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Abstract: Artificial Intelligence (AI) has been widely employed in the medical field in recent years
in such areas as image segmentation, medical image registration, and computer-aided detection.
This study explores one application of using Al in adaptive radiation therapy treatment planning
by predicting the tumor volume reduction rate (TVRR). Cone beam computed tomography (CBCT)
scans of twenty rectal cancer patients were collected to observe the change in tumor volume over the
course of a standard five-week radiotherapy treatment. In addition to treatment volume, patient data
including patient age, gender, weight, number of treatment fractions, and dose per fraction were also
collected. Application of a stepwise regression model showed that age, dose per fraction and weight
were the best predictors for tumor volume reduction rate.
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1. Introduction

Approximately 50% of all cancer patients are treated using radiotherapy, with ap-
proximately 40% of patients who receive curative treatment for cancer being within this
figure [1]. A patient’s post diagnosis radiotherapy pathway may be considered to pass
through several stages including pre-treatment imaging, treatment planning (TP), simula-
tion, radiotherapy accessory production, radiotherapy verification, radiation delivery, and
patient monitoring [2]. Clinicians depend on the information extracted from the images
taken prior to and during treatment to develop an appropriate treatment plan that may
be adapted to anatomical changes during treatment. Therefore, enhanced imaging modal-
ities resulting in more precise data may make the therapy more efficacious. Previously,
technological advances have enabled clinicians to model the delivered radiation fields to
the tumor shape and have led to advanced treatments, such as intensity modulated radia-
tion therapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) [3]. In this era,
further software and technology developments allow rapid and consistent production of
automated treatment planning [4]. There are many classifications of automated treatment
planning, such as knowledge-based, expert-based, or Al based treatment planning [5]. An
oncologist can look at approximately 2400 treatment planning cases in 10 years, while
Al can start with 2400 treatment planning cases to train itself and reach millions of cases
within a concise period of time [6]. Al, and more specifically machine learning, has also
been proposed as a tool to increase automation and optimization of workflows in radio-
therapy [7-9]. By implementing the concept of Al to interrogate the tremendous amount of
treatment data and medical images available at any hospital, one may enable the delivery
of improved stratified or personalized treatment [10,11].
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Information that may help with accurate decisions on radiation therapy treatment
planning include a patient’s tumor mass, height, weight, body mass index and previous
exposure to radiation. Together with internal medical images of the patient that are ob-
tained and analyzed, one may personalize the therapy by modifying different treatment
planning parameters. Al has already been employed broadly in recent years in the medical
field including data mining and knowledge discovery in medicine, medical expert sys-
tems, machine learning-based medical systems, and medical signal and image processing
techniques [6,12,13]. Researchers have also demonstrated promising progress and a future
for Al to be widely used in medical imaging, image segmentation, medical image regis-
tration, computer-aided detection (CAD) and diagnosis systems, as well as in treatment
planning [5,14,15].

The radiotherapy treatment planning (TP) primary goal is reducing radiation dose to
surrounding organs-at-risk (OAR) while maximizing dose to the tumor or target volume.
This can be achieved by collecting accurate information about the tumor and the selected
treatment, such as beam intensity shaping, planning margin, calculation of organ motion,
therapy technique selection, and optimization of treatment planning [14]. An initial radia-
tion treatment plan may not suit a patient well throughout the entire course of treatment
due to, for example, post-surgical oedema, weight loss, or a change in tumor size or shape.
Therefore, an adaptive plan may be created by acquiring a new set of images at some point
over the treatment course and applying new parameters, e.g., new volumes or different
prescription dose levels, for the remainder of the treatment. This process is called adaptive
radiotherapy (ART). The need for quality assurance and methodical implementation of
Al in clinical practice has been highlighted [16]. Furthermore, ART has yet to be fully
implemented in clinical practice with questions still remaining on optimum practices,
including when imaging should be undertaken to help with identification of patients re-
quiring adaptive treatment plans [17,18]. This study therefore investigates the possibility of
using Al in adaptive radiation therapy (ART). Complete treatment information for 20 rectal
cancer cases was obtained from King Abdulaziz University Hospital to attempt using Al
in determining the rate of target volume change during the treatment. This may lead to a
better understanding of the implementation of one application of Artificial Intelligence in
adaptive radiotherapy treatment planning.

2. Materials and Methods
2.1. Tumour Site Delineation and Contouring

Twenty randomly selected patients with rectal cancer treated at King Abdulaziz Uni-
versity Hospital, a specialist radiation oncology unit, were identified using a commercially
available record and verification system, Mosaic® (Elekta AB, Sweden).

The patients mainly received a total dose of 45 Gy or 50 Gy in 25 or 28 fractions
respectively of 1.8 or 2 Gy per fraction (RCR 2021). Inclusion criteria:

Aged 18-80 years old;

Locally advanced adenocarcinoma of the rectum;

Received neoadjuvant long course chemo-radiotherapy;

Treated with Elekta LINAC machines using the Monaco treatment planning system;
Daily CBCT was performed for image verification throughout the whole treatment course.

Full details on each respective patient including variations on this fractionation regi-
men are tabulated in Table 1. Five Cone Beam Computed Tomography (CBCT) Scans were
obtained for each patient, one CBCT per week for the entire five weeks of the treatment
course. CBCTs were then transferred to a commercially available Treatment Planning
System, Monaco® (Elekta AB, Sweden) for contouring. Rectal contours were delineated on
each CBCT after image registration with a pre-treatment CT planning scan to obtain the
volume of the rectum over the treatment course.

Approximately 100 rectal volume values from CBCTs were used in the analysis in
addition to the rectal volumes of CT planning contours. The CBCT taken in the first week
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of treatment was used as the reference image. Such sample numbers are in line with other
similar reported studies on Al in radiotherapy [19].

Table 1. Patient data collected from King Abdulaziz University Hospital, Radiotherapy Department.

GTV CBCT CBCT CBCT CBCT CBCT  Total Patient Patient No. of Dose per  Patient
Patient (em?) Week1l Week2 Week3 Week4 Week5 Dose Age Gender Treatment Fraction Weight
(cm®) (em®) (cm®) (cm3) (cm®) Gy  (Years) Fractions (Gy) Kg)

Patient 1 89.9 87.07 74.97 49.35 55.3 64.79 50 71 Female 28 1.8 45
Patient 2 47.6 48.62 39.39 40.37 40.65 40.46 50 60 Male 25 2 84
Patient3  57.21 51.498 43.099 40.199 40.698 45.188 50 58 Female 28 1.8 87
Patient 4 41.42 34.157 37.807 35.105 35.437 31.321 50 45 Female 28 1.8 69
Patient5  90.66 89.871 93.785 92.89 90.643 87.908 50 53 Female 28 1.8 50
Patient 6 227 2239 225.35 22477 228.54 227.98 50 50 Male 28 1.8 77
Patient7  40.86 36.986 38.564 37.654 39.876 34.874 50 67 Female 25 2 70
Patient 8 68.03 61.985 63.986 64.963 67.734 67.097 50 50 Male 28 1.8 -

Patient 9 105 102.95 101.79 104.88 106.78 102.65 50 74 Male 25 2 -

Patient 10 51.86 35.482 36.725 38.125 40.228 31.245 50 75 Male 28 1.8 60
Patient 11 32.06 46.151 33.645 37.559 44.052 38.312 50 56 Male 25 2 72
Patient 12 47.45 38.38 42.522 45.725 41.711 48.162 50 56 Male 28 1.8 -

Patient 13 35.9 34.486 32.686 33.512 28.759 29.051 59 59 Male 33 1.8 50
Patient 14  67.48 86.735 82.028 103 96.808 96.375 45 39 Female 25 1.8 -

Patient 15  89.92 78.076 74.978 68.008 65.305 64.289 45 71 Female 25 1.8 42
Patient 16 ~ 68.87 67.142 57.852 88.589 57.852 57.895 50 37 Male 25 1.8 60
Patient17  64.85 63.481 53.649 61.882 54.191 51.232 50 59 Male 28 1.8 76
Patient 18  74.34 69.04 42.188 43.357 29.12 32.043 50 68 Male 28 1.8 83
Patient19  56.46 61.975 59.67 55.891 58.569 60.864 45 38 Female 25 1.8 56
Patient20  74.98 80.324 78.983 77.973 73.848 74.868 50 71 Male 25 2 88

2.2. Intra-Treatment Rectum Tumor Volume Change

The tumor target volume was defined on the prior planning CT and for all treatment
CT images, and three-dimensional tumor volumes were calculated on the planning system
as per RECIST v.1.1 [20]. Changes in the gross tumor volume (GTV) between the CT images
were analyzed. Rectal volume change rate was defined as the percentage (%) reduction of
the GTV in relation to the pre-RT GTV, where:

(Vo — W)
0

Rectal volume change rate = x 100 @)
where V) is the pre-RT gross tumor volume, t represents time, and V; the post-RT Gross
Tumor Volume. Table 2 demonstrates the volume change rate of the 20 patients included in
this study. Patients had a median age of 57 (range 37-75) years. The mean pre-RT tumor
volume was 71.6 + 40.7 cm?, and the mean post-RT tumor volume was 64.3 £ 43.2 cm?.
As illustrated in Table 2, the mean tumor volume reduction rate (TVRR) of 10.9 % (range,
56.9 to —42.8) was calculated according to equation 1. Four patients resulted in a negative
TVRR with their tumor volumes appearing enlarged after radiotherapy. There may be a
number of possible explanations for this. This may be due to different levels of rectal filling
throughout the treatment course on the assumption the surface area of the delineated tumor
is increased when the rectum is distended due to fecal material or gas. This is common
despite patients’ instructions regarding bowel preparation before each radiotherapy session.
Some patients fail to follow these instructions or may suffer from chronic constipation or
other co-morbidities. However, it may relate to actual tumor growth or proliferation, an
inflammatory response to treatment, tissue swelling, or uncertainties in contouring, further
investigation of this is required.
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Table 2. Tumor volume change for all patients.

Patient Total Dose Gy  Age (Years) Gender No. ;):a"f:ie:rtllsnent Fr;]i(t)iscfnp(eéy) “ﬁ:gg? t szlr:lgn;eo v
Patient 1 50.4 71 Female 28 1.8 45 27.93
Patient 2 50 60 Male 25 2 84 15
Patient 3 50.4 58 Female 28 1.8 87 21.02
Patient 4 50.4 45 Female 28 1.8 69 24.38
Patient 5 50.4 53 Female 28 1.8 50 3.03
Patient 6 50.4 50 Male 28 1.8 77 —0.43
Patient 7 50 67 Female 25 2 70 14.65
Patient 8 50.4 50 Male 28 1.8 - 1.37
Patient 9 50 74 Male 25 2 - 2.23

Patient 10 50.4 75 Male 28 1.8 60 39.75
Patient 11 50 56 Male 25 2 72 —19.5
Patient 12 50.4 56 Male 28 1.8 - —1.51
Patient 13 59.4 59 Male 33 1.8 50 19.07
Patient 14 45 39 Female 25 1.8 - —42.81
Patient 15 45 71 Female 25 1.8 42 28.5
Patient 16 50.4 37 Male 25 1.8 60 15.94
Patient 17 50.4 59 Male 28 1.8 76 20.99
Patient 18 50.4 68 Male 28 1.8 83 56.9
Patient 19 45 38 Female 25 1.8 56 —7.81
Patient 20 50 71 Male 25 2 88 0.15

2.3. Relation between TVRR and a Patient’s Clinical Variables

The relation between the target volume reduction rate and a patient’s clinical variables
such as age, total dose (Gy), gender, number of treatment fractions, dose per fraction, and
patient weight was analyzed. Tables 1 and 2 record the different variables in the patient
dataset. Thus, the range of the variables may differ substantially between patients. Hence,
using the original scale will by default apply more weight on the variables with an extensive
range. Therefore, feature rescaling to independent variables or features of data, in data pre-
processing were applied. The purpose of employing feature rescaling is to ensure a patient’s
different clinical variables are on almost the same scale, in order that each variable is equally
weighted in importance. The standardization outcome is that the variables will be rescaled to
ensure the mean and the standard deviation are 0 and 1, respectively.

Ds = (D - Dm)/Dstd (2)

where D is the original data, D the scaled data, and Dy, and Dgy the mean and standard
deviation of each variable, respectively.

The significance of each patient’s clinical variable was examined independently using
a statistical F-test. These were based on the hypothesis that the variable values put together
with the tumor volume reduction rate (TVRR) values are drawn from populations with
the same mean, against the alternative hypothesis that the population means are not all
the same. A small p-value of the test statistic implies that the corresponding variable is
essential. The output score is —-log(p). Therefore, a considerable score value indicates that
the corresponding variable is important. The mixture technique used in this study relies
on defining the Nano-particles (NPs) as a mixture with its parent volume (the volume the
NPs are embedded within). This technique was reported to overestimate the dose in some



Appl. Sci. 2022,12,725

50f11

cases [21], but is faster to compute, easier to implement, and is useful when the objective
is to compare different types of NPs and provide a general understanding of their effect
on dosimetric quantities. The major drawback of this technique is that it does not allow
studying the size or shape of the NPs, which is out of this study’s scope.

2.4. Data Analysis

Stepwise regression is a method that iteratively examines each independent variable’s
statistical significance in a linear regression model. The underlying goal of stepwise
regression is, through a series of tests (F-tests, t-tests), to find a set of independent variables
that significantly influence the dependent variable.

In statistics, the p-value is the probability of obtaining results at least as the observed
results of a statistical hypothesis test, assuming that the null hypothesis is correct. The p-
value is used as an alternative to rejection points to provide the smallest level of significance
at which the null hypothesis would be rejected. A smaller p-value means that there is more
substantial evidence in favor of the alternative hypothesis. We then examine how well a
linear regression model fits the data using the selected variables.

3. Results

Figure 1 shows a bar plot of the patients’ clinical variables importance score. The figure
shows that dose per fraction and weight have a higher correlation with tumor volume
change than other clinical variables. However, this bar plot does not reflect the relationship
between variables and whether any combination of variables may have a higher correlation
with the volume change.

25 T T T T T

Patients' clinical variables importance score

Dose per fraction Weight  No. of treatment fractions Total DoseGy Age Gender
Patients’ clinical variables rank

Figure 1. A bar plot of the patients’ clinical variables importance score.

Partial dependence plot (PDP) and individual conditional expectation (ICE) analysis:
partial dependence plots (PDP) and individual conditional expectation (ICE) plots, as
seen in Figure 2, can be used to visualize and analyze the interaction between the tumor
volume reduction rate and a set of input predictors. The partial dependency map (also
known as the PDP or PD plot) illustrates the marginal effect of one or two features on
the predicted outcome of a machine learning algorithm. A partial dependency plot can
demonstrate whether the relationship between a percentage volume change and variable
is linear, monotonic, or more complex. Individual conditional expectation (ICE) plots
demonstrate how the prediction of an instance varies when an attribute changes. Since it
focuses on a general average rather than particular cases, the partial dependency plot for
the average influence of a feature is a global technique. Figure 2 plots the corresponding
PD line in red overlaid on ICE lines in grey. A scatter plot of the selected predictor and
predicted responses is also included for all patients. The figure shows that gender, number
of treatment fractions and dose per fraction do not affect volume change within the patient
group studied. However, dose per fraction, age, and weight appear to correlate with
percentage volume change within this patient group.
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Figure 2. A PDP plot (red line) and ICE plots (grey lines) for each predictor. A scatter plot (circle
markers) of the selected predictor and predicted responses is also included.

While PDPs figures are useful for displaying the average influence of the individual
target features, they may mask a connection caused by interactions between target features.
Figure 3 visualizes the partial dependence of predicted responses (percentage volume
change) on the predictor variables dose per fraction and age. The figure shows that the
volume change % was at its lowest range at a younger age and higher dose per fraction.
Figure 4 visualizes the partial dependence of predicted responses (percentage volume
change) on the predictor variables weight and age. Figure 5 shows the partial dependence
of predicted responses (percentage volume change) on the predictor variables” dose per
fraction and weight. Figure 4 again reflects the positive impact of the younger age and
lower weight. Figures 3-5 show that younger age and low weight with a higher dose
per fraction reflect better treatment outcome in terms of the volume change %, further
investigation of this is required.

Partial Dependence Plot

Volume change %
@

Dose Per Fraction 2 & 75 70

Age

Figure 3. A PDP that visualizes partial dependence of predicted responses (volume change %) on the
predictor variables dose per fraction and age.
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Partial Dependence Plot
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Figure 4. A PDP that visualizes partial dependence of predicted responses (volume change %) on the
predictor variables weight and age.

Partial Dependence Plot

Volume change %

75

Dose Per Fraction 2 90 Weight

Figure 5. A PDP that visualizes partial dependence of predicted responses (volume change %) on the
predictor variables dose per fraction and weight.

The result shown in Table 3 demonstrate that age provides the main interest after the
first iteration. In the next step additional predictors are added to age and the p-value of
each additional predictor calculated again. The steps described above are repeated until
adding an additional predictor does not yield a better t-test and p-value. The stepwise
regression model showed that age, dose per fraction and weight are best predictors for
tumour volume reduction rate and the relationship can be summarized in the following
equation, where cj, ¢ and c3 are constants:

TVRR ~ 1 + ¢; Age + ¢ Dose Per Fraction + c3 Weight 3)

Using the result obtained one may fit a stepwise linear regression model to the data to
determine how well the model fits the data. The root mean squared error (RMSE) of the
linear regression is 0.164. Table 4 tabulates the goodness-of-fit statistics.
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Table 3. Artificial Intelligence coding iteration.
Iteration 1 Iteration 2 Iteration 3
p Value p Value
Total Dose 0.169 Total Dose + Age 0.282 Total Dose + Age + Dose Per Fraction 0.182
Patients’ Age 0.018
clinical Gender 0.704 Gender + Age 0.985 Gender + Age + Dose Per Fraction 0.485
variables No. of Treatrpent 0.106 No. of Treatment 0.089 No. of Treatment Fracnpns + Age + Dose 0.079
Fractions is Fractions + Age Per Fraction
Dose Per Fraction 0.326 Dose Per Fraction + Age 0.016
Weight 0.055 Weight + Age 0.064 Weight + Age + Dose Per Fraction 0.002
Table 4. Estimated coefficients used in Al coding.
Estimate SE tStat p Value
(Intercept) 180.5 64.253 2.8092 0.0126
Age 1.2172 0.27207 4.4737 0.000384
Dose Per Fraction —138.86 37.271 —3.7256 0.00184
Weight 0.31647 0.10096 3.1345 0.006399

The accuracy of the model in predicting the tumor volume reduction rate is illustrated
in Figure 6. This plots the TVRR as calculated by Equation (3) and the actual measured
TVRR. Figure 7 provides an alternative representation of these results showing the differ-
ence between predicted TVRR and actual TVRR for each of the 20 patients.

09r

04

Predicted response
o
[¢)]

03[

0.2

0.1

® Observations
Perfect prediction

0.1 02 03 04 05 06
True response

0.7 0.8 0.9 1

Figure 6. The predicted TVRR vs. the actual TVRR.
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Figure 7. The predicted TVRR is plotted against the actual TVRR with individual differences shown
in yellow.

4. Discussion

A number of studies have investigated tumor volume dynamics in response to ra-
diotherapy. Tariq et al. (2015) employed a mathematical modelling approach including
sufficient details of radiobiological theory to describe tumor volume dynamics in 18 non-
small cell lung cancer (NSCLC) patients’ response to stereotactic ablative radiotherapy
(SABR). This work highlighted the significant variability of the estimated model parameters
across different patients, suggesting that, if the model is intended to describe GTV dynamics
for individual patients, then a population modelling approach may not be desired.

Further work considered starting with a population-average model subsequently
updated from an individual’s tumor volume change to develop a more personalized
prediction, based on 25 NSCLC patients treated with helical tomotherapy [22]. Belfatto
et al. considered a mathematical model of tumor response to radiotherapy based on CBCT
data for 13 uterine cervical cancer patients, with promising results ranging from 13% to
21% for average model fitting errors on three group specific parameter sets based on tumor
type and treatment and one general parameter set.

Such mathematical approaches are dependent to some extent on the ability of radiobi-
ological models to accurately reflect a complex tumor microenvironment and its response
to radiation and such models are largely population derived. The potential advantage of
a more empirical Al based approach using individual patient characteristics is in a more
personalized, or at least stratified, prediction. The Al approach described within this work
presents promising results with a mean difference between predicted and actual volume
change of 6.5% =+ 2.5%, based on a stepwise regression model which demonstrated that
age, dose per fraction and weight were the best predictors for TVRR.

The patient sample within this study is small, although of the order of previous
studies, and hence it is to be expected that improved results may be obtained with a larger
patient sample. For further validation of the model the results should ideally be tested
with an independent dataset. However, this is a preliminary feasibility study and further
development of the model with more patients is planned.

It is important to note that the results obtained within this study of rectal cancer patients
will not be applicable to other cancer sites, although a similar methodology may be employed.
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For some cancer sites it will also be important to consider changes in the volume of nearby
organs at risk (OAR) in order to develop an effective adaptive radiotherapy strategy.

5. Conclusions

This study presents a case study demonstrating the feasibility of employing artificial
intelligence in a cohort of rectal cancer patients for adaptive radiotherapy by predicting the
rumor volume reduction rate (TVRR). Cone beam computed tomography (CBCT) scans
of twenty rectal cancer patients were collected to observe the change in tumor volume
over the course of a standard five-week radiotherapy treatment. Application of a stepwise
regression model showed that age, dose per fraction and weight were the best predictors for
TVVR with a mean difference between predicted and actual volume change of 6.5% =+ 2.5%.
Such an approach may be further developed to aid in the clinical implementation of
adaptive radiotherapy.
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