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Abst act: A higher order boundary element method (HOBEM) is presented for inviscid flow 

passing a lifting body. In addition to the boundary integral equation used for the velocity potential, 

similar integral equation is derived and used for the tangential velocity on the body surface. Higher 

order elements are used to discretize the body surface, which ensures the continuity of slope at the 

element nodes. The velocity potential is also expanded using higher order shape function, in which 

the unknown coefficients involve the tangential velocity. The expansion then ensures the continuity 

of the velocity at element nodes and it also allows the Kutta condition to be imposed directly through 

the velocity. A particular shape function is also derived and used near the trailing edge to account 

for the continuity of the velocity and its sharp variations there. The unknown potential and tangential 

velocity are then found through solving their integral equations simultaneously. Through extensive 

comparison of the results for a Karman-Trefftz (KT) foil, it is shown that the present HOBEM is 

much more accurate than the conventional BEM, in particular for the velocity and local results near 

the trailing edge. 

Kry wo ds: Higher order boundary element method (HOBEM), Kutta condition, Integral equations 

for potential and velocity, Hydrofoil 

1. Int oduction  

   Boundary element methods (BEM) have been extensively used for many decades for irrotational 

flows passing a solid body. One of its advantage is that it converts the problem of a differential 

equation in the fluid domain into a problem of an integral equation using the Green function over 

its boundary and therefore reduces the dimensions of the problem by one. In particular, if apart from 

the body surface, other boundaries are at infinity, it is often possible that the problem reduces to one 

on the body surface only. This greatly improves the computational efficiency.  

Irrotational flow is usually described through the velocity potential whose gradient is velocity 

itself, and the integral equation is established for the potential. For a smooth body without any sharp 

corners, both the potential and the velocity are finite and continuous. The mathematical problem of 

the integral equation is usually well posed. The flow in such a case does not generate any force on 

the body, which is commonly known as D’Alembert’s paradox. When there is a corner on the surface, 
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the flow direction at the corner changes suddenly. This leads to an infinite acceleration, pressure 

gradient as well as velocity at the corner. A typical example of this is a two dimensional hydrofoil. 

The mathematical problem of the integral equation in this case becomes ill posed. The root of this 

problem is the irrotational flow itself, in which both viscosity and vortex are ignored. One way to 

account for their effects is to use the well known Kutta condition which assumes that vorticity will 

be shed from the sharp corner and the strength of the vorticity is uniquely obtained through ensuring 

that the velocity at the corner is finite. In such a case, flow will normally generate a force on the 

body, especially the lift force or the force perpendicular to the incoming flow direction. The body is 

commonly known as the lifting body.  

For flow passing a hydrofoil, it will be initially transient as the vortex is shed from the trailing 

edge [1]. The flow will tend to steady as time tends to infinity. The flow is no longer irrotational. 

One way to model that is to introduce a straight line WS  starting from the trailing edge to infinity 

along the flow direction. The potential   is no longer continuous across the line and there is a 

jump of w . When the integral equation is developed, it will contain both sides of WS , apart 

from the body surface. As the normal velocity WS  must be continuous due to mass conversation, 

its integration from both sides of WS  will cancel each other. Also the pressure across WS  must 

be continuous. This leads to that the jump of potential w  is constant on WS . The integration on 

WS  can be performed explicitly and the jump w  can be linked to that at the trailing edge. Kutta 

condition is then used to determine the unknown w . This has been the foundation of the previous 

works of BEM for a hydrofoil. Morino and Kuo [2] for example divided the body surface into many 

flat elements with variables being assumed to be constant within each element. The jump w  at 

the trailing edge is assumed to be equal to the jump of the potentials at the centroids of the elements 

in contact with the trailing edge from the lower and upper surface respectively. This assumption in 

fact implies that the tangential velocity at the trailing edge is zero. This may be true for the total 

potential of a foil with non-zero inner angle at the trailing edge. For the disturbed potential, its 

tangential derivative is non-zero and is equal to that of the incoming flow. This neglected effect was 

included in the correction introduced by Lee [3], through adding a term 1N U t  to account for the 

change of velocity potential when transferring from the control points to the trailing edge, in which 

U  is the velocity vector of incoming flow and 1Nt  is the position vector linking two control 

points. 

The constant panel method has some inherent weakness. Kinnas and Hsin [4] showed that when 

N  panels were used on the foil the error near the trailing edge will decay at the rate of (1/ )O N . 

They proposed a correction due to the variation of the potential within the panel in the integral for 

the potential. As the variation was unknown before the potential was found, an iterative procedure 

was then used to solve the problem and the accuracy was improved. Apart the error form the 

assumption that variable is constant within each panel, using flat panel of model body surface 



geometry itself will also introduce error. A detailed analysis of global error in the integral equation 

was given by Ezquerro et al. [5, 6]. Other typical work with low order BEM includes those by 

Maskew [7], Hess and Valarezo [8] and Kerwin et al. [9]. 

Compared with the low-order methods, the higher order boundary method (HOBEM) represents 

the variables within an element with a higher order function, together with the shape of the element 

itself. Hess [10] wrote local source distribution and panel shape in a Taylor series of a local 

coordinate. The derivatives in the Taylor expansion were obtained though the values of 

neighbouring nodes. Vaz et al. [11] used an integral equation of mixed source and dipole distribution, 

and their local strength together with the element shape were expanded into the Taylor series. They 

also undertook detailed error analysis. Instead of Taylor expansion, Kostas et al. [12] represented 

the source strength using the B-spline function. B-Spline together with the desingularization of the 

integral was also used by Lee et al. [13] for the foil. A review on the methods based on potential 

flow as well as boundary layer effect was given recently by Abidi et al. [14] 

In the above works, the integral equation is established for the potential, in either lower or higher 

order boundary element methods. The kutta condition on the other hand is a condition on the velocity, 

or the derivative of the potential. This is often imposed numerically through the difference of the 

potentials at nodes near the trailing edge. Here in addition to the integral equation for the potential 

itself, we shall derive the integral equation of the tangential velocity. The two integral equations are 

used simultaneously, and the Kutta condition is imposed explicitly through the velocity. The body 

surface is first divided into curved panels, and slope is continuous at the node of each panel. The 

potential is expanded using the same higher order shape function within each element and the values 

of the potential and the velocity at the element nodes are the unknown coefficients which can be 

obtained by solving the integral equations for the potential and velocity simultaneously. This 

HOBEM does not lead to more computational effort than that based on the potential only. On the 

other hand, one of this advantages is that because the velocity is introduced in the solution procedure, 

it can deal with velocity based on the boundary conditions more easily and more accurately.      

The paper is organized as follows. In Section 2, boundary integral equations for the potential and 

for the velocity are described. In Section 3, Numerical procedure including discretization of the 

boundary, expansion of the potential and appropriate choice of the shape function at the trailing 

edge is given. In Section 4, the numerical results are provided and discussed. In Section 5, the main 

conclusions are given. 

2. Mathrmatical rquations    
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Fig. 1. Sketch of the problem 

The problem of a body with sharp corner in a uniform current is considered and the hydrofoil is 

used as an example. We define a Cartesian coordinate system O xy   with the origin at the 

midpoint of the chord of the foil, which is the line from leading edge to trailing edge. The uniform 

current with speed U   is from the right hand side and it forms an angle    with the negative 

direction of x , as shown in Fig. 1. The foil has an inner angle   at the trailing edge.   is the 

angle at the trailing edge between its lower surface and the chord, or the x  direction, and   is 

positive when the lower surface is below the chord. It is assumed that the fluid is inviscid and the 

velocity potential theory can be adopted to describe the flow. When the fluid is incompressible the 

potential   whose gradient is equal to the fluid velocity satisfies the Laplace equation  

 2 0   (1) 

The body surface boundary condition and the far field boundary condition can respectively be 

written as  

 
F0, onn S   (2) 

 2 2( cos sin ),U x y R x y       , on 
IS  (3) 

When the purely irrotational flow without any circulation is assumed, the velocity at the sharp 

trailing edge of the foil is infinite, which is unphysical. To reflect the physical reality, Kutta 

condition is applied at the trailing edge, which, through introducing circulation into the flow, is to 

enforce the finite velocity at the trailing edge 
0 0( , )x y , or  

 
0 0, ( , )at x y    (4) 

As a result the velocity potential along the wake of the foil, extended from the trailing edge and 

shown through 
WS  in Fig.1, is discontinuous. This means that the potentials will be equal to    

and    when 
WS  is approached form the upper and lower sides, or 

W
S   and 

W
S  , respectively, 



and    . However the normal velocity across the wake must be continuous, required by the 

mass conservation, so must be the pressure.  

Through Green’s identity, the Laplace equation can be converted into an integral equation over 

the whole boundary 
F IW W

S S S S S       
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where n  is the normal of the boundary pointing out of fluid domain. ln pqG r  in Eq. (5) is the 

Green function for the two dimensional Laplace equation, where pqr  is the distance from the field 

point p  to the source point q , ( )A p  is the solid angle at the field point p . Using Eq. (3) for 

   at infinity in the integration over the IS   in Eq. (5), the term will simply become

2 ( cos sin )p pU x y    , where ( , )p px y  are the coordinates of point p . On the wake, due to 

continuity of the normal velocity, we have n n
     . Furthermore from the continuity of the 

pressure, the tangential velocity across the wake for the steady flow is also continuous. This leads 

to that +

1= N       where N   and 1   are the potentials at the trailing edge, approaching 

from the upper and lower surfaces respectively. This gives 
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Eq. (5) then becomes 
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where 
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and sgn(x)  and ( )H x  are sign and step functions respectively. The step function is used in Eq. 

(8) because 1tan  is defined with [ / 2, / 2]  . As 0px x  when p  is on the body surface, 

we have 
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Eq. (7) can be used as a governing integral equation when p  is on the body surface. At any smooth 

point ( )A p  . However, care is needed when p  is at the trailing edge, as 1  at 1p  and N

at Np  are different, although the coordinates of 1p  and Np  are the same. In fact, the equation 

at trailing edge may be established in different ways, but the results will all be same. As shown in 

the appendix, we have at the trailing edge 
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In the conventional boundary element method, Eq. (7) is the only one which is used. For example, 

when the constant element is used, the equation is imposed at the centre of each element. 1  and 

N  at the trailing edge are obtained from the values at centres of the adjacent elements, through 

which a condition on the tangential velocity is in fact implicitly implied.   

In fact, Eq. (7) is an equation for the potential only, while the Kutta condition is imposed on the 

velocity. Here we shall introduce the velocity directly into the equation, which will allow the Kutta 

condition to be satisfied more accurately. As shown in Fig. 1, the tangential direction is positive 

following anti-clockwise direction and the normal is positive when pointing out of the fluid domain. 

This gives 

 / /G n H l      (11) 

where  

1( , ) tan ( ) / ( )q p q p q p q pH x x y y y y x x       
 

and 
x ln y  , 

y ln x . Following the direction of l , we have dl dS . Substituting Eq. (8) into 

Eq. (7), we have   
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The W   term in Eq. (7) will then be cancelled by the last term in the above equation. Eq. (7) 

becomes 
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Taking the tangential derivative of Eq. (13) with respect to p  and using / /p pG n H l     , 

then we have  
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This gives an equation directly for the velocity. Different from Eq. (7) for the potential, it does not 

contain an integral from the wake. Also there is no need for special derivation when p  is at the 

trailing edge, as done for the potential in appendix A. This is because l   is continuous at the 

trailing edge, or 1( ) ( )l l Np p   and the solid angle can be simply taken as 2  . It may seem 

that the above derivation has made computation more complex as there are now two integral 

equations, or Eq. (7) and Eq. (14) for potential and velocity respectively, rather than a single 

equation, or Eq. (7) for the potential in the conventional method. However, with the help of Eq. (14), 

Kutta condition can be more accurately enforced. Also as we shall show below when these two 



equations are used with the higher order element proposed in this work, it does not increase any 

additional computational effort compared with the normal higher order element method.    

3. Computational p ocrdu r 

In the numerical solution, the boundary 
FS  is divided into a series of small elements. On each 

element, the potential is expanded through shape function with unknown coefficients. In the normal 

higher order element methods, these coefficients are usually related to the nodal values of the 

potential. Here taking account into Eq. (14) for the velocity, we expand the potential within an 

element with nodes 1 and 2 containing nodal values of both potential and tangential velocity.  
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where 

 2 3 2 3 2 3 2 3
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Here 
0/s l l , where l  is the arc length coordinate from the first node of the element and 

0l  is 

the length of the element. It can be easily confirmed that 
1( 0)s     and 

2( 1)s    . 

Differentiating Eq. (15) along l , it can also be confirmed that 
1( 0)l ls    and 

2( 1)l ls   . 

Therefore with the shape functions in Eq. (16), the continuities of the potential and the tangential 

velocities at the element nodes can be conveniently met. This allows the Kutta condition to be 

explicitly imposed together with Eq. (14).  

When the mathematical form of the foil is available, it can be directly used in the integral equation. 

In general case, consistent with the potential, we may use the same function in Eq. (16) for the 

element shape as well. This ensures that the discretized boundary is continuous at element nodes, 

as well as the slope. Specifically, the body surface may be discretized into 1N   elements. The 

discretization of Eq. (10) takes the form of  
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where 
1( )A p     and ( )NA p      . At field points 2, 1i N  , we have from Eq. (7) 
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and from Eq. (14) 
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in which ( , 1)q j j   for the first term, while ( 1, )q j j   for the second term. The term of 
n  

on the right hand sides of Eqs. (17-19) are known based on a given boundary condition. In the 

present case, it is zero because of Eq. (2). Eqs. (17-19) are enforced at all nodes, or 1, 1i N  , 

which gives 2 2N   equations. Here locations of nodes 1 and N  are the same and they are both 

located at the trailing edge. Due to circulation, 
N   and 

1   are different. The velocity at the 

trailing edge is continuous due to the Kutta condition. Therefore there are 2 1N   unknowns, or 

one more than the number of equations. We note that for a non-zero inner angle  , from continuities 

of the pressure and velocity at the trailing edge, it can be easily established that the trailing edge 

must be a stagnation point, or =0l . In such a case, there will be 2 2N   unknowns, the same as 

the number of equations.  

Generally, the use of above discretization together with the shape function in Eq. (16) can give 

highly accurate results, provided the number of elements used is sufficient. However for the foil 

problem the accurate prediction of the flow near the trailing edge is crucially important as it affects 

greatly the overall results. To achieve that, the shape function used must be compatible with the 

local flow characters. Based on the Laplace equation and the impermeable body surface boundary 

condition, we can write the potential near the trailing edge generally as 

  0

1

cos ( )nt

n n

n

A A r t   




     (20) 

where ( , )r   is the polar coordinate system with the origin at the trailing edge, =0  is along the 

chord, and 

 / (2 )nt n     (21) 

The first term gives infinite velocity when 0r  . When the Kutta condition is imposed, we shall 

have 
1 0A    and the remaining leading terms will be 

2t   and 
3t   terms, which give the finite 

velocity at the trailing edge. Thus to reflect the behaviour of the potential, within element 1, the 

shape functions in Eq. (16) can be modified as 
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   
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together with 
1 0l   . Similar expansion can be used to element 1N   . The crucial difference 

between Eq. (22) and Eq. (16) is that / (2 )

l l     in the former and 
l l   when 0l   at the 

trailing edge. Although both of them tend to zero, the former reflects the true behaviour of the 

potential. More importantly, the 
ll , or the derivative of the velocity at the trailing edge is infinite 



based Eqs. (20) and (22), while it is finite based on Eq. (16). Therefore such a seemly small 

difference in the exponent makes a big difference to the accuracy of local results, and subsequently 

overall results.  

  When p  is a smooth point, singularities of G  and its derivative when q p  in the Green 

function can be easily treated by many well established methods. Attention is once again needed 

when p  is at the trailing edge. Assume that p  approaches the tip from element N-1, or point 

Np  at node N . The tangential direction 
pl  and 

pn  in Eq. (5) then correspond to 
Np . Within 

element 1N   , when q   approaches 
Np  , ( , ) /N NG q p n    will be finite and is related to the 

curvature at 
Np . Therefore it is in fact not a singularity. However, when q  approaches 

1p  at 

node 1, this becomes very different because of the sharp angle. As the normal and tangential 

directions at 
1p  and 

Np  are different, 
1( , ) / NG q p n   is different from 

1 1( , ) /G q p n  . When 

1q p , the latter is non-singular, which is similar to ( , ) /N NG q p n  . However, for the former, it 

is singular. To deal with that, we can write locally   
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where subscripts l and ll indicate the first and the second derivatives respectively. Substituting them 

into 
1( , ) / NG q p n  , it yields  
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n l s





 (25) 

where 
1 1 1lN l lN lC y x x y    and 

2 1 1lN ll lN llC y x x y   . Because of the sharp corner at the trailing 

edge, 
1 0C    or the normal direction ( , )lN lNx y   at 

Np   is not perpendicular to the tangential 

direction 
1 1( , )l lx y  at 

1p . Using the shape functions in (22), the integration of 1( , )

N

G q p

n




 over 

element 1 can be written as  

 

1

1
1 2 3 0 2 2 1 1 2 2 3

 

( , )
[( / )( ) ] / [( 1)( 1)]l l

NS

G q p
dl C t t l C C t t

n
   


     

  (26) 

This then has effectively removed the singularity. Once all the singular behaviours are treated, the 

remaining integrations in Eqs. (17-19) can be calculated through Gaussian method. When field point 

p  is near the trailing edge, the source point q  can be very close to p  at nearby elements. For 

example, node 2 could be very close to element 1N  . To ensure accuracy, the integration step has 

to be much smaller than the distance between q  and p . In this work, if not specified, we have 

used 64 points for the integration to achieve that.      

4. Numr ical Rrsults   

We use the Karman-Trefftz (KT) foil to show the effectiveness and the accuracy of the present 



method. We will first show that the results are quite inaccurate if the local shape function at the 

trailing edge is not chosen properly. It is important that the choice should match the behaviour of 

the local flow and with the shape function suggested in the present work the results are highly 

accurate. We then show that when the conventional BEM is used directly, the predicted velocity 

near the trailing edge is far less accurate than that obtained from the present method.  

The KT section is produced from the conformal mapping of a circle in the complex  -plane into 

complex plan z x y  i , as shown in Fig. 2. The circle centered at c =( , )c c    has a radius cr  

and passes through the point (-1, 0). The transformation takes the form of [15, 16]   

 
[( 1) ( 1) ]

=
( 1) ( 1)

z
 

 

  

 

  

  
 (27) 

where =2





  and   is the inner angle of the foil at the trailing edge. Here point (-1, 0) in the 

   plane corresponds to the trailing edge ( ,0)   in the z   plane, and (2 1,0)c    to ( ,0)gx  

where gx  can be obtained from (27). The distance between two intersection points of the foil with 

the x   axis is gC x     and it can be adjusted through c   and   . The angle 

1tan
1 2

c

c

 
 



  


, which is negative when the lower surface of the hydrofoil is above the 

x  axis. Here the coordinate system O xy  may not be exactly the same as that described in Fig.1. 

However, the equations derived above will be the same in these two systems apart from a constant 

in the equation for the potential, which can be incorporated into the potential and does not affect the 

velocity. The analytical solutions for the potential and the velocity can be found in the work by 

Kinnas and Hsin [4]. 
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Fig. 2. The KT transformation 

4.1 The effect of local shape function at the trailing edge   

Shape functions (16) can be used at most of elements, apart from the elements connecting the 

trailing edge. Even when the velocity is no longer singular, the derivative of the velocity and 

subsequently the derivative of the pressure can still be singular. This means that the velocity changes 

very rapidly. To capture the local behaviour of the velocity at the trailing edge, shape function in 

(22) is used here. We now use (16) and (22) respectively as the shape functions for the trailing edge 

and run the simulations for the same problem. We take 0.1c   , 0c    and =10  , which 



corresponds to 1.94   and 5  . The attack angle of the incoming flow is taken as =5 . 
cr  

and U  are used for nondimensionalisaton, and therefore they are both taken as unit. The circle in 

the   plane is uniformly divided into 1eN N   elements and the coordinates of each node are 

transformed to the physical plane through Eq. (27). The element length attached to the trailing edge 

in z   plane follows   , where 2 / eN    . Here 1 2   , and this means when 
eN  

increases, the size of the element attached to the trailing edge decreases much faster. Results are 

given in Fig. 3, in which l  is measured along the foil surface from the lower trailing edge to the 

upper trailing edge in the anti-clockwise direction. It can be seen when (21) is used, 40 elements are 

sufficient to provide results which are graphically indistinguishable with the analytical solution, 

both for the potential and the velocity. On the other hand, when (16) is used at the trailing edge, 

major difference between the numerical results and the analytical solution can be observed. It is 

most interesting to see that very large error occurs near the leading edge. When the number of 

elements is doubled to 80eN  , the difference decreases but it is still quite large. When 
eN  is 

quadruple to 160, the difference is still very significant, which indicates that the convergence is very 

slow if it ever does. This shows that it is very important to choose the shape function at the trailing 

edge properly. It should reflect the true behaviour of the variation of the velocity near the trailing 

edge. The figure also shows that the choice introduced in this work is highly effective and efficient.    
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Fig. 3. The effect of the local shape function: (a) velocity potential   and (b) tangential velocity 

l  ( =10 , 5  , =5 ).  

4.2 Comparisons between the present HOBEM, conventional BEM and analytical results 

In the conventional BEM, the integral equation is used only for the potential. When constant 

shape function is used for each element, the equation is imposed at the centre of each element. The 

simplest way to impose the Kutta condition when 0   is to let 1  and N  at the trailing edge 

be equal to the values of the potentials at the centres of elements 1 and 1N   respectively. In BEM 

here we use the linear shape function, and let 1 2=    and 1N N    . The boundary integral 

equation is then imposed from node 2 to node N-2. When the potential   is found, the tangential 

velocity l  can be obtained through three point finite difference method. In the following cases, 



comparisons between the present HOBEM, conventional BEM and analytical results are made at 

different: (1) attack angle of flow  , (2)  angle   and (3) inner angle  .  

(1) At different attack angle   

The foil which we consider corresponds to 0.1c  , 0.1c  , 10   and 0.19   . From 

Eqs. (17) and (18), we can see the potential at an attack angle    can be obtained from 

0 90cos sin       , where 0   and 90   are the solutions at 0    and / 2 

respectively. This means that the computations are needed only for these two angles. For a real 

problem, the inviscid steady potential is valid only at a relatively small angle. Therefore we shall 

use 0  and 90  to investigate accuracy for   being set as 0 , 5 , 10   and 15  respectively. 

The body is divided into 40eN   elements in HOBEM, and into 40, 80 and 160 elements 

respectively in BEM.  

Figs. 4 and 5 provide the difference between numerical results and analytical solution at =0  

and 90 , respectively. For 0  , when 40 elements are used in HOBEM, the error in potential 

along the foil surface is more uniform. In comparison, there is a jump of error in the potential near 

the trailing edge. The jump becomes milder when the number of elements increases, as can be seen 

in Fig. 4(a). For 90   in Fig. 5(a), the result from HOBEM at 40eN   is quite accurate, while 

the error in the result from BEM is very noticeable. The error in BEM will decrease when eN  

increases, However, at 160eN   , the results are still less accurate that those from HOBEM at 

40eN  . The difference between HOBEM and BEM becomes much more obvious for the velocity, 

as can be seen in Figs. 4(b) and 5(b). While the HOBEM gives very accurate results at 40eN  , 

Fig. 4(c) shows that the error in the tangential velocity at the point next to the trailing edge is very 

significant and does not even decrease noticeably when eN   increases, and remains significant 

even at 160eN   . In Fig. 5(c), the largest error of BEM occurs near the leading edge ( 4l   ), 

although it decreases when eN  increases.   

As shown in Table 1, when 0   , the average errors of HOBEM and BEM in    are 

comparable at 40eN  . When 90  , however, the error of HOMEM is two magnitude lower 

than that of BEM. Even when eN  is increased to 160, the error of BEM is still higher than that of 

HOBEM at 40eN   . For the velocity, at both 0    and 90   , only when 160eN    the 

error of BEM becomes comparable with that of HOBEM at 40eN  . For the largest error in Table 

2, the pattern of error for   is similar to that in Table 1. For the velocity, the error of BEM is very 

significant. It hardly decays with eN   when 0    for the reason noticed in Fig.4(c). It may 

decay at 90   but the decay is very slow. On the other hand, the error of HOBEM is small at 

40eN  .  



The error at other attack angles can be obtained from the combination of those corresponding to 

0  and 90 . The results are shown in Tables 3 and 4. It is interesting to see from the above results 

that the present HOBEM method has significantly improved the accuracy of velocity prediction. 

For the potential the BEM may provide results of accuracy comparable with HOBEM in some cases 

along most part of the body, especially when 0   . However overall it is less accurate than 

HOBEM in most cases. In particular it becomes far less accurate near the trailing edge or leading 

edge. 
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Fig. 4. Errors at 0  : (a)  , (b) l , (c) blow up of l  near trailing edge between 0l   and 
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Fig. 5. Errors for 90  : (a)  , (b) l , (c) blow up of l  near leading edge between 3.5l   

and 4.5 

Average  (0)  (90) 
l (0) 

l ( 90) 

HOBEM(40) 37.07 10  31.31 10  34.9 10  35.1 10  

BEM(40) 34.14 10  11.03 10  24.19 10  28.22 10  

BEM(80) 44.75 10  22.94 10  21.8 10  22.43 10  

BEM(160) 43.58 10  38.34 10  38 10  36.76 10  

Tablr 1. Average error at 0   and 90  

Largest  (0)  (90) 
l (0) 

l ( 90) 

HOBEM(40) 21.42 10  32.7 10  23.04 10  26.55 10  

BEM(40) 23.18 10  11.58 10  16.11 10  1.29 

BEM(80) 36.5 10  24.75 10  15.86 10  13.82 10  

BEM(160) 32.2 10  21.4 10  15.63 10  11.15 10  

Tablr 2. Largest error at 0   and 90  

Average 

  

 (HOBEM)  (BEM) 
l (HOBEM) 

l ( BEM) 

5  36.94 10  36.91 10  34.85 10  24.4 10  

10  36.75 10  21.51 10  34.77 10  24.65 10  

15  36.51 10  22.37 10  34.67 10  24.97 10  

Tablr 3. Average error at the attack angle   between 0  and 90  

Largest 

  

 (HOBEM)  (BEM) 
l (HOBEM) 

l ( BEM) 

5  21.39 10  23.26 10  22.99 10  16.08 10  

10  21.35 10  22.24 10  22.92 10  16.01 10  

15  21.3 10  25.89 10  22.83 10  15.88 10  



Tablr 4. Largest error at the attack angle   between 0  and 90  

(2) At different     

We next consider hydrofoils of different angle   . We set 0.1c   , 10   , =10  .    is 

chosen as 5 , 0.19  and 5.3  by taking c  as 0, 0.1 and 0.2 respectively. The foil shapes are 

depicted in Fig. 6, =5   corresponds to a symmetric foil, 0.19     to a foil with a nearly 

horizontal lower surface near the trailing edge, and for = 5.3  , the lower surface of foil is above 

the horizontal axis. 

(a)

5 

(b)

0.19  

(c)

5.3  

 

Fig. 6. The foil shape ( 0.1c  , 10  ): (a) 0( 5 )c   , (b) c 0.1( 0.15 )    , (c) 

c 0.2( = 5.3 )       

Figs. 7-9 provide the difference between numerical results and analytical solution at 5   , 

0.19    and 5.3    respectively. For 5   in Fig. 7(a), the foil is symmetric, and the 

result of potential from HOBEM at 40eN   is quite accurate. While the error in the result from 

BEM is very significant, it will decrease as eN   increases, and at 160eN    it becomes 

comparable with that from HOBEM at e 40N   . For the asymmetric foils at 0.19     and 

5.3 , in Figs. 8(a) and 9(a), the error of HOBEM is larger than that in the symmetric case, but its 

variation along the body is smooth. The error in BEM jumps near the trailing edge. This shows that 

this kind of jump of error occurs at different  , as at different  .  

Tangential velocities are provided in Figs. 7(b), 8(b) and 9(b). At all these  , large error in BEM 

generally occurs at the trailing edge ( 0l    and 8l   ) and also at the leading edge ( 4l   ). In 

particular, in the local close up, shown in Figs. 7(c), 8(c), 9(c), although the error decreases when 

eN  increases, the reduction of error is rather small and the error is still significant at 160eN  . In 

fact the error at 160eN   is still larger than that at 40eN   of HOBEM. 

Tables 5 and 6 give average and largest errors respectively. When 40eN  , the average error of 

HOBEM is much lower than that of BEM at 5    and 0.19  , and they are comparable at 

5   . In terms of the largest error, the HOBEM is much more accurate than the BEM in all cases. 

Once again, the largest error of BEM in the velocity does not change very much when eN  

increases, as can be seen in Figs. 7(c), 8(c) and 9(c).  
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Fig. 7. Errors at 5  : (a)  , (b) 
l , (c) blow up of 

l  near trailing edge, and (d) blow up of 

l  near the leading edge 
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Fig. 8. Errors at 0.19   : (a)  , (b) 
l , (c) blow up of 

l  near trailing edge, and (d) blow up 

of 
l  near the leading edge 
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Fig. 9. Errors at 5.3   : (a)  , (b) 
l , (c) blow up of 

l  near trailing edge, and (d) blow up 

of 
l  near the leading edge 

Error 
c  0( 5  ) 

c  0.1( 0.19   ) 
c  0.2( 5.3   ) 

  
l    

l    
l  

HOBEM(40) 31.48 10  31.26 10  36.75 10  34.77 10  21.49 10  21.02 10  

BEM(40) 21.76 10  24.78 10  21.51 10  24.65 10  21.36 10  24.41 10  

BEM(80) 35.07 10  21.92 10  35.25 10  21.92 10  35.59 10  21.89 10  

BEM(160) 31.44 10  38.3 10  31.78 10  38.28 10  32.13 10  38.21 10  

Tablr 5. Average errors at different   ( 0.1c  , 10  , =10 )    

Error 
c  0( 5  ) 

c  0.1( 0.19   ) 
c  0.2( 5.3   ) 

  
l    

l    
l  

HOBEM(40) 32.9 10  38.8 10  21.35 10  22.92 10  23.06 10  26.01 10  

BEM(40) 25.18 10  16.09 10  24.6 10  16.01 10  24.18 10  15.82 10  

BEM(80) 21.44 10  15.83 10  21.45 10  15.72 10  21.5 10  15.52 10  

BEM(160) 32.4 10  15.6 10  34.6 10  15.48 10  35.3 10  15.27 10  



Tablr 6. Largest errors at different   ( 0.1c  , 10  , =10 )   

(3) At different   

We next consider hydrofoils of different inner angle   at 5 , 10  and 20  respectively at 

a fixed angle 0  . Based on the relationship 12 tan
1

c

c


 




 

  
 

 in KT foil, different   

at 0    can be obtained by setting 
c   as 24.8027 10  , 29.6238 10   and 11.9396 10  

respectively at 0.1c  . The attack angle of the incoming flow   is set as 10 . The shapes of 

these three hydrofoils are provided in Fig. 10. As   increases, the upper surface of the foil rises 

gradually, and the foil becomes more asymmetric. 

5 (a) (b) 10 

 

(c) 20 

 

Fig. 10. The shape of the foil ( 0.1c   ): (a) 5 
2( 4.8027 10 )    , (b) 10 

2( 9.6238 10 )   , (c) 20 
1( 1.9396 10 )    

  Figs.11-13 provide the error in 5  , 10  and 20  respectively. The trend is very similar to 

the previous cases at different    and different   . Overall the HOBEM with 40eN    gives 

accurate results for velocities of all the foils, While BEM can give accurate results over most part 

of the foil when eN  increases, the error near the trailing edge and leading edge decays very slowly. 

In particular for the point next to the trailing edge, the error does not seem to decay very much when 

the eN  has been increased by four times. The comparison of accuracies of BEM and HOBEM can 

be more clearly seen in tables 7 and 8. For the average error in velocity, only when 160eN   the 

accuracy of BEM becomes comparable to that of HOBEM at 40eN  . For the largest error in 

velocity, the error of HOBEM at 40eN   is one order lower than that of BEM at 160eN  .        
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Fig. 11. Errors at 5  : (a)  , (b) l , (c) blow up of l  near trailing edge, (d) blow up of l  

near the leading edge 
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Fig. 12. Errors at 10  : (a)  , (b) l , (c) blow up of l  near trailing edge, (d) blow up of l  

near the leading edge  
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Fig. 13. Errors at 20  : (a)  , (b) l , (c) blow up of l  near trailing edge, (d) blow up of l  

near the leading edge.   

Error 5   10   20   

  
l    

l    
l  

HOBEM(40) 32.63 10  32.43 10  36.44 10  34.55 10  21.15 10  37.75 10  

BEM(40) 21.45 10  24.81 10  21.52 10  24.68 10  21.83 10  24.15 10  

BEM(80) 34.87 10  22.04 10  35.24 10  21.92 10  36.07 10  21.7 10  

BEM(160) 31.7 10  38.99 10  31.76 10  38.29 10  31.94 10  37.03 10  

Tablr 7. Average errors at different   ( 0.1c  , 0  , =10 )    

Error 5   10   20   

  
l    

l    
l  

HOBEM(40) 35.2 10  21.45 10  21.29 10  22.8 10  22.35 10  24.42 10  

BEM(40) 24.4 10  16.37 10  24.61 10  16.01 10  25.4 10  15.3 10  

BEM(80) 21.36 10  16.21 10  21.45 10  15.73 10  21.67 10  14.82 10  

BEM(160) 34.4 10  16.08 10  34.6 10  15.48 10  35.1 10  14.42 10  

Tablr 8. Largest errors at different   ( 0.1c  , 0  , =10 )   

5. Conclusions 



A higher order boundary element method is presented, based on the conventional boundary 

integral equation for the velocity potential and a similar equation for tangential velocity derived in 

this paper. Within each element the velocity potential is expressed in terms of higher order shape 

functions, together with the nodal values of the potential and tangential velocity. The continuities 

of the potential and velocity are ensured at element nodes, and the Kutta condition is imposed at the 

trailing edge through the velocity directly, together with a special shape function to account for the 

behaviour of the local velocity. Extensive simulations have been undertaken for Karman-Trefftz 

(KT) foil, from which the following conclusions can be drawn. 

(1) For HOBEM involving velocity, the shape function used near the trailing edge should account 

for the local behaviour of the velocity.  

(2) Error in BEM jumps rapidly near the trailing edge and this may also occur near the leading edge 

for the velocity. There is no jump of error in HOBEM. 

(3) For the velocity, the accuracy of HOBEM is much higher than that of BEM, even when much 

more elements are used in BEM. Near the trailing edge in particularly, HOBEM can give accurate 

result for the velocity with a relatively small number of elements, while the error in BEM remains 

significant, even though four times more elements are used. The decay of error in BEM is very slow 

near the trailing edge. 

(4) The present method can be used to solve many other problems more accurately, where the 

continuity of the velocity at element nodes are important, or the boundary condition explicitly 

contains tangential velocity.   
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Apprndix  

We first consider the following integration  

2 2
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        (A.1) 

with the figure below 



 

Fig. A.1. The integration for a field point p  approaching to an element at an angle   

where cosp b r   , sinp r   and   and   are along and normal to the element. 

Point p  can approach the trailing edge in three different ways. 

(1) Let p   be on the lower surface and p   approach 1p  . We have ( )A p    where 1p p  

but 1p p . Also when 1p p , from Eq. (8), we have =W  . In the integration of Eq. (7), when 

q  is along the lower surface and near 1p , the Cauchy principal integration is taken as the point 

q p  has already considered by ( )p . However, when q  is along the upper surface and near 

Np , the integration should be equal to Cauchy principal integration plus the point q p . Using 

Eq. (A.1) in which   is from node N-1 to N, and =  , the latter gives ( ) N    . Thus Eq. (7) 

for 0 0( , )p p x y  can be written as 
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2 ( cos sin )
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
          (A.2) 

Here the Cauchy principle integration will be taken when q  approaches the trailing edge from 

both lower and upper surfaces. 

(2) Let p  be on the upper surface and near Np . Similar to the analysis above, we have (p)A  ,  

= ( )W    , and there will be a contribution 1( )     from the integration along the lower 

surface near 1p . As a result, it also gives Eq. (A.2).   

(3) Let p  be at the trailing edge. Then when we derive Eq. (5), the following path near the trailing 

edge shown in Fig. A.2 below 

 

Fig. A.2. Integral path for p  at the trailing edge. 



should be taken. Then for the arc centred at 1p  we have  

1 1

1

( , )
( )

qArc

G p q
dS

n
   


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 .                        (A.3) 

Similar for Np , the result will be ( ) N     . Also 0W   in this case as 0 0py y   is taken 

in the integrand. Therefore the result will be also (A.2).   
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