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Does the Helmholtz Boundary Element
Method Suffer from the Pollution Effect?\ast 

J. Galkowski\dagger 

E. A. Spence\ddagger 

Abstract. In d dimensions, accurately approximating an arbitrary function oscillating with frequency
\lesssim k requires \sim kd degrees of freedom. A numerical method for solving the Helmholtz equa-
tion (with wavenumber k and in d dimensions) suffers from the pollution effect if, as k \rightarrow \infty ,
the total number of degrees of freedom needed to maintain accuracy grows faster than this
natural threshold (i.e., faster than kd for domain-based formulations, such as finite element
methods, and kd - 1 for boundary-based formulations, such as boundary element methods).

It is well known that the h-version of the finite element method (FEM) (where ac-
curacy is increased by decreasing the meshwidth h and keeping the polynomial degree p
fixed) suffers from the pollution effect, and research over the last \sim 30 years has resulted in
a near-complete rigorous understanding of how quickly the number of degrees of freedom
must grow with k to maintain accuracy (and how this depends on both p and properties
of the scatterer).

In contrast to the h-FEM, at least empirically, the h-version of the boundary ele-
ment method (BEM) does not suffer from the pollution effect (recall that in the boundary
element method the scattering problem is reformulated as an integral equation on the
boundary of the scatterer, with this integral equation then solved numerically using a
finite element--type approximation space). However, the current best results in the litera-
ture on how quickly the number of degrees of freedom for the h-BEM must grow with k
to maintain accuracy fall short of proving this.

In this paper, we prove that the h-version of the Galerkin method applied to the stan-
dard second-kind boundary integral equations for solving the Helmholtz exterior Dirichlet
problem does not suffer from the pollution effect when the obstacle is nontrapping (i.e.,
does not trap geometric-optic rays). While the proof of this result relies on information
about the large-k behavior of Helmholtz solution operators, we show in an appendix how
the result can be proved using only Fourier series and asymptotics of Hankel and Bessel
functions when the obstacle is a 2-d ball.
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1. Introduction. The boundary element method is a popular way of computing
approximations to solutions of scattering problems involving the Helmholtz equation.
It has long been observed, but not yet proved, that this method does not suffer
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from the pollution effect (in contrast to the finite element method [5]). The main
result of this paper is that the h-version of the Helmholtz boundary element method,
using the standard second-kind boundary integral equations, does not suffer from the
pollution effect when the obstacle has Dirichlet boundary conditions and is smooth
and nontrapping; see Theorem 2.1 below.

In this introduction, we recap the concepts needed to understand this result,
namely, the Helmholtz scattering problem and the concept of nontrapping (sec-
tion 1.1), a precise definition of the pollution effect (section 1.2), our current un-
derstanding of the pollution effect for finite and boundary element methods (sec-
tions 1.3--1.4), and the definition of the boundary element method (sections 1.5--1.6).
The main result is then stated in section 2, the ideas behind the result are discussed
in section 3, and the result is proved in sections 4--6. In the special case when the
obstacle is a 2-d ball, an alternative proof of the main result using only Fourier series
and asymptotics of Hankel and Bessel functions is given in section A.

1.1. The Helmholtz Scattering Problem. The Helmholtz equation

(1.1) \Delta u+ k2u = 0

with wavenumber k > 0 is arguably the simplest possible model of wave propagation.
For example, if we look for solutions of the wave equation

(1.2) \partial 2
tU  - c2\Delta U = 0 in the form U(x, t) = u(x)e\pm i\omega t,

then the function u(x) satisfies the Helmholtz equation (1.1) with k = \omega /c (where \omega 
is the angular frequency and c is the wave speed).

Because the Helmholtz equation is at the heart of linear wave propagation, much
effort has gone into both studying the properties of its solutions (for example, their
asymptotic behavior as k \rightarrow \infty ) and designing methods for computing the solutions
efficiently; for the latter, see, e.g., the recent review articles [18, 32, 48, 49].

The main results of this paper concern the classic scattering problem of the
Helmholtz equation posed in the exterior of an obstacle with Dirichlet boundary con-
ditions. For simplicity, we state our results for plane-wave scattering by an obstacle
with zero Dirichlet boundary conditions; see Remark 2.4 below for how they carry
over to the general Dirichlet problem.

Let \Omega  - \subset \BbbR d, d \geq 2, be a bounded open set---the ``scatterer"" or ``obstacle""---such
that its open complement \Omega + := \BbbR d \setminus \Omega  - is connected. Let \Gamma := \partial \Omega  - ; our main result
requires that \Gamma is smooth (i.e., C\infty ), although the scattering problem is well-defined
for Lipschitz \Gamma . Let H1

loc(\Omega 
+) be the space of functions that are in H1(D) for every

bounded D \subset \Omega +.

Definition 1.1 (plane-wave sound-soft scattering problem). Given k > 0 and
the incident plane wave uI(x) := exp(ikx \cdot \widehat a) for \widehat a \in \BbbR d with | \widehat a| = 1, find the total
field u \in H1

loc(\Omega 
+) satisfying

\Delta u+ k2u = 0 in \Omega +, u = 0 on \Gamma ,

and such that uS := u - uI satisfies

(1.3) \partial ru
S  - ikuS = o

\bigl( 
r(1 - d)/2

\bigr) 
as r := | x| \rightarrow \infty , uniformly in x/r.

It is well known that the solution of the sound-soft plane-wave scattering problem
exists and is unique; see, e.g., [26, Theorem 3.13], [18, Theorem 2.12 and Corollary
2.13].
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Fig. 1.1 On the left, a nontrapping obstacle, and on the right, a trapping obstacle and one of its
trapped rays.

Condition (1.3) is the Sommerfeld radiation condition, and expresses mathemat-
ically that with the choice e - i\omega t in (1.2), the scattered wave moves away from the
obstacle towards infinity; see, e.g., [58, section 1.1.2].

The key geometric condition that governs the behavior of Helmholtz solutions
with k large is that of trapping/nontrapping (see, e.g., [67, Epilogue §1]).

Definition 1.2 (nontrapping). The obstacle \Omega  - \subset \BbbR d is nontrapping if \Gamma is C\infty 

and, given R such that \Omega  - \subset BR(0), there exists T (R) < \infty such that all the billiard
trajectories (a.k.a. geometric-optic rays) that start in \Omega + \cap BR(0) at time zero leave
\Omega + \cap BR(0) by time T (R).

If \Omega  - is C\infty and not nontrapping, then we say that it is trapping ; see Figure 1.1
for an example of a nontrapping obstacle and a trapping obstacle. The requirement
that \Gamma is C\infty is imposed so that when the billiard trajectories hit \Gamma , their reflection
according to the law of geometric optics (``angle of incidence = angle of reflection"")
is well-defined (see [81]). There has been much rigorous study of the reflection of
high-frequency waves from nonsmooth obstacles (see, e.g., [97, 82] and the references
therein), but this does not impact the results of the present paper since we assume
that \Gamma is smooth (see section 3 for a discussion of why we make this assumption).

Our main results are proved under the assumption that \Omega  - is nontrapping; in
section 3 we discuss how this assumption enters our arguments.

1.2. What Is the Pollution Effect?

Informal Definition. A numerical method for solving the Helmholtz equation
(with wavenumber k) suffers from the pollution effect if, as k \rightarrow \infty , the total number
of degrees of freedom needed to maintain accuracy grows faster than kn, where n is
the dimension of the physical domain in which the problem is formulated. Having the
number of degrees of freedom growing like kn is the natural threshold for the problem
since an oscillatory function with frequency \lesssim k can be accurately approximated by
piecewise polynomials with kn degrees of freedom; this is expected in one dimension
from the Nyquist--Shannon--Whittaker sampling theorem [99, 91] (see, e.g., [6, The-
orem 5.21.1]) and in arbitrary dimension from the Weyl law for the asymptotics of
Laplace eigenvalues [98] (see section 5 for how the notion of the frequency of a function
can be defined by Laplace eigenvalues).

Abstract Framework Covering Both BEM and FEM. Let V be a Hilbert space,
and let \scrA : V \rightarrow V \prime be a continuous, invertible linear operator, where V \prime is the dual
space of V . Given f \in V \prime , let v \in V be the solution of \scrA v = f ; i.e., v = \scrA  - 1f .

Let (VN )N>0 be an increasing sequence of finite-dimensional subspaces of V with
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dimension N (i.e., total number of degrees of freedom N), such that VN are asymp-
totically dense in V , in the sense that, for all w \in V , the best approximation error
minwN\in VN

\| w  - wN\| V \rightarrow 0 as N \rightarrow \infty .
Let vN be the computed approximation in VN to v; we write this as vN =

(\scrA  - 1)Nf , so that (\scrA  - 1)N : V \prime \rightarrow VN is the approximation of the solution opera-
tor.

For the finite element method v is the restriction to the computational domain
of the solution u of the sound-soft scattering problem (modulo any error incurred by
this restriction), V is the space H1, and n = d. For the boundary element methods
we consider below, v is a function on \Gamma (possibly the normal derivative of u), V is
L2(\Gamma ) (i.e., square integrable functions on \Gamma ), and n = d - 1, since the boundary \Gamma is
(d - 1)-dimensional.

Quasi-optimality. A fundamental property one seeks to prove about a sequence
of approximate solutions (vN )N>0 is that they are asymptotically quasi-optimal ; i.e.,
there exist N0 > 0 and Cqo > 0 such that, for all N \geq N0,
(1.4)

\| v  - vN\| V \leq Cqo min
wN\in VN

\| v  - wN\| V , where v = \scrA  - 1f and vN = (\scrA  - 1)Nf .

The approximate solutions (vN )N>0 would be optimal if \| v  - vN\| V =
minwN\in VN

\| w  - wN\| V ; ``quasi-optimality"" is then optimality up to a constant fac-
tor, and ``asymptotically"" refers to the fact that (1.4) holds for sufficiently large N .

The standard analysis of finite and boundary element methods for the Helmholtz
equation proves that, for fixed k, the computed solutions are asymptotically quasi-
optimal (see, e.g., [14] for FEM and [94, 89] for BEM), i.e., for each k > 0 there exists
N0 = N0(k), depending on k in some unspecified way, such that (1.4) holds.

Precise Definition of the Pollution Effect. The pollution effect is when there
exist a choice of N larger than a constant multiple of kn (i.e., N \geq \Lambda kn for some
\Lambda > 0) and some choice of data (f \in V \prime ) such that the smallest possible Cqo in (1.4)
is unbounded in k, that is, if

inf
\Lambda >0

lim sup
k\rightarrow \infty 

sup
N\geq \Lambda kn

sup
f\in V \prime 

inf

\biggl\{ 
Cqo :

\bigm\| \bigm\| \scrA  - 1f  - (\scrA  - 1)Nf
\bigm\| \bigm\| 
V

(1.5)

\leq Cqo min
wN\in VN

\bigm\| \bigm\| \scrA  - 1f  - wN

\bigm\| \bigm\| 
V

\biggr\} 
= \infty ;

see, e.g., [5, Definition 2.1]. Conversely, if the right-hand side of (1.5) is finite, then
there exist k0, \Lambda , and Cqo such that for all k \geq k0, N \geq \Lambda kn, and f \in V \prime ,\bigm\| \bigm\| \scrA  - 1f  - (\scrA  - 1)Nf

\bigm\| \bigm\| 
V
\leq Cqo min

wN\in VN

\bigm\| \bigm\| \scrA  - 1f  - wN

\bigm\| \bigm\| 
V
;

i.e., k-uniform quasi-optimality is achieved (for all possible data) with a choice of N
proportional to kn.

When the meshes in the FEM or BEM are quasi-uniform (informally, all the mesh
elements are of comparable size; see [89, Definition 4.1.13] for a precise definition),
then the total number of degrees of freedom N \sim (p/h)n, where h is the meshwidth
and p the polynomial degree.

In the h-version of the FEM or BEM accuracy is increased by decreasing h and
keeping p fixed, and thus N \sim kn corresponds to hk \sim 1. For these methods,
the supN\geq \Lambda kn in the definition of the pollution effect (1.5) can then be replaced
by sup\Lambda \geq hk.
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1.3. The Pollution Effect for Finite Element Methods Is Well Understood.
Empirically, the h-version of the FEM applied to the Helmholtz equation suffers from
the pollution effect. Furthermore [5] proved that in two or more dimensions the pollu-
tion effect is unavoidable for the h-FEM; more precisely, [5] worked in the framework
of ``generalized FEMs"" introduced in [4] and proved that, in two or more dimensions,
any method with fixed polynomial degree p (or, more generally, a fixed stencil) suffers
from the pollution effect; see [5, Theorem 4.6].

Given that the h-FEM suffers from the pollution effect, two natural questions are
the following.

Q1 How must h depend on k for the quasi-optimal error estimate (1.4) to hold
with Cqo independent of k?

In engineering applications, the most commonly used measure of error is the relative
error

(1.6) \| v  - vN\| V
\big/ 
\| v\| V .

However, the relative error can only be small when restricting attention to a subclass
of data. Indeed, since \scrA is assumed to be invertible, given VN , we can choose v \in V
orthogonal to VN , let f := \scrA v, and let vN := (\scrA  - 1)Nf . Then

\| v  - vN\| 2V = \| v\| 2V + \| vN\| 2V \geq \| v\| 2V ,

and thus the relative error cannot be small for all possible data.
Q2 For a physically relevant class of data \widetilde V \prime \subset V \prime (such as that coming from an

incident plane wave as in Definition 1.1), how must h depend on k for the

relative error to be controllably small? That is, given \varepsilon > 0 and \widetilde V \prime , how must
h depend on k and \varepsilon such that for all f \in \widetilde V \prime the relative error (1.6) is \leq \varepsilon ?

For the h-FEM applied to nontrapping problems, the answer to Q1 is that hpkp+1

must be sufficiently small, and the answer to Q2 is that h2pk2p+1 must be sufficiently
small for data oscillating at scale k - 1.

These answers were first obtained for 1-d Helmholtz problems by [3, 61, 60] (see
also [58, Chapter 4]). Obtaining the multidimensional analogues of these results for
a range of different FEMs remains a very active research area; see the papers [76, 88]
(the earliest multidimensional results), [35, 100, 101] (on discontinuous Galerkin and
interior penalty methods), [24] (on Helmholtz problems on domains with corners), [9,
25, 45, 51] (on variable-coefficient Helmholtz problems), and [69, 46, 41] (on Helmholtz
problems with perfectly matched layers).1

There has been much research on designing FEMs that mitigate against the pol-
lution effect; four directions of this research are (i) high-order methods [102, 30, 23]
and hp methods [79, 80, 33, 78, 65, 40], (ii) Trefftz methods (i.e., using basis functions
that are locally solutions of \Delta u + k2u = 0); see, e.g., the review [56] (in particular
[56, section 5], (iii) multiscale methods involving special precomputed test functions
[47, 86, 15, 55, 37], and (iv) the so-called discontinuous Petrov Galerkin (DPG) method
of [27] (which is a least-squares method in a nonstandard inner product).

1We note that the pollution effect for Helmholtz finite element and finite difference methods can
also be heuristically studied via so-called dispersion analysis [54, 59, 61, 28, 1]. Here finite element
or finite difference schemes are studied on an infinite uniform mesh for problems where an exact
solution is u(x) = eikx, and one seeks the ``discrete wavenumber"" \widetilde k such that a numerical solution

is uN (xj) = ei
\widetilde kxj , where xj are the nodes. The condition ``h2pk2p+1 sufficiently small"" (i.e., the

answer to Q2) arises as the condition for | \widetilde k - k| to be controllably small; see [60, Theorem 3.2], [58,
Theorem 4.22].
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1.4. The Pollution Effect for Boundary Element Methods Is Not Yet Rigor-
ously Understood. The situation for the BEM is well summarized by the following
quotation from [8]:

It is generally admitted that Boundary Integral Equations (BIE) lead to
less ``pollution effect"" than FEMs even if to our knowledge, no formal study
has confirmed such a property.

Indeed, it is completely standard in the numerical analysis and engineering com-
munities to compute approximations to Helmholtz scattering problems via boundary
integral equations (BIEs) using a fixed number of degrees of freedom per wavelength,
i.e., N \sim kd - 1, for both Galerkin [36, 12] and collocation [71, 72] BEMs, and also for
Nystr\"om methods [16, 66, 53].2

Numerical experiments indicate that, at least for obstacles without strong trap-
ping, the h-BEM is quasi-optimal (with constant independent of k) if hk is sufficiently
small; see [70, section 4], [50, section 5]. However, in existing theoretical investiga-
tions [17, 7, 70, 77, 50, 43], the best result is that the h-BEM is quasi-optimal (with
constant independent of k) for the standard second-kind BIEs for the exterior Dirich-
let problem (defined in section 1.5) if hk4/3 is sufficiently small and the scatterer is
smooth and convex [43, Theorem 1.10(c)] (the current best results for more general
domains, which are also in [43], involve higher powers of k).3

The results of [70, 77] show, for these same BIEs, that if \Gamma is analytic and the
norm of the inverse of the boundary integral operator is bounded polynomially in
k, then there exists C1, C2 > 0 such that the hp-BEM is quasi-optimal with Cqo

independent of k if

hk

p
\leq C1 and p \geq C2 log k

(this is the analogous result to the hp-FEM results mentioned at the end of sec-
tion 1.3). The abstract to [70] remarks that

Numerical examples . . . even suggest that in many cases quasi-optimality
is given under the weaker condition that kh/p is sufficiently small [with p
fixed].

In this paper we rigorously explain this observation when the obstacle is non-
trapping, showing that in this case the h-BEM does not suffer from the pollution
effect.

1.5. The Helmholtz Plane-Wave Sound-Soft Scattering Problem Solved via
Boundary Integral Equations.

The Standard Second-Kind Boundary Integral Equations for Solving the
Plane-Wave Sound-Soft Scattering Problem. In this section we recall how the solu-
tion of the plane-wave sound-soft scattering problem of Definition 1.1 can be expressed
in terms of the solution of BIEs involving the operators

(1.7) Ak :=
1

2
I +Dk  - ikSk and A\prime 

k :=
1

2
I +D\prime 

k  - ikSk,

2Intriguingly, however, [73, 11, 74] recently identified a loss of accuracy similar to the pollution
effect in the collocation BEM applied to interior Helmholtz problems.

3The only rigorous result we know of that is (i) about the convergence of a boundary integral
method applied to the Helmholtz equation and (ii) valid only when hk is small is that in [21]. Indeed,
for the Helmholtz equation in an infinite half-plane with an impedance boundary condition solved
using a collocation BEM and the finite-section method, [21] proved that the error is controllably
small, relative to the data, if hk is sufficiently small.
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where Sk, Dk, and D\prime 
k are the single-, double-, and adjoint-double-layer operators

defined in (1.8) and (1.9) below. The \prime notation is used since Ak and A\prime 
k are adjoint

with respect to the real-valued L2(\Gamma ) inner product.
There are a variety of spaces in which one can pose equations involving Ak and

A\prime 
k. The most natural space for solving such equations with the Galerkin method

is L2(\Gamma ) (since the inner product is local). When \Gamma is C1, Sk, Dk, and D\prime 
k are

compact on L2(\Gamma ), and thus Ak and A\prime 
k are compact perturbations of a multiple of

the identity. Such integral operators fall into the class of ``second-kind"" operators---see
[2, section 1.1.4]---and the solvability of integral equations involving these operators
is covered by Fredholm theory. One can then show that Ak and A\prime 

k are bounded and
invertible operators from L2(\Gamma ) to itself when \Gamma is smooth [26, Theorem 3.33] (indeed,
even when \Gamma is only Lipschitz; see [19, Theorem 2.7], [18, Theorem 2.27]).

How the Boundary Integral Equations (1.7) Are Obtained. Let \Phi k(x, y) be
the fundamental solution of the Helmholtz equation

\Phi k(x, y) :=
i

4

\biggl( 
k

2\pi | x - y| 

\biggr) (d - 2)/2

H
(1)
(d - 2)/2

\bigl( 
k| x - y| 

\bigr) 
=

\left\{     
i

4
H

(1)
0

\bigl( 
k| x - y| 

\bigr) 
, d = 2,

eik| x - y| 

4\pi | x - y| 
, d = 3,

where H
(1)
m denotes the Hankel function of the first kind of order m (see, e.g., [93,

equation 5.118]). The single- and double-layer potentials, \scrS k and \scrD k respectively, are
defined for k \in \BbbC , \phi \in L2(\Gamma ), and x \in \BbbR d \setminus \Gamma by

\scrS k\phi (x) =

\int 
\Gamma 

\Phi k(x, y)\phi (y) ds(y) and \scrD k\phi (x) =

\int 
\Gamma 

\partial \Phi k(x, y)

\partial \nu (y)
\phi (y) ds(y).

The standard single-layer, double-layer, and adjoint-double-layer operators are defined
for k \in \BbbC , \phi \in L2(\Gamma ), and x \in \Gamma by

Sk\phi (x) :=

\int 
\Gamma 

\Phi k(x, y)\phi (y) ds(y), Dk\phi (x) :=

\int 
\Gamma 

\partial \Phi k(x, y)

\partial \nu (y)
\phi (y) ds(y),(1.8)

D\prime 
k\phi (x) :=

\int 
\Gamma 

\partial \Phi k(x, y)

\partial \nu (x)
\phi (y) ds(y);(1.9)

when \Gamma is C2, the integrals defining Sk, Dk, and D\prime 
k are all weakly singular; see, e.g.,

[26, page 6 and section 2.4].

Theorem 1.3 (the plane-wave sound-soft scattering problem formulated in terms
of BIEs).

(i) If u is solution of the plane-wave sound-soft scattering problem of Definition
1.1, then

(1.10) A\prime 
k\partial \nu u = \partial \nu u

I  - ikuI and u = uI  - \scrS k(\partial \nu u).

(ii) If v \in L2(\Gamma ) is the solution to

(1.11) Akv =  - uI , then u = uI + (\scrD k  - ik\scrS k)v

is the solution of the plane-wave sound-soft scattering problem of Definition 1.1.

References for the proof and summary of the ideas. Part (i) is proved in, e.g., [18,
Theorem 2.46]. Part (ii) is proved in, e.g., [18, equations 2.70--2.72]. Both parts
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use that \scrD kv and \scrS kv satisfy the Helmholtz equation away from \Gamma and satisfy the
radiation condition (1.3). Part (i) uses that u(x) = uI(x)  - \scrS k(\partial \nu u)(x) for x \in \Omega +

by Green's integral representation theorem (applied to uS in \Omega + and uI in \Omega  - );
this is the so-called direct method. Taking a linear combination of the limits of both
this representation and its normal derivative as x approaches \Gamma from \Omega +, we obtain
the integral equation in (1.10). This idea of taking a linear combination goes back
to [13, 68, 85] and ensures that A\prime 

k is invertible. Part (ii) poses the ansatz that
uS(x) = (\scrD k  - ik\scrS k)v(x) for x \in \Omega + for some unknown density v; this is the so-called
indirect method. Imposing the boundary condition that uS =  - uI on \Gamma , we obtain
the integral equation (1.11).

1.6. The Galerkin Method and Assumptions on the Boundary Element
Space. We consider solving the BIE\scrA v = f in L2(\Gamma ) with the Galerkin method: given
a finite-dimensional subspace VN \subset L2(\Gamma ),

find vN \in VN such that (\scrA vN , wN )L2(\Gamma ) = (f, wN )L2(\Gamma ) for all wN \in VN .
(1.12)

The abstract framework in section 1.2 involved the operator (\scrA  - 1)N mapping
the data to the approximate solution; we show in section 4 below (see (4.3)) that, for
the Galerkin method, (\scrA  - 1)N = (PN\scrA ) - 1PN , where PN is the orthogonal projection
from V to VN and PN\scrA is considered as an operator from VN to VN (after using the
fact that V is a Hilbert space to identify V and V \prime ).

The h-version of the BEM uses a sequence of approximation spaces (VNh
)h>0

given by piecewise polynomials of degree p for some fixed p \geq 0 on a sequence of
meshes of diameter h > 0; for ease of notation we let (Vh)h>0 := (VNh

)h>0. It is
well known that when the meshes are additionally shape-regular (for each element, its
width divided by the diameter of the largest inscribed ball is uniformly bounded; see
[89, Definition 4.1.12]), these subspaces satisfy the following assumption.

Assumption 1.4. (Vh)h>0 is a sequence of finite-dimensional subspaces of L2(\Gamma ),
and there exists Capprox > 0 such that for all h > 0

(1.13) min
wh\in Vh

\| w  - wh\| L2(\Gamma ) \leq Capproxh \| w\| H1(\Gamma ) for all w \in H1(\Gamma ).

(Recall that \| w\| 2H1(\Gamma ) := \| \nabla \Gamma w\| 2L2(\Gamma )+\| w\| 2L2(\Gamma ), where\nabla \Gamma is the surface gradient

operator, defined in terms of a parametrization of the boundary by, e.g., [18, equation
A.14].)

Indeed, piecewise-polynomial subspaces satisfying Assumption 1.4 are described
in [89, Chapter 4], with [89, Theorem 4.3.22] showing that the spaces of continuous
boundary element functions denoted by \scrS p,0

\scrG [89, Definition 4.1.36] satisfy Assump-
tion 1.4 and [89, Theorem 4.3.19] showing that the spaces of discontinuous boundary
element functions denoted by \scrS p, - 1

\scrG [89, Definition 4.1.17] satisfy Assumption 1.4.
Note that in these cases, the constant Capprox depends on p.

We highlight that Assumption 1.4 is the only requirement on (Vh)h>0 needed
below. There are sequences (Vh)h>0 arising from piecewise polynomials on non-quasi-
uniform sequences of meshes that satisfy Assumption 1.4; however, as mentioned in
section 1.2, quasi-uniformity is required for the total number of degrees of freedom to
\sim (p/h)d.

2. The Main Result: The \bfith -BEM Does Not Suffer from the Pollution Effect.
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Theorem 2.1 (quasi-optimal error estimate for hk sufficiently small). Suppose
that \Omega  - is nontrapping and (Vh)h>0 satisfies Assumption 1.4.

For all k0 > 0, there exist Cppw > 0 and Cqo > 0 such that if \scrA is either Ak or
A\prime 

k,

(2.1) hk \leq Cppw and k \geq k0,

then for all f \in L2(\Gamma ), the Galerkin solution vN to (1.12) exists, is unique, and
satisfies

(2.2) \| v  - vN\| L2(\Gamma ) \leq Cqo min
wN\in Vh

\| v  - wN\| L2(\Gamma ) .

The order of the quantifiers in Theorem 2.1 (and also later results in the paper)
dictates what the constants depend on; e.g., in Theorem 2.1, Cppw and Cqo depend
on \Omega  - , the spaces (Vh)h>0, and k0, but are independent of k, h, and the choice of Ak

or A\prime 
k.
The subscript ``ppw"" on Cppw indicates that, via (2.1), this constant controls

the number of points per wavelength. If the spaces (Vh)h>0 are quasi-uniform, then
N \sim h - d, and thus Theorem 2.1 shows that the Galerkin method is quasi-optimal
(with constant independent of k) when the total number of degrees of freedom is a
multiple of kd; i.e., the h-BEM does not suffer from the pollution effect.

Theorem 2.1 covers the Galerkin method applied to \scrA v = f for general f \in L2(\Gamma ).
We now restrict our attention to the case when the data comes from the plane-wave
sound-soft scattering problem (i.e., the right-hand side f is as described in Theorem
1.3), and bound the relative error. To do this, we use in the bound (2.2) the bound
(1.13) from Assumption 1.4 and the following lemma (proved in [44]), describing the
oscillatory character of the solution v in this case.

Lemma 2.2 (bound on the unknown v in the BIEs for the sound-soft scattering
problem). Given k0 > 0 there exists Creg > 0 (with the subscript ``reg"" standing for
``regularity"") such that if \scrA is one of Ak, A

\prime 
k and v is the solution to \scrA v = f where

the right-hand side f is as described in Theorem 1.3, then

\| v\| H1(\Gamma ) \leq Cregk \| v\| L2(\Gamma ) for all k \geq k0.

Corollary 2.3 (bound on the relative error for hk sufficiently small). Suppose
that \Omega  - is nontrapping and (Vh)h>0 satisfies Assumption 1.4. For all k0 > 0, there
exist Cppw > 0 and Cqo > 0 such that if \scrA is either Ak or A\prime 

k and (2.1) holds, then
for all data f coming from the plane-wave sound-soft scattering problem the Galerkin
solution vN to (1.12) exists, is unique, and satisfies

(2.3) \| v  - vN\| L2(\Gamma ) \leq CqoCreghk \| v\| L2(\Gamma ) .

The bound (2.3) shows that a prescribed relative error can be achieved with a
choice of h such that hk \sim 1. Indeed, given \varepsilon > 0,

if hk \leq min
\bigl\{ 
\varepsilon (CqoCreg)

 - 1, Cppw

\bigr\} 
, then \| v  - vN\| L2(\Gamma ) / \| v\| L2(\Gamma ) \leq \varepsilon .

Remark 2.4 (general Dirichlet boundary conditions). The general exterior
Dirichlet problem is: given k > 0 and gD \in H1/2(\Gamma ), find uS \in H1

loc(\Omega 
+) such that

\Delta uS +k2uS = 0 in \Omega +, uS = gD on \Gamma , and uS satisfies the radiation condition (1.3).
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For the indirect method, we pose the ansatz uS(x) = (\scrD k  - ik\scrS k)v(x) for x \in \Omega +

and take the limit of this as x approaches \Gamma from \Omega + to obtain the equation Akv = gD.
Since gD \in H1/2(\Gamma ), this is a priori an equation in H1/2(\Gamma ); however, since Ak is
bounded and invertible as an operator from Hs(\Gamma ) to itself for 0 \leq s \leq 1 [18, Theorem
2.27], and H1/2(\Gamma ) \subset L2(\Gamma ), we can consider this equation in L2(\Gamma ), and solve it using
the Galerkin method as in section 1.6. In contrast, the exterior Dirichlet problem can
only be solved by the direct method with the integral equation posed in L2(\Gamma ) when
gD \in H1(\Gamma ); see [18, section 2.6].

3. Discussions of the Ideas behind the Proof of Theorem 2.1. The proof of
Theorem 2.1 consists of three ingredients.

1. A slight modification of a standard condition for quasi-optimality of the
Galerkin method applied to operators that are a perturbation of the iden-
tity (see (4.5) in Theorem 4.2 below), with this condition based on writing
the Galerkin method as a projection method and using the result that if
\| T\| < 1, then I + T is invertible with \| (I + T ) - 1\| \leq (1 - \| T\| ) - 1.

2. Bounds on the components of the boundary integral operators Sk, Dk, and
Dk that have frequencies > k (see Theorem 5.1), where the statement that
a function has ``frequencies > k"" is understood by expanding the function in
terms of eigenfunctions of the surface Laplacian on \Gamma (see section 5).

We see in section 6 that these two ingredients prove the following result.

Lemma 3.1. Suppose (Vh)h>0 satisfies Assumption 1.4. For all k0 > 0, there
exists C1 > 0 such that if k \geq k0, \scrA is either Ak or A\prime 

k, and

(3.1) hk
\bigl( 
1 +

\bigm\| \bigm\| \scrA  - 1
\bigm\| \bigm\| 
L2(\Gamma )\rightarrow L2(\Gamma )

\bigr) 
\leq C1,

then for all f \in L2(\Gamma ), the Galerkin solution vN to (1.12) exists, is unique, and
satisfies

(3.2) \| v  - vN\| L2(\Gamma ) \leq 2
\bigm\| \bigm\| \scrA  - 1

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow L2(\Gamma )

min
wN\in VN

\| v  - wN\| L2(\Gamma ) .

The result of Theorem 2.1 then follows from the third ingredient (note that this
is the only place where our arguments use the nontrapping assumption).

3. If \Omega  - is nontrapping, then, given k0 > 0, there exists C > 0 such that

(3.3) \| \scrA  - 1\| L2(\Gamma )\rightarrow L2(\Gamma ) \leq C for all k \geq k0.

Discussion of Point 1. It is perhaps surprising that the simple condition from
Theorem 4.2, combined with points 2 and 3, gives a better result for the Galerkin
method applied to \scrA (at least when \Omega  - is nontrapping) than more sophisticated
conditions for quasi-optimality used in [17, 7, 70], which are all ultimately based on
the ideas in the ``Schatz argument"" in the finite element setting; see [90, 88].

Discussion of Point 2. The bounds on the high-frequency components of Sk, Dk,
and D\prime 

k in Theorem 5.1 come from viewing these boundary integral operators as
semiclassical pseudodifferential operators. We do not need any of the details of these
operators in this paper, but it is instructive to discuss briefly here how, on the one
hand, using pseudodifferential operators to study boundary integral equations is com-
pletely standard, but, on the other hand, the full potential of these operators for
studying Helmholtz problems with large k has not been fully exploited.

Recall that the theory of standard pseudodifferential operators on a smooth sur-
face \Gamma can be viewed as a generalization of Fourier analysis on the circle. The use of
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pseudodifferential properties in both the analysis and numerical analysis of boundary
integral equations is both well established and current; see, e.g., the books [87, 57, 52].

A class of pseudodifferential operators exists that is tailor-made for studying prob-
lems where oscillations happen at a large frequency k; these are precisely semiclassical
pseudodifferential operators [103], [31, Appendix E]. The adjective ``semiclassical"" es-
sentially means ``high frequency"" and comes from the origin of this theory in the study
of how classical dynamics arise from quantum mechanics in the high-energy limit (see,
e.g., [103, section 1]).

Whereas Sk, Dk, and D\prime 
k are standard pseudodifferential operators (of order  - 1;

see, e.g., [57, section 9.2.2], [87, section 7], [95, Chapter 7, section 11]), they are not
semiclassical pseudodifferential operators. Instead, each is the sum of a semiclassical
pseudodifferential operator and an operator acting only on frequencies \leq k that trans-
ports mass between points on the boundary connected by rays; this decomposition
was recently established in [38, Chapter 4], with [38, Lemma 4.27] explicitly writing
out the decomposition when \Gamma is curved. The estimates on boundary layer operators
at high frequency in Theorem 5.1 were then proved using the ideas from [38, Chapter
4] in [42, Theorem 4.3].

Finally, we note that the assumption in section 1.1 that \Gamma is smooth is because the
theory of pseudodifferential operators is simplest on smooth domains. In principle,
Lemma 3.1 holds when \Gamma is CM for some M > 0, and one could go through the
arguments to determine a sufficiently large value of M ; alternatively one could use
more sophisticated pseudodifferential techniques to lower the regularity further; see,
e.g., [96, Chapter 13].

Discussion of Point 3. The estimate (3.3) is proved in [10, Theorem 1.13] using
the following decompositions of A - 1

k and (A\prime 
k)

 - 1 [18, Theorem 2.33]:

(3.4) A - 1
k = I  - (ItD) - 

\bigl[ 
(DtN)+  - ik

\bigr] 
and (A\prime 

k)
 - 1 = I  - 

\bigl[ 
(DtN)+  - ik

\bigr] 
(ItD) - .

Here, (DtN)+ is the Dirichlet-to-Neumann map for the Helmholtz equation \Delta uS +
k2uS = 0 in \Omega + satisfying the Sommerfeld radiation condition (1.3), and (ItD) - is
the map g \mapsto \rightarrow u| \Gamma where, given g \in L2(\Gamma ), u \in H1(\Omega  - ) is the solution of the interior
impedance problem

(3.5) \Delta u+ k2u = 0 in \Omega  - , \partial \nu u - iku = g on \Gamma .

The decompositions in (3.4) imply that bounds on A - 1
k and (A\prime 

k)
 - 1 can be obtained

from k-explicit bounds on (DtN)+ and (ItD) - . These estimates are obtained in [10]
for nontrapping \Omega  - (following the proof in [20, Theorem 4.3] of the analogous bounds
for \Omega  - that are star-shaped with respect to a ball).

The presence of (DtN)+ in (3.4) is expected since (DtN)+ is essentially the solu-
tion operator for the problem (and we are using the Galerkin method applied to Ak

or A\prime 
k to approximate this solution operator). The map (ItD) - appears in (3.4) since

Ak and A\prime 
k can also be used to solve the interior impedance problem; see, e.g., [18,

Theorem 2.30].
We highlight that proving k-explicit bounds on exterior Helmholtz solution op-

erators is a classic problem considered since the 1960s, with interest in the interior
impedance problem (3.5) arising more recently both from this problem's role in deter-
mining the behavior of Ak and A\prime 

k and because this problem is often used as a model
problem in the numerical analysis of FEMs; see the literature reviews in [22], [64] (for
exterior problems), [92, section 1.2], [10, section 1.2] (for both exterior and interior
problems), and [39, sections 1.1 and 1.4] (for interior problems).
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When \Omega  - is trapping, \| \scrA  - 1\| L2(\Gamma )\rightarrow L2(\Gamma ) grows with k (see [22, 64]). Thus, al-
though (3.1), (3.2) give a result about convergence of the h-BEM for \Omega  - trapping, this
result does not show that the h-BEM does not suffer from the pollution effect. The
experiments in [50, Figure 2] indicate that at least for a certain form of mild trapping
(so-called parabolic trapping), the h-BEM might not suffer from the pollution effect,
although proving this remains open.

4. Formulation of the Galerkin Method as a Projection Method and an Ab-
stract Condition for Quasi-optimality. As in section 1.2, V is a Hilbert space with
dual V \prime , and we let B : V \rightarrow V \prime be a continuous, invertible, linear operator. Later we
restrict attention to the case when B is a perturbation of the identity, i.e., B = I+K,
and we apply these results with B = 2\scrA , with \scrA one of A\prime 

k and Ak (since Ak and A\prime 
k

are perturbations of 1
2I (1.7)).

Given f \in V \prime , let v be the solution of the variational problem

find v \in V such that \langle Bv,w\rangle V \prime \times V = \langle f, w\rangle V \prime \times V for all w \in V,(4.1)

i.e., v = B - 1f . Then, given VN \subset V closed, the Galerkin approximation to v with
respect to VN , vN =: (B - 1)Nf , is defined as the solution of the Galerkin equations

find vN \in VN such that \langle BvN , wN \rangle V \prime \times V = \langle f, wN \rangle V \prime \times V for all wN \in VN .(4.2)

We now rewrite equations (4.2) using the orthogonal projection operator PN : V \rightarrow 
VN . Then, (I  - PN ) is the orthogonal projection onto the orthogonal complement of
VN and, in particular,

\| (I  - PN )w\| V = min
wN\in VN

\| w  - wN\| V .

The Galerkin equations (4.2) are then equivalent to the operator equation

(4.3) PNBvN = PNf, vN \in VN ,

where we have used that V is a Hilbert space to identify V and V \prime when applying PN

to B on the left. If B = I +K, then, since vN \in VN , (4.3) simplifies to

(4.4) (I + PNK)vN = PNf ;

see, e.g., [2, section 3.1.3], [63, section 13.6]. Despite the fact that formally (4.4) is
posed on VN , the operator I + PNK as an operator on V maps VN \rightarrow VN and hence
we can study the operator (I + PNK) as a mapping V \rightarrow V .

Lemma 4.1 (quasi-optimality in terms of the norm of the discrete inverse). If
I + PNK : V \rightarrow V is invertible, then the Galerkin solution, vN , solving (4.2) exists,
is unique, and satisfies

\| v  - vN\| V \leq 
\bigm\| \bigm\| (I + PNK) - 1

\bigm\| \bigm\| 
V\rightarrow V

\| (I  - PN )v\| V .

Proof. Since I + PNK : V \rightarrow V is invertible and I + PNK : VN \rightarrow VN , the
solution vN to (4.4) exists, lies in VN , and is unique as an element of V . Then, by
(4.1) and (4.2),

(I + PNK)(v  - vN ) = (I + PNK)v  - PNf

= v + PNKv  - PN

\bigl( 
(I +K)v

\bigr) 
= (I  - PN )v.
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Theorem 4.2 (sufficient condition for quasi-optimality). Let \delta > 0. If B = I+K
and

(4.5)
\bigm\| \bigm\| (I  - PN )K(I +K) - 1

\bigm\| \bigm\| 
V\rightarrow V

\leq 1 - \delta ,

then the Galerkin solution vN , solving (4.4), exists, is unique, and satisfies

(4.6) \| v  - vN\| V \leq \delta  - 1
\bigm\| \bigm\| (I +K) - 1

\bigm\| \bigm\| 
V\rightarrow V

\| (I  - PN )v\| V .

Proof. The basis of the proof of (4.6) is Lemma 4.1 and the result that if \| T\| < 1,
then I + T is invertible with \| (I + T ) - 1\| \leq (1 - \| T\| ) - 1. Indeed,

I + PNK = I +K  - (I  - PN )K =
\Bigl( 
I  - (I  - PN )K(I +K) - 1

\Bigr) 
(I +K).(4.7)

Therefore, if (4.5) holds, then

(I + PNK) - 1 = (I +K) - 1
\Bigl( 
I  - (I  - PN )K(I +K) - 1

\Bigr)  - 1

.

Thus, by (4.5),

\| (I + PNK - 1)\| V\rightarrow V \leq \delta  - 1\| (I +K) - 1\| V\rightarrow V ,

and the result (4.6) follows from applying Lemma 4.1

Remark 4.3. An analogous result to Theorem 4.2 under the condition

(4.8)
\bigm\| \bigm\| (I +K) - 1(I  - PN )K

\bigm\| \bigm\| 
V\rightarrow V

< 1

is stated in, e.g., [63, Theorem 10.1], [2, Theorem 3.1.1]; this result was used in the
h-BEM context in [50], [43, Lemma 3.3]. Here we factor out (I +K) from the right
in (4.7), rather than the left, leading to (4.5) rather than (4.8).

5. The High-Frequency Behavior of the Boundary Integral Operators \bfitS \bfitk ,
\bfitD \bfitk , and \bfitD \prime 

\bfitk .

Functions of the Surface Laplacian Defined via Eigenfunction Expansion. Let
\lambda j be the eigenvalues of the surface Laplacian (a.k.a. the Laplace--Beltrami operator)
 - \Delta \Gamma , and let \{ u\lambda j\} \infty j=1 be an orthonormal basis for L2(\Gamma ) of eigenfunctions, i.e.,

( - \Delta \Gamma  - \lambda j)u\lambda j
= 0 and

\bigm\| \bigm\| u\lambda j

\bigm\| \bigm\| 
L2(\Gamma )

= 1;

when \Gamma is the unit circle, \{ u\lambda j
\} \infty j=1 can be taken to be \{ 1\surd 

2\pi 
eijt\} \infty j= - \infty ; see section A.1

below.
We then define functions of  - \Delta \Gamma using expansions in this basis. Precisely, for a

function f \in L\infty (\BbbR ) and v \in L2(\Gamma ),

(5.1) f( - \Delta \Gamma )v :=

\infty \sum 
j=1

f(\lambda j)(v, u\lambda j )L2(\Gamma )u\lambda j
.

By taking norms and using orthonormality of the basis, we see that

(5.2) \| f( - \Delta \Gamma )\| L2(\Gamma )\rightarrow L2(\Gamma ) \leq \| f\| L\infty (\BbbR ) .
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Frequency Cut-Offs Defined as Functions of the Surface Laplacian. With u\lambda j

defined above, we say that ``a function v has frequency \geq M"" if, for some a\lambda j
\in \BbbC ,

v =
\sum 

\lambda j\geq M2

a\lambda ju\lambda j .

For \chi \in C\infty 
comp(\BbbR ) with \chi \equiv 1 on U \subset \BbbR , the operator (I - \chi ( - k - 2\Delta \Gamma )) therefore

restricts to functions with frequencies outside the set kU . In particular, if \chi \equiv 1 in a
neighborhood of [ - 1, 1], then (I - \chi ( - k - 2\Delta \Gamma )) restricts to functions with frequencies
> k.

Theorem 5.1 (the high-frequency behavior of Sk, Dk, and D\prime 
k). Suppose \chi \in 

C\infty 
comp(\BbbR ) with \chi \equiv 1 in a neighborhood of [ - 1, 1]. Then for all k0 > 0 there exists

C > 0 such that for all k \geq k0,
(5.3)\bigm\| \bigm\| (I  - \chi ( - k - 2\Delta \Gamma ))Dk

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

+
\bigm\| \bigm\| (I  - \chi ( - k - 2\Delta \Gamma ))D

\prime 
k

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

\leq Ck,\bigm\| \bigm\| (I  - \chi ( - k - 2\Delta \Gamma ))Sk

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

\leq C.

By the discussion above, we see that the bounds in (5.3) are bounds on the outputs
of Dk, D

\prime 
k, and Sk with frequencies > k.

References for the proof of Theorem 5.1. This is proved in [42, Theorem 4.4 and
Remark 4.6]. We note that the key ingredient [42, Lemma 3.10] is a simplified version
of [38, Lemma 4.27], and is the semiclassical analogue of [95, Chapter 7, section 11]
and [57, Theorem 8.4.3].

Lemma 5.2 (smoothing property of compactly supported functions of
 - k - 2\Delta \Gamma ). Suppose that f \in L\infty 

comp(\BbbR ). Then for all s \geq 0 there exists Cs,f > 0 such
that

(5.4)
\bigm\| \bigm\| f( - k - 2\Delta \Gamma )

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow Hs(\Gamma )

\leq Cs,fk
s for all k > 0.

Proof. By elliptic regularity, given \ell > 0 there exists C\ell such that for all v

\| v\| H2\ell (\Gamma ) \leq C\ell 

\Bigl( \bigm\| \bigm\| ( - \Delta \Gamma )
\ell v
\bigm\| \bigm\| 
L2(\Gamma )

+ \| v\| L2(\Gamma )

\Bigr) 
;

this follows from interior regularity for second-order elliptic operators with variable
coefficients; see, e.g., [34, section 6.3.1]. Thus
(5.5)\bigm\| \bigm\| f( - k - 2\Delta \Gamma )v

\bigm\| \bigm\| 
H2\ell (\Gamma )

\leq C\ell 

\Bigl( 
\| ( - \Delta \Gamma )

\ell f( - k - 2\Delta \Gamma )v\| L2(\Gamma ) +
\bigm\| \bigm\| f( - k - 2\Delta \Gamma )v

\bigm\| \bigm\| 
L2(\Gamma )

\Bigr) 
.

By (5.2), the last term on the right-hand side of (5.5) is bounded by C\| v\| L2(\Gamma ) for
C depending on f but independent of k. For the first term on the right-hand side of
(5.5) we use that fact that s\ell f(s) \in L\infty (since f has compact support) to see that

\| ( - \Delta \Gamma )
\ell f( - k - 2\Delta \Gamma )\| L2(\Gamma )\rightarrow L2(\Gamma ) = k2\ell \| ( - k - 2\Delta \Gamma )

\ell f( - k - 2\Delta \Gamma )\| L2(\Gamma )\rightarrow L2(\Gamma )

\leq k2\ell \| s\ell f(s)\| L\infty \leq \widetilde C\ell k
2\ell 

for some \widetilde C\ell > 0. Using these bounds in (5.5) we obtain the bound (5.4) for even s.
The bound for odd s then follows by interpolation (see, e.g., [75, Theorem B.2]) using
the fact that Hs(\Gamma ) is an interpolation scale (see, e.g., [75, Theorem B.11]).
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6. Proof of Theorem 2.1. It is sufficient to prove Lemma 3.1, since Theorem 2.1
then follows from the bound (3.3).

As described in section 3, we use Theorems 4.2 and 5.1. We apply the former
with B = 2\scrA , so that K = 2\scrA  - I, and \delta = 1/2. Thus, we only need to prove that
there exists C1 > 0 (independent of h and k) such that if (3.1) holds, then\bigm\| \bigm\| (I  - PN )(2\scrA  - I)(2\scrA ) - 1

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow L2(\Gamma )

\leq 1
2 .

By the bound (1.13) from Assumption 1.4, it is sufficient to show that there exists
C1 > 0 (independent of h and k) such that if (3.1) holds, then

hCapprox

\bigm\| \bigm\| (2\scrA  - I)(2\scrA ) - 1
\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

\leq 1
2 .

We therefore only need to show that

(6.1)
\bigm\| \bigm\| (2\scrA  - I)(2\scrA ) - 1

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

\leq C2k
\bigl( 
1 +

\bigm\| \bigm\| \scrA  - 1
\bigm\| \bigm\| 
L2(\Gamma )\rightarrow L2(\Gamma )

\bigr) 
for some C2 > 0 (independent of h and k), and then the result holds with C1 :=
(2CapproxC2)

 - 1.
To prove (6.1), let \chi \in C\infty 

comp(\BbbR ) with \chi \equiv 1 in a neighborhood of [ - 1, 1]. Since
1 = \chi + (1 - \chi ),

(2\scrA  - I)(2\scrA ) - 1 = \chi ( - k - 2\Delta \Gamma )(2\scrA  - I)(2\scrA ) - 1 +
\bigl( 
I  - \chi ( - k - 2\Delta \Gamma )

\bigr) 
(2\scrA  - I)(2\scrA ) - 1

= \chi ( - k - 2\Delta \Gamma )(I  - (2\scrA ) - 1) +
\bigl( 
I  - \chi ( - k - 2\Delta \Gamma )

\bigr) 
(2\scrA  - I)(2\scrA ) - 1.(6.2)

To deal with the first term on the right-hand side of (6.2), we use Lemma 5.2 applied
with f = \chi to find that\bigm\| \bigm\| \chi ( - k - 2\Delta \Gamma )(I  - (2\scrA ) - 1)

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

\leq 
\bigm\| \bigm\| \chi ( - k - 2\Delta \Gamma )

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

\bigl( 
1 +

\bigm\| \bigm\| (2\scrA ) - 1
\bigm\| \bigm\| 
L2\rightarrow L2

\bigr) 
\leq C3k(1 + \| \scrA  - 1\| L2\rightarrow L2)(6.3)

for some C3 > 0 (independent of h and k). We now consider the second term on the
right-hand side of (6.2) when \scrA = Ak; the proof when \scrA = A\prime 

k follows in exactly the
same way, just replacing D\prime 

k by Dk. By the definition of Ak (1.7) and Theorem 5.1,

(6.4)

\bigm\| \bigm\| (I  - \chi ( - k - 2\Delta \Gamma ))(2\scrA  - I)(2\scrA ) - 1
\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

=
\bigm\| \bigm\| (I  - \chi ( - k - 2\Delta \Gamma ))(Dk  - ikSk)(Ak)

 - 1
\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

\leq 
\bigm\| \bigm\| (I  - \chi ( - k - 2\Delta \Gamma ))(Dk  - ikSk)

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

\bigm\| \bigm\| A - 1
k

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow L2(\Gamma )

\leq C4k
\bigm\| \bigm\| A - 1

k

\bigm\| \bigm\| 
L2(\Gamma )\rightarrow L2(\Gamma )

for some C4 > 0 (independent of h and k). Combining (6.3) and (6.4) we obtain (6.1),
and the proof is complete.

Appendix A. A Simple Proof of Theorem 2.1 When \Gamma Is the Unit Circle. Ul-
timately, the most flexible tools to study the large-k behavior of Helmholtz boundary
integral operators come from semiclassical analysis. Nevertheless, in the special case
when \Gamma is the unit circle, Theorem 2.1 can be proved using only results about Fourier
series and the asymptotics of Bessel and Hankel functions. The advantage of the
latter proof is that it only uses classical tools of applied mathematics; furthermore,
since we write this proof mirroring the general proof in section 6, we hope it makes
the ideas in section 6 clearer.
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A.1. Recap of Fourier-Series Results. Suppose \Gamma is the unit circle, with
parametrization \gamma (t) = (cos t, sin t) for t \in [0, 2\pi ). With this parametrization, L2(\Gamma )
is isometrically isomorphic to L2(0, 2\pi ). Given v \in L2(0, 2\pi ), define the nth Fourier
coefficient of v by

\widehat vn :=
1\surd 
2\pi 

\bigl( 
v, ein\cdot 

\bigr) 
L2(0,2\pi )

=
1\surd 
2\pi 

\int 2\pi 

0

e - intv(t) dt, so that v(t) =

\infty \sum 
n= - \infty 

\widehat vn eint\surd 
2\pi 

as an L2 function. Parseval's theorem states that

(A.1) \| v\| 2L2(0,1) =

\infty \sum 
n= - \infty 

| \widehat vn| 2 and thus \| v\| 2H1(0,1) :=

\infty \sum 
m= - \infty 

(1 +m2)| \widehat vm| 2.

A.2. Results about the Eigenvalues of 2\bfitA \bfitk . When \Gamma is a circle, Ak = A\prime 
k since

Dk = D\prime 
k; this follows from the definitions of Dk and D\prime 

k and the geometric property
that (x - y) \cdot \nu (y) = (x - y) \cdot \nu (x) for x, y on a circle.

Lemma A.1 (expression for eigenvalues of 2Ak in terms of Bessel and Hankel
functions). If

(A.2) \lambda m(k) := \pi kH
(1)
| m| (k)

\Bigl( 
iJ \prime 

| m| (k) + J| m| (k)
\Bigr) 
,

then

(A.3) (2Akv)(t) =
1\surd 
2\pi 

\infty \sum 
m= - \infty 

\lambda m(k)\widehat vmeimt.

References for the proof. See, e.g., [62, section 4 (in particular equation (4.4))] or
[29, Lemma 4.1].

Theorem A.2 (sign property of eigenvalues of 2Ak on unit circle). If \Gamma is the
unit circle, then there exists k0 > 0 such that, for all m and for all k \geq k0,

\Re \lambda m(k) \geq 1.

Reference for the proof. This is proved in [29, Theorem 4.2] using asymptotics of
Bessel and Hankel functions.

The only other rigorous result about the eigenvalues \lambda m(k) that we need is the
following.

Lemma A.3 (asymptotics of \lambda m(k) as m \rightarrow \infty with m > k). Let z := k/m. Then
for all \delta > 0 there exists C > 0 such that for 0 < z < 1 - \delta ,

| \lambda m(k) - 1| \leq Cz.

Proof. We first review some standard facts about uniform asymptotics for the

Bessel functions Jm(mz) and H
(1)
m (mz) [84], [83, section 10.20], where m \geq 0 and

z < 1 - \delta . We define the decreasing bijection (0, 1) \ni z \mapsto \rightarrow \zeta (z) \in (0,\infty ) by

\zeta :=
3

2

\biggl( \int 1

z

t - 1(1 - t2)1/2dt

\biggr) 2/3

,
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and recall the definition of the Airy function, Ai,

Ai(x) :=
1

\pi 

\int \infty 

0

cos

\biggl( 
t3

3
+ xt

\biggr) 
dt.

By [83, section 9.7], for | arg(x)| < \pi  - \delta ,

(A.4)

Ai(x) = exp
\bigl( 
 - 2

3x
3/2

\bigr) \biggl( 1

2
\surd 
\pi 
x - 1/4 +O(x - 7/4)

\biggr) 
,

Ai\prime (x) = exp
\bigl( 
 - 2

3x
3/2

\bigr) \biggl( 
 - 1

2
\surd 
\pi 
x1/4 +O(x - 5/4)

\biggr) 
,

where the branch cut is taken on x \in ( - \infty , 0). Moreover, by [83, section 9.9],
| Ai(x)| , | Ai\prime (x)| > 0 for x /\in ( - \infty , 0). Then, by [83, section 10.20], uniformly for
m \geq 1 and 0 < z < 1,

Jm(mz) =

\biggl( 
4\zeta 

1 - z2

\biggr) 1/4 \Bigl( 
m - 1/3 Ai(m2/3\zeta ) +O

\Bigl( 
m - 5/3\zeta  - 1/2 Ai\prime (m2/3\zeta )

\Bigr) \Bigr) 
,

J \prime 
m(mz) =  - 2

z

\biggl( 
1 - z2

4\zeta 

\biggr) 1/4 \Bigl( 
m - 2/3 Ai\prime (m2/3\zeta ) +O

\Bigl( 
m - 4/3\zeta 1/2 Ai(m2/3\zeta )

\Bigr) \Bigr) 
,

H(1)
m (mz) = 2e - \pi i/3

\biggl( 
4\zeta 

1 - z2

\biggr) 1/4 \Bigl( 
m - 1/3 Ai(e2\pi i/3m2/3\zeta )

+O
\Bigl( 
m - 5/3\zeta  - 1/2 Ai\prime (e2\pi i/3m2/3\zeta )

\Bigr) \Bigr) 
.

(A.5)

Next, note that when 0 < z < 1 - \delta , there exists c\delta > 0 such that \zeta \geq c\delta and thus we
can use the asymptotics for Airy functions (A.4). Putting these asymptotics in (A.5)
and using the definition of \lambda m(k) (A.2), we obtain that for any \delta > 0, there exists
C > 0 such that\bigm| \bigm| \bigm| \lambda m(k) - 1

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \pi kH(1)
| m| (k)

\Bigl( 
iJ \prime 

| m| (k) + J| m| (k)
\Bigr) 
 - 1

\bigm| \bigm| \bigm| \leq C
k

m
for m > (1 + \delta )k,

as claimed.

A.3. Proof of Theorem 2.1 When \Gamma Is the Unit Circle. Observe that in the
case of the circle, the functional calculus for the surface Laplacian reviewed in section 5
is simply the theory of Fourier multipliers; i.e., the collection \{ 1\surd 

2\pi 
eimt\} \infty m= - \infty is an

orthonormal basis of eigenfunctions of  - \Delta \Gamma satisfying

( - \Delta \Gamma  - m2)
1\surd 
2\pi 

eimt = 0,

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
2\pi 

eimt

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Gamma )

= 1.

Thus (5.1) becomes

f( - \Delta \Gamma )v :=
1\surd 
2\pi 

\infty \sum 
m= - \infty 

f(m2)\widehat vmeimt.

To prove Theorem 2.1, we only need to check the conditions of Theorem 4.2 with
I + K = 2\scrA = 2Ak. Using Assumption 1.4 as in the beginning of section 6, we see
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that we only need to prove the bound (6.1). The expansion (A.3) implies that

\bigl( 
(2Ak)

 - 1v
\bigr) 
(t) =

1\surd 
2\pi 

\infty \sum 
m= - \infty 

\bigl( 
\lambda m(k)

\bigr)  - 1\widehat vmeimt.

By Theorem A.2, and the fact that | \lambda m| \geq | \Re \lambda m| \geq 1,

(A.6) sup
m

| \lambda m(k)|  - 1 \leq 1.

Therefore, by taking L2 norms and using orthonormality (in a similar way to how
(5.2) is obtained), we obtain the bound (3.3) in this setting:

(A.7) \| (2Ak)
 - 1\| L2(\Gamma )\rightarrow L2(\Gamma ) \leq sup

m
| \lambda m(k)|  - 1 \leq 1.

To prove the bound (6.1), we therefore only need to show that

(A.8) \| (2Ak  - I)(2Ak)
 - 1\| L2(\Gamma )\rightarrow H1(\Gamma ) \leq Ck;

we do this using the splitting (6.2) with \chi \in C\infty 
comp(\BbbR ; [0, 1]) with \chi \equiv 1 on [ - 1  - 

\varepsilon , 1 + \varepsilon ]. To deal with the first term on the right-hand side of (6.2), we observe that,
by (A.7),

(A.9)
\bigm\| \bigm\| I  - (2Ak)

 - 1
\bigm\| \bigm\| 
L2(\Gamma )\rightarrow L2(\Gamma )

\leq 2.

The definition of the H1 norm in (A.1), along with the compact support of \chi and
Parseval's theorem in (A.1), implies the following analogue of Lemma 5.2 with s = 1:

(A.10)
\bigm\| \bigm\| \chi ( - k - 2\Delta \Gamma )

\bigm\| \bigm\| 2
L2(\Gamma )\rightarrow H1(\Gamma )

\leq sup
m

\Bigl[ 
(1 +m2)

\bigm| \bigm| \chi (k - 2m2)
\bigm| \bigm| \Bigr] \leq Ck2.

Combining (A.9) and (A.10), we obtain the following bound on the first term of the
right-hand side of (6.2):

(A.11)
\bigm\| \bigm\| \chi ( - k - 2\Delta \Gamma )(I  - (2Ak)

 - 1)
\bigm\| \bigm\| 
L2(\Gamma )\rightarrow H1(\Gamma )

\leq Ck.

To deal with the second term on the right-hand side of (6.2), we observe that

\bigl( 
I  - \chi ( - k - 2\Delta \Gamma )

\bigr) 
(2Ak  - I)(2Ak)

 - 1eimt =
\bigl( 
1 - \chi ( - k - 2m2)

\bigr) \lambda m(k) - 1

\lambda m(k)
eimt.

Thus, using the Fourier representation of
\bigl( 
1 - \chi ( - k - 2\Delta \Gamma )

\bigr) 
(2Ak  - I)(2Ak)

 - 1 and the
definition of the H1(\Gamma ) norm (A.1), we find that\bigm\| \bigm\| \bigl( I  - \chi ( - k - 2\Delta \Gamma )

\bigr) 
(2Ak  - I)(2Ak)

 - 1
\bigm\| \bigm\| 2
L2(\Gamma )\rightarrow H1(\Gamma )

\leq sup
m

\biggl[ 
(1 +m2)

\bigm| \bigm| \bigl( 1 - \chi (k - 2m2)
\bigr) \bigm| \bigm| | \lambda m(k) - 1| 

| \lambda m(k)| 

\biggr] 
.

By the definition of \chi , (1 - \chi (k - 2m2)) = 0 whenm2 \leq (1+\varepsilon )k2, and (1 - \chi (k - 2m2)) \leq 
1 for all m; therefore,\bigm\| \bigm\| \bigl( I  - \chi ( - k - 2\Delta \Gamma )

\bigr) 
(2Ak  - I)(2Ak)

 - 1
\bigm\| \bigm\| 2
L2(\Gamma )\rightarrow H1(\Gamma )
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\leq sup
m2\geq (1+\varepsilon )k2

\biggl[ 
(1 +m2)

| \lambda m(k) - 1| 
| \lambda m(k)| 

\biggr] 
.

Observe from (A.2) that \lambda m(k) = \lambda | m| (k); the regime m2 \geq (1+ \varepsilon )k2 is therefore

exactly that covered by Lemma A.3 (with (1 + \varepsilon ) - 1/2 = 1  - \delta ). Using Lemma A.3
along with (A.6), we obtain that

\| (I  - \chi ( - k - 2\Delta \Gamma ))(2Ak  - I)(2Ak)
 - 1\| 2L2(\Gamma )\rightarrow H1(\Gamma )

(A.12)

\leq sup
m2\geq (1+\delta )k2

\biggl[ 
(1 +m2)

| \lambda m(k) - 1| 
| \lambda m(k)| 

\biggr] 
\leq C2 sup

m2\geq (1+\delta )k2

\biggl[ 
(1 +m2)

k2

m2

\biggr] 
\leq C \prime k2.

Combining the bounds (A.11) and (A.12), we obtain (A.8), and the proof is complete.
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