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Single-Shot Decoding of Linear Rate
LDPC Quantum Codes with High Performance

Nikolas P. Breuckmann and Vivien Londe

Abstract—We construct and analyze a family of low-density
parity check (LDPC) quantum codes with a linear encoding rate,
polynomial scaling distance and efficient decoding schemes. The
code family is based on tessellations of closed, four-dimensional,
hyperbolic manifolds, as first suggested by Guth and Lubotzky.

The main contribution of this work is the construction of
suitable manifolds via finite presentations of Coxeter groups,
their linear representations over Galois fields and topological
coverings. We establish a lower bound on the encoding rate k/n
of 13/72 = 0.180... and we show that the bound is tight for the
examples that we construct.

Numerical simulations give evidence that parallelizable de-
coding schemes of low computational complexity suffice to
obtain high performance. These decoding schemes can deal with
syndrome noise, so that parity check measurements do not have to
be repeated to decode. Our data is consistent with a threshold of
around 4% in the phenomenological noise model with syndrome
noise in the single-shot regime.

Index Terms—Quantum codes, quantum error-correction,
single-shot decoding, hyperbolic, quantum fault-tolerance, Cox-
eter groups, cellular automata, belief-propagation.

I. INTRODUCTION

QUANTUM systems are susceptible to noise, which pro-
vides a formidable challenge to designing functioning

and scalable quantum computers. Noise prevents us from
building even more powerful computing devices known as ran-
dom access machines. These are computers operating on ana-
log signals and it can be shown that they can solve PSPACE-
complete problems in polynomial time [1]. However, small
errors can build up uncontrollably in any analog computer.
This makes it impossible to scale these types of devices when
noise is present and control is imperfect. Shor showed that
quantum computers are fundamentally different from analog
computers in this regard, by showing that quantum errors
can be dealt with by encoding the state of the quantum
computer into a quantum code [2]. The accumulation of small
errors is controlled by periodically performing measurements
on the redundant degrees of freedom of the quantum code,
thereby discretizing the error, and using the outcome of the
measurement to determine a recovery operation.

A framework for the construction of quantum codes is
provided by algebraic topology: any manifold supporting a
tessellation can be turned into a quantum code via its homol-
ogy. Well-knonw examples are the toric code, which is derived
from a square tessellation of a torus and the surface code,
which corresponds to the square tessellation of a topological
disk [3], [4]. Properties of the code such as number of physical
qubits n, number of encoded qubits k and the code distance d
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are determined by the geometrical and topological properties
of the tessellated manifold.

In [5], [6] it was shown that the parameters of homological
codes derived from 2D manifolds (surfaces) necessarily obey
the bound

kd2 ≤ const.× (log k)2n. (1)

In [7] the author asked whether it is generally true that
parameters of homological codes will be constrained by the
bound kd2 ∈ n1+o(1). The work of Guth and Lubotzky [8]
answered this question in the negative, by showing that codes
derived from tessellations of four-dimensional hyperbolic man-
ifolds have a linear encoding rate k ∼ n and polynomially
scaling distance d ∈ Θ(nε). Their work left open how to
actually construct these codes.

In this paper we discuss several approaches to this problem
and explicitely construct closed, hyperbolic 4-manifolds from
which we derive quantum codes. We show that the code
family has an asymptotic encoding rate k/n lower bounded
by 13/72. For the construction we consider regular tessel-
lations of hyperbolic space. We will focus on a particular
tessellation by a four-dimensional regular polytope called the
120-cell. This polytope owes its name to the fact that its
three-dimensional boundary consists of 120 dodecahedra. The
advantage of considering regular tessellations is that they can
be described by their groups of symmetry, called Coxeter
groups. The first construction is based on finite presentations,
which has been previously used to construct 2D hyperbolic
codes [9]. A disadvantage of this approach is that finding
closed manifolds is computationally expensive. This problem
is overcome by considering faithful representations of the
Coxeter groups as matrix groups with coefficients in the
ring Z[φ], where φ is the golden ratio. We relate the process of
compactifying the infinte hyperbolic space H4 to an algebraic
procedure in terms of the linear representation. It turns out
that under certain conditions the symmetry group of the
compactified space has a simple and well-known structure,
allowing us to derive a formula for the size of the quantum
code. In order to obtain more examples of smaller size we
use finite coverings, allowing us to construct spaces with
less symmetries compared to the group-based constructions.
Finally, we perform Monte Carlo simulations to determine the
performance of these codes. We consider a decoder based
on cellular automata [10] as well as a decoder based on
a message-passing algorithm, called belief-propagation. Both
decoding procedures have the advantage that they can be
implemented using very simple classical control and are highly
parallelizable. The simulation results suggest that even when
measurements are subject to noise it is possible to decode
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without having to repeat the measurement (single-shot error
correction). Even more encouraging is that the performance
is higher than currently favoured quantum error correcting
schemes. Our data is consistent with an asymptotic threshold
of p = 4% in the phenomenological X/Z-flip noise model
with syndrome noise q = p. This performance including
measurement errors is higher than for a family of LDPC codes
with similar parameters called hypergraph product codes when
assuming perfect measurements [11].

A. Previous work

Quantum codes based on hyperbolic 4-manifolds were orig-
inally proposed in [8] where it was shown that they possess
a linear encoding rate and polynomially growing distance.
In [12] a local decoding scheme was proposed and it was
shown that under this scheme logical errors are polynomially
suppressed. Single examples of 4D hyperbolic codes were con-
structed in [13] and [14]. Examples of hyperbolic 4-manifolds
with small volume were constructed in [15] and [16].

B. Summary

In Section II we review the homological construction of
quantum codes and the results obtained in [8]. In Section III
we introduce regular tessellations of four-dimensional, hyper-
bolic space and their associated groups of symmetries and we
derive the lower bound on the encoded rate for homological
codes derived from such tessellations. We then discuss the
construction of closed, four-dimensional hyperbolic manifolds
supporting regular tessellations using finitely presented groups
and linear representations. The list of examples is extended by
considering less symmetric manifolds which are obtained by
finite coverings. We conclude the section by discussing the
constructed examples in more detail. Finally, in Section IV
we introduce simple decoding schemes and perform numerical
simulations to determine the performance of the constructed
code family.

II. DEFINITION AND PROPERTIES

A. Quantum Codes from Tessellated Manifolds

Throughout the paper we assume that the number of phys-
ical qubits is n and that their states form a Hilbert space
H = (C2)⊗n. A quantum code C is a subspace of H of
dimension 2k that is interpreted as the Hilbert space of k
logical qubits. Due to interactions with the environment error
operators are applied randomly on the physical state. It is
assumed that such error operators act locally, meaning that
they only act non-trivially on a small number of physical
qubits.

A convenient class of quantum codes are called stabilizer
codes where the code space is the +1-eigenspace of all
elements of a subgroup S of the Pauli group P = 〈Xi, Yi, Zi |
i ∈ {1, . . . , n}〉 . If the stabilizer group S can be generated
by operators which act as either purely X or Z then we call
it a CSS stabilizer code. CSS codes are closely related to
binary linear codes from classical coding theory. Given two
binary linear codes of size n with parity check matrices HX

and HZ we can define a CSS stabilizer code simply by taking
each row r of HX (HZ) and defining an operator which acts
as X (Z) on qubit i if ri = 1 and as the identity I otherwise.
Note that for the +1-eigenspace of S to be non-trivial it is
necessary that all of its generators commute. This is achieved
by demanding that

HX ·HT
Z = 0. (2)

Random constructions, which are commonly used in the
classical setting, will generally not satisfy this constraint. One
way to find suitable parity check matrices HX and HZ is by
considering homology over F2, the field with two elements:
Given a closed manifold M of dimension D tessellated by
polytopes, let C0 be the F2-vector space which is formally
generated by all vertices of the tessellation. Similarly, we
define Ci as the vector space formally generated by all i-
dimensional constituents of the tessellation (edges, faces, 3-
cells,...). We can now define boundary operators ∂i : Ci →
Ci−1. As each Ci comes with a distinguished basis we will
always consider ∂i as an F2-matrix with entries (∂i)m,n
equal to 1 if and only if the i − 1-dimensional cell with
label n is attached to the i-dimensional cell with label m.
The elements of Ci can be identified with subsets of i-cells.
Applying ∂i to such an element will map it onto a subset
of i − 1-cells. As contributions from neighboring i-cells will
cancel modulo 2, we obtain that the result is the boundary
of the initial subset. An important observation is the fact
that boundaries do not have boundaries themselves, which is
equivalent to ∂i ◦ ∂i+1 = 0 for all i = 1, . . . , D − 1.

To define a CSS code we can simply define HX = ∂i
and HZ = ∂Ti+1. By doing so we have essentially identified
i-cells with qubits, i− 1-cells with X-checks and i+ 1-cells
with Z-checks.

An alternative view on this construction is given by con-
sidering the tessellation as a partially-ordered set (poset). The
elements of the poset are all cells of the tessellation, where
cells x and y fulfill the relation x ≺ y if and only if x is
a subcell of y of one dimension lower. The poset can be
visualized as a diagram, as illustrated in Figure 1, where cells
are nodes with two nodes x and y connected by an edge if and
only if x ≺ y. As only cells with dimension differing by 1
are related the poset diagram forms a D + 1-partite graph,
where each partition is given by cells of a fixed dimension.
Picking any three consecutive layers we obtain what is called
the Tanner graph of a CSS code: the middle layer forming the
set of qubits and the outer two layers forming X-checks and
Z-checks, respectively. We note that the dual tessellation has
the same poset diagram with the levels in reverse order. If i is
chosen to be the middle dimension then X and Z are related
by duality.

The logical operators of a quantum code are characterized
as those operators which commute with all checks while not
being generated by them. In particular, the logical Z-operators
correspond to closed i-dimensional submanifolds which are
not the boundary of an i+1-dimensional volume as they corre-
spond to elements in Fn2 which are in the kernel of the bound-
ary operator, but not in its image. They therefore correspond to
elements of the homology groups Hi = ker ∂i/im ∂i+1, where
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Fig. 1. Poset diagram of a tessellation. The elements are cells and two related
elements are connected by an edge. By definition of the relation (see main
text) only cells with dimension differing by 1 are related. We can define a
quantum code by picking three consecutive layers and define HX (HZ ) as
the adjacency matrix between nodes in layers i and i − 1 (i + 1). The box
shows the case i = 2. Note that any pair of an i − 1-cell and an i + 1-cell
have an even number of i-cells that they are connected to in common, so that
Equation (2) is satisfied. The subgraph in the box is the Tanner graph of the
CSS code.

i-cells correspond to qubits. Assuming that i is the middle
dimension, the logical X-operators similarly correspond to
closed i-dimensional submanifolds which are not the boundary
of an i+ 1-dimensional volume in the dual tessellation.

A familiar example of this construction is the toric code
which is obtained by a torus with a square tessellation. The
qubits are identified with edges (i = 1) so that faces give Z-
checks and vertices give X-checks. The two non-contractible
loops of the primal (dual) tessellation are identified with the
logical Z (X) operators.

It is common to be imprecise with the word code. It can
refer to a single instance, but also to a whole family of codes.
For our purposes here, a code family will be obtained from a
sequence of manifolds with increasing volume which all come
from the same tessellation, so that they all share the same local
structure.

B. Single-Shot Decoding

Single-shot decoding was first discussed in [17] in the
context of the 3D gauge color code, although the results
immediately apply to 4D homological codes as well. The
main idea is that the syndrome, which is extracted by the
measurement, contains redundancies. This makes it possible
to infer a recovery operation in the presence of syndrome
noise, either by performing classical decoding on the syndrome
first and then feed the fixed syndrome into the quantum code
decoder. Alternatively, it is known that cellular automata are
robust against noise in the classical setting [18] and there is
numerical evidence that cellular automaton decoders applied
to higher-dimensional quantum codes

Clearly, the recovery operation will in general not correct
back to a code state and leave a residual error. It is shown
in [17] that there exists a threshold below which a recovery
is still possible by employing percolation type arguments to
control the spread of errors.

C. 4D Hyperbolic Codes

What makes the homological construction of the previous
section appealing is that the properties of the code are deter-

mined by the underlying tessellated manifold. In particular,
the number of logical qubits k is determined by its topology
and the distance d is bounded by the minimum volume of a
non-contractible submanifold.

We will now review the results of [8] on the encoding rate
and distance of quantum codes derived from families of 4-
dimensional hyperbolic manifolds.

1) Encoding rate: We will first discuss the number of
logical operators k. As mentioned in the introduction, hy-
perbolic manifolds give rise to quantum codes which have
a linear rate k ∼ n. The linear rate of hyperbolic codes
follows from the Chern–Gauß–Bonnet theorem, which relates
the Euler characteristic

χ(M) :=

D∑
i=0

(−1)i dimHi(M) (3)

of a closed manifold M of even dimension D to the geometry
of the manifold. The exact statement is that

χ(M) =
1

(2π)
D
2

∫
M

Pf(Ω) (4)

where Pf(Ω) is the Pfaffian of the curvature form of
the Levi-Civita connection. For a hyperbolic manifold
the integral on the right-hand side is in fact equal to
(−1)

D
2 2 vol(M)/vol(SD) [19]. Note that we always assume

that M is connected, which implies that dimH0 = dimHD =
1.

For D = 2 we can exactly solve for dimH1:

dimH1 =
area(M)

2π
+ 2 (5)

By tessellating M with regular polygons we can define a
quantum code with

k =

(
1− 2

r
− 2

s

)
n+ 2 (6)

where r and s are the weights of the X-checks and Z-
checks [9].

For D = 4 and i = 2 we can not solve exactly for k =
dimH2, since we do not know the dimensions of the odd
homology groups. However, as they both have a negative sign
in the alternating sum we obtain the lower bound

dimH2 ≥ 2
vol(M)

vol(S4)
− 2. (7)

Since vol(S4) = 8π2/3 this gives dimH2 ≥ 0.07 vol(M)−2.
This establishes that a quantum code defined on a tessellation
with uniform density of M will have linear rate k ∼ n. The
value of the encoding rate k/n will depend on the tessellation.
In Section III-C we derive a lower bound for the encoding
rate of a quantum code based on a particular tessellation of
4D hyperbolic space. This lower bound turns out to be tight
for the examples we construct later (cf. Section III-G).

2) Distance: For quantum codes derived from hyperbolic
surfaces (D = 2) one can establish upper and lower bounds on
the distance which are logarithmic in the number of qubits n.
For D = 4 a lower bound on the distance follows from a
result of systolic geometry by Anderson [20]. Let R be the
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greatest length such that any ball of radius R can be embedded
anywhere in M . This quantity is called the injectivity radius
of M . Anderson’s theorem states that any essential i-cycle γ
of M has its volume lower-bounded by the volume of a ball of
radius R in i-dimensional hyperbolic space. It is shown in [8]
that for a hyperbolic manifold M we have R ≥ c log vol(M)
with a constant c > 0. Combining this with Anderson’s bound
and the fact that the volume of a ball of radius r in Hi grows
like exp((i− 1) r) we obtain that

vol(γ) ≥ vol(BR) = c′ exp ((i− 1)R) (8)

where c′ > 0 is a constant depending on i. Hence we obtain
for i = 2 that vol(γ) is lower bounded by c′ vol(M)c.

III. CONSTRUCTION AND EXAMPLES

The discussion in Section II leaves open the question of
how to obtain concrete examples of tessellations of closed
hyperbolic 4-manifolds. We will explain how we can describe
tessellations using Coxeter groups, which are generated by re-
flections along all hyperplanes of symmetry of the tessellation.
We will review Coxeter groups in Section III-B. In particular,
we will discuss how families of closed manifolds supporting
a fixed tessellation are related to coverings of an infinite
tessellation of H4. We then give two separate constructions
to obtain concrete examples of tessellated, closed, hyperbolic
4-manifolds as well as a method to obtain smaller, less
symmetric manifolds from larger ones.

A. Regular Tessellations

A tessellation is a gapless covering of a manifold by
regular polytopes such that each adjacent pair of polytopes
overlaps exactly on their facets. We can decompose the regular
polytopes into simplices by cutting them along their planes
of symmetry. We say that a tessellation is regular if the
symmetry group of the tessellation operates transitively on
these simplices. This implies in particular that all polytopes
are identical and that the same number of polytopes meet at
every vertex, edge, face, etc.

Regular tessellations are classified by their Schläfli symbol
{p, q, r, s, . . . }, which for a D-dimensional tessellation is a
sequence of D positive integers. It encodes the incidence
numbers of the cells: q is the number of faces incident to
a vertex in a 3-cell, r is the number of 3-cells incident to an
edge in a 4-cell and s is the number of 4-cells incident to a
face and so on.

Not every sequence of numbers corresponds to a valid
tessellation of space due to geometric constraints. For example,
in 2D euclidean space the fundamental triangle of an {r, s}
tessellation has internal angles π/2, π/r and π/s. Since all in-
ternal angles have to add up to π the only valid tessellations are
the square tessellation {4, 4}, the hexagonal tessellation {6, 3}
and the triangular tessellation {3, 6}.

The only possible regular tessellations of 4D hyperbolic
space H4 are:

1) {5, 3, 3, 5} tessellation by 120-cells, self-dual
2) {4, 3, 3, 5} tessellation by hypercubes
3) {5, 3, 3, 4} tessellation by 120-cells, dual to 2

(a) 120-Cell (b) Fundamental Simplex

Fig. 2. (a) A 4D regular polytope called the 120-cell projected into 3D.
(b) A single cube of a cubic tessellation {4, 3, 4}. The fundamental simplex
is highlighted in red. It is bounded by the reflections a0, a1, a2 and a3,
which are highlighted in blue, yellow, green and magenta, respectively. Each
cube contributes 48 fundamental simplices.

4) {3, 3, 3, 5} tessellation by 4-simplices
5) {5, 3, 3, 3} tessellation by 120-cells, dual to 4

The 120-cell is a 4-dimensional regular polytope with Schläfli
symbol {5, 3, 3} (see Figure 2a). It has 120 dodecahe-
dra {5, 3} at its boundary. Note that the dual tessellation has
its Schläfli symbol reversed. Compact 4-manifolds supporting
the {5, 3, 3, 3} tessellation were constructed in [15] and [16].
Quantum codes based on the {4, 3, 3, 5} tessellation were
discussed in [13].

B. Coxeter groups
The group of symmetries of a regular tessellation is gen-

erated by reflections along hyperplanes of symmetry. The hy-
perplanes of symmetry subdivide the tessellation into identical
D-dimensional simplices (see Figure 2b). The symmetry group
acts freely and transitively on the simplices, meaning that no
simplex is stabilized by the group action and every simplex can
be mapped onto any other. By fixing one arbitrary simplex and
assigning it the identity element of the group, we have a one-
to-one correspondence between the simplices and the group
elements.

The Coxeter group is defined in terms of the generators and
their relations. As each generator ai corresponds to a reflection
we have a2i = e, where e is the neutral element of the group.
The relations between the generators are given by the Schläfli
symbol

(ai aj)
ri,j = e (9)

where ri,j is the jth entry of the Schläfli symbol if j = i+ 1.
Note that the reflection relation gives ri,i = 1. All other pairs
of generators (those with |i−j| > 1) commute. Since they are
reflections this can be expressed as (ai aj)

2 = e, i.e. ri,j = 2.
In the following chapters we will describe how we can

use this description to obtain tessellations of compactifications
of H4. Although the tools we present work for general tessel-
lations, we will focus on the self-dual {5, 3, 3, 5} tessellation
to construct quantum codes.

C. Encoding Rate
Before discussing the constructions in the next few sections,

we derive a lower bound on the encoding rate k/n for
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codes derived from the {5, 3, 3, 5} tessellations introduced in
Section III-A.

Instead of using the integral expression of the Chern-Gauß-
Bonnet theorem of Equation (4) we will instead consider
the well-known combinatorial expression in terms of the
number of cells in the tessellation. In order to obtain this
expression, we note that the number of i-cells is the same
as the dimension of the vector space of i-chains Ci. By the
rank-nullity theorem and the definition of the homology groups
Hi = ker ∂i/im ∂i+1 we have that

dimCi = dim ker ∂i + dim im ∂i

= dimHi + dim im ∂i+1 + dim im ∂i.
(10)

Putting this into the definition of the Euler charactistic (Equa-
tion (3)) we obtain

χ =

D∑
i=0

(−1)i dimCi =

D∑
i=0

(−1)i # i-cells. (11)

The number of cells can be expressed in terms of of the num-
ber of fundamental simplicies. For the {5, 3, 3, 5} tessellation
the number of fundamental simplices per vertex and 120-cell
is both 14400, the number of fundamental simplicies per face
is 100 and the number of fundamental simplices per edge
and dodecahedron is both 240. Let S(M) be the total number
of fundamental simplices of the tessellated manifold M . We
obtain the following formula for the Euler characteristic:

χ =
13

7200
S(M) (12)

Together with Equation (3) we finally obtain the bound

k ≥ 13

72
n− 2 (13)

where the inequality is due to ignoring the negative contri-
butions of dimH1(M) and dimH3(M). The constant term
comes from dimH0(M) = dimH4(M) = 1.

We note that Equation (7) and Equation (13) are consistent
with one another, as the volume of a 4D hyperbolic man-
ifold M is related its Euler characteristic via the equation
vol(M) = 4π2χ(M)/3 (see [21]).

D. Construction based on FP-groups

We can use the identification between the fundamental
simplices and the group elements to obtain tessellations of
closed manifolds. The idea is to consider finite quotients of
the infinite group, which leave the local structure of the group
invariant. Geometrically, the procedure essentially consists of
finding translations and identifying points which differ by
these translations. For example, on the 2D euclidean plane we
can take an arbitrary translation and by identifying all points
differing by this translation we obtain a cylinder of infinite
length. Taking a second translation, which is not co-linear with
the first one, we obtain a torus.

This process is less straightforward in curved spaces where
translations generally do not commute. In [9] this has been
done for 2D hyperbolic surfaces by enumerating normal
subgroups and their quotients up to a certain size. The Todd-
Coxeter algorithm can be used to enumerate normal subgroups.

Some faster adaptions using the KnuthBendix completion
algorithm are also known (see Chapter 5.6 in [22]).

By Equation (9), the group of the infinite {5, 3, 3, 5} tessel-
lation is

〈a, b, c, d, e |a2, (ab)5, (ac)2, (ad)2, (ae)2, b2, (bc)3,

(bd)2, (be)2, c2, (cd)3, (ce)2, d2, (de)5, e2〉. (14)

For readability we have written the generators as a, . . . , e
instead of ai for i = 0, . . . , 4. Trying to find normal subgroups
of this group by exhaustive search yielded only two examples
in a reasonable amount of time. One example has 14,400
fundamental simplices and the other 72,000. In the {5, 3, 3, 5}
tessellation there are 100 simplices per face, so that we obtain
quantum codes with 144 and 720 physicsl qubits, respectively
(see Table I and discussion in Section III-G).

We found larger examples by considering the following
randomized procedure: we can take a random word in the
generators of a specified length w. We then obtain a normal
subgroup by taking its normal closure N of this group element
and check if the resulting group is finite. One additionally
needs to check that N operates fixed-point free which is the
case if w does not correspond to a reflection or a rotation [23].
This procedure gave two more examples with 18,432 and
19,584 physical qubits.

E. Construction Based on Matrix Representations

The second construction is based on matrix representations
of the symmetry groups. The main idea is to obtain a faithful
matrix representation of the infinite tessellation. Let us assume
that we are able to find a representation with a distinguished
basis such that all of the generators and their inverses are
mapped onto matrices which have integer entries. Clearly, in
this case all group elements are represented by integer matri-
ces. To obtain a finite group we could naively try to reduce the
entries of all matrices modulo some positive integer p. This
would ensure that we are left with a finite set of matrices.
There are some obvious problems with this approach: It is
generally not possible to have purely integer entries. We will
address these issues in what follows.

1) Hyperboloid Model: The matrix representation is ob-
tained by the hyperboloid model of hyperbolic space: In D+1-
dimensional Minkowski space R1,D we can identify the D-
dimensional hyperbolic plane with the set

HD =

{
x ∈ R1,D

∣∣∣∣∣x ◦ x = −x20 +

D∑
i=1

x2i = −1, x0 > 0

}
(15)

by defining the distance between any two points x, y ∈ HD as
dist(x, y) = cosh−1 (−x ◦ y) where ◦ denotes the Lorentzian
inner product. The group of invertible (D + 1) × (D + 1)-
matrices which leave the Lorentzian inner product invariant is
called O(1, D,R). The isometry group of HD, i.e. the group
of transformations which preserve the distance function dist
is isomorphic to the subgroup O+(1, D,R) of index 2 which
sends the upper sheet to itself and the lower sheet to itself
(cf. Figure 3). It is also known as the “orthochronous Lorentz
group” in D + 1-dimensions.
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x1 x2

x0

Fig. 3. The hyperboloid model of hyperbolic space. The equation x◦x = −1
defines a hyperboloid consisting of two disconnected sheets. We identify the
upper sheet (x0 > 0) with the hyperbolic plane.

2) Representaion of the infinite tessellation group: We can
construct the representation using the Gram-matrix g of the
normal vectors of the hyperplanes of reflection. Let e1, . . . , e5
denote the standard basis vectors. The inner product between
them is defined by

g(ei, ej) = −2 cos

(
π

ri,j

)
(16)

where ri,j are the exponents in the relations which define
the Coxeter group (see Section III-B). Since we consider
regular tessellations g will be tridiagonal with entries αi =
−2 cos(π/ri,i+1) on the first diagonals.

g =


2 α0 0 0 0
α0 2 α1 0 0
0 α1 2 α2 0
0 0 α2 2 α3

0 0 0 α3 2

 (17)

If the Schläfli-symbol belongs to a hyperbolic tessellation
then g has signature (−,+,+,+,+), i.e. g is equivalent, up
to a change of basis, to the Lorentzian inner product ◦.

The matrix representation ρ : G → O+(1, D,R) can now
be defined by their action on the basis vectors. For each
generator ai of the Coxeter group its representation ρ(ai) is
defined by its action on the standard basis:

ρ(ai) · ej = ej − 2
gi,j
gi,i

ei = ej − gi,j ei. (18)

Let us verify that this is indeed a representation by explicitly
checking the group relations. To not clutter our notation we
will write ri := ρ(ai) (not to be confused with the matrix r
from Section III-B, which defines the relations). Let us first
check that we are indeed mapping onto reflections.

r2i (ej) = ri · (ej − gi,jei)
= ej − gi,jei − gi,j(ei − gi,iei)
= ej − 2 gi,jei + 2 gi,jei

= ej

(19)

Hence, ri is indeed a reflection.
We are left to show that the ri satisfy the “off-diagonal

relations” of Equation (9). Let |i − j| > 0 and define v⊥g

as the space of all vectors orthogonal to v with respect to g.
Since dim e

⊥g

i = dim e
⊥g

j = D and e⊥g

i 6= e
⊥g

j we have

dim
(
e
⊥g

i ∩ e
⊥g

j

)
= D − 1. (20)

Since ei and ej do not belong to e⊥g

i ∩e
⊥g

j we can complete a
basis of e⊥g

i ∩ e
⊥g

j with ei and ej to form a basis B of RD+1.
Let us express ri and rj in B:

ri,B =

ID−1 0 0
0 −1 gi,j
0 0 1


rj,B =

ID−1 0 0
0 1 0
0 gi,j −1

 (21)

Their product is

ri,B rj,B =

ID−1 0 0
0 (gi,j)

2 − 1 −gi,j
0 gi,j −1

 . (22)

We can focus on the bottom-right two by two submatrix A.
Its determinant is det(A) = 1 and its trace is

tr(A) = (gi,j)
2 − 2

= 4 cos2(π/ri,j)− 2

= 2 cos(2π/ri,j).

(23)

Therefore A has two distinct eigenvalues λ+ = exp(i 2π/ri,j)
and λ− = exp(−i 2π/ri,j) and hence satisfies Ari,j = I2. We
have thus shown that (ri,B rj,B)ri,j = In.

We refer to Theorem 3A10 in [24] for a proof that the
representation ρ is faithful, i.e. the reflections ri do not satisfy
other relations than the ones satisfied by the generators ai of
the Coxeter group, so that im(ρ) ' G. Note that im(ρ) is
isomorphic a subgroup of O(1, D,R) as g is equivalent to the
Lorentzian inner product ◦.

3) Matrix entries: Our initial goal, which we stated at the
beginning of this section, was to obtain a matrix representation
that allows us to take all elements modulo a large number.
Here we will see that this is generally not possible and we
will show how to amend the idea to make it work.

What are the entries of the elements of im(ρ)? – Let us con-
sider the self-dual tessellation wit Schläfli symbol {5, 3, 3, 5}.
From Equation (18) it is clear that all matrices have entries
that are integer polynomials of the entries of g. The entries on
the first diagonals of g (see Equation (17)) are

α0 = α3 = −2 cos
(π

5

)
=

1 +
√

5

2
=: φ (24)

and

α1 = α2 = −2 cos
(π

3

)
= −1. (25)

The matrix entries α1 and α2 take integer values. However, α0

and α3 are equal to the golden ratio φ, which is not an
integer. We can account for this by simply extending the ring
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of integers by φ and obtain Z[φ]. Note that φ still fulfills
the relation φ2 − φ − 1 = 0. The associated polynomial
h = x2 − x − 1 is called the minimal polynomial of φ. All
generators are self-inverse and hence all matrices in im(ρ)
have entries in Z[φ].

To be able to use a computer algebra system we construct
the ring Z[φ] from polynomials. This can be achieved by
considering all polynomials up to arbitrary multiples of h. The
set of all multiples of h are called the ideal generated by h
and denoted

〈h〉 = {p · h | p ∈ Z[x]}. (26)

Note that 〈h〉 is by definition closed under linear combinations.
The quotient ring Z[x]/〈h〉 contains elements of the form p+
〈h〉 with p ∈ Z[x]. In particular, if p is a multiple of h we
have p + 〈h〉 = 0 + 〈h〉. This means that x fulfills the same
relations as φ in Z[x] and hence we have

Z[φ] ' Z[x]/〈h〉. (27)

In the remainder of the paper we will abuse notation and
directly identify Z[φ] with Z[x]/〈h〉.

4) Quotient: In the previous paragraphs we have obtained
a faithful matrix representation ρ of the symmetry group of
the infinite {5, 3, 3, 5} tessellation of H4. We have seen that
each element of im(ρ) has coefficients in Z[φ].

Our strategy to obtain symmetry groups of closed hyper-
bolic four-manifolds is to factor out suitable ideals of Z[φ] to
effectively obtain representations of G over F5

q . We need to
show that factoring out ideals of the matrix entries does pre-
serve the local structure, which means that the result should be
the symmetry group of a closed, tessellated manifold that looks
identical to the infinite tessellation in a large neighborhood.

Our goal is to obtain a family of quantum codes with
growing distance. To show that the distance increases it
suffices to show that the tessellation on the closed manifold
is indistinguishable from the infinite one in a large neigh-
borhood, as no logical operator can have support inside this
neighborhood.

Let l be a positive integer. We call a representation l-
locally faithful if no non-identity element g ∈ G \ {e}, which
can be written as a sequence of at most l generators of G,
is mapped to the identity matrix. The following theorem is
adpated from [8] and [25].

Theorem 1. For any positive integer l there exists an l-locally
faithful representation of G.

Proof. Let πI : Z[ξ] → Z[ξ]/I be the quotient map for an
ideal I ⊂ Z[ξ]. Here we will only consider maximal ideals I
so that Z[ξ]/I is in fact a field Fq of characteristic p. We note
that I is of the form 〈p〉 or 〈p, g(ξ)〉, where g is an irreducible
factor of the minimal polynomial of ξ in Fp (see Theorem 2
in Appendix A).

Let ρ be the representation of the infinite tessellation group
defined by Equation (18). We can extend πI to act on the
coefficients of matrices over Z[ξ]. Since G is generated by
reflections it is easy to see that the matrices in im(ρ) have
determinant ±1. Since 1 /∈ I it follows that πI(im(ρ))

only contains invertible matrices and hence we have that the
function πI ◦ ρ : G→ GL(D + 1,Fq) is well-defined.

We will now show that for a suitable choice of the ideal I
the representation πI ◦ρ is l-locally faithful. Let g ∈ G\{e} be
a Coxeter group element which can be written as the product
of u ≤ l generators, i.e. g = ai1 · · · aiu . We need to show
that πI ◦ ρ(g) is not the identity matrix. Clearly ρ(g) is not
the identity matrix as ρ is faithful. Furthermore, by choosing
the prime p in the ideal I to be suitably large the image of ρ(g)
under πI is not the identity matrix.

5) Group structure: It turns out that the group obtained by
the procedure outlined above can have a particularly simple
structure. Assume that I = 〈p〉 and that πI(g) is non-singular.
As the elements of O(1, 5,Z[φ]) preserve g we have that their
images preserve πI(g). This means that im(πI) is a subgroup
of GO5(q), the orthogonal group over Fq .1 By diagonalizing g
it is easy to see that πI is in fact surjective, so that we have
ρ ◦ πI ' GO5(q).

The structure of GO5(q) for odd q is well-known [26]: it
decomposes into three simple groups as

GO5(q) ' Ω5(q) o (Z2 × Z2). (28)

The group Ω5(q) is also known as the Chevalley group B5(q)
in the literature.

Remark 1. Note that this decomposition is similar to the
familiar one of the Lorentz group in D = 3 into four connected
components

O(1, 3,R) ' SO+(1, 3,R) o (Z2 × Z2) (29)

where SO+(1, 3,R) is the proper, orthochronous Lorentz group
and Z2 × Z2 is generated by a time-like reflection (time
reversal) and a space-like reflection.

6) Size of the quantum code: The number of physical
qubits n is given by the number of faces in the lattice.
We can count the number of faces (and cells of any other
dimension) by counting the number of fundamental simplices
and divide by the number of simplices per cell. The number
of fundamental simplices is the same as the order of the
symmetry group of the lattice, which for odd q is given by
the polynomial |Ω5(q) o Z2| = q10 − q8 − q6 + q4 [26].

For the {5, 3, 3, 5} tessellation there are 100 fundamental
simplices per face and thus the formula for the size of a
quantum code based on this construction is:

n(q) =
q10 − q8 − q6 + q4

100
(30)

Note that we had to assume that q is odd. We will later discuss
examples with q even for which Equation (30) fails.

The golden ration φ has minimal polynomial x2 − x − 1.
For p such that x2 − x − 1 is irreducible in Fp we obtain
Z[φ]/〈p〉 ' Fp2 and thus n ∈ O(p20) in agreement with [8].

1The orthogonal groups over finite fields in odd dimensions are all isomor-
phic [26].
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R

S1

(a) Infinite covering of circle S1

(blue) by real line R (green).
(b) 4-fold covering of a 20 × 10-
torus (blue) by a 40 × 20-torus
(green).

Fig. 4. (a) The circle S1 is covered by the real line. The covering can be
constructed by identifying S1 with the set of complex numbers with unit 2-
norm and defining p = exp : R → S1 ⊂ C, t 7→ eit. This is an example
of an infinite covering, as the pre-image of any point has infinite cardinality.
The deck transformation group is the abelian group Z. (b) The small torus is
covered by the larger torus. The larger torus has 4 times the area of the smaller
one. The covering is constructed by taking translations in the larger torus
modulo the corresponding length in the smaller torus, in this case modulo 20
in the x-direction and modulo 10 in the y-direction. The preimage of any
point contains four elements on which the deck transformation group Z2×Z2

operates.

F. Coverings

In order to obtain more examples from the ones generated in
previous sections we will now introduce topological coverings.
They will allow us to construct less symmetric examples as
the group-based constructions.

1) Definition: In addition to the previous two methods
for obtaining finite manifolds we employ a third method to
construct small examples. This method is based on coverings:
If X and C are topological spaces we say that C is covering
space if there exists a continuous surjective map p : C → X
such that for any point x ∈ X we have that there exists an
open neighborhood U such that the pre-image p−1(U) is a
disjoint union of open sets in C each homeomorphic to U .
If the number of these copies is fixed it is called the degree
of the covering. We will call a covering of degree n an n-
fold covering. A famous example from physics is the 2-fold
cover of SO(3) by SU(2). In Figure 4 we show two further
examples of coverings. The first (Figure 4a) is an infinite
cover of the circle by the real line, depicted by putting the
real line in a spiral over the circle so that p can be thought
of as a projection along the vertical axis. The covering an
be realized by identifying S1 with the unit circle in C and
consider p = exp : R → S1 ⊂ C, t 7→ eit. The second
example (Figure 4b) is a 4-fold cover of a torus by another
torus. The covering is realized by taking translations in x- and
y-direction modulo 20 and 10, respectively.

Coverings can be equipped with a group structure: Homeo-
morphisms operating on the covering space φ : C → C such
that p ◦ φ = p are called deck transformations. They form a
group under composition called the deck transformation group.
There is a natural group operation of the deck transformation
group of a covering p on the pre-image of a given point x ∈ X ,
as it permutes the elements of p−1(x).

What are the deck transformation groups in the two exam-
ples of Figure 4? – For the real line and the circle we can
perform shifts by multiples of 2π, i.e. t 7→ t + 2πx, leaving
the image of t under exp invariant. The deck transformation
group is hence isomorphic to the infinite abelian group Z.

For the covering of the torus it is clear that we can perform
translations by 20 in the x-direction and translations by 10 in
the y-direction leaving the modulus invariant. Hence, the deck
transformation group is isomorphic to Z2 × Z2.

2) Finite coverings of hyperbolic 4-manifolds: We con-
struct further instances of hyperbolic 4-manifolds by enumer-
ating all conjugacy classes of subgroups of the symmetry
group of a given tessellated finite hyperbolic 4-manifold. Not
all subgroups preserve the local structure of the tessellation,
as they may contain elements which have fixed points, such
as reflections or rotations. However, since we consider tessel-
lations we have the more stringent restriction that the deck
transformation group should respect the local structure of
the tessellation. This restriction can be formulated in group-
theoretic language and we call it the non-local subgroup
condition which we derive in Appendix B.

The deck transformation groups of the 4D hyperbolic man-
ifolds constructed by coverings can be found in Table I under
“structure”.

G. Examples of {5, 3, 3, 5}-Codes

Using the constructions of Sections III-D to III-F we have
found examples which are small enough to perform Monte
Carlo simulations. Here we will discuss the properties of
these examples in more detail. A summary can be found in
Table I, where the properties of the tessellated manifolds and
the associated quantum codes are listed. The column labeled
“structure” contains either the structure description of the
associated symmetry group or, if the example was constructed
from a finite covering, the number of the covering manifold
and the deck transformation group.

1) Based on FP-groups: The construction based on finitely
presented groups of Section III-D gave us three examples: the
smallest with 144 physical qubits, one with 18,432 physical
qubits and one with 19,584 physical qubits. All are obtained
by factoring out a single translation. They are (in the same
order as above):
• ababacbdedcbabacedcbaedced

• bedcbabedcbabedcbabedcbabedcbabedcba

• baedcbedcbabacbdcedcbabcedcbabacbded

For readability we have written the generators as a, . . . , e
instead of ai for i = 0, . . . , 4 (cf. Section III-D).

The first example is known as the Davis manifold and was
first described in [27]. It can be constructed from a single
120-cell (cf. Figure 2a) by taking opposing dodecahedra at
the boundary and identifying them.2 Note that doing so we
do not obtain a proper {5, 3, 3, 5} tessellation, as for example
the number of 3 cells incident to the (unique) 4-cell is 60
instead of 120. However, the incidence numbers involving 2-
cells is the same as for a proper {5, 3, 3, 5} tessellation, so
that stabilizer weights and qubit degrees are unaffected. By
construction, the number of 3-cells in the Davis manifold is 60.

2The same procedure in 3D corresponds to identifying opposing faces of a
dodecahedron. Note that as opposed to 4D, in 3D these faces do not allign and
different rotations to make the faces match give rise to topologically different
3-manifolds: the Poincaré homology sphere, the Seifert-Weber space and the
3D real projective space [28].
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TABLE I
EXAMPLES OF {5, 3, 3, 5}-CODES.

# n k ideal structure Euler characteristic χ

1 144 72 – (SL2(5) o A5) o Z2 26

2 720 184 – 125-fold covered by 10, Z5 × Z5 × Z5 130

3 3,264 744 – 3-fold covered by 6, Z3 636

4 3,600 736 – 25-fold covered by 10, Z5 × Z5 650

5 4,896 1,124 – 2-fold covered by 6, Z2 968

6 9,792 2,200 〈2〉 Ω5(4) 1,904

7 18,000 3,624 – 5-fold covered by 10, Z5 3,250

8 18,432 4,232 – Z×8
2 o [(A5 o A5) o Z2] 3,584

9 19,584 4,324 – Ω5(4) o Z2 3,808

10 90,000 18,024 〈
√

5〉
[(

Z×4
5 o SL2(5)

)
o A5

]
o Z2 16,250

11 34,432,128 ? 〈3〉 Ω5(9) o Z2 6,216,912

12 257,213,088 ? 〈11〉 Ω5(11) o Z2 46,441,252

13 61,140,357,792 ? 〈19〉 Ω5(19) o Z2 11,039,231,268

The number of faces, edges and vertices is 144, 60 and 1
and thus its Euler characteristic (cf. Section II-C) is χ = 26.
We note that the Davis manifold gives rise to a trivial error
detection code of encoding rate 1/2 and distance 2.

The two larger examples are not proper {5, 3, 3, 5} tessel-
lations either as their 4-cells contain only 60 3-cells as well.
They have, as far as we are aware, not appeared in previous
literature.

2) Based on Linear Representations: The construction
based on matrix representations (see Section III-E) yielded
several more examples. Let us first consider the simplest
example in which we reduce the matrices modulo 2, i.e. we
factor out the ideal 〈2〉. Since x2 − x− 1 is irreducible in F2

we obtain a matrix group with coefficients in F4. This gives
rise to a quantum code with 9,792 physical qubits and 2,200
logical qubits. We note that the underlying group is isomorphic
to Ω5(4). We can change the set of generators from reflections
to rotations by taking products aiaj as a new set of generators.
Factoring out 〈2〉 from the group generated by rotations gives
the group Ω5(4) o Z2 which defines a quantum code with
19,584 physical qubits and 4,324 logical qubits. This is the
same group that we found previously using finitely presented
groups.

Next, we will consider an example where the minimal poly-
nomial does become reducible: Consider the ideal generated
by
√

5 = 2φ − 1 ∈ Z[φ]. The quotient Z[φ]/〈2φ − 1〉 turns
out to be isomorphic to F5. The resulting quantum code has
90,000 physical qubits and 18,024 logical qubits.

The next largest examples are the ideals generated by 3, 11
and 19 (see Table I). However, these were too large to deter-
mine the number of encoded qubits. We note that the encoding
rate is close to the upper bound given in Equation (13).

3) Based on Finite Coverings: Further small examples can
be obtained by the covering procedure (see Section III-F). Two
of the coverings we found appeared in previous literature: a
5-fold covering using the n = 90, 000 manifold (number 10 in
Table I) had been found in [29]. It was also observed in [29]

that the n = 90, 000 manifold is a 625-covering space of the
Davis manifold. Further examples are enumerated in Table I
where the covering and the deck transformation group are
specified.

4) Further remarks: Since we do not have an expression for
the number of encoded qubits k we constructed the boundary
operators and obtained the dimension of the second homology
group (see Table I). We observe that for the examples we
constructed the encoding rate k/n is close to the lower bound
of Equation (13). Unlike for 2D homological codes for which
one can efficiently determine the distance [30] we are not
aware of any efficient procedure to obtain the distance of
higher-dimensional homological codes. A randomized search-
ing procedure yielded logical operators of weight 2 for the
n = 144 code, a logical operator of weight 12 for the n = 720-
code and a logical operator of weight 6 for the n = 3, 264
code. Note that these are upper bounds as logical operators of
smaller weight may still exist.

IV. DECODING AND PERFORMANCE

The stabilizer checks of a {5, 3, 3, 5} code correspond to do-
decahedra in the primal tessellation (Z-checks) and in the dual
tessellation (X-checks). Each check acts on all of its adjacent
qubits which correspond to the pentagonal faces. The stabilizer
checks of the code to fullfill non-trivial linear dependencies:
The boundary of a 120-cell contains dodecahedra and as the
boundary itself is boundaryless it follows that the product of
all checks belonging to a 120-cell has to vanish. This can
also be understood when we interpret the poset diagram in
Figure 1 as a Tanner graph. The three levels in the middle form
the quantum code, while levels 0 and 4 determine the linear
dependencies of the checks. Due to the linear dependencies
the syndrome in a 4D code consists of closed loops.

Assuming that errors occur independently and homoge-
niously a good decoding strategy is minimum weight decod-
ing. Unfortunately, there is no known efficient algorithm which
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given a collection of loops in 4D lattice returns a minimum-
weight surface which has these loops as its boundary. Regard-
less, we can settle for a less optimal, but efficient solution.
It was observed in [10] that a 4D code can be decoded by
“shrinking” the syndrome loops. In [12] it was shown that in
4D hyperbolic space a linear time decoding procedure exists.

In this paper we will consider two decoding stategies: the
first decoder is based on a cellular automaton and the second
on belief-propagation.

A. Cellular Automaton Decoder

1) Background: Cellular automata can be used to imple-
ment a primitive decoding algorithm. This type of decoder has
several desirable features. It can be implemented using very
simple classical control, as it essentially performs a majority
vote on a small number of input signals and sends a signal
to perform a bit- or phase-flip based on the outcome. This
is extremely fast and dissipates little heat when compared
to other decoding schemes, such as minimum-weight perfect
matching. This is important as it makes it possible to imple-
ment the classical control close to the qubits which, depending
on the specific hardware implementation, have to be kept at
temperatures of a few Kelvin down to hundreds of milli-
Kelvin.

Using cellular automata to decode quantum codes was first
suggested in [10]. Two different update rules have been used
in the literature. The first is a majority-vote rule which simply
performs a bit-/phase-flip if more than half of the Z-/X-checks
incident to the qubit are violated. The second rule is called
Toom’s rule. It only performs bit-/phase-flips if parity checks
in a specified direction are violated. Toom’s rule was first
introduced in the classical setting as non-equilibrium dynamics
for the 2D Ising model, exhibiting the unusual property of a
stable memory phase at non-zero temperature in the presence
of a magnetic field [18]. Toom’s rule has been shown to
perform better than the majority-vote rule [31] when applied
to the 4D toric code with a hypercubic tessellation. It has
been generalized to other euclidean tessellations in [32]. It is,
however, not clear how to apply Toom’s rule in hyperbolic
space. The reason for this is that to be well-defined it needs
a distinguished direction and hence a notion of parallel lines
which is consistent throughout the system. In hyperbolic space
a single line does not uniquely define a parallel line through
any other point, as Euclid’s fifth postulate famously does not
hold in hyperbolic space. We will therefore only consider the
isotropic majority-vote rule.

2) Monte Carlo: We consider the independent bit-/phase-
flip model, where each qubit is acted upon by Pauli-X and
Pauli-Z each with probability p. We then run the CA decoder
until the weight of the syndrome stops decreasing. If the
syndrome weight is non-zero we declare the trial a failure.
If the syndrome weight is zero we are back in a code state.
In this case we check whether the error together with the
recovery given by the CA decoder contains a non-trivial logical
operator.

The results of the simulation can be found in Figure 5.
In [31] the same decoder under the same error model was
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Fig. 5. (a) Performance of CA decoder (b) Same data plotted with log-log
axes. The dashed lines indicate the error probability if we were to take k
unencoded qubits 1− (1− p)k .

applied to the 4D toric code, which is defined on the eu-
clidean {4, 3, 3, 4} hypercubic tessellation. We notice that the
performance of the hyperbolic codes is better: for the 4D toric
code the threshold error rate is below 0.5% while for the
hyperbolic codes here errors are suppressed for physical error
rates below 1%. This is despite the fact that the hyperbolic
code has higher stabilizer weight (12 instead of 6).

A quantity of interest is the pseudothreshold, which is
the physical error probability below which the logical error
probability is below the physical error probability, i.e. the error
probability below which encoding is benificial over having
bare qubits. The error probability of k unencoded qubits is
1− (1− p)k and marked in dashed lines in Figure 5b. We see
that the n = 144 code does not have a pseudothreshold which
is expected, as it has distance 2 (cf. Section III-G). All other
codes have a pseudothreshold of around 1%.

B. Belief-Propagation Decoder

The cellular automaton decoder of the previous section
makes decisions based on a very limited amount of informa-
tion: it can only see parity-check violations in its immediate
vicinity. This limitation is overcome by considering belief-
propagation which is a commonly used decoding algorithm
for classical LDPC codes [33]. Belief-rpropagation has been
previously applied to quantum codes in [34] and [35].

1) Background: For Tanner graphs which are trees the
Belief Propagation (BP) decoder corresponds to maximum
likelihood decoding. As the Tanner graph of a {5, 3, 3, 5}
quantum code is not a tree, BP gives a heuristic decoding
algorithm in this setting.

In order to define BP, let X(j) be random variables cor-
responding to qubits. With the assumed noise model, they
are independently and identically distributed like Bernoulli
variables with parameter p ∈ [0, 1]. Let Y (k) be random
variables corresponding to check nodes defined as

Y (k) =
⊕

j neighbour of k

X(j). (31)

The values of Y (k) are what we observe when extracting the
syndrome information and we denote them by y(k)obs .

We want to compute marginals of the random variables X(j)

conditioned on the observations y(k)obs . If the Tanner graph were
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a tree, we could set one of the qubits to be the root of this
tree. We will use the notation k > j to denote that k is a
descendant of j. For each qubit j, we define the following
function whose domain is {0, 1}:

p(j)(x) = Pr
(
X(j) = x | {Y (k) = y

(k)
obs }k>j

)
(32)

For each check node k, denote by j its parent qubit, we
define the following function whose domain is {0, 1}:

q(k)(x) = Pr
(
Y (k) = y

(k)
obs | X(j) = x , {Y (m) = y

(m)
obs }m>k

)
(33)

To compute p(j)(x) from (q(k)(x))k children of j , we need the
following variation of Bayes’ formula:

Pr(A |B,C) Pr(B |C) = Pr(B |A,C) Pr(A |C) (34)

Indeed the left hand side of the above equation equals

Pr(A ∩B ∩ C)

Pr(B ∩ C)

Pr(B ∩ C)

Pr(C)
=

Pr(A ∩B ∩ C)

Pr(C)
(35)

which is symmetric in (A,B) and therefore equals the right
hand side. We apply this formula to the events

A =
(
X(j) = x

)
B =

(
{Y (k) = y

(k)
obs }k children of j

)
C =

(
{Y (m) = y

(m)
obs }m>j ,m not a child of j

) (36)

and define the normalization constant Z = Pr(B |C). We
know that Pr(A) = p and obtain

p(j)(x) = Pr(A |B,C)

=
p

Z

∏
k children of j

q(k)(x). (37)

Since p(j)(0) + p(j)(1) = 1, we obtain that

Z = p
∏

k children of j

q(k)(x) + (1− p)
∏

k children of j

q(k)(1− x).

(38)

We now compute q(k)(x) from (p(l)(x))l children of k. We
have

q(k)(x) = Pr
(
Y (k) = y

(k)
obs |X(j) = x , {Y (m) = y

(m)
obs }m>k

)
(39)

giving

1− 2q(k)(x) = (−1)y
(k)
obs +x+1

∏
l children of k

(1− 2p(l)(1)).

(40)

We could use Equations (38) and (40) directly to define the
iterative Belief Propagation algorithm. However for numerical
stability reasons we will follow [33] and use logarithmic ratios:

lp(j) = log
p(j)(0)

p(j)(1)

lq(k) = log
q(k)(0)

q(k)(1)

(41)

Under this transformation Equation (38) translates into:

lp(j) = log
1− p
p

+
∑

k children of j

lq(k). (42)

Observing that q(k)(1) = (exp (lq(k)) + 1)−1, we obtain

1− 2q(k)(1) = tanh
lq(k)

2
. (43)

Similarly 1 − 2p(j)(1) = tanh (lp(j)/2) and therefore
Equation (40) translates into:

lq(k) =
(−1)y

(k)
obs

2
argtanh

( ∏
l children of k

tanh
lp(l)

2

)
(44)

The BP decoder we use is defined from Equations (42)
and (44): the check node k sends the message lq(k) to its
parent node. The qubit j sends the message lp(j) to its parent
node. The first message is sent by the leaves of the tree,
which we assume are qubits. It is initialized to log (1−p

p ). The
last message is received by the root of the tree, which we
assume is a qubit. The value (exp (lp(root)) + 1)−1 gives the
probability that the random variable corresponding to the root
is 1 conditioned on the observation of all the check variables.

The derivation assumed that the Tanner graph was a tree.
However, even for codes for which this is not the case we can
still use the Belief Propagation algorithm as it was described
above. Although it does not compute exact probabilities any
more: it is a heuristic whose performance we investigate
numerically.

2) Monte Carlo (perfect measurements): We first consider
the setting where measurements can be performed perfectly,
meaning without errors. We apply the Belief Propagation
decoder in parallel. A round of message-passing consists in
each qubit sending a message to each of its neighbor check
node and each check node sending a message to each of its
neighbor qubit. After each round r of Belief Propagation we
compute wr, the weight of the syndrome if we were to flip
the qubits whose belief to have an error is higher than 0.5. We
stop as soon as wr ≥ wr−1 or when wr = 0. If we stopped
because wr = 0 and there is no logical error, we say that the
decoding succeeded. Figure 6a shows the statistical frequency
of unsuccessful decoding as a function of the physical error
rate.

The data is consistent with a threshold above 5% physical
error rate. However, we would like to note that due to the
complicated dynamics of belief propagation it is generally
hard to prove that a decoding threshold exists. In fact it is
known from classical coding theory that the performance of
BP reaches an “error floor” for low physical error rates which
occurs due to loops in the Tanner graph [33]. It is possible
to eliminate this problem by postprocessing the output of
BP with the ordered statistics decoder (OSD) which has a
computational complexity of O(n3) [35]. We have not done
this here and leave it as future work.

3) Monte Carlo (noisy measurements): To simulate noisy
syndrome extraction we flip the syndrome with probability q.
For our simulations we chose q = p. We consider T rounds
of error correction. In each round t ∈ {1, ..., T}, each qubit
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independently undergoes a Z error enoiset with probability p.
If t 6= 1, this error et is added to eres.t−1 , the residual error at
round t− 1. The noiseless syndrome is computed:

snoiselesst = H(eres.t−1 ⊕ enoiset ).

For t ∈ {1, ..., T − 1}, each check node independently
undergoes an error with probability q. This defines a syndrome
noise snoiset . The noisy syndrome is given to the BP decoder:

snoisyt = snoiselesst ⊕ snoiset . (45)

The BP decoder outputs an inferred error:

einf.t = BPdec.(s
noisy
t ) (46)

and the residual error is updated:

eres.t = eres.t−1 ⊕ enoiset ⊕ einf.t (47)

For the last round, t = T , we assume perfect measurements
and therefore have snoiseT = 0. If the weight of the syndrome
after the BP correction of this last round is zero and the
residual error eres.T is not a logical error, we say that the
decoding succeeded and otherwise, that it has failed. Fig-
ure 6b shows the statistical frequency of unsuccessful decoding
against the physical error rate for T = 5. Note that the
noiseless measurement scenario corresponds to T = 1. We
see that increasing the system size decreases the logical error
probability for a physical/syndrome error probability of p = q
up to about 4%.

In Figure 6c we show the results of running the BP decoder
on the same code (n = 19, 584) for different number of
iterations T . The performance becomes worse as T = 1 is
essentially the noiseless case, however the recession of curves
appears to recede with the number of time steps T .

The threshold of the surface code under the same error
model, but having to repeat the syndrome measurement for
d rounds and using a decoder with much less favourable
computational complexity, is about 3% [37]. Clearly, this is not
a fair comparison, as the ckeck weight of the {5, 3, 3, 5}-code
is three times higer than the one of the surface code. However,
one also needs to factor in the linear encoding rate and hence
the reduction in overhead, i.e. the number of physical qubits
that need to be spend to obtain a a given number of logical
qubits and for a desired suppression of logical errors [30]. We
leave a detailed analysis as an open problem for future study.

V. CONCLUSION

We have shown how to construct quantum codes with a
constant encoding rate and polynomial scaling distance from
regular tessellations of four-dimensional hyperbolic manifolds.
Some of the manifolds we constructed were known, but
many have (to the best of our knowledge) not appeared in
previous literature. We focussed on a particular tessellation
of hyperbolic 4-space called the {5, 3, 3, 5} tessellation. The
resulting code family has an asymptotic encoding rate of
k/n → 13/72 = 0.180..., stabilizer checks of weight 12 and
distance scaling polynomially as Θ(nε). For the construction
based on linear representations it can be shown that ε ≤ 0.3,
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Fig. 6. (a) Performance of BP decoder for a single time step T = 1. We
see that errors are suppressed in the system size for p < 0.5. The curves
cross very close to P = 1. The dashed lines indicate the error probability
if we were to take k unencoded qubits 1 − (1 − p)k . Vertical error bars
correspond to the approximate 95 % confidence interval given by p = p̂ ±
1.96

√
p̂(1− p̂)/ntrials where p̂ is the mean. Here ntrials = 1000 for each

physical error rate and each quantum code. (b) Increasing the number of time
steps to T = 5 lets the curves recede backwards. The pseudo-threshold for
the two largest codes is around 4%. For the codes with more than 10 000
qubits, the transition between the successful and the unsuccessful decoding is
quite sharp and gives numerical evidence for a noiseless threshold above 5%.
(c) Performance curves for fixed system size n = 19, 584. The recession of
the curves appears to slow down with the number of time steps T .

but we would like to stress that ε may be higher when
considering general {5, 3, 3, 5}-codes.

Future work – A drawback of our construction is the
high stabilizer weight. It was shown in [36] that by refining
the primal and dual tessellation of a homological code in a
controlled way one can reduce the stabilizer weight while
keeping the asymptotic code parameters invariant. A related
procedure is refining the hyperbolic tessellation using a eu-
clidean tessellation as done for 2D hyperbolic codes in [30].
It has to be determined how to do this in a systematic way
in our construction. Alternatively, it may be possible to define
a subsystem version in which stabilizers can be measured by
low-weight gauge operators.

We are confident that the decoding performance may be
increased by considering more sophisticated decoding algo-
rithms. For example, it would be worthwile to combine the
BP decoder with an ordered statistics decoder (OSD) to help
in cases where BP alone would fail [35]. Another interesting
avenue of research would be determining the threshold of
the maximum-likelihood decoder by analyzing the associated
4D hyperbolic random-plaquette gauge model, as previously
done for homological codes in euclidean space [10], [37],
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[38]. However, it seems to be non-trivial to find a suitable
order parameter, as bulk-boundary scaling works differently
in hyperbolic geometry.

Finally, we hope to perform a detailed comparison to
currently favoured quantum fault-tolerance schemes such as
the ones based on the surface code. The logical operators
of hyperbolic codes share their support, making them much
more efficient in terms of physical qubits for a fixed logical
error rate [30]. We blieve that the numerical single-shot per-
formance, the simplified decoding and the high encoding rate
make this LDPC code family highly competitive in situations
where planarity is not an issue, such as in modular quantum
computing architectures.

APPENDIX A
THE IDEALS OF Z[ξ]

In Section III-E we discuss a construction based on a repre-
sentation of the symmetry group of the {5, 3, 3, 5} tessellation.
The coefficients of the matrices in this representation contain
linear combinations of powers of the golden ratio φ. The ring
of these elements is denoted Z[φ]. To obtain finite examples
we map this representation to one over finite fields. This is
achieved by factoring out maximal ideals of Z[φ]. An ideal is
maximal if it is a proper subset of the ring and all other ideals
are contained in it. It is well-known that the quotient of a ring
with respect to a ideal is a field if and only if that ideal is
maximal. In what follows we discuss a slightly more setting
where the ideals are prime. An ideal I is prime if for any a
and b with ab ∈ I it holds that either a ∈ I or b ∈ I .

We characterize the ideals of any ring of integers Z[ξ] to
which an element ξ is added. Let h be the minimal polynomial
of ξ in Z[ξ]. As in Section III-E3 we will directly identify Z[ξ]
with Z[x]/〈h〉.
Lemma 1. Let h ∈ Z[x] be an irreducible polynomial and I
a non-zero prime ideal of Z[x]/〈h〉. Then I must contain a
unique prime number p.

Proof. Let Ĩ be the preimage of I under the natural epi-
morphism. Since I 6= 〈0〉 by assumption, Ĩ must contain a
g ∈ Z[x] which is not a multiple of h. Since h is irreducible
we must have gcd(h, g) = 1. By Bézout’s identity there exist
polynomials u, v ∈ Z[x] such that uh + vg = p, where p is
a positive integer such that the gcd of p and the coefficients
of u and v is 1. Since I is a prime ideal, so is I ∩Z and since
p ∈ I we have that p must be a prime number.

Lemma 2. Let h ∈ Z[x] be an irreducible polynomial and I
a non-zero prime ideal of Z[ξ] = Z[x]/〈h〉. Then the ring
Z[ξ]/I is a finite field and I is a maximal ideal.

Proof. Since I contains a prime number by Lemma 1 and
since h (the minimal polynomial of ξ) has finite degree we
have |Z[ξ]/I| <∞. Furthermore, since I is a prime ideal we
know that Z[ξ]/I has no zero divisors.

We will now show that every non-zero element a ∈ Z[ξ]/I
has a multiplicative inverse. Since Z[ξ]/I is finite there must
exist positive integers m and n with m > n such that am =
an, which is equivalent to an(am−n − 1) = 0. Since Z[ξ]/I

has no zero divisors this means am−n = 1 which implies
a · am−n−1 = 1. Thus am−n−1 is the multiplicative inverse
of a.

If p is the prime number from Lemma 1 then Z[ξ]/I is a
finite field of characteristic p.

Theorem 2. Let h ∈ Z[x] be an irreducible polynomial and I
a non-zero prime ideal of Z[ξ] = Z[x]/〈h〉. Any prime ideal I
of Z[ξ] = Z[x]/〈h〉 is equal to

1) 〈p〉, if h is irreducible in Fp[x] or
2) 〈p, g(ξ)〉, if h is not irreducible in Fp[x],

where p is a prime number and g is an irreducible factor of h
mod p.

Proof. Let πI : Z[ξ] → Z[ξ]/I be the quotient map. From
Lemma 2 we know that Z[ξ]/I is a finite field and we note
that it is generated (as a ring) by πI(ξ). By Lemma 1 we have
that I must contain a unique prime number p. Hence, I must
be generated by p and the minimal polynomial g of πI(ξ).
As ξ is a root of h in Z[ξ] by construction, we must have
that g divides h mod p. The two cases in the statement of the
theorem follow, depending on whether g ≡ h mod p.

APPENDIX B
QUOTIENT CONDITION

We use the notation of [24]: let G be a symmetry group gen-
erated by (ri)i∈{0,,4}. For i ∈ {0, , 4}, let Si be the subgroup
of G generated by (rj)j∈{0,,4}\{i}. Let P be the polytope
associated with G and (Si)i∈{0,,4}. Let H be a subgroup of G.
We are interested in a condition sufficient to define a quantum
code associated with the quotient polytope P/H .

The orbit of an i-face Fa = gaSi under the action of H
is {hgaSi |h ∈ H}. By definition this orbit is a face of the
quotient abstract polytope. We denote it by HFa. In terms of
elements of Γ, It corresponds to the double coset HgaSi.
We use the same incidence definition: HFa and HFb are
incident if HgaSi ∩HgbSj 6= ∅.

We want to find a condition under which quotienting on the
right by Si , i ∈ {0, ..., 4} “does not interact” with quotienting
on the left by H . More formally the following so-called
non-local subgroup condition is sufficient to prove the lifting
Lemma 3.

Definition 1 (The non-local subgroup condition). We say that
a subgroup of the symmetry group of the tessellation G fullfills
the non-local subgroup condition if for any i, j ∈ {0, ..., 4}
and for all g ∈ G we have

gHg−1 ∩ SiSj = {id}. (48)

The term non-local refers to the subgroup H: since the
subgroups Si , i ∈ {0, ..., 4} are “local” (with respect for
instance to the distance in the Caley graph

(
Γ , (ri)i∈{0,...,4}

)
,

the subgroup H has to be non-local in order to not interact with
the Si , i ∈ {0, ..., 4}.
Lemma 3 (Lifting of Si cosets). Let H be a subgroup of a
string C-group G of rank n satisfying the non-local subgroup
condition (Equation (48)). For i, j ∈ {0, ..., n}, let HFi be an
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i-face of H\PG and let HFj be a j-face of H\PG incident
to HFj .
For any i-face Ki of P such that HKi = HFi, there exists
a unique face Kj of P such that HKj = HFj and Kj is
incident to Ki.

Proof. There exists gi ∈ G such that Ki = giSi. Then
HKi = HFi = HgiSi. There exists gj ∈ G such that
HFj = HgjSj . There exist hi, hj ∈ H , si ∈ Si and sj ∈ Sj
such that higisi = hjgjsj . Therefore

gisi = h−1i hjgjsj (49)

We can define Kj = h−1i hjgjSj . Clearly HKj = HFj
and Kj is incident to Ki.

To prove uniqueness suppose that a face Lj of P satisfies
HLj = HFj and Lj is incident to Ki. There exists g ∈ G
such that Lj = gSj . Since HgSj = HgjSj , there exists h ∈
H and s′′j ∈ Sj such that

g = hgjs
′′
j (50)

Since Lj is incident to Ki, there exists s′i ∈ Si and s′j ∈
Sj such that gs′j = gis

′
i. Using Equations (49) and (50), we

obtain hgjs
′′
j s
′
j = h−1i hjgjsjs

−1
i s′i. We can rewrite this as

s−1j g−1j h−1j hihgjsj = s−1i s′i(s
′
j)
−1(s′′j )−1sj .

Defining ḡ = gjsj , h̄ = h−1j hih, s̄i =

s−1i s′i and s̄j = (s′j)
−1(s′′j )−1sj , we have

ḡ−1h̄ḡ = s̄is̄j .

Using the non-local subgroup condition Equation (48), it
implies that ḡ−1h̄ḡ = id and therefore that h̄ = id. We have
proven that h = h−1i hj , which means that Lj = Kj .

Thus under the non-local subgroup condition Equation (48)
we can use the lifting Lemma 3 to prove that the orthogonality
of the parity-check matrices is preserved by such quotients:

Let HFi−1 be an (i−1)-face and HFi+1 be an (i+1)-face
of the quotient polytope. Let {F̃i1 , ..., F̃in} be the collection
of i-faces incident to both HFi−1 and HFi+1. Under the non-
local subgroup condition Equation (48), the Lemma 3 shows
that there exist faces of the covering polytope Ki−1 covering
HFi−1, Ki+1 covering HFi+1 and ∀k ∈ {1, ..., n},Kik

covering HFik such that {Ki1 , ...,Kin} is the collection of
i-faces incident to both Ki−1 and Ki+1.
The preservation of the orthogonality of parity check matrices
would follow immediately from this.
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