitation of the wettest month, both over the 12

months previous to the end data of each sample), predicting either species richness

(left panel) or abundance (right panel), plotted against the same fixed effects for the

LUl-only model fitted in the main text. Crosses for each point represent the standard

error for both the LUI + climate and LUI-only models. Here the diagonal dotted red line

represents a line gradient of 1 (i.e. y=x), showing that the inclusion of climate

covariates does not markedly change the predictions.
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Figure S2.4 Response of pollinator Chao’s species richness to land-use type and
land-use intensity. Colours represent land-use type: orange (primary vegetation,
Primary), green (mature secondary vegetation, MSV), yellow (intermediate secondary
vegetation, ISV), blue (young secondary vegetation, YSV), dark orange (plantation
forest, Plantation), pink (Pasture), grey (Cropland), and black (Urban), and point shape
represents land-use intensity: circle (minimal uses), triangles (light use), and squares
(intense use). Effect sizes were adjusted to a percentage by drawing fixed effects
1,000 times based on the variance-covariance matrix, expressing each fixed effect as
a percentage of the baseline (primary vegetation minimal use), and then calculating
the median value (shown as points), and 2.5™ and 97.5™ percentiles (shown as error

bars).
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Figure S2.5 The distribution of P values for a set of one-sided Moran’s | tests for
spatial autocorrelation, calculated for each study for species richness (left panel) and
total abundance (right panel). The red dotted line in both panels represents a P value
of 0.05. For species richness p < 0.05 in 2.33% of studies, and for total abundance p <
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0.75

p=0.05

p<0.05in
4.65% of studies

0.25

would expect 5% of studies to return a P value < 0.05.

0.5

0.75 1




Total abundance difference (%)

Species richness difference (%)

Low forest cover baseline (cover <= 40%) High forest cover baseline (cover >= 60%)

604 = 200
304
1001
OF====== LR e i
30 1 0t =--=---- L L
-60 - T T T T
Non-tropical Tropical Non-tropical Tropical
1004 -
-
Use intensity
3001
=8= Primary vegetation
501 .
Minimal use
2001
Light use
== |ntense use
Ot -=-=---- LA el el - -- - - 1004
- 0f-coono- P i R, @ e e e
-504 I I
Non-tropical Tropical Non-tropical Tropical

Figure S2.6 Response of pollinators to land-use intensity on cropland, for non-tropical
and tropical sites, when the primary vegetation minimal use baseline is shifted
between high and low forest cover. Each panel represents a linear or generalised
linear mixed-effects model for a given biodiversity metric. Left-hand panels (low forest
cover baseline) represent species richness and total abundance predictions for
cropland between tropical and non-tropical regions when the baseline is subset for
only low forest cover sites (<=40% forest cover). Right-hand panels (high forest cover
baseline) represent species richness and total abundance predictions for cropland
when the baseline is subset for only high forest cover sites (>=60% forest cover).
Effect sizes were adjusted to a percentage by sampling fixed effects 1,000 times
based on the variance-covariance matrix, expressing each fixed effect as a
percentage of the value in primary vegetation for that geographical zone, and then
calculating the median value (shown as points), and 2.5™ and 97.5" percentiles

(shown as error bars).
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Figure S2.7 Resampled 95% confidence interval ranges for total abundance for

tropical and non-tropical sites. 1000 sites were resampled from each of the tropical

and non-tropical sites a total of 100 times, and then for each group of 2000 (tropical

and non-tropical), total abundance was fitted as a function of land-use intensity,

geographical zone, and their interaction. Each violin represents the distribution of the

95% confidence interval size for all samples in each land-use intensity—geographical

zone combination (the black line represents the median for all samples), indicating

that there is greater variation in non-tropical responses even when sample size is

controlled. For tropical sites, the distribution of the violin is close to the median since

total site number (from which the sample is taken) is 1052, meaning each re-sample

for the tropics is effectively all sites.
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Figure S2.8 Response of the main crop pollinators (bees, wasps, beetles, thrips, flies,
birds, and bats) to land-use intensity on cropland, for non-tropical and tropical sites.
Each panel represents a linear or generalised linear mixed-effects model for a given
biodiversity metric: A, species richness; and B, total abundance. Colours represent
the land-use intensity level, with primary vegetation (minimal use) as the reference
factor: black (primary vegetation, minimal use); yellow (cropland, minimal use),
orange (cropland, light use), and red (cropland, intense use). Effect sizes were
adjusted to a percentage by sampling fixed effects 1,000 times based on the variance-
covariance matrix, expressing each fixed effect as a percentage of the value in
primary vegetation for that geographical zone, and then calculating the median value

(shown as points), and 2.5th and 97.5th percentiles (shown as error bars).
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Figure S2.9 Site level total fertiliser application rate (+1) for cropland sites in PREDICTS
that contain pollinating species, a pair of geographical coordinates, and a fertiliser

application rate for that coordinate (n=1560).
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Figure S2.10 Site level total pesticide application rate (+0.01) for cropland sites in
PREDICTS that contain pollinating species, a pair of geographical coordinates, and a

pesticide application rate for that coordinate (n=1560).
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Figure S2.11 The structure of primary vegetation minimal use intensity sites in
PREDICTS that contain pollinating species (i.e. the baseline for Figures 2, 3, and 4). A)
The global geographic distribution of’ ‘forest’ (green) and ‘grassland & shrubland’
(yellow) sites according to the terrestrial ecoregions of the world (Olson et al 2001).
The dashed lines represent latitudes of 23.5 and -23.5, which divide tropical from non-
tropical regions. B) Boxplots for the distribution of forest cover (Hansen et al 2013)
between ‘grassland’ and ‘forest & shrubland’ sites in the tropical and non-tropical
zones. Here the box extends from the 25™ to the 75" percentiles, the dark black inner
line corresponds to the median, the upper and lower whiskers to 1.5 x IQR, and black
dots to any sites beyond 1.5 x IQR. Sample size number for each grouping is
represented above each boxplot. C) The frequency of ‘forest’ and ‘grassland &

shrubland’ sites between the tropical and non-tropical zones.
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Figure S2.12 The global geographic distribution of forest cover (Hansen et al 2013) for
primary vegetation minimal use intensity sites in PREDICTS that contain pollinating

species. Here the dashed lines represent latitudes of 23.5 and -23.5, which divide

tropical from non-tropical regions.
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Figure S2.13 Schematic of the nested structure of the PREDICTS database. A) The
PREDICTS database is nested at four levels: ‘source’, ‘study’, ‘block’, and ‘site’,
represented in the database as the columns S, SS, SSB, and SSBS. A source represents a
unigue paper, a study an experiment within a source that has a consistent sampling
methodology, a block a collection of sites in a distinct spatial cluster, and site a geographic
location at which biodiversity was sampled. B) The structure of the PREDICTS database is

such that there can be multiple studies, blocks, and sites nested within each other.



Supplementary Tables

Table S2.15 List of the 7 pollination ecologists consulted as a check-and-balance on

our approach for identifying pollinating species in the PREDICTS database.

Pollination ecology expert

Taxonomic speciality

Continental speciality

Opeyemi Adedoja Insects Africa

Sabrina Gavini Broad South America
Esther Kioko Insects Africa

Michael Kuhlmann Bees Europe

Jeff Ollerton Broad Europe
Zong-Xin Ren Insects Asia

Manu Saunders Insects Australasia

Table S2.16 The total number of animal pollinating species in the PREDICTS database,

aggregated by taxonomic order and class (see Figure 3.1).

Order Class N (species)
Lepidoptera Insecta 2398
Hymenoptera Insecta 988
Passeriformes Aves 412
Coleoptera Insecta 247
Diptera Insecta 228
Apodiformes Aves 99
Chiroptera Mammalia 51
Psittaciformes Aves 23
Soricomorpha Mammalia 13
Primates Mammalia 11
Dasyuromorphia Mammalia 7
Rodentia Mammalia 6
Squamata Reptilia 5
Columbiformes Aves 4
Didelphimorphia Mammalia 3
Diprotodontia Mammalia 3
Macroscelidae Mammalia 2
Scandentia Mammalia 1
Thysanoptera Insecta 1




Table S2.17 ANOVA tables for species richness, log(total abundance + 1), and
log(Simpson diversity + 1) predicted as a function of land use-type, land-use intensity,
and their interaction, and the random intercepts study (SS), block (SSB), and site
(SSBS). Statistics are for either a two-sided mixed-effects generalised linear model
(species richness) or a two-sided mixed-effects linear model (total abundance and
species richness). P values are not included here for species richness since deriving

these for mixed effects generalised linear models is problematic.

Response Explanatory df | Sum Sq | Mean Sq | Fvalue P value
variable variable

Land-use type 7 62.608 8.9440 8.9440 -
()
o
= Land-use intensity | 2 18.877 9.4384 9.4384 -
(&)
"
Q2
8 Type * Intensity 12 | 99.648 8.3040 8.3040 -
Q.
n

Land-use type 7 32.173 4.5962 8.0346 9.196e-10

Land-use intensity | 2 5.500 2.7502 4.8075 0.008192

Type * Intensity 12 | 80.646 6.7205 11.7481 | <2.2e-16

Total abundance

Land-use type 7 2.6035 0.37193 4.4150 6.648e-05

Land-use intensity | 2 1.9661 0.98303 11.6691 | 8.749e-06

Type * Intensity 12 | 4.6201 0.38501 4.5703 2.122e-07

Simpson diversity




Table S2.18 AIC values for all the models presented in Figures 3.2, 3.3, 3.4, and 3.5, as
well as the insignificant model fitting fertiliser and geographical zone as an

interaction. Models in which AIC is lowest are indicated by t. Significant full models

are highlighted in bold.

Figure Fixed effect structure AIC
Richness ~ LUI 33734.62 t

% _ Richness ~ 1 33871.57

-é % Abundance ~ LUI 20110.66 t

25 |Abundance ~1 20237.72

% = Diversity ~ LUI 3698.13

N Diversity ~ 1 3641.20 t
Richness ~ LUI * zone 13318.63 T
Richness ~ LUI 13333.56

P Richness ~ 1 13375.75

§ @ | Abundance ~ LUI * zone 8093.51 t

; 2 Abundance ~ LUI 8101.58

:’3‘ E Abundance ~ 1 8126.23

§ Diversity ~ LUI * zone 1841.00
Diversity ~ LUI 1830.72
Diversity ~ 1 1843.73
Richness ~ fertiliser * zone 12757.00
Richness ~ fertiliser 12756.18 T

§ ‘v | Richness~1 12833.61

% E:;’ Abundance ~ fertiliser * zone 9903.95

§ 5 Abundance ~ fertiliser 9902.60 t

% é Abundance ~ 1 9967.06

= g/ Diversity ~ fertiliser * zone 1293.94

i Diversity ~ fertiliser 1285.62 T
Diversity ~ 1 1289.99




Richness ~ LUl * order 14838.27 T
3 Richness ~ LUI 15957.05
< Richness ~ 1 16002.50
'E, Abundance ~ LUI * order 10604.53 T
é Abundance ~ LUI 11132.19
% Abundance ~ 1 11156.47
% Diversity ~ LUl * order 1808.68 T
*5 Diversity ~ LUI 1817.79
- Diversity ~ 1 1829.32
Richness ~ fertiliser * order 10520.86 T
Richness ~ fertiliser 11599.57
é Richness ~ 1 11598.16
% © Abundance ~ fertiliser * order 8034.78 t
% 2 Abundance ~ fertiliser 8508.81
% E Abundance ~ 1 8505.94
é Diversity ~ fertiliser * order 1325.33 t
it Diversity ~ fertiliser 1345.22
Diversity ~ 1 1339.64




Table S2.19 Overall site representation for Figure 3.2, the overall response of
pollinator biodiversity to LUI (land-use intensity and land-use type combined). The
land-use types categories are as follows: PV (Primary vegetation), MSV (mature
secondary vegetation), ISV (intermediate secondary vegetation), YSV (young
secondary vegetation), PF (plantation forest) P (pasture), C (cropland), and U (urban).
The intensity categories are as follows: MU (minimal use), LU (light use), and IU

(intense use).

LUI N (sites)
PVMU 1560
PVLU 996
PVIU 381
MSVMU 212
MSVLU 179
ISVMU 276
ISVLU 155
YSVMU 312
YSVLU 97
YSVIU 260
PFMU 214
PFLU 674
PFIU 110
PMU 446
PLU 532
PIU 122
CMU 426
CLU 649
Clu 658
umu 173
ULU 136
ulu 43




Table S2.20 Model summary for species richness predicted as a function of a
combined factor for land-use intensity and type (LUI) and the random intercepts study

(SS), block (SSB), and site (SSBS) with a two-sided mixed-effects generalised linear

model (see Figure 3.2 for predicted values).

Term estimate std.error statistic p.value

(Intercept) 1.32896397 0.09640307 13.7854939 3.116264e-43
LUI-PVLU 0.16226839 0.03122186 5.1972684 2.022382e-07
LUI-PVIU 0.14887082 0.05095798 2.9214428 3.484143e-03
LUI-MSVMU 0.06379620 0.05242243 1.2169638 2.236180e-01
LUI-MSVLU 0.21482279 0.06615476 3.2472766 1.165151e-03
LUI-ISVMU 0.15557023 0.04056605 3.8349856 1.255717e-04
LUI-ISVLU 0.20433055 0.05091357 4.0132829 5.988009e-05
LUI-YSVMU 0.02190840 0.03809628 0.5750797 5.652374e-01
LUI-YSVLU -0.11002557 0.08427108 -1.3056149 1.916835e-01
LUI-YSVIU -0.17073604 0.05050497 -3.3805792 7.233322e-04
LUI-PFMU 0.24269714 0.05451398 4.4520166 8.506757e-06
LUI-PFLU 0.05463885 0.03714311 1.4710359 1.412814e-01
LUI-PFIU -0.11853355 0.06879615 -1.7229678 8.489436e-02
LUI-PMU 0.15678740 0.04408967 3.5561029 3.763967e-04
LUI-PLU -0.03122227 0.04119039 -0.7579990 4.484516e-01
LUI-PIU 0.01590149 0.06782871 0.2344359 8.146466e-01
LUI-CMU -0.01540370 0.04786049 -0.3218458 7.475695e-01
LUI-CLU -0.11717122 0.05037602 -2.3259323 2.002216e-02
LUI-CIU -0.13700839 0.04998200 -2.7411547 6.122367e-03
LUI-UMU 0.23228075 0.06259899 3.7106150 2.067564e-04
LUI-ULU 0.03215269 0.06336714 0.5074032 6.118719e-01
LUI-UIU -0.22080354 0.08463465 -2.6089024 9.083313e-03




Table S2.21 Model summary for log(total abundance + 1) predicted as a function of a
combined factor for land-use intensity and type (LUI) and the random intercepts study
(SS) and block (SSB) with a two-sided mixed-effects linear model (see Figure 3.2 for

predicted values).

term estimate std.error statistic p.value

(Intercept) 3.066663564 0.13047422 23.50398104 1.441767e-66
LUI-PVLU 0.328309492 0.04936891 6.65012621 3.125781e-11
LUI-PVIU 0.371272193 0.07205361 5.15272138 2.631861e-07
LUI-MSVMU 0.026126195 0.08501411 0.30731599 7.586111e-01
LUI-MSVLU 0.361740682 0.09563360 3.78256885 1.563882e-04
LUI-ISVMU 0.217422866 0.07366012 2.95170376 3.169719e-03
LUI-ISVLU 0.310991569 0.07822650 3.97552697 7.089066e-05
LUI-YSVMU 0.149413495 0.07011363 2.13101940 3.311893e-02
LUI-YSVLU -0.008061529 0.13255730 -0.06081543 9.515078e-01
LUI-YSVIU 0.110668437 0.08303010 1.33287130 1.826132e-01
LUI-PFMU 0.362561497 0.08599708 4.21597432 2.516897e-05
LUI-PFLU 0.063777193 0.06055574 1.05319819 2.922826e-01
LUI-PFIU 0.189445958 0.12859996 1.47314167 1.407558e-01
LUI-PMU 0.584565062 0.05851292 9.99035868 2.329859e-23
LUI-PLU 0.254135112 0.05423478 4.68583282 2.837077e-06
LUI-PIU 0.041868650 0.10917168 0.38351202 7.013506e-01
LUI-CMU 0.006691476 0.06373908 0.10498232 9.163925e-01
LUI-CLU -0.066291107 0.07378357 -0.89845354 3.689713e-01
LUI-CIU -0.217808927 0.07491060 -2.90758476 3.653874e-03
LUI-UMU 0.424397518 0.09029529 4.70010712 2.644965e-06
LUI-ULU 0.408046211 0.12605275 3.23710689 1.212531e-03
LUI-UIU -0.096260227 0.16519365 -0.58271142 5.601051e-01

Table S2.22 Cropland site representation for Figure 3.3, the overall response of

pollinator biodiversity to land-use intensity between the non-tropical and tropical

zones
Geographical zone LUI N (sites)
Non-tropical Primary vegetation 893
Non-tropical Minimal use cropland 245
Non-tropical Light use cropland 492
Non-tropical Intense use cropland 578
Tropical Primary vegetation 634
Tropical Minimal use cropland 181
Tropical Light use cropland 157
Tropical Intense use cropland 80




Table S2.23 Model output for species richness predicted as a function of a combined

factor for land-use intensity and type (LUI), geographical zone (tropics/non-tropics),

and the random intercepts study (SS), block (SSB), and site (SSBS) with a two-sided

mixed-effects generalised linear model (see Figure 3.3 for predicted values).

Term estimate std.error statistic p.value

(Intercept) 1.2092244 0.1822545 6.634814 3.249122e-11
LUI-Minimal use 0.3735829 0.1303490 2.866020 4.156686e-03
LUI-Light use 0.1965426 0.1779420 1.104532 2.693624e-01
LUl-Intense use 0.3271289 0.1769412 1.848800 6.448668e-02
zone-Tropics 0.2388790 0.2471688 0.966461 3.338136e-01
LUI-Minimal use:zone-Tropics | -0.5307787 0.1477803 -3.591674 3.285612e-04
LUI-Light use:zone-Tropics -0.6940822 0.2054538 -3.378289 7.293833e-04
LUI-Intense use:zone-Tropics | -0.9160952 0.1980057 -4.626611 3.716984e-06

Table S2.24 Model output for log(total abundance + 1) predicted as a function of a

combined factor for land-use intensity and type (LUI), geographical zone (tropics/non-

tropics), and the random intercepts study (SS) and block (SSB) with a two-sided

mixed-effects linear model (see Figure 3.3 for predicted values).

Term estimate std.error statistic p.value

(Intercept) 2.7469928 0.2460986 11.1621626 8.118052e-23
LUI-Minimal use 0.4692762 0.1790959 2.6202502 8.831766e-03
LUI-Light use 0.3010843 0.2895618 1.0397928 2.990043e-01
LUI-Intense use 0.2816584 0.2848026 0.9889603 3.232719e-01
zone-Tropics 0.5182296 0.3380493 1.5330002 1.270054e-01
LUI-Minimal use:zone-Tropics | -0.8576550 0.2028786 -4.2274302 2.434102e-05
LUI-Light use:zone-Tropics -0.9745301 0.3161887 -3.0821156 2.146717e-03
LUI-Intense use:zone-Tropics | -0.9607852 0.3106910 -3.0924140 2.083223e-03




Table S2.25 Cropland site representation for Figure 4, the response of 6 taxonomic

orders (Hymenoptera,

Diptera, Lepidoptera,

Coleoptera, Passeriformes, and

Apodiformes) to land-use intensity on cropland. Note that the total number of sites for

each order-intensity group will not sum to the total of 3006, since some sites are

represented across multiple groups.

Taxonomic order LUI N (sites)
Hymenoptera Primary vegetation 186
Hymenoptera Minimal use cropland 180
Hymenoptera Light use cropland 564
Hymenoptera Intense use cropland 578
Diptera Primary vegetation 25
Diptera Minimal use cropland 50
Diptera Light use cropland 91
Diptera Intense use cropland 72
Lepidoptera Primary vegetation 317
Lepidoptera Minimal use cropland 76
Lepidoptera Light use cropland 112
Lepidoptera Intense use cropland 44
Coleoptera Primary vegetation 342
Coleoptera Minimal use cropland 90
Coleoptera Light use cropland 112
Coleoptera Intense use cropland 44
Passeriformes Primary vegetation 637
Passeriformes Minimal use cropland 120
Passeriformes Light use cropland 53
Passeriformes Intense use cropland 61
Apodiformes Primary vegetation 108
Apodiformes Minimal use cropland 33
Apodiformes Light use cropland 20




Table S2.26 Model output for species richness predicted as a function of taxonomic

order and a combined factor for land-use intensity and type (LUI), and the random

intercepts study (SS), block (SSB), and site (SSBS) with a two-sided mixed-effects

generalised linear model (see Figure 3.4 for predicted values).

Term estimate std.error statistic p.value
(Intercept) 2.20840153 0.1991447 11.0894288 1.411863e-28
Order-Diptera -0.83341036 0.1530930 -5.4438158 5.215114e-08
Order-Lepidoptera -1.13968603 0.1506288 -7.5661918 3.843246e-14
Order-Coleoptera -1.55508820 0.1592342 -9.7660458 1.574787e-22
Order-Passeriformes -1.14836510 0.2985974 -3.8458648 1.201280e-04
Order-Apodiformes -0.93317182 0.3072722 -3.0369547 2.389814e-03
LUI-Minimal use 0.37282903 0.2126349 1.7533761 7.953747e-02
LUI-Light use -0.17614884 0.1930156 -0.9126147 3.614452e-01
LUI-Intense use -0.04344631 0.1967355 -0.2208362 8.252200e-01
Order-Diptera:LUI- -3.18780581 0.4359546 -7.3122431 2.627192e-13
Minimal use

Order-Lepidoptera:LUI- | -0.69525855 0.2226143 -3.1231526 1.789249e-03
Minimal use

Order-Coleoptera:LUI- | -0.59864325 0.2378589 -2.5168001 1.184260e-02
Minimal use

Order- -0.15672200 0.2441114 -0.6420102 5.208665e-01
Passeriformes:LUI-

Minimal use

Order- -0.54035561 0.2681862 -2.0148525 4.392011e-02
Apodiformes:LUI-

Minimal use

Order-Diptera:LUI- -0.18953673 0.1934202 -0.9799221 3.271246e-01
Light use

Order-Lepidoptera:LUI- | -0.54235377 0.1986485 -2.7302187 6.329232e-03
Light use

Order-Coleoptera:LUI- | -0.48525618 0.2173994 -2.2320957 2.560864e-02
Light use

Order- 0.07107473 0.2844426 0.2498737 8.026850e-01
Passeriformes:LUI-

Light use

Order- -0.77090778 0.3367013 -2.2895892 2.204514e-02
Apodiformes:LUI-Light

use

Order-Diptera:LUI- -0.91597731 0.1926870 -4.7537046 1.997228e-06
Intense use

Order-Lepidoptera:LUI- | -0.91324565 0.2345930 -3.8928932 9.905577e-05
Intense use

Order-Coleoptera:LUI- | -0.27001790 0.2304695 -1.1715992 2.413580e-01
Intense use

Order- -0.40540007 0.2270651 -1.7853916 7.419781e-02

Passeriformes:LUI-
Intense use




Table S2.27 Model output for log(total abundance + 1) predicted as a function of

taxonomic order and a combined factor for land-use intensity and type (LUI), and the

random intercepts study (SS) and block (SSB) with a two-sided mixed-effects linear

model (see Figure 3.4 for predicted values).

term estimate std.error statistic p.value
(Intercept) 4.73922131 0.2829571 16.7489059 6.296397e-47
Order-Diptera -1.44912912 0.2550315 -5.6821574 1.438105e-08
Order-Lepidoptera -1.73354917 0.2270221 -7.6360361 2.999194e-14
Order-Coleoptera -1.80793239 0.2292210 -7.8872900 4.291811e-15
Order-Passeriformes -2.30268897 0.4118455 -5.5911479 7.372749e-08
Order-Apodiformes -2.11948413 0.4227288 -5.0138155 1.094958e-06
LUI-Minimal use -1.10153763 0.2873542 -3.8333794 1.291541e-04
LUI-Light use -1.69955568 0.2656710 -6.3972204 1.875913e-10
LUI-Intense use -1.40296862 0.2701440 -5.1934097 2.223549e-07
Order-Diptera:LUI- -0.99823141 0.3047054 -3.2760539 1.062431e-03
Minimal use

Order-Lepidoptera:LUI- | 0.12833239 0.2894333 0.4433920 6.575106e-01
Minimal use

Order-Coleoptera:LUI- | 0.43580445 0.2891418 1.5072346 1.318455e-01
Minimal use

Order- 1.32596000 0.3318642 3.9954900 6.598938e-05
Passeriformes:LUI-

Minimal use

Order- 0.92948978 0.3435239 2.7057499 6.848714e-03
Apodiformes:LUI-

Minimal use

Order-Diptera:LUI- 1.03211340 0.2820608 3.6591877 2.566325e-04
Light use

Order-Lepidoptera:LUI- | 0.39551699 0.2543970 1.5547232 1.201104e-01
Light use

Order-Coleoptera:LUI- | 0.44574567 0.2562287 1.7396399 8.201790e-02
Light use

Order- 1.69308440 0.3458009 4.8961252 1.025282e-06
Passeriformes:LUI-

Light use

Order- 0.98890956 0.3481864 2.8401732 4.536227e-03
Apodiformes:LUI-Light

use

Order-Diptera:LUI- -0.18244690 0.2881395 -0.6331894 5.266497e-01
Intense use

Order-Lepidoptera:LUI- | -0.16831841 0.2791143 -0.6030447 5.465186e-01
Intense use

Order-Coleoptera:LUI- | 0.05306171 0.2808995 0.1888993 8.501829e-01
Intense use

Order- 1.05068214 0.3225579 3.2573444 1.136272e-03

Passeriformes:LUI-
Intense use




Table S2.28 Model output for log(Simpson diversity + 1) predicted as a function of
taxonomic order and a combined factor for land-use intensity and type (LUI), and the

random intercepts study (SS) and block (SSB) with a two-sided mixed-effects linear

model (see Figure 3.4 for predicted values).

Term estimate std.error statistic p.value
(Intercept) 1.58383270 0.09627049 16.4519030 2.162291e-45
Order-Diptera -0.06544099 0.09414709 -0.6950930 4.870580e-01
Order-Lepidoptera -0.16830797 0.08304914 -2.0266070 4.282549e-02
Order-Coleoptera -0.27585315 0.08486779 -3.2503870 1.170032e-03
Order-Passeriformes -0.34473774 0.13620897 -2.5309473 1.217500e-02
Order-Apodiformes -0.25772117 0.14095948 -1.8283351 6.885026e-02
LUI-Minimal use 0.12659585 0.11562792 1.0948553 2.738108e-01
LUI-Light use -0.08470655 0.10185990 -0.8315986 4.057828e-01
LUI-Intense use -0.03002987 0.10306170 -0.2913776 7.708067e-01
Order-Diptera:LUI- -0.50068423 0.16753455 -2.9885431 2.828102e-03
Minimal use

Order-Lepidoptera:LUI- | -0.09384230 0.13338019 -0.7035700 4.817930e-01
Minimal use

Order-Coleoptera:LUI- | -0.20716970 0.12646894 -1.6381074 1.015956e-01
Minimal use

Order- -0.02003844 0.12992647 -0.1542290 8.774498e-01
Passeriformes:LUI-

Minimal use

Order- -0.10811138 0.13493663 -0.8012011 4.231267e-01
Apodiformes:LUI-

Minimal use

Order-Diptera:LUlI- -0.15765579 0.10769809 -1.4638680 1.433469e-01
Light use

Order-Lepidoptera:LUI- | -0.10832984 0.10223874 -1.0595772 2.894413e-01
Light use

Order-Coleoptera:LUI- | -0.10885346 0.10298404 -1.0569935 2.906226e-01
Light use

Order- 0.05550724 0.13072949 0.4245962 6.711757e-01
Passeriformes:LUI-

Light use

Order- -0.13518246 0.14040177 -0.9628259 3.357357e-01
Apodiformes:LUI-Light

use

Order-Diptera:LUI- -0.11398265 0.11574556 -0.9847691 3.248249e-01
Intense use

Order-Lepidoptera:LUI- | -0.26533172 0.11391675 -2.3291720 1.992766e-02
Intense use

Order-Coleoptera:LUI- | 0.06450120 0.11161580 0.5778859 5.633927e-01
Intense use

Order- -0.26787298 0.11890101 -2.2529076 2.438168e-02
Passeriformes:LUI-

Intense use




Table S2.29 Cropland site representation for Figure 5, the response of 6 taxonomic

orders

(Hymenoptera,

Diptera,

Lepidoptera,

Coleoptera, Passeriformes, and

Apodiformes) to total fertiliser application rate (kg/ha) on cropland. Note that the total

number of sites for each order-intensity group will not sum to the total of 2190, since

some sites are represented across multiple groups.

Taxonomic order N (sites)

Hymenoptera 1355

Passeriformes 683

Lepidoptera 258

Coleoptera 246

Apodiformes 244

Diptera 213

Table S2.30 Model output for species richness predicted as a function of

loglO(fertiliser application rate), taxonomic order, and the random intercepts study

(SS), block (SSB), and site (SSBS) with a two-sided mixed-effects generalised linear

model (see Figure 3.5 for predicted values.

term estimate std.error statistic p.value
(Intercept) -4.952880 1.9133878 | -2.588539 9.638395e-03
log10(fert) 1.763928 0.6462196 | 2.729610 6.340926e-03
Order-Coleoptera 4.066850 2.1788416 | 1.866519 6.196874e-02
Order-Diptera -6.581990 2.2395758 | -2.938945 3.293316e-03
Order-Hymenoptera 7.782467 1.9674357 | 3.955640 7.633008e-05
Order-Lepidoptera 6.816010 2.1208452 | 3.213818 1.309829e-03
Order-Passeriformes 5.717434 1.7523151 | 3.262789 1.103217e-03
log10(fert):Order- -1.397608 0.7389379 | -1.891374 5.857445e-02
Coleoptera

log10(fert):Order-Diptera | 2.184480 0.7458250 | 2.928945 3.401149e-03
log10(fert):Order- -2.044201 0.6595253 | -3.099504 1.938449e-03
Hymenoptera

log10(fert):Order- -2.372238 0.7163021 | -3.311784 9.270311e-04
Lepidoptera

log10(fert):Order- -1.753834 0.5951118 | -2.947067 3.208041e-03

Passeriformes




Table S2.31 Model output for log(total abundance + 1) predicted as a function of
loglO(fertiliser application rate), taxonomic order, and the random intercepts study

(SS) and block (SSB) with a two-sided mixed-effects linear model (see Figure 3.5 for

predicted values.

Term estimate std.error statistic p.value
(Intercept) 1.54088771 1.6289045 0.94596564 3.443103e-01
log10(fert) -0.05127043 0.5798805 -0.08841551 9.295537e-01
Order-Coleoptera 1.73923685 2.0015144 0.86896046 3.852573e-01
Order-Diptera -8.43201071 1.9876442 -4.24221343 2.316702e-05
Order-Hymenoptera | 4.91168470 1.8050664 2.72105487 6.581797e-03
Order-Lepidoptera 3.02481460 1.9954106 1.51588579 1.300592e-01
Order-Passeriformes | 0.37425442 1.3446391 0.27833076 7.807799e-01
log10(fert):Order- -0.41448339 0.6991881 -0.59280667 5.534798e-01
Coleoptera

log10(fert):Order- 3.07974048 0.6879237 4.47686346 7.887758e-06
Diptera

log10(fert):Order- -0.99775501 0.6265387 -1.59248750 1.114068e-01
Hymenoptera

log10(fert):Order- -0.88228527 0.6962327 -1.26722749 2.053937e-01
Lepidoptera

log10(fert):Order- -0.03415814 0.4917438 -0.06946330 9.446260e-01
Passeriformes




Table S2.32 Model output for log(Simpson diversity + 1) predicted as a function of
loglO(fertiliser application rate), taxonomic order, and the random intercepts study

(SS) and block (SSB) with a two-sided mixed-effects linear model (see Figure 3.5 for

predicted values.

term estimate std.error statistic p.value
(Intercept) 0.31314652 0.9728151 0.32189726 0.7475667
log10(fert) 0.31316180 0.3390191 0.92372904 0.3557465
Order- 0.06297832 1.0489090 0.06004174 0.9521328
Coleoptera

Order-Diptera -0.75504668 1.5538186 -0.48592974 0.6270741
Order- 1.39980252 1.0140713 1.38037886 0.1676404
Hymenoptera

Order- 1.25212031 1.0516298 1.19064739 0.2339989
Lepidoptera

Order- 0.78924098 0.9157879 0.86181636 0.3889024
Passeriformes

log10(fert):Order- | -0.05337955 0.3650140 -0.14623974 0.8837564
Coleoptera

log10(fert):Order- | 0.23220352 0.5204045 0.44619817 0.6555056
Diptera

log10(fert):Order- | -0.39618381 0.3504534 -1.13048915 0.2584168
Hymenoptera

log10(fert):Order- | -0.46442622 0.3650117 -1.27235982 0.2034519
Lepidoptera

log10(fert):Order- | -0.26699620 0.3178015 -0.84013513 0.4009433
Passeriformes




Table S2.33 Pseudo R squared for all main models included in the main text.

Model Conditional Marginal pseudo R
pseudo R squared squared
Figure 3.2 Richness ~ LUI 0.706 0.004
Abundance ~ LUI 0.876 0.009
Figure 3.3 Richness ~ LUl *zone | 0.714 0.009
Abundance ~ LUI * 0.887 0.010
zone
Figure 3.4 Richness ~ LUI * order | 0.753 0.149
Abundance ~ LUl * 0.850 0.094
order
Diversity ~ LUl * order | 0.828 0.055
Figure 3.5 Richness ~ fertiliser * 0.775 0.169
order
Abundance ~ fertiliser * | 0.841 0.114
order
Diversity ~ fertiliser * 0.700 0.058

order




Table S2.34 Crops for which fertiliser application rate estimates are available in the

Earthstat data, each with estimates of nitrogen, phosphorus, and potassium.

Crop

Barley

Cassava

Cotton

Groundnut

Maize

Millet

Oilpalm

Potato

Rapeseed

Rice

Rye

Sorghum

Soybean

Sugarbeet

Sugarcane

Sunflower

Wheat
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Figure S3.1 Total pollination dependent production for the 20 crops with the highest

pollination dependent production. Total production values are for the year 2000, taken
from Monfreda et al (2008). Pollination dependent production is calculated by
multiplying total crop production for each crop by the pollination dependence ratios for
that crop, as reported in Klein et al (2007). For any Monfreda crop represented by
multiple dependence ratios, | took the pollination dependence to be the mean of the

ratios for that crop.
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Figure S3.2 Projected change in total production risk under three RCP scenarios (8.5,
6.0, and 2.6), for the average of four climate models (GFDL, HadHEM2, IPSL, and
MIROCS). Here circles represent a projection in which abundance loss is extrapolated
beyond the maximum standardised temperature anomaly (STA) (as in Figure 4.3),
whereas triangles represent a projection in which abundance loss is capped at an STA
of 1.58 (2dp). Colour refers to the percentage of cells at each time step that have been
extrapolated beyond the maximum STA in Figure 4.3, which in the projection in which

abundance loss is capped (triangles) will always be 0.
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Figure S3.3 Change in proportional production risk for each crop, projected under RCP
scenario 8.5 from the average of four climate models (GFDL, HadGEM2, IPSL, and
MIROCS), for the top 20 crops by total pollination dependent production (ordered by
rate of change). For each crop global standardised temperature anomaly was projected
for all areas of pollination-dependent cropland to 2050, using the 3-year average
approach as described in Figure 4.3. For each value of standardised temperature
anomaly, insect pollinator abundance was predicted according to the model in Figure
1. Insect pollinator abundance at each cell at each time step was then expressed as
proportional loss compared to cropland that has experienced no warming (i.e.
standardised temperature anomaly of 0). Animal pollination-dependent production at
each cell for each crop was then adjusted for the predicted proportional loss of insect
pollinator abundance, and then summed for all cells at each time step. The sum at each
time step was then divided by the total production for that crop and multiplied by 100,

giving a percentage of total production at risk.
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Figure S3.4 Change in production risk for the average of four climate models (GFDL,
HadHEM2, IPSL, and MIROC5) under RCP 8.5, here adjusted to an index for each of 4
data quality subsets. For each coloured line crop production was subsetted according
to four levels of data quality reported in Monfreda et al (2008), before the projection was
then rerun: 1, county level census data; 0.75, state level census data; 0.5, regional
interpolation from census data; 0.25, country level census data; 0, no census data. For
each simulation here | converted total production risk to an index by calculating the
percentage change between each time point, and then calculating the cumulative

product of these percentage changes (starting at an initial index of 1).
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Figure S3.5 Response of pollinating dipteran and hymenopteran total abundance to
standardised temperature anomaly on cropland (note that abundance is plotted on a
loge scale), predicted using a linear mixed-effects model. Each pale orange line
represents the predicted change in total abundance with one family removed from the
overall dataset (i.e. jack-knife removal with replacement). The darker orange line
represents the overall predicted change in total abundance with all families included (n

= 61).
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Extended methodology for pollinator dataset construction

| first created a list of possible pollinating animal genera through automatic text analysis of
the pollination literature. | considered the pollination literature to be any primary research
article published in English returned through a search for the term “pollinat* in Scopus, and
which mentioned an animal species in the abstract. | considered a possible pollinating genus
to be any animal genus appearing as part of a Latin binomial in a pollination-related abstract
returned from Scopus. Genera scraping was accomplished using the Taxonfinder and Neti
Neti algorithms implemented in the ‘taxize’ R package (Chamberlain 2013), with animal
species confirmed through a series of character string matches to the Catalogue of Life (see

Millard et al 2020a for a detailed methodology).

For each possible pollinating genus, | then read the abstracts in which these animals
appeared, searching for evidence confirming that genus as pollinating. For any situation in
which the abstract was inconclusive, | also searched the full text of the paper for more
definitive evidence. For each confirmed pollinating genus, | then assigned a level of
experimental confidence between 1 and 4 based on the type of evidence (following (Ollerton
and Liede 1997)): 1) experimental evidence confirming pollination; 2) evidence of pollen
carrying; 3) evidence of nectar/pollen feeding; 4) evidence of non-destructive/non-predatory
flower visitation. My process of assigning evidence was one of maximisation: | read
abstracts for each genera searching for the highest level of evidence, either until | could be
sure that the confidence value should be 1, or | ran out of abstracts for that genera. Non-
destructive flower visitor refers to any animal which visits a flower without causing damage to
the plant. This meant the exclusion of most ants, which are typically referred to as poor
pollen vectors, given that they damage pollen through secretions from the meta-pleural
gland (Dutton and Frederickson 2012). Non-predatory flower visitor refers to any animal
which visits for some purpose other than predation. This meant the exclusion of animals

such as crab spiders, which predate on pollinators during visitation, and therefore contribute



minimally or negatively to pollination (Dukas and Morse 2003). | did not classify broad
statements as evidence for pollination—for example, one study stated that Phylidonyris
novaehollandiae is a “key pollinator” (Myers et al 2012)—unless it was associated with
specific evidence reinforcing that statement, or some claim that pollination in that genus is

“‘well-known” or “widely acknowledged”.

Given that we only had direct evidence for a sample of all pollinating genera, | then searched
for higher-level clades of pollinators. From the confirmed pollinators in the original list of
genera, | identified all unique families with at least one pollinator. For each family, | assessed
the breadth of evidence for pollination through consulting the abstracts and taxonomic
reference books. For any family with evidence of pollination across multiple branches of that
family, and no evidence of any species definitely not pollinating, | assumed that the whole
family is pollinating. If unable to extrapolate across the whole family, | then searched
progressively lower taxonomic clades (i.e. subfamily, tribe, subtribe), searching for the point
at which | could be relatively confident that the entire clade contributes to pollination. If
unable to extrapolate for a given clade, | kept only the genera with direct evidence. For
example, within the family Formicidae (ants), | found no clade across which | could
confidently extrapolate, and so kept only those genera for which we had direct evidence. |
assigned a level of confidence for these extrapolated clade designations, which varied
between 5.1 and 5.4, reflecting the quality of evidence available for most species in that
clade. The ‘5’ indicates an extrapolated clade: 5.1, experimental evidence across multiple
groups within that clade; 5.2, evidence of pollen carrying across multiple groups; 5.3,
evidence of nectar/pollen feeding across multiple groups; 5.4, evidence of non-
destructive/non-predatory flower visitation across multiple groups. After checking all families
represented by the original list of genera, | then inspected additional resources, searching for
any pollinating families | may have missed. Each of these resources included evidence of
only nectar/pollen feeding or flower visitation, meaning all families extrapolated through

additional resources were assigned a confidence level of either 5.3 or 5.4.



Weighting the Species Awareness Index (SAI)

In addition to the un-weighted index presented in the main text, | also explored 2 types of
weighting approach (a sample weighting and a user weighting) for an overall SAI including
all 10 Wikipedia languages and 41,197 IUCN species. My sample weighting accounts for
species occurring in very few or many languages, whilst my user weighting adjusts either for
the number of people using each language on the internet, or the number of views for each
language on Wikipedia. Given the limitations inherent in each of these approaches, | present
the results of weighting the SAI here. Future work should further explore the benefits of
weighting the SAI, aiming to derive a metric both robust to the inclusion of languages and

representative of the global population.

| explored a sample weighting to account for the uneven distribution of unique species in
each language (see Figure S4.16). After averaging each species across languages, | then
multiplied each averaged species by a weighting according to the number of languages in
which that species occurred. A species occurring in one language was assigned a weighting
of 0.1, a species in 2 languages a weighting of 0.2, up to a weighting of 1 for a species
occurring in 10 languages. | then bootstrapped these sample weighted species using the

approach described in the main text.

| explored a user weighting to derive a metric representative of the global population, aiming
to increase the relevance of the SAIl to global policy. For my internet user weighting, |
converted internet users by language from the Internet World Stats

(https://www.internetworldstats.com/stats7.htm) to a proportion, and then used that

proportion to weight the mean for each species across languages. The Internet World Stats
internet user data is calculated from the total number of speakers for each language
(counting each speaker once), multiplied by the internet penetrance of the countries in which
those people reside (Table S11). | supplemented the Internet World Stats data with data for

the Italian language, which falls outside the top 10 languages on the internet. | took internet


https://www.internetworldstats.com/stats7.htm

penetrance data for Italy from Statista (www.statista.com), and population data for Italy from

Istat (https://www.istat.it/). My values for the Italian language will therefore be a slight

underestimate, since | do not include first language speakers outside of Italy. For my
Wikipedia user weighting, | converted the total number of species views for each language to
a proportion (Table S12), and then used those proportions to weight the mean for each

species across languages.

Given my sample weighting adjusts after a species average is taken across languages, and
our user weighting adjusts during the average, | was able to combine the approaches to
explore their effect in combination and independently (Figure S4.16). Here the sample
weighting approaches (left panel) drop markedly less at the start of the series, indicating that
the high magnitude change caused by the French reptiles (see Figure S4.15, Figure 5.7, and
‘Extended Discussion’) has been mitigated. Similarly, both user weightings drop markedly
less at the start of the series, with the internet user rating running marginally higher.
Preliminarily, it looks like a sample weighted approach may be a feasible alternative to the
exclusion of the French Wikipedia. More work is required to investigate the robustness of a

sample weighted approach to language exclusion.

There are limitations associated with user weighting the SAIl, which will need to be
addressed before such an approach becomes workable. The primary problem for a user
weight is the difficulty in extrapolating awareness for a given language to all speakers of that
language. For example, weighting for the number of internet users of the Chinese
(Mandarin) language makes the assumption that views predominantly coming from Taiwan
and Hong Kong are representative of all of mainland China, which may be unlikely. Further
work is required to determine the validity of extrapolating views for a given language to all

speakers of that language.


http://www.statista.com/
https://www.istat.it/
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Figure S4.1 The number of complete Wikipedia view series for each taxonomic class in each

language. Red bars represent species with complete series (i.e. data for each month over the

period July 2015-March 2020), from which the SAl was calculated. Black bars represent the

total species for each taxonomic class in each language, including species for which the

series of views is incomplete.
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Figure S4.2 The top 5 viewed species in each Wikipedia language. Each colour fill refers to a taxonomic class, consistent

across all 10 panels: black (mammals), yellow (insects), green (ray-finned fish), orange (reptiles), and blue (birds).
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Figure S4.2 The total number of Wikipedia views for the set of random pages in each

language, before removing incomplete series.
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Figure S3.4 The total number of complete series pages for each set of random pages
in each language. Red bars represent pages with complete series (i.e. data for each
month over the period July 2015-March 2020), from which the random index was
calculated. Black bars represent the total number of random pages in each language,

including pages for which the series of views is incomplete.
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Figure S4.5 The random index for the set of complete series random pages in each language. Black

lines represent the mean of the bootstrapped indices at each timestep, and grey bars the 2.5" and

97.5™ percentiles. The random index provides an estimate of the overall change in popularity for

each Wikipedia language (i.e. a decrease in the random index for a given language would imply that

the popularity of Wikipedia in that language has decreased). This will differ from the trend in the

total number of views for each language, which is heavily influenced by particularly popular pages,

and confounded by increasing page number. To calculate the species page SAI, the rate of change

in the mean random index is subtracted from the rate of change in each species page.
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Figure S4.4 The overall SAI for all species pooled, jack-knifed for language. Each line
represents the mean of the bootstrapped indices, and each band the 2.5" and 97.5"
percentiles. The colour of each line represents the overall SAI if that language is
excluded, providing an indication as to how single languages influence the overall
SAl: black (Arabic), red (Chinese), blue (English), green (French), purple (German),
orange (Italian), yellow (Japanese), brown (Portuguese), pink (Russian), and grey
(Spanish). Here the French language has a significant effect on the overall trend,
meaning it was removed in the main text. This marked effect is driven by the large
number of reptiles in the French Wikipedia (Figure S4.1), which decrease rapidly at
the start of the series (Figure 5.6). This decrease is compounded by the large number

of reptiles in the French Wikipedia appearing in only that Wikipedia (Figure S4.15).



2
1_

1.50 1
1.25+
1.00+
0.75+
0.50
1.4 4
1.2
1.0
0.8+
0.6+

Ray finned fishes

Amphibians

Birds

Insects

Mammals

Reptiles

Random

-"'~40d:~=a/A\r

W = == A

eIy

asauIyD

ysi|bu3

125
1.00+
0.75
0.50 A
0.25

4

1.2
1.01
0.8+

0.4+

SAl

1.254
1.00 1
0.754

0.50-
1.6

1.24

0.44

2.0
1.54
1.0
0.54

1.34
1.14

0.7+

1.3
1.2
1.19
1.07
0.9+

Language

youai4

Arabic

Chinese

English

French

[IEITIED)

German

Italian

ueljey|

Japanese

Portuguese

Russian

Spanish

assueder

Aot

e

A W

asenbnuog

o — — -

- — o — o—— -

— — —— — — -

ueissny

R IC WL

q4:~“£?1iwi?gkg-

RPN ¥

ysiueds

w

CRTA]
NN N
PP P

AW
NN
PP

©
N
e &

D=V o

o A W&
NN N
PP P

Figure S4.5 The overall SAI for each taxonomic class in each language before a final loess smooth (span = 0.3) is

applied to each

species page SAl. More tortuous trends are those for which the page views in that grouping tend to be lower. The “Random” column

represents the random index adjusted for itself, indicating that the adjustment is functioning correctly.
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Figure S4.8 The overall SAIl for each taxonomic class, jack-knifed for language. Each
line represents the mean of the bootstrapped indices, and each band the 2.5" and
97.5™ percentiles. The colour of each line represents the overall SAl if that language is
excluded, providing an indication as to how single languages influence the overall
SAl: black (Arabic), red (Chinese), blue (English), green (French), purple (German),
orange (Italian), yellow (Japanese), brown (Portuguese), pink (Russian), and grey
(Spanish). Here the French language had a significant effect on the trend for

amphibians and reptiles, meaning it was removed in the main text.
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Figure S4.9 The overall SAl and SAl without a random adjustment for each taxonomic class. Each line

represents the mean of the bootstrapped indices, and each band the 2.5" and 97.5™ percentiles. Blue

lines represent the trend without subtracting the random index, and orange lines represent the trend

with the random index subtracted. In other words, the orange line represents the overall trend in

awareness without the underlying residual trend of Wikipedia. Importantly, the random adjustment

here cuts across multiple languages, which differ in their underlying trend of random pages. Each

species page trend is adjusted for the language of that species page, which means when adjusted

species are averaged across languages, that species then captures random adjustment moving in

multiple directions.
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Figure S4.10 The overall SAl for each taxonomic class, based on the average monthly
views per year. Here all languages (Arabic, Chinese, English, French, German, Italian,
Japanese, Portuguese, Russian, are Spanish) are included, with no additional loess
smoothing of the species page SAIl. Although annual trends may be more useful in
the future, given this current time series is represented by only four points | opted not

to include the annual trends in the main text.
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Figure S4.11 The distribution of page views for each taxonomic class in each language over the period 1% July 2015- 31°' March

2020, as an indication of absolute awareness.
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Figure S4.12 The distribution of views for traded and non-traded species in each taxonomic class in each language, for the period 1*
July 2015- 31°' March 2020. Blue boxplots represent species that are known to be traded, and red boxplots represent species that are

not known to be traded.
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Figure S4.13 Average monthly rate of change for the species page SAl for 6 taxonomic classes across 10 Wikipedia languages.

Errors bars represent the predicted values of a linear model, fitting average monthly change in the species page SAl as a

function of taxonomic class, Wikipedia language, trade contribution (Y/N), and their interaction. Black bars refer to species that

are traded, whereas orange bars refer to species which are not traded. The red circle highlights the Chinese ray-finned fish, in

which both traded and non-traded species have a similar rate of change (see Discussion).
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Figure S4.14 Average monthly rate of change for the species page SAl as a function of
pollination contribution and trade contribution. Top: a mixed effects model for
average rate of change in species page SAl as a function of taxonomic class,
pollination contribution (Y/N), their interaction, and language (random effect). Bottom:
a mixed effects model for average rate of change in species page SAl as a function of
taxonomic class, traded species, and language (random effect). Effect sizes were
calculated for both panels by drawing fixed effects 1,000 times based on the variance-
covariance matrix, and then calculating the median value (shown as points), and 2.5"
and 97.5™ percentiles (shown as error bars). Note that monthly rate of change for
reptiles is much lower here given the inclusion of the French Wikipedia (see jack-knife

figures S6 and S8).
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Figure S4.15 The total number of species appearing in only one language, for each of the
top 10 languages (by active user) on Wikipedia. Fill colour represents the taxonomic class
for species in only one language: reptiles (black), ray-finned fishes (orange), mammals
(blue), birds (green), insects (pink), and amphibians (brown). The French Wikipedia

contains the largest number of unique species, a high proportion of which are reptiles.
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Figure S4.16 The Species Awareness Index (SAl) for 6 taxonomic classes (reptiles, ray-
finned fish, mammals, birds, insects, and amphibians) and 10 Wikipedia languages
(Arabic, Chinese, English, German, ltalian, Japanese, Portuguese, Russian, and Spanish)
for the period July 2015-March 2020, weighted according to a series of approaches. Each
line represents the mean of the bootstrapped indices, and each band the 2.5 and 97.5"
percentiles. Left: a set of sample weighted approaches, in which the average change for a
single species is adjusted for the number of languages in which that species occurs.
Right: the non-sample weighted approach explored in the main text. Colours in both the
left and right panel refer to an additional user weighting, adjusting each species page for
either the number of people using that language on the internet (green), or searching for
animal species in that language on Wikipedia (blue). The black line represents the non-

user weighted approach explored in the main text.
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Figure S4.17 The Species Awareness Index (SAl) for 6 taxonomic classes (reptiles,
ray-finned fish, mammals, birds, insects, and amphibians) and 9 Wikipedia languages
(Arabic, Chinese, English, German, Italian, Japanese, Portuguese, Russian, and
Spanish) for all potential baselines in the period July 2015-March 2020. Here the
colour of each point represents the average rate of change from that point to the end

of the series, providing an indication of robustness to variable baselines. The dashed

lines represent the 2.5th and 97.5th percentiles for the overall SAL.



Supplementary tables

Table S4.18 ANOVA table for a mixed effects linear model predicting the log10(total

views) for each species page as a function of taxonomic class, pollination

contribution, their interaction, and a random effect for language.

Fixed effect Sum of Mean square | F value P value
squares

Pollination contribution 0.18 0.178 0.3869 0.5339

Taxonomic class 889.74 296.579 645.8999 <0.001

Pollination contribution

* Taxonomic class 78.57 26.192 57.0409 <0.001

Table S4.19 ANOVA table for a mixed effects linear model predicting the log10(total

views) for each species page as a function of taxonomic class, trade contribution,

their interaction, and a random effect for language.

Fixed effect Sum of Mean square | Fvalue P value
squares

Trade contribution 5212.6 5212.6 15206.44 <0.001

Taxonomic class 5813.2 1453.3 4239.59 <0.001

Trade contribution *

Taxonomic class 401.5 100.4 292.78 <0.001




Table S4.20 ANOVA table for a mixed effects linear model predicting the average rate

of change in species page SAl as a function of taxonomic class, pollination

contribution, their interaction, and a random effect for language.

Fixed effect Sum of Mean square | F value P value
squares

Pollination contribution | 0.00013237 0.00013237 4.3662 0.036662

Taxonomic class 0.00198949 0.00066316 21.8750 <0.001

Pollination contribution | 0.00047564 0.00015855 5.2299 0.001314

* Taxonomic class

Table S4.21 ANOVA table for a mixed effects linear model predicting the average rate

of change in species page SAIl as a function of taxonomic class, trade contribution,

their interaction, and a random effect for language.

Fixed effect Sum of Mean square F value P value
squares
0.0000017 0.00000165 0.0422 0.8373260
Trade contribution
0.0118755 0.00296888 75.6620
Taxonomic class <0.001
Trade contribution | 0.0008680 0.00021699 5.5301
* Taxonomic class <0.001




Table S4.22 ANOVA table for a linear model predicting the average rate of change in

species page SAl as a function of taxonomic class, language, and their interaction.

Fixed effect Degrees of | Sum of Mean square | Fvalue P value
freedom squares

Taxonomic 5 0.0321 0.0064104 162.044 <0.001

class

Language 9 0.0631 0.0070092 177.181 <0.001

Taxonomic 45 0.0599 0.0013317 33.662 <0.001

class *

Language

Table S4.23 AIC and AAIC values for a set of mixed effects generalised linear models:
one fitting logl0(total views) as a function of an interaction between pollination
contribution and taxonomic class, and three a series of candidate null models. All

models were fit with one random effect (language).

Model fixed effects | AIC AAIC

Pollination 183919.7 0
contribution *
Taxonomic class

Pollination 188112.0 4192.25
contribution
Taxonomic class 184245.5 325.76

Intercept (1) 188306.3 4386.6




Table S4.24 AIC and AAIC values for a set of mixed effects generalised linear models:
one fitting loglO(total views) as a function of an interaction between trade
contribution and taxonomic class, and three a series of candidate null models. All

models were fit with one random effect (language).

Model fixed effects | AIC AAIC
Trade contribution * 254981.1 0
Taxonomic class

Trade contribution 276230.9 2124.98
Taxonomic class 276276.0 2129.48
Intercept (1) 295182.9 4020.18

Table S4.25 AIC and AAIC values for a set of mixed effects generalised linear models:
one fitting the average monthly rate of change in species page SAl as a function of an
interaction between pollination contribution and taxonomic class, and three a series

of candidate null models. All models were fitted with one random effect (language).

Model fixed effects | AIC AAIC

Pollination -583810.4 0
contribution *
Taxonomic class

Pollination -583776.7 33.7
contribution
Taxonomic class -583865.6 -55.2

Intercept (1) -583796.0 14.4




Table S4.26 AIC and AAIC values for a set of mixed effects generalised linear models:
one fitting the average monthly rate of change in species page SAIl as a function of an
interaction between trade contribution and taxonomic class, and one candidate null
model. Only one candidate null model was fit given the models for taxonomic class
only and intercept only were fit to a different number of observation (trade data was

not found for Squamate reptiles). All models were fit with one random effect

(language).

Model fixed effects | AIC AAIC
Trade contribution * -914369.5 0
Taxonomic class

Trade contribution -914065.2 304.2876

Table S4.27 AIC and AAIC values for a set of linear models: one fitting the average
monthly rate of change in species page SAl as a function of an interaction between

taxonomic class and language, and three a series of candidate null models.

Model fixed effects | AIC AAIC
Taxonomic class * -950543.4 0
Language

Taxonomic class -947577.1 2966.3
Language -948712.2 1831.2
Intercept (1) -946797.9 3745.5




Table S4.28 The total number of internet users in each language, both in absolute

terms and as a proportion.

Language Total internet users Proportion
English 1,186,451,052 0.35202835
Chinese (Mandarin) 888,453,068 0.26361026
Spanish 363,684,593 0.10790777
Arabic 237,418,349 0.07044369
Portuguese 171,750,818 0.05095967
French 151,733,611 0.04502043
Japanese 118,626,672 0.03519737
Russian 116,353,942 0.03452303
German 92,525,427 0.02745294
Italian 43,330,632 0.01285650




Table S4.29 The total number of species page views for each Wikipedia, both in

absolute terms and as a proportion.

Language Total internet users Proportion
(millions)
English (en) 1081.51 0.48551984
German (de) 233.18 0.10468097
Spanish (es) 199.68 0.08964189
Russian (ru) 193.15 0.08671039
Japanese (ja) 155.27 0.06970501
French (fr) 137 0.06150310
Italian (it) 86.17 0.03868410
Portuguese (pt) 63.13 0.02834081
Chinese (zh) 53.52 0.02402661
Arabic (ar) 24.92 0.01118728




