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Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder in which
pathogenic abnormalities within both the innate and adaptive immune response have
been described. In order to activated, proliferate and maintain this immunological
response a drastic upregulation in energy metabolism is required. Recently, a greater
understanding of these changes in cellular bioenergetics have provided new insight into
the links between immune response and the pathogenesis of a number of diseases,
ranging from cancer to diabetes and multiple sclerosis. In this review, we highlight the
latest understanding of the role of immunometabolism in SLE with particular focus on
the role of abnormal mitochondrial function, lipid metabolism, and mTOR signaling in the
immunological phenomenon observed in the SLE. We also consider what implications this
has for future therapeutic options in the management of the disease in future.
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1 INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by the
formation of autoantibodies directed against nuclear components. Clinically it may present with
a wide array of manifestations and a variety of immunological phenomenon. In spite of recent
advances in the management of the disease, therapeutic options remain limited and are often
untargeted (1).

The underlying pathogenesis of the disease is poorly understood although abnormal innate and
adaptive immune responses have been implicated (2) and is summarized in Figure 1. Observed
pathogenic innate responses include dysfunction of macrophages that appear to be defective in
removing apoptotic material. It has been suggested that a result of this impaired clearance induces
antigenicity to exposed cellular debris including nuclear components (3, 4). Macrophages (and their
precursors, monocytes) have also been noted to display abnormal polarization in both animal
models and in patients with SLE (5, 6). Abnormal neutrophil function has also been observed in the
pathogenesis of SLE (7), with recent evidence also implicating the production of neutrophil
extracellular traps (NETs) disease development (8, 9). In addition, plasmacytoid dendritic cells
org January 2022 | Volume 12 | Article 8065601

https://www.frontiersin.org/articles/10.3389/fimmu.2021.806560/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.806560/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.806560/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:c.wincup@ucl.ac.uk
https://doi.org/10.3389/fimmu.2021.806560
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.806560
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.806560&domain=pdf&date_stamp=2022-01-26


Robinson et al. Immunometabolism in SLE
(pDCs) have been identified as another key innate immune
driver that has been shown to play a key role in the
production in interferon (INF) and generate reactive oxygen
species (ROS) (10, 11).

The defective clearance of apoptotic matter by dysfunction in
the innate immune response is believed to result in a loss of self-
tolerance and in turn culminates in auto-antibody formation by
B cells, which have been noted to show abnormal activation as
well as aberrant expression. In turn this results in generation of
anti-nuclear antibodies (ANA) and anti-double stranded DNA
Frontiers in Immunology | www.frontiersin.org 2
(anti-dsDNA) antibodies (4), a hallmark of the disease (12).
Furthermore, B cells play a vital role in the development of
immune complexes that contain self-antigen, which are
deposited within various tissue. The resultant engagement of
the Fc receptor and activation of the complement cascade in turn
promotes inflammation (12, 13).

T cells also play a central role in the adaptive immune
response and a number of abnormalities have been observed in
the pathogenesis of SLE in both propagation and maintenance of
the immune response. Regulatory T cells (Tregs) play a vital role
FIGURE 1 | A summary of the key immunological abnormalities described in the pathogenesis of systemic lupus erythematosus.
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in maintaining immune homeostasis in health through
suppressing a hyperactive immune response. In SLE, an
imbalance between pro-inflammatory T helper 17 (Th17) cells
and Tregs has been demonstrated as a key contributor to the loss
of self-tolerance (14, 15). Double negative T cells derived from
patients with SLE have been shown to be an important producer
of Interleukin(IL)-17 (16), whilst CD8+ cytotoxic T cells also
demonstrate impaired suppressive function in SLE (17, 18).

The precise mechanism through which this occurs is not
known, however, it is felt to involve a combination of genetic
factors (19) and environmental triggers (including ultraviolet
radiation and possible virus exposure) (20). In addition, given
that the disease has a marked female predominance (9:1) there is
a growing appreciation of the influence of sex hormones on the
autoimmune responses observed (21).

More recently, abnormalities in immunometabolism have been
detailed in the defective immune response seen in a variety of
disease states including malignancy (22), diabetes (23, 24) and
multiple sclerosis (25). This has shed new light on the way in
which interactions between immunological and metabolic
processes may induce the disease state. Immunometabolism also
presents a variety of novel therapeutic targets for treatment in the
future. In this review, we highlight the latest knowledge in the field
of immunometabolism in SLE and describe how this may in turn
translate into future clinical care.
2 ENERGY METABOLISM

Immune cell activation and proliferation requires significant
upregulation in terms of energy metabolism in order to induce
and maintain the immunological response. Energy metabolism is
dependent on two key pathways to generate adenosine triphosphate
(ATP); glycolysis and oxidative phosphorylation (OXPHOS). In
health, glycolytic pathways convert glucose to pyruvate and
hydrogen ions that are essential for ATP synthesis. In comparison
to glycolysis, OXPHOS occurs at the site of the electron transport
chain (ETC) on the inner mitochondrial membrane.
3 MITOCHONDRIAL DYSFUNCTION
IN SLE

Mitochondria are double membrane-bound organelles that
generate cellular in the form of ATP, as well as regulating
apoptosis. They cannot be replicated by the cell but are formed
by binary fission. Each mitochondrion contains a set of circular
genome that encode for RNA and proteins which are essential for
mitochondrial oxidative phosphorylation. Here we explore the
role of mitochondrial dysfunction in the immunopathogenesis
of SLE.
3.1 B Cells (Auto-Antibodies)
The release of mitochondrial DNA (mtDNA) is a noted marker
of acute and chronic disease (26, 27). MtDNA activates the
Frontiers in Immunology | www.frontiersin.org 3
innate immune system and can be a target for SLE associated
autoantibodies. To identify mitochondrial autoantibodies, a
study of 86 SLE patients and 30 healthy controls determined
the occurrence of AmtRNA-IgG and Amt-IgM by quantitative
ELISA. Both mtRNA immunoglobulins were significantly
increased in the SLE patients (p=0.0002 and p=0.0493,
respectively) (28). Antimitochondrial-M2 antibodies (AMA-
M2) are associated with Primary biliary cirrhosis (PBC) and
have been detected at increased levels in subacute cutaneous
lupus erythematosus (SCLE) patients (29). In a study of 204 SLE
patients, plasma samples were analyzed by ELISA for levels of
anti-wMITO. Increased levels correlated to measures of disease
activity SLEDAI-2K (p<0.0001) and SLAM (p=0.006), anti-
dsDNA (p<0.0001) and other clinical measures (30). The
presence of mitochondrial autoantibodies supports the role of
mitochondrial damage in the pathology of SLE. Abnormal
mitochondrial function in B cells derived from patients with
SLE has more recently been identified. A study of 41 SLE patients
and 29 healthy controls found that B cells derived from patients
with lupus showed enhanced mitochondrial membrane
hyperpolarization, suggesting that these cells are primed for
activation. Furthermore, the degree of hyperpolarization
correlated with SLEDAI-2K. The authors also noted that
glutaminolysis, which generates essential metabolites for
OXPHOS, played a key role in the differentiation into
plasmablasts (31).
3.2 T Cells
T cell dysfunction in SLE could be attributed to mitochondrial
hyperpolarization, reactive oxygen intermediates and reduced
levels of ATP (32). Previous studies have demonstrated that T
cells are dependent upon glycolytic energy production for the
induction of the inflammatory effector response. However,
mitochondrial metabolism has also been implicated in the
more chronic activation of T cells observed in SLE (33). There
is also evidence that in SLE, T cells have increased mitochondrial
mass and size both due to defective mitophagy and increased
biogenesis (34). Mitochondria contain a reservoir of Ca2+ ions.
Increased mitochondrial mass and membrane potential (↑Dym)
in SLE T-cells can increase intracytosolic Ca2+ fluxing when
stimulated, in rapamycin treated SLE this was regulated (35). SLE
but not healthy control T cells undergo necrosis after CD3/CD28
stimulation due to chronic mitochondrial hyperpolarization
(MHP) (36). SLE T cell necrosis can also be caused by
increased production of ROS and ATP depletion. Necrotic
debris can induce a pro-inflammatory interferon response in
plasmacytoid dendritic cells (pDCs) (37). Nitric oxide is released
by monocytes which is a driver of MHP. In turn, T cells express
intrinsic nitric oxide synthase (iNOS). A meta-analysis showed
that there is higher expression of iNOS at both the mRNA and
protein level (38). In T cells there is an increased response to IL-
15 which in turn could contribute to increased mitochondrial
biogenesis, though further studies need to be conducted to
establish the role of cytokines in mitochondrial dysfunction
(39). The status of T cell metabolic programming can be
determined by mitochondrial remodeling as a signaling
January 2022 | Volume 12 | Article 806560
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mechanism. This remodeling can change mitochondrial fusion
to fission and equally oxidative phosphorylation to aerobic
glycolysis. These mechanisms are distinct between effector and
memory T cells (40). In SLE T cell oxidative stress is pronounced,
increased expression of the mitochondrial protein genes VDAC1
and SOD2 are associated with an increase in mitochondrial mass
and oxidative stress (36, 41). Other genes associated with
mitochondrial dysfunction in SLE are ESRRG, a mitochondrial
metabolism regulator, and UCP2, involved in ROS generation
and ATP production (42, 43). It has been shown that due to
oxidative stress, surface glycoprotein CD3z chain is damaged
and replaced by FcϵRIg chain in SLE T cells. The TCR/CD3/
FcϵRIg complex is up-regulated in effector T-cells and has been
shown to be increased in SLE T cells (44).

More recently there is growing evidence to suggest that
targeting T cell metabolism may be a potential therapeutic target
for the management of SLE in the future. N-acetylcysteine (NAC)
is used clinically as an anti-oxidant therapy and could have a role in
targeting oxidative stress in SLE. In a randomized, double-blind,
placebo trial of NAC in 36 SLE patients there was significant
clinical improvement on 2.4 g and 4.8 g dose in terms of Systemic
Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) at
1 months (p=0.0007), 2 months (p=0.0009), 3 months (p=0.003)
and 4 months (p=0.0046). This study showed that NAC
successfully blocks the mammalian target of rapamycin (mTOR)
in T cells (45). Combination treatment with Metformin (a
mitochondrial metabolism inhibitor, more commonly used in the
treatment of diabetes) and 2-deoxy-d-glucose (2DG) in lupus
prone mice has also shown promise, resulting in reduced INF-g
production. In addition, mice treated with this therapy showed a
reversal of the disease process and reduction in both anti-dsDNA
and ANA titers (33). Furthermore, targeting T cell glycolysis has
also been demonstrated to specifically reduce the production of
follicular helper T (TFH) cells, which have been implicated in the
pathogenesis of SLE (46). Glycolysis has also been investigated as a
therapeutic target in another subtype of CD4+ T cells, Th17 cells
that predominantly use glycolysis for energymetabolism. In a study
of T cell derived patients with SLE, it was found that by blocking
pyruvate dehydrogenase phosphatase catalytic subunit 2 (PDP2), a
vital enzyme in the glycolytic pathway, it was possible to limit Th17
differentiation (47). Inhibition of glutaminolysis (a key source of
energy for effector T cells) has also been shown to impact on
glycolytic pathways and result in a similar reduction in Th17
differentiation in samples derived from both patients and lupus
prone mice, thus suggesting this could also be a potential metabolic
therapeutic target in the future Furthermore, the authors also found
that inhibition of glutaminolysis reduced Th17 Hypoxia Inducible
Factor (HIF)-1a levels, which plays a central role in Th17
development (48). These studies suggest that through
augmentation of T cell metabolic pathways it may be possible
impair abnormal T cell cytokine production and differentiation.
3.3 Neutrophils
Neutrophils taken from SLE patients and healthy control INF
primed neutrophils extrude high levels of oxidized mitochondrial
nucleoids that act as potent interferogenic complexes, this affect
Frontiers in Immunology | www.frontiersin.org 4
could be due to failed mitophagy. TFAM enables neutrophil-
derived mtDNA to be internalized and in turn can become a
potent pDC activator. INF/aRNP can divert extruded oxidized
mtDNA into lysosomes. In turn this drives the formation of ox
mtDNA/TFAM complexes which then accumulate in the cytosol
and the mitochondria itself. In SLE there are high levels of these
oxidized nucleoids in the blood and the neutrophils themselves. In
addition, autoantibodies against oxidized mtDNA are present in
some SLE patients, proposing ox mtDNA as an autoantigen (49).
In SLE and juvenile dermatomyositis (JDM) there are increased
levels of neutrophil extracellular traps (NETs) and these have been
found to contain mtDNA (50). In SLE, mitochondrial ROS are
necessary for NETosis of low density granulocytes (8). Inhibiting
mtROS may reduce the INF response in these diseases. In SLE,
neutrophils are key to activating the inflammatory mechanism
of mtDNA.
3.4 Monocytes
A complex study of SLE monocytes showed that excessive INFa in
SLE damaged mitochondrial respiration. In the monocytes, SLE
compared to healthy control, the results showed increased
mitochondrial membrane potential (p<0.0005), PINK1 mRNA
(p<0.005), mtDNA content (p<0.005) and JC1 aggregates
(p<0.05). These results were re-produced when healthy donor
monocytes were cultured with INFa for 18hrs (51). This delineates
the cyclical relationship of INFa with mitochondrial dysfunction.

Across the innate and adaptive immune cells there is strong
evidence that mitochondrial dysfunction plays an important role
in SLE immunopathogenesis. Therefore, is an important
therapeutic target to consider.
4 ABNORMAL mTOR SIGNALING IN SLE

Another important group of substrates involved immune cell
metabolism are proteins, peptides and amino acids. There is
now a growing appreciation of their role in autoimmunity, in
particular in relation to their effects on T cell differentiation and
function. This relies upon the activation of the serine-theonine
protein kinase, mTOR, which exists in two separate complexes
known as mTORC1 and mTORC2 (52). Furthermore, mTOR is
essential in the maintenance of immune cell homeostasis through
its roles in inducing metabolic signals that in turn drive cell
growth, activation, proliferation and survival (52–55).

In health, mTORC1 plays a key role in the suppressive
function of Tregs, a mechanism that has been demonstrated to
be abnormal in many autoimmune conditions (55–57). In SLE,
abnormalities within mTOR pathways have been shown to
induce immune cell differentiation and proliferation, secretion
of pro-inflammatory cytokines and increased ROS production
(58). Previous studies have demonstrated the role of mTORC1
activation in CD4+ T cells derived from patients with SLE (53)
and has suggested that this may be due to mitochondrial
dysfunction (45). More specifically, mTOR abnormalities have
been reported to alter the balance between Th17 T cells and
January 2022 | Volume 12 | Article 806560
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Tregs to the extent that it promotes a state autoimmunity (59).
This increase in mTORC1 activity has been demonstrated
following increased glycolysis and also associates with reduced
levels of autophagy (54), which is impaired in the pathogenesis of
SLE (60).

There is growing evidence that targeting mTOR may also be
an effective treatment in the management of SLE clinically.
Sirolimus (Rapamycin), an immunosuppressive agent used in
preventing graft rejection in solid organ transplantation and
known mTORC1 inhibitor, has already been studies as a
potential treatment for SLE. Inhibition of mTOR with
Rapamycin has already been shown to reduced INF production
by monocytes derived from patients with SLE in vitro (61). In a
previous open-label study in 43 patients with active SLE found
that following 12 months of treatment with Sirolimus, disease
activity was significantly reduced, and concurrent steroid dose
was also significantly lower following one year of treatment.
Immunologically, Sirolimus was also noted to induce increased
numbers of Tregs, which suggests a recovery immune
homeostasis with the treatment. Furthermore, T cell produced
IL-4 and IL-17 levels were also significantly lower following
treatment (62). Although there is a lack of large randomized,
placebo-controlled trials of the drug in lupus, a recent meta-
analysis of nine studies containing a total of 145 patients
concluded that Sirolimus showed promise as a treatment
option. It was suggested that the drug was well tolerated
(although hematological and mucocutaneous adverse events
were the most frequently reported) (63). Inhibition of mTOR
with Sirolimus additionally was associated with higher rates of
dyslipidemia, which is important given the growing evidence for
abnormalities in lipid metabolism in SLE.
5 LIPID METABOLISM IN SLE

The metabolism of lipids is a fundamental process used by
immune cells for different energy demands, cell signaling and
function. Lipids serve as precursors for bioactive metabolites and
components of cellular membranes, which have both direct
and indirect regulatory implications for signal transduction,
gene regulation and cellular activation. Immune cell subsets
have different metabolic demands for lipids, such as
mitochondrial beta-oxidation of lipids for anti-inflammatory
functions in regulatory T cells, against a higher dependency on
glycolytic pathways for growth and proliferation in effector T cells
(64). Dysregulated lipid metabolism has been heavily implicated in
SLE at both the systemic and cellular level and both have been
described in the context of cardiovascular comorbidities.
5.1 Lipid Metabolism and Cardiovascular
Disease in SLE
Patients with SLE have an increased risk of developing
cardiovascular disease (CVD) beyond traditional risk factors and
CVD is a leading cause of mortality for patients (65). This CVD
Frontiers in Immunology | www.frontiersin.org 5
risk is largely due to dyslipidemia (altered lipid metabolism), a
common feature of SLE (66). Dyslipidemia can accelerate
atherosclerosis, the lipid build-up and chronic inflammation of
the large arteries (67). This involves an imbalance between
atherogenic low and very low density lipoproteins (LDL and
VLDL), and atheroprotective high density lipoproteins (HDL)
known to transport lipids too and away from atherosclerotic
plaques respectively. Dyslipidemia in SLE includes both elevated
LDL and reduced HDL (66, 68–70) which, along with chronic
inflammation, accelerates atherosclerotic processes.
5.2 Lipid Metabolism in Immune Cell
Function in SLE
Lipoprotein metabolism can also influence immune cell function
and inflammation in SLE (71). It is well established that innate
immune cells, including macrophages, take up oxidized (ox)LDL
particles via scavenger receptors in atherosclerotic plaques,
leading to lipid saturation, pro-inflammatory cytokine
production, and recruitment of other inflammatory cells (72).
This process could be exacerbated in SLE due to the increased
circulating levels of LDL, thus, increasing atherosclerosis
progression. In addition, macrophage function is likely to
be altered via direct lipid activation of the nuclear liver-X-
receptors (LXRs), which regulate cellular cholesterol levels and
immune functions through transcriptional changes, such as
those involved in IL-23 and IL-17 production and phagocytic
pathways (73). The direct effect of a hyperlipidemic environment
on the T cell inflammatory profile in SLE has also been
investigated (74, 75) and oxLDL has been shown to increase T
cell activation indirectly through monocyte uptake (76). T cells
are key for the adaptive immune system and upon activation, T
cells proliferate, migrate to inflamed sites, such as atherosclerotic
plaques, and acquire functions that mediate the immune
response (77). The T cell plasma membrane (PM) is made up
abundantly of lipids, such as cholesterol and phospholipids, and
proteins, both of which are essential to facilitate cellular signaling
for inflammatory outcomes such as cytokine production and
proliferation (78). Patients with SLE and other autoimmune
diseases have altered T cell membrane cholesterol and
glycosphingolipid levels (79, 80). This alters the composition of
signaling platforms called lipid rafts, where T cell receptors
provide stimulatory signals to control cellular function and
inflammation (81, 82). This is partly due differences in the
expression of genes responsible for lipid metabolism in SLE
(71), however, this could also be due altered cellular altered
uptake of cholesterol from LDL/VLDL and efflux of cholesterol
to HDL; this process has been speculated in pathogenic
mechanisms of multiple sclerosis (83). Altered lipid rafts have
also been described in the context of dysfunctional B cell
signaling in SLE (84). Altered lymphocyte function through
dyslipidemia in SLE is also likely to be mediated through LXRs
(82, 85, 86). Together, research strongly suggest that lipid
metabolism could be targeted therapeutically to control cellular
functions and inflammation, highlighting the need for a better
use of lipid modification strategies in SLE.
January 2022 | Volume 12 | Article 806560
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5.3 Lipid Metabolism as a
Therapeutic Target
Some conventional therapeutics currently being used to treat
SLE have shown beneficial effects on lipids, including
hydroxychloroquine on LDL lowering (87). Despite this, deaths
associated with cardiovascular comorbidities are still high (65,
88) suggesting that additional, more specific lipid modifying
therapies are in demand for patients with SLE. Despite statin
trials in SLE showing mixed results regarding cardiovascular
outcome measures (89–91), therapeutically lowering circulating
lipid levels has been shown to improve autoimmune disease
symptoms (92) and using these therapies to directly modify lipid
rafts in vitro has also been shown to normalize signaling in T
cells from SLE patients (80, 93).

Taken together, differences in lipid metabolism in patients
with SLE contributes to disease pathogenesis, inflammation and
CVD risk through atherosclerosis. Therapeutic intervention with
lipid modifying drugs already approved for use worldwide, such
as statins, could be promising strategies to control atherosclerosis
and inflammation in SLE. The success of future clinical trials and
Frontiers in Immunology | www.frontiersin.org 6
the therapeutic application of these treatments is likely to be
dependent on correct patient stratification. Reducing CVD risk
in SLE patents from a young age will be a huge breakthrough for
long term patient outcomes and quality of life.
6 CONCLUSIONS

The field of immunometabolism has enhanced our
understanding of the key changes in cellular homeostasis and
how this can result in autoimmune conditions including SLE.
Observed mitochondrial dysfunction has implications for
immune cell energy metabolism and also ROS generation.
Abnormalities within mTOR signaling may induce promote
immune cell differentiation and proliferation, whilst also
stimulating pro-inflammatory cytokine production. Lipid
metabolism has been shown to potentially play a role in
immune cell signaling. Figure 2 summarizes the key changes
in immunometabolism observed in SLE to date.
FIGURE 2 | A summary of observed changes in cellular metabolism reported in systemic lupus erythematosus.
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In conclusion, our understanding of immunometabolism in
SLE is rapidly increasing and main soon translate to newer
agents being developed specifically to restore immune cell
homeostasis in the disease.
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