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ALEXANDER V. SOBOLEV

Abstract. The one-particle density matrix γ(x, y) for a bound state of an atom or
molecule is one of the key objects in the quantum-mechanical approximation schemes.
We prove the asymptotic formula λk ∼ (Ak)−8/3, A ≥ 0, as k →∞, for the eigenvalues
λk of the self-adjoint operator Γ ≥ 0 with kernel γ(x, y).

1. Introduction

Consider on L2(R3N) the Schrödinger operator

H =
N∑
k=1

(
−∆k −

Z

|xk|

)
+

∑
1≤j<k≤N

1

|xj − xk|
,(1.1)

describing an atom withN particles (e.g. electrons) with coordinates x = (x1, x2, . . . , xN),
xk ∈ R3, k = 1, 2, . . . , N , and a nucleus with charge Z > 0. The notation ∆k is used for
the Laplacian w.r.t. the variable xk. The operator H acts on the Hilbert space L2(R3N)
and it is self-adjoint on the domain D(H) = H2(R3N), since the potential in (1.1) is
an infinitesimal perturbation relative to the unperturbed operator −∆ = −

∑
k ∆k, see

e.g. [20, Theorem X.16]. Let ψ = ψ(x), be an eigenfunction of the operator H with an
eigenvalue E ∈ R, i.e. ψ ∈ D(H) and

(H − E)ψ = 0.

For each j = 1, . . . , N , we represent

x = (x̂j, xj), where x̂j = (x1, . . . , xj−1, xj+1, . . . , xN),

with obvious modifications if j = 1 or j = N . The one-particle density matrix is defined
as the function

γ(x, y) =
N∑
j=1

∫
R3N−3

ψ(x̂j, x)ψ(x̂j, y) dx̂j, (x, y) ∈ R3 × R3.(1.2)
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This function is one of the key objects in the multi-particle quantum mechanics, see
[9], [10], [18], [19] for details and futher references. If one assumes that all N particles
are spinless fermions (resp. bosons), i.e. that the function ψ is antisymmetric (resp.
symmetric) under the permutations xj ↔ xk, then the definition (1.2) simplifies:

γ(x, y) = N

∫
R3N−3

ψ(x̂, x)ψ(x̂, y)dx̂, where x̂ = x̂N .(1.3)

Our main result however does not require any symmetry assumptions. For the sake
of completeness mention that, as found in [16], the function (1.2) is real-analytic for
all x 6= 0, y 6= 0, x 6= y. In the current paper our focus is on spectral properties of
the self-adjoint non-negative operator Γ with the kernel γ(x, y), which we call the one-
particle density operator. The operator Γ is easily shown to be trace class, and in [13] it
was shown that Γ has infinite rank. However no sharp results on the behaviour of the
eigenvalues λk(Γ) > 0 as k →∞ had been available until paper [22] (see however [6], [7]
for relevant quantum chemistry calculations), where it was shown that λk(Γ) = O(k−8/3).
We always label eigenvalues in non-increasing order counting multiplicity. The purpose
of the paper is to prove the asymptotic formula (1.5), which confirms the sharpness of
the bound from [22]. Apart from being a mathematically interesting and challenging
question, spectral asymptotics for the operator Γ are important for electronic structure
computations as it limits accuracy of electronic properties computed with finite basis
sets, see e.g. [6], [8], [13] and [15] for discussion.

We assume throughout that ψ decays exponentially as |x| → ∞:

|ψ(x)| . e−κ0|x|, x ∈ R3N .(1.4)

Here κ0 > 0 is a constant, and the notation “.” means that the left-hand side is bounded
from above by the right-hand side times some positive constant whose precise value is of
no importance for us. This notation is used throughout the paper. The property (1.4)
holds for the eigenfunctions associated with discrete eigenvalues (i.e. the ones below the
essential spectrum), and in particular, for the ground state. For references and detailed
discussion we quote [21].

The next theorem contains a concise version of the main result.

Theorem 1.1. Suppose that the eigenfunction ψ satisfies the bound (1.4). Then the
eigenvalues λk(Γ), k = 1, 2, . . . , of the operator Γ with kernel (1.2) satisfy the relation

lim
k→∞

k
8
3λk(Γ) = A

8
3 ,(1.5)

with an explicit constant A ≥ 0.

The complete statement includes a formula for the coefficient A, and it is given as
Theorem 2.3.
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Remark. Theorem 1.1 extends to the case of a molecule with several nuclei whose
positions are fixed, i.e. the operator (1.1) can be replaced by

H =
N∑
k=1

(
−∆k −

N0∑
l=1

Zl
|xk −Rl|

)
+

∑
1≤j<k≤N

1

|xj − xk|
,

with constant Rl ∈ R3 and nuclear charges Zl > 0, l = 1, 2, . . . , N0. The modifications
are straightforward.

Let us outline the main ideas of the proof. First we represent the operator Γ as the
product Γ = Ψ∗Ψ, where the operator Ψ : L2(R3) → L2(R3N−3) with a vector-valued
kernel is defined in Subsect. 2.2. Therefore we have λk(Γ) = sk(Ψ)2, k = 1, 2, . . . ,
where sk(Ψ) are the singular values (s-values) of the operator Ψ. As a consequence, the
asymptotic formula (1.5) rewrites as

lim
k→∞

k
4
3 sk(Ψ) = A

4
3 .(1.6)

For the sake of discussion consider the fermionic (or bosonic) case, in which the kernel
γ(x, y) is given by (1.3). Then it is straightforward that Γ = Ψ∗Ψ with the operator

(Ψu)(x̂) =
√
N

∫
R3

ψ(x̂, x)u(x)dx, u ∈ L2(R3).(1.7)

For integral operators the rate of decay of singular values increases with the smoothness
of their kernels, and the appropriate estimates via suitable Sobolev norms can be found
in [3]. Such estimates, together with the recent regularity estimates for ψ obtained in
[11], were used in [22] to prove the bound sk(Ψ) . k−4/3, k = 1, 2, . . . .

The study of spectral asymptotics of the operator (1.7) requires more precise infor-
mation on the singularities of ψ. By elliptic regularity, the function ψ is real analytic
away from the coalescence points of the particles, i.e. for xj 6= xk, 1 ≤ j < k ≤ N
and xj 6= 0, j = 1, 2, . . . , N , and hence only the coalescence points contribute to the
asymptotics (1.6). As shown by T. Kato in [17], the function ψ is Lipschitz. Of course,
this fact alone is not sufficient to obtain an asymptotic formula for Ψ – one needs to
know the precise shape of the function ψ near the coalescence points. A suitable rep-
resentation formula for the function ψ was obtained in [12]. To explain in more detail
we make a further simplifying assumption and consider the special case N = 2, so that
x = (t, x) ∈ R3 × R3, and the operator Ψ acts from L2(R3) into L2(R3). According to
[12], there exists a neighbourhood (open connected set) Ω1,2 ⊂

(
R3 \{0}

)
×
(
R3 \{0}

)
of

the diagonal set {(x, x) : x ∈ R3 \ {0}} and two functions ξ1,2, η1,2, real analytic in Ω1,2,
such that the eigenfunction ψ = ψ(t, x) admits the representation

ψ(t, x) = ξ1,2(t, x) + |t− x| η1,2(t, x), for all (t, x) ∈ Ω1,2.(1.8)

The form of the second term is in line with Kato’s observation (see [17]) that ψ is
Lipschitz. The representation (1.8) is ideally suited for the study of spectral asymptotics.
Indeed, the Lipschitz factor on the right-hand side of (1.8) is homogeneous of order one.



4 ALEXANDER V. SOBOLEV

The behaviour of eigenvalues for a wide class of integral operators including those with
homogeneous kernels, was studied by M. Birman and M. Solomyak in [1],[2] and [4], see
also [3]. However, the existing results are not directly applicable, since the functions ξ1,2
and η1,2 may not be smooth on the closure Ω1,2. Moreover, there is no information on
the integrability of ξ1,2 and η1,2 over Ω1,2. To circumvent this difficulty we approximate
ξ1,2, η1,2 by suitable C∞0 -functions supported inside Ω1,2. The error incurred is controlled
with the help of the bounds obtained in [22]. Using the Birman-Solomyak results and
subsequently taking the limit of these smooth approximations we arrive at the formula
(1.6) with the coefficient

A =
1

3

(
2

π

) 5
4
∫
R3

|21/2η1,2(x, x)|3/4dx.

The finiteness of the above integral is a by-product of the proof. Note that the coalescence
points x = 0 and t = 0 do not affect the asymptotics.

For N ≥ 3 application of the existing results on spectral asymptotics for integral
operators is not immediate. It relies on the reduction to a certain model operator whose
kernel includes the functions ηj,k describing the eigenfunction ψ in a neighbourhood of
all pair coalescence points xj = xk, j, k = 1, 2, . . . , N , j 6= k. We emphasize that
neither the points xj = 0, j = 1, 2, . . . , N , nor the coalescence points of higher orders
(e.g. xj = xk = xl with pair-wise distinct j, k, l) contribute to the asymptotics (1.6).

The paper is organized as follows. In Section 2 we describe the representation of
the function ψ near the pair coalescence points (see (1.8) for the case N = 2), state
the main result in its complete form as Theorem 2.3, which includes the formula (2.7)
for the coefficient A, and give the details of the factorization Γ = Ψ∗Ψ. Section 3
contains necessary facts about compact operators, and it includes asymptotic formulas
for spectra of integral operators with homogeneous kernels. Section 4 is focused on
spectral asymptotics of the model integral operator that is instrumental to the case
N ≥ 3. Using the factorization Γ = Ψ∗Ψ, in Sections 5 and 6 the main Theorem 2.3 is
restated in terms of the operator Ψ, see Theorem 5.1. Here we also construct suitable
approximations for Ψ, to which one can apply the results of Sect. 4. Section. 7 completes
the proof of Theorem 5.1 and hence that of Theorem 2.3.

We conclude the introduction with some general notational conventions.
Coordinates. As mentioned earlier, we use the following standard notation for the

coordinates: x = (x1, x2, . . . , xN), where xj ∈ R3, j = 1, 2, . . . , N . In order to write
formulas in a more compact and unified way, we sometimes use the notation x0 = 0.

The vector x is often represented in the form

x = (x̂j, xj) with x̂j = (x1, x2, . . . , xj−1, xj+1, . . . , xN) ∈ R3N−3,

for arbitrary j = 1, 2, . . . , N . Most frequently we use this notation with j = N , and
write x̂ = x̂N , so that x = (x̂, xN).
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For N ≥ 3 it is also useful to introduce the notation for x with xj and xk taken out:{
x̃j,k = (x1, . . . , xj−1, xj+1, . . . , xk−1, xk+1, . . . , xN), if j < k,

and x̃j,k = x̃k,j, if j > k.
(1.9)

If j < k, then we write x = (x̃j,k, xj, xk). For any j ≤ N − 1 the vector x̂ can be
represented as x̂ = (x̃j,N , xj).

The notation BR is used for the ball {x ∈ R3 : |x| < R}.
Derivatives. Let N0 = N ∪ {0}. If x = (x′, x′′, x′′′) ∈ R3 and m = (m′,m′′,m′′′) ∈ N3

0,
then the derivative ∂mx is defined in the standard way:

∂mx = ∂m
′

x′ ∂
m′′

x′′ ∂
m′′′

x′′′ .

Cut-off functions. We systematically use the following smooth cut-off functions. Let

θ ∈ C∞0 (R), ζ(t) = 1− θ(t),(1.10)

be functions such that 0 ≤ θ ≤ 1 and

θ(t) = 0, if |t| > 1; θ(t) = 1, if |t| < 1

2
.(1.11)

Integral operators. The notation Int(K) is used for the integral operator with kernel K,
e.g. Γ = Int(γ). The functional spaces, where Int(K) acts are obvious from the context.

Bounds. As explained earlier, for two non-negative numbers (or functions) X and Y
depending on some parameters, we write X . Y (or Y & X) if X ≤ CY with some
positive constant C independent of those parameters. To avoid confusion we often make
explicit comments on the nature of (implicit) constants in the bounds.

2. Representation formula. Details of the main result

2.1. Representation formula. Our approach is built on the sharp qualitative result
for ψ obtained in [12]. In order to write all the formulas in a more compact and unified
way, we use the notation x0 = 0. As before, x = (x1, x2, . . . , xN) ∈ R3N . Thus, unless
otherwise stated, the indices labeling the particles, run from 0 to N .

Denote

Sl,s = {x ∈ R3N : xl 6= xs}, l 6= s.(2.1)

The function ψ is real-analytic on the set

U =
⋂

0≤l<s≤N

Sl,s.

For each pair j, k : j 6= k, we are interested in the behaviour of ψ on the set

Uj,k =
⋂
l 6=s

(l,s) 6=(j,k)

Sl,s.(2.2)



6 ALEXANDER V. SOBOLEV

In words, Uj,k includes the coalescence point xj = xk, but excludes all the others. Our
main focus will be on the function ψ near the “diagonal” set

U
(d)
j,k = {x ∈ Uj,k : xj = xk}.(2.3)

The sets introduced above are obviously symmetric with respect to permutations of

indices, e.g. Uj,k = Uk,j, U
(d)
j,k = U

(d)
k,j . Observe also that the sets Uj,k, U

(d)
j,k are of full

measure in R3N and R3N−3 respectively, and that they are connected.
The following property follows from [12, Theorem 1.4].

Proposition 2.1. For each pair of indices j, k = 0, 1, . . . , N such that j 6= k, there exists
an open connected set Ωj,k = Ωk,j ⊂ R3N , such that

U
(d)
j,k ⊂ Ωj,k ⊂ Uj,k,(2.4)

and two uniquely defined functions ξj,k, ηj,k, real analytic on Ωj,k, such that for all x ∈ Ωj,k

the following representation holds:

ψ(x) = ξj,k(x) + |xj − xk|ηj,k(x).(2.5)

Due to the uniqueness of functions ξj,k, ηj,k, we have the symmetry ξj,k = ξk,j, ηj,k = ηk,j
for all j 6= k.

The asymptotic coefficient A in the formula (1.5) is defined via the functions ηj,k,
j, k = 1, 2, . . . , N, j < k, on the sets (2.3). Using the notation (1.9) we write the function

ηj,k(x) on U
(d)
j,k as ηj,k(x̃j,k, x, x). As a by-product of the proof we obtain the following

integrability properties.

Theorem 2.2. If N ≥ 3, then each function ηj,k( · , x, x), 1 ≤ j < k ≤ N , belongs to
L2(R3N−6) for a.e. x ∈ R3 and the function

H(x) :=

[
2

∑
1≤j<k≤N

∫
R3N−6

∣∣ηj,k(x̃j,k, x, x)
∣∣2dx̃j,k] 1

2

,(2.6)

belongs to L
3
4 (R3).

If N = 2, then the function H(x) :=
√

2|η1,2(x, x)| belongs to L
3
4 (R3).

Having at our disposal this theorem, we can now state the main result of the paper in
its complete form.

Theorem 2.3. Suppose that the eigenfunction ψ satisfies the bound (1.4). Then the
eigenvalues λk(Γ), k = 1, 2, . . . , of the operator Γ satisfy the asymptotic formula (1.5)
with the constant

A =
1

3

(
2

π

) 5
4
∫
R3

H(x)
3
4dx.(2.7)
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Remark 2.4. The coefficient A can be equal to zero for some eigenfunctions ψ. For
example, if we assume that the particles are spinless fermions, i.e. the function ψ is
antisymmetric, then it is immediate to see that for all j, k, j 6= k, both components

ξj,k and ηj,k in (2.5) vanish on the diagonal U
(d)
j,k , and as a consequence A = 0. This

means that λk(Γ) = o(k−8/3). This fact can be interpreted by saying that antisymmetric
eigenfunctions possess better than Lipschitz smoothness at the coalescence points, and
hence the eigenvalues of Γ decay faster.

The fermionic nature of particles may manifest itself differently if we introduce the spin
variable. In this case the antisymmetry of the full eigenfunction comes either from the
spatial component ψ(x) or from the spin component. For illustration first consider the
case of two electrons, i.e. N = 2. In the triplet configuration the antisymmetry is carried
by the spatial component ψ(x1, x2), see [15, Subsect. 3.3.2], and then, as pointed out a
few lines above, we have A = 0. If the electrons are in the singlet configuration, then the
spin component is antisymmetric, whereas the function ψ = ψ(x1, x2) is symmetric and
the diagonal value η1,2(x, x) is not identically zero, see [15, Subsect. 3.3.1]. Thus A > 0.

In the case N ≥ 3 different electron pairs may form different configurations, in which
case the triplet coalescences will not contribute to the coefficient A.

Remark 2.5. If we assume that the function ψ is symmetric or antisymmetric, then both
the proof of the main asymptotic formula (1.5), and the formula (2.6) can be simplified.
Indeed, as we have seen, the factorization Γ = Ψ∗Ψ holds with the simple looking
integral operator Ψ given by (1.7). This is in contrast with the general case, as will
be evident from the next subsection. Furthermore, as discussed in Remark 2.4, for the
antisymmetric ψ we have A = 0. Assume that N ≥ 3 and that ψ is totally symmetric.
It follows that for all ỹ = (y1, y2, . . . , yN−2) ∈ R3N−6, x, t ∈ R3 and j 6= k, l 6= s, we have

ψ(y1, . . . , yj−1, x, yj, . . . , yk−2, t, yk−1, . . . , yN−2)

= ψ(y1, . . . , yl−1, x, yl, . . . , ys−2, t, ys−1, . . . , yN−2).

Due to the uniqueness of functions ξj,k, ηj,k in Proposition 2.1, the above equality leads
to

ηj,k(y1, . . . , yj−1, x, yj, . . . , yk−2, t, yk−1, . . . , yN−2)

= ηl,s(y1, . . . , yl−1, x, yl, . . . , ys−2, t, ys−1, . . . , yN−2).

As a consequence, the formula (2.6) rewrites as

H(x) =

[
N(N − 1)

∫
R3N−6

∣∣ηN−1,N(ỹ, x, x)
∣∣2 dỹ] 1

2

.

2.2. Factorization of Γ: change of variables (x̂j, x) 7→ (x̂, x). In the general case
(i.e. without any symmetry assumptions on ψ) the operator Ψ in the identity Γ = Ψ∗Ψ
looks more complicated compared to (1.7). The purpose of this subsection is to describe
this factorization and the associated change of variables. Rewrite the definition (1.2) in
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the form:

γ(x, y) =
N∑
j=1

∫
R3N−3

ψj(x̂, x)ψj(x̂, y)dx̂, where

ψj(x̂, x) = ψ(x1, . . . , xj−1, x, xj, . . . , xN−1), j = 1, 2, . . . , N.(2.8)

Therefore Γ can be represented as a product Γ = Ψ∗Ψ, where Ψ : L2(R3)→ L2(R3N−3;CN)
is the integral operator with the vector-valued kernel

Ψ(x̂, x) = {ψj(x̂, x)}Nj=1.(2.9)

As explained in the Introduction, given this factorization, the asymptotic relation (1.5)
translates to the formula (1.6). Later we state this fact again as Theorem 5.1 using a
more convenient notation.

The change of variables (x̂j, x) 7→ (x̂, x) plays an important role throughout the paper.
In particular, it is crucial to recast Proposition 2.1 in terms of the new variables (x̂, x),
which is done below.

Let j 6= k, and let Ωj,k be the sets and ξj,k(x), ηj,k(x) be the functions from Proposition
2.1. For all j = 1, 2, . . . , N and all k = 0, 1, . . . , N − 1, denote

Ω̃j,k =

{
{(x̂, x) ∈ R3N : (x1, . . . , xj−1, x, xj, . . . , xN−1) ∈ Ωj,k}, if j ≥ k + 1,

{(x̂, x) ∈ R3N : (x1, . . . , xj−1, x, xj, . . . , xN−1) ∈ Ωj,k+1}, if j ≤ k.

According to (2.4) we have

U
(d)
N,k ⊂ Ω̃j,k ⊂ UN,k,(2.10)

for all k ≤ N − 1 and j = 1, 2, . . . , N , j 6= k. Together with functions ξj,k, ηj,k define

ξ̃j,k(x̂, x) =

{
ξj,k(x1, . . . , xj−1, x, xj, . . . , xN−1), if j ≥ k + 1,

ξj,k+1(x1, . . . , xj−1, x, xj, . . . , xN−1), if j ≤ k,

and

η̃j,k(x̂, x) =

{
ηj,k(x1, . . . , xj−1, x, xj, . . . , xN−1), if j ≥ k + 1,

ηj,k+1(x1, . . . , xj−1, x, xj, . . . , xN−1), if j ≤ k.
(2.11)

By Proposition 2.1, for each j = 1, 2, . . . , N , and each k = 0, 1, . . . , N − 1, we have

ψj(x̂, x) = ξ̃j,k(x̂, x) + |xk − x|η̃j,k(x̂, x), for all (x̂, x) ∈ Ω̃j,k.(2.12)

Observe that the newly introduced sets Ω̃j,k and the functions ξ̃j,k, η̃j,k are not symmetric
under the permutation j ↔ k.
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The function (2.6) can be easily rewritten via the new functions η̃j,k:

H(x) =


(
|η̃1,1(x, x)|2 + |η̃2,1(x, x)|2

)1/2
, if N = 2;[

N∑
j=1

N−1∑
k=1

∫
R3N−6

∣∣η̃j,k(x̃k,N , x, x)
∣∣2dx̃k,N] 1

2

, if N ≥ 3.
(2.13)

For N = 2 the above formula is a consequence of the symmetry relation η1,2 = η2,1 and
equalities η1,2(x, x) = η̃1,1(x, x), η2,1(x, x) = η̃2,1(x, x), which follow from the definition
(2.11).

Now assume that N ≥ 3. In view of the symmetry ηj,k = ηk,j we can rewrite (2.6)
extending the summation to all j, k such that j 6= k:

H(x)2 =
N−1∑
j=1

N∑
k=j+1

∫
R3N−6

∣∣ηj,k(x̃j,k, x, x)
∣∣2dx̃j,k +

N∑
j=1

j−1∑
k=1

∫
R3N−6

∣∣ηj,k(x̃j,k, x, x)
∣∣2dx̃j,k.

By (2.11), the second sum coincides with

N∑
j=1

j−1∑
k=1

∫
R3N−6

∣∣η̃j,k(x̃k,N , x, x)
∣∣2dx̃k,N ,

and the first one coincides with
N−1∑
j=1

N∑
k=j+1

∫
R3N−6

∣∣η̃j,k−1(x̃k−1,N , x, x)
∣∣2dx̃k−1,N =

N−1∑
j=1

N−1∑
k=j

∫
R3N−6

∣∣η̃j,k(x̃k,N , x, x)
∣∣2dx̃k,N .

Adding the first and second sums together we obtain (2.13), as claimed.

3. Compact operators

3.1. Compact operators. For information on compact operators we use mainly Chap-
ter 11 of the book [5], where one can also find further references. Let H and G be separable
Hilbert spaces. Let T : H → G be a compact operator. If H = G and T = T ∗ ≥ 0,
then λk(T ), k = 1, 2, . . . , denote the positive eigenvalues of T numbered in descending
order counting multiplicity. For arbitrary spaces H, G and compact T , by sk(T ) > 0,
k = 1, 2, . . . , we denote the singular values of T defined by sk(T )2 = λk(T

∗T ) = λk(TT
∗).

We classify compact operators by the rate of decay of their singular values. If sk(T ) .
k−1/p, k = 1, 2, . . . , with some p > 0, then we say that T ∈ Sp,∞ and denote

‖T‖p,∞ = sup
k
sk(T )k

1
p .

These classes are discussed in detail in [5, §11.6]. The class Sp,∞ is a complete linear
space with the quasi-norm ‖T‖p,∞. For all p > 0 the quasi-norm satisfies the following
“triangle” inequality for operators T1, T2 ∈ Sp,∞:

‖T1 + T2‖
p

p+1
p,∞ ≤ ‖T1‖

p

p+1
p,∞ + ‖T2‖

p

p+1
p,∞ .(3.1)
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For T ∈ Sp,∞ the following numbers are finite:Gp(T ) =
(

lim sup
k→∞

k
1
p sk(T )

)p
= lim sup

s→0
spn(s, T ),

gp(T ) =
(

lim inf
k→∞

k
1
p sk(T )

)p
= lim inf

s→0
spn(s, T ),

(3.2)

and they clearly satisfy the inequalities

gp(T ) ≤ Gp(T ) ≤ ‖T‖pp,∞.

Note that Gq(T ) = 0 for all q > p. Observe that

gp(TT
∗) = gp(T

∗T ) = g2p(T ), Gp(TT
∗) = Gp(T

∗T ) = G2p(T ).(3.3)

If Gp(T ) = gp(T ), then the singular values of T satisfy the asymptotic formula

sn(T ) =
(
Gp(T )

) 1
pn−

1
p + o(n−

1
p ), n→∞.

The functionals gp(T ), Gp(T ) also satisfy the inequalities of the type (3.1):Gp(T1 + T2)
1

p+1 ≤ Gp(T1)
1

p+1 + Gp(T2)
1

p+1 ,

gp(T1 + T2)
1

p+1 ≤ gp(T1)
1

p+1 + Gp(T2)
1

p+1 .
(3.4)

It follows from these inequalities that the functionals Gp and gp are continuous on Sp,∞:∣∣Gp(T1) 1

p+1 − Gp(T2)
1

p+1

∣∣ ≤ Gp(T1 − T2)
1

p+1 ,∣∣gp(T1) 1

p+1 − gp(T2)
1

p+1

∣∣ ≤ Gp(T1 − T2)
1

p+1 .

We need the following two corollaries of this fact:

Corollary 3.1. Suppose that Gp(T1 − T2) = 0. Then

Gp(T1) = Gp(T2), gp(T1) = gp(T2).

The next corollary is more general:

Corollary 3.2. Suppose that T ∈ Sp,∞ and that for every ν > 0 there exists an operator
Tν ∈ Sp,∞ such that Gp(T − Tν) → 0, ν → 0. Then the functionals Gp(Tν), gp(Tν) have
limits as ν → 0 and

lim
ν→0

Gp(Tν) = Gp(T ), lim
ν→0

gp(Tν) = gp(T ).

3.2. Estimates for singular values of integral operators. The final ingredients
of the proof are the results due to M.S. Birman and M.Z. Solomyak, investigating the
membership of integral operators in various classes of compact operators.

For estimates of the singular values we rely on [3, Corollaries 4.2, 4.4, Theorem 4.4],
which we state here in a form convenient for our purposes. Below we use the following
notation which is standard in the theory of Sobolev spaces: Hl(Rd) = W2,l(Rd).
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Proposition 3.3. Let a ∈ L∞(Rd), b ∈ L2loc(Rn). Assume that the function a has compact
support. Suppose that T (t, x), t ∈ Rn, x ∈ Rd, is a kernel such that T (t, · ) ∈ Hl(Rd) with
some l = 0, 1, . . . , for a.e. t ∈ Rn, and the function ‖T (t, · )‖Hl is in L2(Rn, |b(t)|2dt).

Let Tba : L2(Rd)→ L2(Rn), be the integral operator

(Tbau)(t) = b(t)

∫
T (t, x)a(x)u(x) dx, u ∈ L2(Rd).

Then
∞∑
k=0

k
2l
d sk(Tba)

2 <∞,(3.5)

and hence sk(Tba) = o(k−1/q), where 1/q = 1/2 + l/d. In other words, Gq(Tba) = 0.

The original results in [3, Corollaries 4.2, 4.4, Theorem 4.4] are considerably more
general and more precise: instead of just the finiteness statement (3.5), they contain
estimates depending explicitly on the kernel T and weights a, b. These estimates have
slightly different form for different cases 2l > d, 2l = d and 2l < d, and therefore, to
avoid cumbersome formulations we chose not to quote them in detail.

The next group of results is concerned with spectral asymptotics for integral operators.

3.3. Integral operators with homogeneous kernels. First we consider pseudo - dif-
ferential operators with asymptotically homogeneous matrix-valued symbols. Spectral
asymptotics for such operators were studied in [2], [4]. In fact, these papers allow for
more general operators, but we need only a relatively simple special case of those re-
sults. Precisely, let A(x),B(x), X(ξ), where x, y, ξ ∈ Rd, be rectangular matrix-valued
functions of matching dimensions, so that the product

B(x)X(ξ)A(y)(3.6)

is again a rectangular matrix. Assume that

B ∈ C0(Rd), A ∈ C0(Rd).(3.7)

We do not reflect the matrix nature of the functional spaces in the notation to avoid
cumbersome formulas, and this should not cause confusion. Suppose that X(ξ) is a
bounded function which is asymptotically homogeneous of negative order, i.e. there
exists a matrix-valued function X∞ ∈ C∞(Rd \ {0}) such that for some τ > 0,

X∞(tξ) = t−τX∞(ξ), ξ 6= 0,(3.8)

for all t > 0, and

X(ξ)−X∞(ξ) = o(|ξ|−τ ), |ξ| → ∞.(3.9)

Define the matrix-valued function

T∞(x, ξ) = B(x)X∞(ξ)A(x).
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Proposition 3.4. Let the above conditions on A,B, X be satisfied and let p = dτ−1.
Then the pseudo-differential operator T : L2(Rd)→ L2(Rd) defined by the formula

(Tu)(x) =
1

(2π)d

∫∫
B(x)eiξ(x−y)X(ξ)A(y)u(y)dydξ,(3.10)

is compact, it belongs to Sp,∞ and satisfies the asymptotic formula

Gp(T ) = gp(T ) =
1

d(2π)d

∫
Rd

∫
Sd−1

∑
k

[
sk
(
T∞(x, ω)

)]p
dωdx.(3.11)

This proposition is a consequence of Theorem 2 from [2] and Remark 3 following this
theorem.

We apply Proposition 3.4 to integral operators with homogeneous kernels. Let Φ ∈
C∞(Rd \ {0}) be a matrix-valued function such that

Φ(tx) = tαΦ(x), x 6= 0, α > −d,(3.12)

for all t > 0. Consider the integral operator W with the matrix-valued kernel

W (x, y) = B(x)Φ(x− y)A(y)

with A,B satisfying the conditions (3.7), and assuming that the matrix dimensions are
matched in the same way as for the symbol (3.6). We study spectral asymptotics of the
operator W by reducing it to the operator of the form (3.10). Let θ be as defined in
(1.10), (1.11), and let R0 > 0 be a number such that

W (x, y) = W (x, y)θ
(
|x− y|R−1

)
, for all R ≥ R0.

Consequently, the operator W has the form (3.10) with the function

X(ξ) = XR(ξ) =

∫
e−iξxθ

(
|x|R−1

)
Φ(x)dx.(3.13)

Integrating by parts, we conclude that for each ξ 6= 0 the function XR(ξ) converges as
R→∞ to a C∞(Rd \ {0})-function

X∞(ξ) = lim
R→∞

XR(ξ).(3.14)

The function X∞ satisfies (3.8) with τ = α + d. Indeed, using (3.12) write for t > 0:

XR(tξ) = t−α−d
∫
e−iξxθ

(
|x|(Rt)−1

)
Φ(x)dx

= t−α−dXRt(ξ).(3.15)

Passing to the limit as R → ∞, we get (3.8) with τ = α + d, as claimed. The equality
(3.15) also implies that

XR(tξ)−X∞(tξ) = t−α−d
(
XRt(ξ)−X∞(ξ)

)
= o(t−α−d), t→∞,

for each ξ ∈ Rd and R > 0, which entails (3.9). Thus, applying Proposition 3.4, we
obtain the spectral asymptotics for the operator W .
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Corollary 3.5. The operator W has the form (3.10) with the function X ∈ C∞(Rd)
defined in (3.13). The singular values of W satisfy the relation (3.11) with p−1 = 1 +
αd−1.

We need this result for the special case of scalar A = a ∈ C0(Rd),B = b ∈ C0(Rd), and

Φ(x) = {φj(x)}mj=1(3.16)

with scalar α-homogeneous functions φj, j = 1, 2, . . . ,m. As the next assertion shows,
in this case the right-hand side of (3.11) can be easily evaluated.

Corollary 3.6. Suppose that Φ is given as in (3.16) with some α-homogeneous scalar
functions φj, j = 1, 2, . . . , k, with α > −d. Then

Gp(W ) = gp(W ) =
1

d(2π)d

∫
Sd−1

|X∞(ω)|p dω
∫
Rd
|a(x)b(x)|p dx,

where p−1 = 1 + αd−1.

Proof. The matrix T∞(x, ξ) is rank one and

s1
(
T∞(x, ξ)

)
= |a(x)| |b(x)| |X∞(ξ)|.

The required formula follows from Corollary 3.5. �

Consider two examples in which the above formula can be simplified further. The first
example is crucial for the proof of Theorem 2.3.

Example 3.7. Let m = 1, and let Φ(x) = φ(x) = |x|α, α > −d, be a scalar function.
Then (see, e.g. [14, Ch. 2, Sect. 3.3])

X∞(ξ) = 2d+απ
d
2

Γ
(
d+α
2

)
Γ
(
− α

2

) |ξ|−(d+α), α 6= 0, 2, 4, . . . ,

and X∞(ξ) = 0 for α = 0, 2, 4, . . . . Thus, for 1/p = 1 + α/d and α 6= 0, 2, 4, . . . , we have

µα,d :=
1

d(2π)d

∫
Sd−1

|X∞(ω)|pdω =

[
Γ
(
d+α
2

)
π
α
2 |Γ
(
− α

2

)
|

]p
1

Γ
(
d
2

+ 1
) .(3.17)

Now Corollary 3.6 yields

Gp(W ) = gp(W ) = µα,d

∫
Rd
|a(x)b(x)|pdx, 1

p
= 1 +

α

d
.

Note that the case of scalar functions Φ was studied in [1], see also [3, Theorem 10.9].
Next we consider an important example of a vector-valued function Φ. We do not need
it for the current paper but prepare it for future use.
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Example 3.8. Let m = d, and let Φ(x) = ∇|x|α+1 = (α + 1)|x|α−1x, α > −d. This
vector-valued function is homogeneous of order α and (similarly to [14, Ch. 2, Sect. 3.3])

X∞(ξ) = −i(α + 1)2d+απ
d
2

Γ
(
d+α+1

2

)
Γ
(−α+1

2

) |ξ|−(α+1+d)ξ, α 6= 1, 3, 5, . . . ,

and X∞(ξ) = 0 for α = 1, 3, 5, . . . . Thus, for 1/p = 1 + α/d and α 6= 1, 3, 5, . . . , we have

να,d :=
1

d(2π)d

∫
Sd−1

|X∞(ω)|pdω =

[
(α + 1)Γ

(
d+α+1

2

)
π
α
2 |Γ
(−α+1

2

)
|

]p
1

Γ
(
d
2

+ 1
) .(3.18)

Now Corollary 3.6 yields

Gp(W ) = gp(W ) = να,d

∫
Rd
|a(x)b(x)|pdx, 1

p
= 1 +

α

d
.

4. Spectral asymptotics for the model problem

The objective of this section is to find the spectral asymptotics for a model integral
operator. Recall that for any function K = K(x, y), x ∈ Rn, y ∈ Rd, we denote by Int(K)
the integral operator acting from L2(Rd) into L2(Rn). In each case the values of n and
d are clear from the context. If K(x, y) is Cs-valued then the “target” space L2(Rn) is
replaced by L2(Rn;Cs).

4.1. The model operator. Let a, bj,k, βj,k, j = 1, 2, . . . , N , k = 1, 2, . . . , N − 1, be
scalar functions such that{

a ∈ C∞0 (R3), bj,k ∈ C∞0 (R3N−3),

βj,k ∈ C∞(R3N),
(4.1)

for all j = 1, 2, . . . , N , k = 1, 2, . . . , N − 1. Let Φ ∈ C∞(R3 \ {0}) be a vector-valued
function with m scalar components, homogeneous of order α > −3, as defined in (3.16).
Consider the vector-valued kernel M(x̂, x) with mN components:M(x̂, x) = {Mj(x̂, x)}Nj=1, Mj(x̂, x) =

∑N−1
k=1 Mj,k(x̂, x),

Mj,k(x̂, x) = bj,k(x̂)Φ(xk − x)a(x)βj,k(x̂, x).
(4.2)

Our aim is to find an asymptotic formula for the singular values of the operator Int(M) :
L2(R3) → L2(R3N−3;CmN). Although the function Φ(x) is homogeneous, the results on
homogeneous kernels, notably Corollary 3.6, are not applicable directly, since the number
of “target” variables (i.e. 3N − 3) is greater than the number of the input variables (i.e.
3), unless N = 2. The proof of Theorem 4.1 below amounts to reducing the operator
Int(M) to a form for which Corollary 3.6 can be used. Recall that the weights A and B

in Corollary 3.6 are only required to be continuous (with compact support). Thus the
smoothness restrictions on the functions a, bj,k βj,k in the definition (4.2) can be relaxed,
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but for our purposes it suffices to assume conditions (4.1). Moreover, this assumption
allows us to avoid unnecessary technical complications.

We use the representations (x̂, x) = (x̃k,N , xk, x) introduced in (1.9). Denoteh(t) =

[∑N
j=1

∑N−1
k=1

∫
R3N−6 |bj,k(x̃k,N , t)βj,k(x̃k,N , t, t)|2dx̃k

] 1
2

, if N ≥ 3;

h(t) =
(
|b1,1(t)β1,1(t, t)|2 + |b2,1(t)β2,1(t, t)|2

) 1
2 , if N = 2.

(4.3)

Let X∞(ξ), ξ ∈ R3, be the function defined by (3.13) and (3.14).

Theorem 4.1. Let M be the operator defined above, where Φ ∈ C∞(R3 \ {0}) is a
homogeneous vector function of order α > −5/2. Then the operator Int(M) belongs to
Sp,∞, 1/p = 1 + α/3, and

Gp
(
Int(M)

)
= gp

(
Int(M)

)
=

1

24π3

∫
S2
|X∞(ω)|p dω

∫
R3

(
|a(x)h(x)|

)p
dx.(4.4)

Throughout the proof we assume that N ≥ 3. For N = 2 the argument simplifies, and
we omit it.

We begin the proof with the following lemma.

Lemma 4.2. For each j = 1, 2, . . . , N and each pair k, l = 1, 2, . . . , N − 1, k 6= l, we
have

Gp/2
(
Int(Mj,k)

∗ Int(Mj,l)
)

= 0.

Proof. Fix a j = 1, 2, . . . , N and write the kernel of the operator Int(Mj,k)
∗ Int(Mj,l):

Pk,l(x, y) = a(x)a(y)

∫
Mj,k(x̂, x)Mj,l(x̂, y)dx̂

= a(x)a(y)

∫
Φ(x− xk) · Φ(xl − y) bj,k(x̂)βj,k(x̂, x)bj,l(x̂)βj,l(x̂, y) dx̂.

Write x̂ = (x̃l,N , xl), dx̂ = dx̃l,Ndxl and change xl to xl + y, so that

Pk,l(x, y) = a(x)a(y)

∫
Φ(x− xk)· Φ(xl)bj,k(x̃l,N , xl + y)βj,k(x̃j,N , xj + y, x)

× bj,l(x̃l,N , xl + y)βj,l(x̃l,N , xl + y, y)dx̃l,Ndxl.

Because of the conditions (4.1) for all x ∈ R3 the kernel Pk,l is a C∞0 -function of y ∈ R3.
Hence by Proposition 3.3 the singular values of the operator Int(Pk,l) decay faster than
any negative power of their number. In particular, Gp/2

(
Int(Pk,l)

)
= 0, as required. �

4.2. Proof of Theorem 4.1 for βjk = 1. First we prove Theorem 4.1 for the simpler
case βj,k = 1. It follows from Lemma 4.2 and from the inequality (3.4) that

Gp/2

( N∑
j=1

∑
k 6=l

Int(Mj,k)
∗ Int(Mj,l)

)
= 0.
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By Corollary 3.1 this implies that

Gp/2
(
Int(M)∗ Int(M)

)
= Gp/2

( N∑
j=1

N−1∑
k=1

Int(Mj,k)
∗ Int(Mj,k)

)
,

and the same equality holds for the functional gp/2. Let us write the kernel F(x, y) of
the operator on the right-hand side, remembering that βj,k = 1:

F(x, y) = a(x)a(y)
N∑
j=1

N−1∑
k=1

∫
Φ(x− xk) · Φ(xk − y)|bj,k(x̂)|2dx̂

= a(x)a(y)
N∑
j=1

N−1∑
k=1

∫
R3

Φ(x− t) · Φ(t− y)

∫
R3N−6

|bj,k(x̃k,N , t)|2dx̃k,Ndt

= a(x)a(y)

∫
R3

Φ(x− t) · Φ(t− y) h(t)2dt,

where the function

h(t) =

[ N∑
j=1

N−1∑
k=1

∫
R3N−6

|bj,k(x̃k,N , t)|2dx̃k,N
] 1

2

coincides with (4.3) for βj,k = 1. Define the vector-valued kernel G by

G(x, y) = h(x)Φ(x− y)a(y),

so that Int(F) = Int(G)∗ Int(G). Thus the functionals Gp/2 for the operators Int(M)∗ Int(M)
and Int(G)∗ Int(G) coincide with each other, and the same applies to the functionals gp/2.
Consequently, by virtue of (3.3),

Gp
(
Int(M)

)
= Gp

(
Int(G)

)
, gp

(
Int(M)

)
= gp

(
Int(G)

)
.(4.5)

Since bj,k ∈ C∞0 , the function h belongs to C0. Thus, to find Gp and gp for the operator
Int(G) we can apply Corollary 3.6 with d = 3 and with the weights b = h ∈ C0 and
a ∈ C∞0 , which gives

Gp
(
Int(G)

)
= gp

(
Int(G)

)
=

1

24π3

∫
R3

∫
S2

(
|a(x)h(x)||X∞(ω)|

)p
dωdx,

with 1/p = 1 + α/3. By (4.5), this equality implies (4.4), which completes the proof of
Theorem 4.1 for βj,k = 1.

4.3. Proof of Theorem 4.1 for arbitrary βj,k ∈ C∞. We reduce the general case to
the one considered in Subsect. 4.2. Since bj,k and a are compactly supported, without
loss of generality we may assume that βj,k ∈ C∞0 (R3N). For each j = 1, 2, . . . , N represent

Mj = Aj +
N−1∑
k=1

Fj,k,
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where

Aj(x̂, x) =
N−1∑
k=1

Φ(xk − x)bj,k(x̂)a(x)βj,k(x̂, xj),

Fj,k(x̂, x) = Φ(xk − x)bj,k(x̂)a(x)
(
βj,k(x̂, x)− βj,k(x̂, xk)

)
, j = 1, 2, . . . , N − 1.

Representing

βj,k(x̂, x)− βj,k(x̂, xk) = (x− xk) ·
∫ 1

0

∇xβj,k(x̂, xk + s(x− xk))ds =: (xk − x) · σj,k(x̂, x),

we can rewrite Fj,k as

Fj,k(x̂, x) = Ξj,k(x̂, x)bj,k(x̂)a(x), where Ξj,k(x̂, x) = Φ(xk − x)
[
(xk − x) · σj,k(x̂, x)

]
.

Remembering that Φ is homogeneous of order α and that σj,k ∈ C∞0 (R3N), we conclude
that ∣∣∂mx Ξj,k(x̂, x)

∣∣ . |x− xj|α+1−|m|, m ∈ N3
0.

Since σj,k is compactly supported, the kernel Ξj,k(x̂, x), as a function of x ∈ R3, belongs

to Hl(R3) for all 0 ≤ l < α + 5/2. As α > −5/2 the set of such values l is non-empty.
Moreover, the Hl-norm of the kernel, as a function of x̂ ∈ R3N−3, is uniformly bounded,
and hence it trivially belongs to L2(R3N−3, |bj,k(x̂)|2dx̂). By virtue of Proposition 3.3, we
obtain that Gq(Int(Fj,k)) = 0, 1/q = 1/2 + l/3. Note that

1

q
≥ 1

p
= 1 +

α

3
, for l ≥ α +

3

2
.

Consequently, taking l to be the only non-negative integer in the interval [α+3/2, α+5/2),
we conclude that Gp(Int(Fj,k)) = 0, and, by (3.4),

Gp

(N−1∑
k=1

Int(Fj,k)

)
= 0.

By Corollary 3.1,

Gp
(
Int(M)

)
= Gp

(
Int(A)

)
, gp

(
Int(M)

)
= gp

(
Int(A)

)
,(4.6)

where A is the vector function with components Aj(x̂, x), j = 1, 2, . . . , N . To find Gp
and gp for the operator Int(A), we observe that each kernel Aj(x̂, x) has the form

N−1∑
k=1

Φ(xk − x)b̃j,k(x̂)a(x) with b̃j,k(x̂) = bj,k(x̂)βj,k(x̂, xk),

Using the result of Subsect 4.2 we obtain the formula (4.4) for the operator Int(A) with
the function h defined in (4.3). In view of (4.6) this implies (4.4) for the operator Int(M),
as claimed. �
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Corollary 4.3. Let Φ(x) be as in Example 3.7 with α = 1, d = 3, i.e. Φ(x) = |x| and
1/p = 1 + α/d = 4/3. According to (4.4) and (3.17),

G3/4

(
Int(M)

)
= g3/4

(
Int(M)

)
= µ1,3

∫
R3

(
|a(x)h(x)|

) 3
4 dx,(4.7)

where µα,d is defined in (3.17).

Corollary 4.4. Let Φ(x) be as in Example 3.8 with α = 0, d = 3, i.e. Φ(x) = ∇|x| =
|x|−1x and 1/p = 1 + α/d = 1. According to (4.4) and (3.18),

G1

(
Int(M)

)
= g1

(
Int(M)

)
= ν0,3

∫
R3

|a(x)h(x)| dx,

where να,d is defined in (3.18).

In the current paper we need only Corollary 4.3. Corollary 4.4 is needed for future
use.

5. Factorization of Γ: operator Ψ

5.1. Reformulation of the problem. Using the functionals (3.2), one can rewrite the
sought formula (1.5) as

G3/8(Γ) = g3/8(Γ) = A.

Since Γ = Ψ∗Ψ with the operator Ψ : L2(R3)→ L2(R3N−3) defined in (2.9), by (3.3) the
above equalities rewrite as

G3/4(Ψ) = g3/4(Ψ) = A.(5.1)

Thus the main Theorem 2.3 can be recast as follows:

Theorem 5.1. Under the conditions of Theorem 2.3 the formula (5.1) holds with the
constant A which is defined in (2.7).

The rest of the paper is focused on the proof of Theorem 5.1.
As explained in the Introduction, at the heart of the proof is the formula (2.5) for

the function ψ, which translates to the representation (2.12) for the kernels ψj defined
in (2.8). This representation allows us to reduce the problem to the model operator
considered in Sect. 4 with the function Φ(x) = |x|. At the first stage of this reduction

we construct C∞0 approximations of the functions ξ̃j,k and η̃j,k from (2.12).

5.2. Cut-off functions. Firt we construct appropriate cut-offs. Fix a δ > 0. Along
with the sets (2.1) introduce

Sl,s(δ) = Ss,l(δ) = {x ∈ R3N : |xl − xs| > δ}, 0 ≤ l < s ≤ N,(5.2)
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and for all k = 0, 1, . . . , N − 1, define

Uk(δ) =

( ⋂
0≤l<s≤N−1

Sl,s(δ)

)⋂( ⋂
0≤s≤N−1

s 6=k

Ss,N(δ)

)
.(5.3)

Comparing with (2.2) we see that Uk(δ) ⊂ Uk,N , and for x ∈ Uk(δ) all the coordinate
pairs, except for xk and xN , are separated by a distance δ. Similarly to (2.3) define the
diagonal set

U
(d)
k (δ) = {x ∈ Uk(δ) : xj = xN} ⊂ U

(d)
k,N .

Recall that the representation (2.12) holds on the domain Ω̃j,k which satisfies (2.10) for

all j = 1, 2, . . . , N , k = 0, 1, . . . , N − 1. We construct a compact subset of Ω̃j,k in the
following way. For R > 0 let

Uk(δ, R) = Uk(δ)
⋂

(BR)N ,

U
(d)
k (δ, R) = {x ∈ Uk(δ, R) : xk = xN},

where BR = {x ∈ R3 : |x| < R}. The set U
(d)
k (δ, R) is bounded and its closure belongs

to Ω̃j,k for all δ > 0, R > 0. Therefore, there exists an ε0 = ε0(δ, R) > 0 such that the
ε-neighbourhood

Ω̃k(δ, R, ε) := {x ∈ Uk(δ, R) : |xk − xN | < ε},(5.4)

together with its closure, belongs to Ω̃j,k for all ε ∈ (0, ε0):

Ω̃k(δ, R, ε) ⊂ Ω̃j,k, ∀ε ∈ (0, ε0).(5.5)

Now we specify C∞0 cutoffs supported on the domains Ω̃k(δ, R, ε). Let θ ∈ C∞0 (R) and
ζ = 1− θ be as defined in (1.10), (1.11). Denote

Yδ(x̂) =
∏

0≤l<s≤N−1

ζ
(
|xl − xs|(4δ)−1

)
.(5.6)

By the definition of ζ,

suppYδ ⊂
⋂

0≤l<s≤N−1

Sl,s(2δ),(5.7)

where Sl,s( · ) is defined in (5.2). Define also cut-offs at infinity. Denote

QR(x̂) =
∏

1≤l≤N−1

θ
(
|xl|R−1

)
, KR(x) = θ

(
|x|R−1

)
.(5.8)

Lemma 5.2. Let Ω̃k(δ, R, ε) be the set introduced in (5.4). Then for all ε < min{ε0, δ}
the support of the function

QR(x̂)KR(x)Yδ(x̂)θ
(
|x− xk|ε−1

)
(5.9)
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belongs to Ω̃k(δ, R, ε) for all k = 0, 1, . . . , N − 1.

Proof. Assume that x belongs to the support of the function (5.9). In view of (5.7), for
such x we have

|xl − xs| > 2δ, 0 ≤ l < s ≤ N − 1, and |x− xk| < ε.(5.10)

As ε < δ, for all s = 0, 1, . . . , N − 1, s 6= k, we can write

|x− xs| ≥ |xk − xs| − |x− xk| > 2δ − ε > δ,

By definition (5.3), together with (5.10) this gives x ∈ Uk(δ). Moreover, since supp(QRKR) ⊂
(BR)N , this means that x ∈ Uk(δ, R). Now the claimed inclusion follows from the defi-
nition (5.4). �

5.3. Using the cut-offs introduced above we construct a convenient approximation for
the kernels ψj(x̂, x). Taking if necessary, a smaller ε0 in (5.5), we will assume that
ε0(δ, R) ≤ δ, and hence for all ε < ε0(δ, R), apart from the inclusion (5.5) we have

Lemma 5.2. Thus, for these values of ε the real analytic functions ξ̃j,k, η̃j,k are well-
defined on the support of (5.9), and hence the kernel

Υj[δ, R, ε](x̂, x) = QR(x̂)Yδ(x̂)KR(x)
N−1∑
k=1

θ
(
|x− xk|ε−1

)
|x− xk|η̃j,k(x̂, x),(5.11)

is well-defined for all (x̂, x) ∈ R3N , and each of the functions

QR(x̂)Yδ(x̂)KR(x)θ
(
|x− xk|ε−1

)
η̃j,k(x̂, x), k = 1, 2, . . . , N − 1,

is C∞0 (R3N). Our objective is to prove that the vector-valued kernel

Υ[δ, R, ε](x̂, x) =
{

Υj[δ, R, ε](x̂, x)
}N
j=1

is an approximation for Ψ(x̂, x)(see (2.9)) in the following sense.

Lemma 5.3. The following relations hold:

G3/4(Ψ) = lim
δ→0
R→∞

lim
ε→0

G3/4

(
Int(Υ[δ, R, ε])

)
, g3/4(Ψ) = lim

δ→0
R→∞

lim
ε→0

g3/4
(
Int(Υ[δ, R, ε])

)
,

where the limits on the right-hand side exist.

The proof of this lemma is given in the next section.

6. Proof of Lemma 5.3

6.1. Spectral estimates for Ψ. Our proof of Lemma 5.3 relies on the bounds obtained
in [22]. Let Cn = (0, 1)3 + n, n ∈ Z3. Assume that b ∈ L∞(R3N−3) and that a ∈ L2loc(R3)
is such that

sup
n∈Z3

‖a‖L2(Cn) <∞.
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Then the functionals

Sκ(a) =

[∑
n∈Z3

e−
3
4
κ|n|‖a‖

3
4

L2(Cn)

] 4
3

and

Mκ(b) =

[∫
R3N−3

|b(x̂)|2e−2κ|x̂|dx̂
] 1

2

,

are both finite for all κ > 0. Recall that the functional Gp is defined in (3.2), and ψj –
in (2.8). The next bound for the operators b Int(ψj)a follows from [22, Theorem 3.1].

Proposition 6.1. Assume that ψ satisfies (1.4), and let j = 1, 2, . . . , N . Let the func-
tions a and b be as described above. Then b Int(ψj)a ∈ S3/4,∞ and for some κ ≤ κ0 we
have

G3/4(b Int(ψj)a) .
(
Mκ(b)Sκ(a)

) 3
4 .(6.1)

6.2. Proof of Lemma 5.3. The strategy of the proof is to “trim down” the kernel (2.9)
in several steps, by multiplying it by appropriate cut-offs including the functions (5.6)
and (5.8), or dropping some of the components, until it reduces to the kernel (5.11). At
every step of this process we justify the trimming using either Corollary 3.1 or Corollary
3.2.

The first stage is described in the next lemma.

Lemma 6.2. The following relations hold:

G3/4(Ψ) = lim
δ→0
R→∞

G3/4(QRYδΨKR), g3/4(Ψ) = lim
δ→0
R→∞

g3/4(QRYδΨKR),(6.2)

where the limits on the right-hand side exist.

Proof. First we check thatlim
δ→0

G3/4

(
(I − Yδ)Ψ

)
= 0,

lim
R→∞

G3/4

(
(I −QR)Ψ

)
= 0, lim

R→∞
G3/4

(
Ψ(I −KR)

)
= 0.

(6.3)

It suffices to check the above relations for each operator Int(ψj), j = 1, 2, . . . , N . Consider
first (I − Yδ) Int(ψj). Since

1− Yδ(x̂) ≤
∑

0≤l<s≤N−1

θ
(
|xl − xs|(4δ)−1

)
,

it follows from (6.1) that

G3/4

(
(1− Yδ) Int(ψj)

)
.
(
Mκ(1− Yδ)

)3/4
.

∑
0≤l<s≤N−1

[ ∫
θ
(
|xl − xs|(4δ)−1

)2
e−2κ|x̂|dx̂

]3/8
. δ9/8 → 0, δ → 0,



22 ALEXANDER V. SOBOLEV

and hence the first relation in (6.3) holds.
In a similar way one estimates (I − QR) Int(ψj) and Int(ψj)(I − KR). Estimate, for

example, the first of these operators. Since

1−QR(x̂) ≤
∑

1≤l≤N−1

ζ
(
|xl|R−1

)
,

it follows from (6.1) again that

G3/4

(
(I −QR) Int(ψj)

)
.
(
Mκ(1−QR)

)3/4
.

∑
0≤l≤N−1

[ ∫
R3N−3

ζ(|xl|R−1)2e−2κ|x̂| dx̂
]3/8
. e−3κR/8 → 0, R→∞,

whence the second equality in (6.3).
Represent Ψ in the form

Ψ = QRYdΨKR + (I −QR)Ψ +QR(1− Yδ)Ψ +QRYδΨ(I −KR),

According to (3.4),

G3/4

(
Ψ−QRYdΨKR

) 3

7 ≤ G3/4

(
(I −QR)Ψ

) 3

7

+ G3/4

(
QR(1− Yδ)Ψ

) 3

7 + G3/4

(
QRYδΨ(I −KR)

) 3

7

≤ G3/4

(
(I −QR)Ψ

) 3

7

+ G3/4

(
(1− Yδ)Ψ

) 3

7 + G3/4

(
Ψ(I −KR)

) 3

7 .

By virtue of (6.3) the right-hand side tends to zero as δ → 0, R→∞. By Corollary 3.2
this implies (6.2). �

At the next stage we partition the kernel

QR(x̂)Yδ(x̂)Ψ(x̂, x)KR(x)(6.4)

of the operator QRYδΨKR on the right-hand side of the formulas (6.2). We do this by
introducing the cut-offs θ

(
|x − xk|ε−1

)
, k = 0, 1, . . . , N − 1, assuming that ε < δ. In

view of the definition (5.6) it is straightforward to check that under this condition, we
have

Yδ(x̂)
N−1∑
k=0

θ
(
|x− xk|ε−1

)
+ Yδ(x̂)

N−1∏
k=0

ζ
(
|x− xk|ε−1

)
= Yδ(x̂),

and hence the j’th component of (6.4) can be represented as follows:

QR(x̂)Yδ(x̂)ψj(x̂, x)KR(x) =
N−1∑
k=0

φj,k[δ, R, ε](x̂, x) + τj[δ, R, ε](x̂, x)(6.5)
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with

φj,k[δ, R, ε](x̂, x) = QR(x̂)Yδ(x̂)θ
(
|x− xk|ε−1

)
ψj(x̂, x)KR(x), k = 0, 1, . . . , N − 1,

τj[δ, R, ε](x̂, x) = QR(x̂)Yδ(x̂)
N−1∏
k=0

ζ
(
|x− xk|ε−1

)
ψj(x̂, x)KR(x).

First we show that the kernels τj[δ, R, ε] and φj,0[δ, R, ε] give negligible contributions to
the asymptotics.

Lemma 6.3. For each δ > 0, R > 0 and ε < δ one has

G3/4

(
Int
(
τj[δ, R, ε]

))
= 0, j = 1, 2, . . . , N.(6.6)

Proof. By the definitions (5.6) and (1.11), the support of the kernel τj[δ, R, ε] belongs to
the bounded domain ⋂

0≤l<s≤N

Sl,s(ε/2) ∩ (BR)N .

The function ψj is real-analytic on this domain and it is uniformly bounded together with
all its derivatives, so that τj[δ, R, ε] ∈ C∞0 (R3N). By Proposition 3.3, Gp(Int(τj[δ,R, ε])) =
0 for all p > 0, and in particular, for p = 3/4, as claimed. �

Lemma 6.4. For each δ > 0, R > 0 one has

lim
ε→0

G3/4

(
Int
(
φj,0[δ, R, ε]

))
= 0, j = 1, 2, . . . , N.(6.7)

Proof. As x0 = 0 by definition, the kernel φj,0[δ, R, ε] has the form

φj,0[δ, R, ε](x̂, x) = QR(x̂)Yδ(x̂)ψj(x̂, x)θ
(
|x|ε−1

)
KR(x).

Estimating QRYδ ≤ 1, KR ≤ 1, one sees that the singular values of Int(φj,0[δ, R, ε]) do
not exceed those of the operator Int(ψj)a with the weight a(x) = θ(|x|ε−1). By (6.1),

G3/4(Int(ψj)a) . Sκ(a)3/4 .

(∫
R3

θ
(
|x|ε−1

)2
dx

)3/8

. ε9/8 → 0, ε→ 0.

This implies (6.7). �

Corollary 6.5. Denote by α[δ, R, ε](x, x) = {αj[δ, R, ε]}Nj=1 the vector-valued kernel with
the components

αj[δ, R, ε](x̂, x) =
N−1∑
k=1

φj,k[δ, R, ε](x̂, x).

Then for all δ > 0 and R > 0, we haveG3/4(QRYδΨKR) = lim
ε→0

G3/4(Int(α[δ, R, ε])),

g3/4(QRYδΨKR) = lim
ε→0

g3/4(Int(α[δ, R, ε])),
(6.8)
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where the limits on the right-hand side exist.

Proof. By (6.5), the kernel QRYδψjKR has the form

αj[δ, R, ε] + φj,0[δ, R, ε] + τj[δ, R, ε].

By virtue of (3.4) and (6.6), (6.7), we have

lim
ε→0

G3/4(Int
(
φj,0[δ, R, ε] + τj[δ, R, ε]

)
= 0.

Now (6.8) follows from Corollary 3.2. �

Completion of the proof of Lemma 5.3. According to Lemma 5.2, under the condition
ε < ε0(δ, R), the support of each kernel

φj,k[δ, R, ε], j = 1, 2, . . . , N, k = 1, 2, . . . , N − 1,

belongs to Ω̃k(δ, R, ε), see (5.4) for the definition. Therefore one can use the representa-
tion (2.12) for the function ψj:

αj[δ, R, ε](x̂, x) =
N−1∑
k=1

φj,k[δ, R, ε](x̂, x) =
N−1∑
k=1

QR(x̂)Yδ(x̂)θ
(
|x− xk|ε−1

)
ξ̃j,k(x̂, x)KR(x)

+
N−1∑
k=1

QR(x̂)Yδ(x̂)θ
(
|x− xk|ε−1

)
|xk − x|η̃j,k(x̂, x)KR(x).

Each term in the first sum on the right-hand side is C∞0 (R3N). Thus, by Proposition 3.3,
the functional Gp for the associated operator equals zero for all p > 0, and in particular,
for p = 3/4. The second sum coincides with the kernel Υj[δ, R, ε](x̂, x), defined in (5.11).
Therefore, by Corollary 3.1,{

G3/4(Int(α[δ, R, ε])) = G3/4(Int(Υ[δ, R, ε])),

g3/4(Int(α[δ, R, ε])) = g3/4(Int(Υ[δ, R, ε])),
(6.9)

for each δ > 0, R > 0 and ε < ε0(δ, R). Putting together (6.2), (6.8) and (6.9), and using
Corollary 3.2, we conclude the proof of Lemma 5.3. �

7. Proof of Theorems 2.2 and 5.1, 2.3

Lemma 7.1. The operator Int(Υ[δ, R, ε]) belongs to S3/4,∞ for all δ > 0, R > 0, ε <
ε0(δ, R) and

G3/4

(
Int(Υ[δ, R, ε])

)
= g3/4

(
Int(Υ[δ, R, ε])

)
= µ1,3

∫ (
KR(t)Hδ,R(t)

) 3
4dt,(7.1)

where

Hδ,R(t) = QR(t)Yδ(t)
(
|η̃1,1(t, t)|2 + η̃1,2(t, t)|2

)1/2
, if N = 2,
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and

Hδ,R(t) =

[ N∑
j=1

N−1∑
k=1

∫
R3N−6

∣∣QR(x̃k,N , t)Yδ(x̃k,N , t)η̃j,k(x̃k,N , t, t)
∣∣2dx̃k,N] 1

2

, if N ≥ 3,

(7.2)

and µα,d is defined in (3.17).

Proof. The kernel Υ[δ, R, ε] (see (5.11)) has the form (4.2) with

a(x) = K2R(x), bj,k(x̂) = Q2R(x̂)Yδ/2(x̂),

βj,k(x̂, x) = θ
(
|x− xk|ε−1

)
η̃j,k(x̂, x)QR(x̂)Yδ(x̂)KR(x),

and the homogeneous function Φ(x) = |x|. Here we have used the fact that

QR(x̂)Q2R(x̂) = QR(x̂), Yδ(x̂)Yδ/2(x̂) = Yδ(x̂) and KR(x)K2R(x) = KR(x).

Therefore we can use Corollary 4.3. It is immediate to see that in this case the function
h defined in (4.3), coincides with Hδ,R, so that (4.7) entails (7.1), as required. �

Proof of Theorems 2.2, 5.1 and 2.3. By Lemma 5.3, each term in the relation (7.1) has a
limit as δ → 0, R→∞. Therefore the integral on the right-hand side of (7.1) is bounded
uniformly in δ > 0, R > 0. Assume for convenience that the function θ defined in (1.11)
is monotone decreasing for t ≥ 0. Therefore the pointwise convergencies

Yδ(x̃k,N , t)→ 1, δ → 0 and KR(t)→ 1, QR(x̃k,N , t)→ 1, R→∞,

are monotone increasing. By the Monotone Convergence Theorem, the integrandKR(t)Hδ,R(t)

on the right-hand side of (7.1) converges for a.e. t ∈ R3 as δ → 0, R→∞ to an L3/4(R)-
function, which we denote by H̃(t), and the integral in (7.1) converges to

µ1,3

∫ (
H̃(t)

)3/4
dt.(7.3)

If N = 2, then this concludes the proof of Theorem 2.2, since in this case

Hδ,R(t)→
(
|η̃1,1(t, t)|2 + η̃2,1(t, t)|2

)1/2
,

a.e. t ∈ R3, and by virtue of (2.13) this limit coincides with H(t).
If N ≥ 3, then the convergence to H̃(t) implies that for a.e. t ∈ R3 the function

KR(t)Hδ,R(t), and hence Hδ,R(t), is bounded uniformly in δ and R. Applying the Mono-
tone Convergence Theorem to the integral (7.2), we conclude that the a.e.-limit

|η̃j,k(x̃k,N , t, t)| = lim
δ→0,R→∞

∣∣QR(x̃k,N , t)Yδ(x̃k,N , t)η̃j,k(x̃k,N , t, t)
∣∣,

belongs to L2(R3N−6), a.e. t ∈ R3, and

lim
δ→0,R→∞

Hδ,R(t) = H(t), a.e. t ∈ R3,
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where we have used the formula (2.13) for H. Thus H = H̃ ∈ L3/4(R3). As (2.13) is
equivalent to (2.6), this completes the proof of Theorem 2.2.

An easy calculation shows that µ1,3 = 3−1(2/π)5/4, so that the limit (7.3) coincides
with the coefficient A in (2.7). Together with Lemma 5.3 this completes the proof of
Theorem 5.1. As explained before, Theorem 5.1 is equivalent to Theorem 2.3. This
completes the proof. �
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