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Abstract

Complete Freund’s adjuvant (CFA)-induced arthritis in rats is a common animal model for

studying chronic inflammatory pain. However, modelling of the disease is associated with

unnecessary pain and impaired animal wellbeing, particularly in the immediate post-induc-

tion phase. Few attempts have been made to counteract these adverse effects with analge-

sics. The present study investigated the effect of buprenorphine on animal welfare, pain-

related behaviour and model-specific parameters during the disease progression in a rat

model of CFA-induced monoarthritis. The aim was to reduce or eliminate unnecessary pain

in this model, in order to improve animal welfare and to avoid suffering, without compromis-

ing the quality of the model. Twenty-four male Sprague Dawley rats were injected with 20 μl

of CFA into the left tibio-tarsal joint to induce monoarthritis. Rats were treated with either

buprenorphine or carprofen for 15 days during the disease development, and were com-

pared to a saline-treated CFA-injected group or a negative control group. Measurements of

welfare, pain-related behaviour and clinical model-specific parameters were collected. The

study was terminated after 3 weeks, ending with a histopathologic analysis. Regardless of

treatment, CFA-injected rats displayed mechanical hyperalgesia and developed severe his-

topathological changes associated with arthritis. However, no severe effects on general wel-

fare were found at any time. Buprenorphine treatment reduced facial pain expression

scores, improved mobility, stance and lameness scores and it did not supress the CFA-

induced ankle swelling, contrary to carprofen. Although buprenorphine failed to demonstrate

a robust analgesic effect on the mechanical hyperalgesia in this study, it did not interfere

with the development of the intended pathology.

Introduction

Animal models of arthritis have been used extensively for decades to understand the mecha-

nisms of inflammatory arthritis and to screen for new therapeutic agents. While these models
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have the potential to provide important human benefits, experimental work with models of

painful conditions are problematic from a welfare point of view [1]. Although pain manage-

ment is imperative, analgesics are typically withheld [2]. The primary concern with using anal-

gesia in experimental pain models is the risk of the analgesics confounding the disease model

[3]. However, untreated pain is also problematic, since suffering and impaired welfare have

negative effects on body function and can influence the experimental outcome as well [4–6]. If

we wish to compromise neither animal welfare nor model validity, it is imperative to identify

appropriate analgesic regimens that limit unnecessary pain, with minimal impact on the dis-

ease progression.

Several analgesics are directly unsuitable for use in inflammatory pain models–e.g. non-ste-

roidal anti-inflammatory drugs—because they adversely influence the pathological develop-

ment of arthritis and thereby affect the study objectives [7–10]. Appropriate analgesics must

thus minimize the pain via other pharmacodynamic properties.

Buprenorphine is a semi-synthetic opioid that acts as a partial μ-opioid receptor agonist

[11, 12]. It is a commonly used analgesic in laboratory rodents because of its long plasma half-

life (6–12 hours), effective control of mild to moderate pain, its multiple administration routes

and its relatively few adverse effects compared to other opioids [2, 11, 12]. In addition, bupre-

norphine has been reported to have less immunosuppressive properties than other opioids

[13] and to decrease the corticosterone levels in rats [14, 15]. It is most often administered sub-

cutaneously, but several other modes of delivery have been investigated, e.g. oral administra-

tion by gavage or voluntary ingestion [14, 16, 17]. Reported doses and duration of analgesic

activity vary considerably. The recommended dose for rats ranges from 0.01 to 0.50 mg/kg,

administered s.c. or i.v., and the suggested dosing intervals are reported anywhere between

5–12 hours [18–23].

A few studies have investigated the effect of analgesia on model development in pain

models. Dougherty et al. [24] demonstrated that the use of lidocaine applied during nerve

damage reduced the duration and magnitude of hyperalgesia in rats induced with partial

constriction neuropathy, but not with partial transection neuropathy. Shankarappa et al.
[25] reported that the onset of allodynia was delayed in rats where neuropathic pain was

induced by spared nerve injury, if the animals were treated with liposomes containing saxi-

toxin and dexamethasone [25], while using the same model Hestehave et al. [26] demon-

strated that the development of allodynia was not affected by a variety of peri-operative

analgesic treatments with different mechanisms of action. In a complete Freund’s adjuvant

(CFA) induced polyarthritis rat model, Walker and colleagues [27] showed that buprenor-

phine had no significant effect on disease progression assessed by joint swelling. Previous

publications from our group have demonstrated the beneficial effects of post-surgical bupre-

norphine in rat and mouse models of cerebral ischemia, while not affecting the model-devel-

opment [28, 29].

The present study aimed to study whether it is possible to minimize unnecessary pain in

the induction stages of a rat model of CFA-induced monoarthritis. A recent study from our

group [30] demonstrated that the period where the animal wellbeing is most affected in this

particular model, is during the first three days after induction. Therefore, it was hypothesized

that buprenorphine treatment, administered from induction and onward during model devel-

opment, would have a positive effect on animal welfare and pain related behaviour. A group of

animals treated with carprofen (a non-steroidal anti-inflammatory drug), served as a positive

control, where reduction of joint stiffness and joint circumference was expected, contrary to

buprenorphine treatment.
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Materials and methods

Ethics statement

This study was approved by the Animal Experiment Inspectorate under the Danish Ministry

of Environment and Food of Denmark (license number 2014-15-0201-00257). All experiments

were carried out in an AAALAC accredited animal facility in accordance with the Guide for

Care and Use of Laboratory Animals and with the European Union Directive 2010/63/EU.

Animals and housing

Thirty-two male NTac:SD rats from Taconic (Ry, Denmark), weighing approximately 200 g

on arrival, were used in this study. Inclusion of both sexes was not possible due to the size of

the study, however this will be investigated in future studies. Animals were housed in pairs in

type IV S individually ventilated cages (IVC) (size 480 x 375 x 210 mm) from Techniplast

(Varese, Italy). The cages were lined with aspen chip bedding (Tapvei, Finland), and contained

paper nesting materials (Lillico, United Kingdom), wooden sticks (Tapvei), polycarbonate rat

retreats (Molytex, Denmark) and cardboard tunnels (Lillico) as environmental enrichment.

The animals were kept in a room with a temperature of 22˚C (± 2˚C), a relative humidity of

55% (± 10%) and a 12 h light/dark cycle, with lights on between 6:00 and 18:00, with 15–30

min of twilight. The animals were provided with chow (Altromin 1314; Altromin GmbH &

Co., Germany) and tap water ad libitum. Rats were allowed to habituate to the housing facili-

ties for nine days before start of experimentation.

Study design

Animals were randomly assigned into four experimental groups and housed in pairs receiving

the same treatment (Table 1). The four groups consisted of: one negative control group with

no intraarticular injection of CFA and with subcutaneous injections (s.c.) of saline instead of

analgesic treatment (CTRL); one positive control group injected with CFA intraarticularly and

with saline s.c. (CFA); and two experimental groups injected with CFA intraarticularly and

treated with either buprenorphine s.c. twice daily (CFA + BUP) or carprofen s.c. once daily

(CFA + CAR).

The induction of arthritis and the subsequent behavioural and analgesiometric testing were

performed by the same observer, between 8:00 and 13:00, throughout the entire study, to avoid

inter-observer differences. The treatment injections were performed by another person, and

the behavioural observer was blinded to treatment groups. Pre-injury baseline measurements

were performed the day before induction.

Group sizes were determined based on previous experience [30], and by a group size esti-

mate using the resource equation method, as described by Mead (1988) and by Festing (2002

and 2003) [31–33], suggesting a number of six-to-eight experimental units per group.

Table 1. Overview of control and experimental groups.

Groups N TTJa intraarticular injection Treatment (s.c. injection)

Control (or CTRL) 8 - Saline

Vehicle (or CFA) 8 CFA Saline

Buprenorphine (or CFA + BUP) 8 CFA Buprenorphine

Carprofen (or CFA + CAR) 8 CFA Carprofen

a TTJ refers to tibio-tarsal joint.

https://doi.org/10.1371/journal.pone.0260356.t001
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Induction of tibio-tarsal joint (TTJ) monoarthritis

Animals were briefly anesthetized with 3% isoflurane (“Attane Vet”, Isoflurane 1000 mg/g,

ScanVet, Denmark) delivered in pure oxygen at a flow rate of 1.0 L/min using an induction

chamber. When loss of righting reflex occurred, the anaesthetized rat was moved to a face

mask. The rat was placed in right lateral recumbency and absence of pedal withdrawal reflex

was confirmed before injection. Complete Freund’s adjuvant (CFA) (Sigma-Aldrich, USA),

containing heat-killed and dried Mycobacterium tuberculosis (strain H37Ra, ATCC 25177),

was injected (20 μl) into the left TTJ. The animal was then moved to their homecage for recov-

ery. The entire procedure from induction to recovery was less than 10 minutes for each indi-

vidual animal. Injections of pre-emptive analgesic or saline were administered 60 min before

injection of CFA. Negative controls were subjected to anaesthesia alone, without intraarticular

injection.

Analgesic treatment

The analgesic-treatment consisted of either buprenorphine (“Temgesic” 0.3 mg/ml; RB Phar-

maceuticals Ltd, UK) or carprofen (“Rimadyl vet.” 50 mg/ml; Pfizer Inc., USA). Treatment

was initiated pre-emptively on day 0, followed by repeated daily injections until day 15, 60 min

prior to behavioural testing. Doses were based on published recommendations [34–38].

Buprenorphine was administered subcutaneously (0.05 mg/kg) 8:00 and 16:00. Carprofen was

administered subcutaneously (5 mg/kg daily) at 8:00 and were injected secondary with saline

16:00. The drugs were diluted in isotonic (0.9%) saline to provide an injection volume of 1 ml/

kg s.c. of buprenorphine or carprofen. Rats that did not receive analgesia, received 1 ml/kg of

isotonic saline subcutaneously at 8:00 and 16:00.

Welfare assessment

All animals were subjected to a daily welfare assessment (WA) while in their home cages. The

WA was performed as previously described [30, 39]. General appearance, porphyrin staining,

gait and posture, wounds and body weight changes were assessed (Table 2). Scores of all

parameters were pooled and used for determining welfare impairment and whether humane

endpoints were reached. If the pooled score exceeded 0.4, the animal would be euthanized. No

animals in this study exceeded this threshold.

Model-specific parameters

Scoring of arthritis was performed as previously [30], assessing mobility, stance, lameness and

stiffness of the joint (Table 3). Mobility, stance and ambulation impairment were assessed at

pre-injury baseline and on days 0–22 post injury, and stiffness scores were assessed at pre-

injury baseline and on days 1, 3, 6, 9, 13, 16 and 20.

The joint circumferences were assessed at pre-injury baseline and on days 1, 3, 6, 9, 13,

16 and 20 post injury. The circumferences were estimated by measuring perpendicular

diameters of the joint using digital calipers. The circumference (C) was calculated as

C ¼ 2 � p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0; 5 � a2 þ b2
� �q

, where ‘a’ was the radius of the dorso-plantar axis and b

was the radius of the medio-lateral axis.

Electronic von Frey test

An electronic von Frey (EVF) device (Model EVF3 with a hard tip, Bioseb, France) was used

to assess mechanically evoked hyperalgesia. Assessments were made at pre-injury baseline and
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Table 3. Model specific parameters.

Mobility Reference score

The rat walks and runs normally 0

The rat walks and runs with difficulty 1

The rat walks with difficulty 2

The rat crawls using front legs only 3

The rat lies down only 4

Stance

The rat stands bearing weight equally on all four limbs 0

The rat stands bearing some weight on the arthritic limb 1

The rat stands with the arthritic paw touching floor, toes curled under 2

The rat stands on three paws only 3

Lameness

Normal ambulation 0

Mild, slight lameness 1

Moderate, toe touching ground 2

Severe, limb carried 3

Joint stiffness

Normal 0

Restriction of full range of flexion or extension 1

Restriction of full range of flexion and extension 2

Model specific parameter score sheet modified from Butler et al., 1992 [40].

https://doi.org/10.1371/journal.pone.0260356.t003

Table 2. Welfare assessment.

General appearance Reference score

Bright and alert 0

Burrowing or hiding, quiet but rouses when touched 0.1

Burrowing or hiding, quiet but rouses when touched. No exploration when lid off, burrows, hides,

head presses. Might be aggressive when touched

0.4

Porphyrin staining

None 0

Mild 0.1

Obvious on face or paws 0.4

Gait and posture

Normal 0

Mild incoordination when stimulated, hunched posture, mild piloerection 0.1

Obvious ataxia or head tilt, hunching, severe piloerection 0.4

Body weight loss from baseline (pre-CFA-injection)

<5% 0

5–10% 0.1

10–20% 0.4

Self-injury

None 0

Bites or scratches itself, leading to wounds 0.4

Welfare assessment score sheet adapted from Hampshire et al., 2001 [39].

https://doi.org/10.1371/journal.pone.0260356.t002
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on days 1, 3, 6, 9, 13, 16 and 20. Rats were placed on a raised metal grid platform in acrylic

chambers (size 16.5 x 24.2 x 14.6 cm) for 30 minutes of habituation before testing. Mechanical

hyperalgesia (secondary mechanical hyperalgesia) was evaluated by applying a rigid plastic

monofilament to the plantar surface of the paw, nearest the TTJ, with increasing force. The

applied weight in gram (g) required to elicit paw withdrawal was recorded as the mechanical

threshold. The test was repeated three times for each hind paw, starting with the non-injured

right paw. The EVF tip was only applied when the rat stood still in a natural position with all

four paws placed on the grid and a paw withdrawal response was only recorded with a com-

plete lifting of the stimulated hind paw.

Rat grimace scale

In an attempt to quantify spontaneous pain-related behaviour, the Rat Grimace Scale (RGS)

was applied [41]. All animals were habituated to the observer and the observation method for

six days prior to scoring. RGS was assessed pre-injury for baseline values and then on days

0–21 post injury. The blinded scoring of facial expressions was done while the rats were in

their home cages, after the lid was carefully removed and after a habituation time of approxi-

mately 3 minutes. The scoring was done as a single point real-time observation [42] of approx-

imately 15 seconds. Four action units (orbital tightening, ear changes, nose/cheek flattening

and whisker changes) scored: “0” if not present, “1” if moderately present, “2” if obviously

present, were used to produce an average score between 0–2 for each animal [41]. Scoring was

not performed if the animal was rearing, sniffing, grooming or sleeping.

Measurement of faecal corticosterone metabolites

Faeces were collected from all animals, pre-injury, and on days 1, 8, 15 and 20, in an attempt

to non-invasively identify the severity of nociception-induced stress through quantitating

excreted corticosterone and corticosterone metabolites. The time points were selected as they

were considered to reflect acute, intermediate and late stages respectively, of the development

of model parameters. The procedure was similar to what has previously been published from

our group [43, 44]. Before faecal sample collection, the rats were placed in clean cages.

Twenty-four hours later, all bedding and faeces were collected from each cage (each sample

representing two rats of the same treatment group) and the faecal pellets were separated from

the bedding by hand. The faecal samples were placed in plastic re-sealable bags and stored at

-20 ˚C until analysis. For the analysis, faecal pellets were weighed and mixed with ethanol

(5 ml/ g solid matter). Samples were incubated on a shaking table in 50 ml tubes for approxi-

mately 12 hours for extraction of faecal corticosterone and corticosterone metabolites (further

referred to as FCM). The suspension was centrifuged at 2000 x g (Hermle Labortechnik

GmbH, Germany) for 20 minutes, where after the supernatant was collected and the pellet dis-

carded. One ml of the supernatant was further centrifuged at 10,000 x g for 15 minutes

(Eppendorf 5415D; Eppendorf AG, Hamburg, Germany). The extracted sample was then

evaporated to dryness under vacuum (Genevac EZ-2 personal evaporator, SP Scientific, USA)

and resuspended in 0.15 M phosphate buffered saline (PBS, pH 7.2). The sample was again

centrifuged at 10,000 x g and the clear liquid was analysed by ELISA (DRG-Diagnostics corti-

costerone competitive enzyme-linked immunosorbent assay), according to the manufacturer’s

instructions.

Histopathology

All rats were euthanized on day 23 by decapitation. Both hindlegs were collected immediately

after euthanasia by a bilateral dissection proximal to the knee. The hind legs were placed in
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50 ml containers and decalcicifed for 48 h in Osteomoll (Sigma-Aldrich). The ankles were

trimmed according to Bolon et al. 2011 using a blade/scalpel [45]. The tissues were then dehy-

drated in 70% ethanol, and finally 90% ethanol before paraffin embedding and sectioning with

a microtome. Sections were mounted on glass slides, and hematoxylin-eosin (HE) stain was

applied. Detection of degenerative-inflammatory changes was performed blinded using an

Olympus BX53 microscope (Olympus Corporations, Japan), and representative pictures were

taken using infinityx-32c-Deltap SN 0174267 (Lumenera Corporations, Canada).

Statistics

The statistical analysis was performed using GraphPad Prism version 8.0. Data were tested for

normality using D’Agostino and Pearson omnibus normality test. Some values were missing

in BW, circumference and stiffness because of technical mistakes, why a repeated-measures

mixed-effects model analysis (using restricted maximum likelihood (REML) estimation) was

applied for BW and circumference. Electronic von Frey and FCM were analysed by two-way

repeated-measures (RM) ANOVA followed by a Tukey’s multiple comparisons test. FCM pre

-and post-CFA-injection comparisons were analysed by two-way RM ANOVA with Bonferro-

ni’s multiple comparisons test. Mobility, stance, stiffness and lameness scores were analysed by

one-way non-parametric ANOVA (Kruskal-Wallis test) followed by Dunn’s multiple compari-

sons test. RGS data were analysed by one-way non-parametric ANOVA (Kruskal-Wallis test)

followed by Dunn’s multiple comparisons test for each testing time, and by an ordinary one-

way ANOVA followed by Tukey’s multiple comparisons test when expressed as AUC (area

under the curve) values. p< 0.05 was considered statistically significant.

Results

General welfare assessment

All CFA-injected rats developed typical clinical symptoms of severe inflammation (erythema

and edema of the CFA-injected ankle) observed 8 h after CFA injection and with a rapid pro-

gression. Besides the obvious inflammatory reaction, the rats’ welfare was not considerably

affected. The pooled scores shown in Fig 1 did not exceed 0.4, i.e. the humane endpoint, for

any of the subjects. Kruskal-Wallis tests detected significant higher scores in CFA + BUP com-

pared to CFA + CAR day 2 (H (3) = 6.848, p = 0.0326) and day 12 (H (3) = 9.840, p = 0.0073)

but did not differ from the CFA group. Mild porphyrin staining around eyes and nose was the

most numerous indicator of impaired wellbeing in all CFA-injected animals.

The body weight (BW) is shown in Fig 2. Mixed-effects model (REML) revealed a signifi-

cant change over time (F (2.941, 82.20) = 441.4, p<0.0001) and a significant interaction

between treatment and time (F (63, 587) = 4.169, p<0.0001). There were no significant differ-

ences in BW day 1 after CFA injection although a visible trend towards a decrease could be

observed, continuing to day 2. A few of the rats suffered a weight loss of almost 10% of their

baseline weight on day 1 (max-min individual weight loss range: CFA: 22–2 g, CFA + CAR:

14–5 g and CFA + BUP: 38–0 g). The CTRL group did not display either weight loss or gain

day 1. From day 2 and throughout the study, the BW increased steadily in all groups. The CFA

+ BUP group demonstrated a noticeable body weight loss around day 13, however, no statisti-

cally significant differences between groups were detected at any time.

Model-specific parameters

Mobility, stance and lameness scores are illustrated in Fig 3(A)–3(C). All CFA groups showed

statistically significant differences in scores compared to baseline with the biggest difference
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Fig 1. Welfare assessment (WA) scores. The figure shows pooled mean WA scores collected daily with the score sheet

shown in Table 2. Statistics are calculated on ranks (Kruskal-Wallis test, followed by Dunn’s multiple comparisons

test), but values are displayed as means ± SEM for ease of viewing. The hash sign (#) represents a statistically significant

difference between CFA + BUP and CFA + CAR at #p< 0.05 and ##p< 0.01. For all graphs: base = baseline values,

D = day, the line represents the day of analgesic treatment initiation (D0) and the grey area represents the treatment

period (15 days). All groups, n = 8, male Sprague Dawley rats.

https://doi.org/10.1371/journal.pone.0260356.g001

Fig 2. Body weight (BW). Mean body weight per group on day 1–22 and baseline values. Data were analysed by a two-

way RM ANOVA followed by Tukey’s multiple comparisons tests. The line represents the day of analgesic treatment

initiation (D0) and the grey area represents the days with treatment administrated. Values are expressed as

mean ± SEM. For all graphs: base = baseline values, D = day, the line represents the day of analgesic treatment

initiation (D0) and the grey area represents the treatment period (15 days). All groups: n = 8, male Sprague Dawley

rats.

https://doi.org/10.1371/journal.pone.0260356.g002
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within day 1–4 after CFA injection followed by a trend approaching the baseline scores as the

study progressed. A Kruskal-Wallis test detected no statistically significant differences between

CFA-injected groups on these parameters within the first week after CFA-injection. However,

after the first week, the CFA + BUP group demonstrated a statistically significant difference

from the CFA group in mobility (Fig 3A) day 9 (H (3) = 6.112, p = 0.0471) and day 11 (H (3) =

7.303, p = 0.0259). Similarly, differences were detected in the same period for the stance score

(Fig 3B) day 9 (H (3) = 6.986, p = 0.0307) and day 14 (H (3) = 11.01, p = 0.0041), and for the

lameness score (Fig 3C) day 7 (H (3) = 10.15, p = 0.0062) and day 11 (H (3) = 7.849,

Fig 3. Model-specific parameters. (A) Mobility scores. (B) Stance scores. (C) Lameness scores. (D) The joint stiffness score of the ipsilateral TTJ. Statistics are

calculated on medians (Kruskal-Wallis test, followed by Dunn’s multiple comparisons test), but values are displayed as mean ± SEM for a better graphical view. The

asterisk (�) represents statistically significant difference between CFA + BUP and CFA at �p< 0.05 and ��p< 0.01. The hash sign (#) represents a statistically

significant difference between CFA + CAR and CFA at #p< 0.05. For all graphs: base = baseline values, D = day, the line represents the day of analgesic treatment

initiation (D0) and the grey area represents the treatment period (15 days). All groups, n = 8, male Sprague Dawley rats.

https://doi.org/10.1371/journal.pone.0260356.g003
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p = 0.0198). The CFA + CAR group demonstrated a significant difference in stance scores

compared to the CFA group, day 14 (H (3) = 11.01, p = 0.0041).

The joint stiffness scores are presented in Fig 3D. All CFA-injected animals manifested stiff-

ness of the joint in either flexion or extension, peaking on days 1–3, with a subsequent plateau.

On day 3, the CFA + BUP group was significantly different from the CFA group (H (3) =

9.208, p = 0.0043), suggesting more stiffness of the joint on this particular day, but besides this,

there were no significant differences between the CFA-injected groups.

Joint circumference

Circumferences of the ipsilateral ankle are presented in Fig 4. A mixed-effects model (REML)

revealed a significant difference between treatments (F (3, 28) = 138.8, p< 0.0001), over time

(F (4.952, 128.8) = 209.2, p< 0.0001) and a significant interaction between treatment and time

(F (21, 182) = 27.74, p< 0.0001). A significant increase in circumference was present in all

CFA-injected groups compared to the CTRL group (day 1–20), with a peak for all CFA-

injected groups on day 1 (p< 0.0001). The CFA + CAR group demonstrated a significantly

lower circumference compared to the CFA group on day 3 (p< 0.01), day 6 (p< 0.05), day 9

(p< 0.0001), day 13 (p< 0.01), day 16 (p< 0.01) and day 20 (p< 0.05). Likewise, the CFA

+ CAR group differed significantly with a lower circumference from the CFA + BUP at day 1

(p< 0.001), day 3 (p< 0.05), day 9 (p< 0.001) and day 16 (p< 0.05). No significant differ-

ences were found between CFA + BUP and CFA at any time (Tukey’s multiple comparisons

test).

Fig 4. Circumference measurements of the ipsilateral ankle. The plus (+) represents a statistically significant

difference between CFA + CAR and CFA at +p< 0.05, ++p< 0.01 and ++++p< 0.0001. The hash (#) represents

statistically significant difference between CFA + BUP and CFA + CAR at #p< 0.05, ###p< 0.001 and ####p< 0.0001.

For all graphs: base = baseline values, D = day, the line represents the day of analgesic treatment initiation (D0) and the

grey area represents the treatment period (15 days). For all data: presented as mean ± SEM. All groups, n = 8, male

Sprague Dawley rats.

https://doi.org/10.1371/journal.pone.0260356.g004
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Assessment of pain-related behaviour

The results of EVF testing on the ipsilateral paw are illustrated in Fig 5A. Two-way RM

ANOVA revealed a significant difference between treatments (F (3, 28) = 22.08, p< 0.0001),

over time (F (5.372, 150.4) = 13.69, p< 0.0001) and a significant interaction between treatment

and time (F (21, 196) = 2.67, p = 0.0002). All CFA-injected groups had a significantly lower

mechanical threshold day 1–16 compared to the CTRL group, indicating mechanical hyperal-

gesia secondary to the ankle-joint injury. No differences were detected between CFA-injected

groups at any time (Tukey’s multiple comparisons test). Occasionally exaggerated responses

were noticed after stimulation such as paw-shaking, paw grooming and guarding of the

Fig 5. Assessment of mechanical threshold. Effects of buprenorphine and carprofen on paw withdrawal thresholds

(g) as an expression of mechanical hyperalgesia. (A) Ipsilateral (left, CFA-injected paw) paw withdrawal thresholds.

(B) Contralateral (right, non-injected paw) paw withdrawal thresholds. Data are analysed by a two-way RM ANOVA

followed by a Tukey’s multiple comparisons test D1, D3, D6, D9, D13, D20 and presented as mean ± SEM. For all

graphs: base = baseline values, D = day, the line represents the day of analgesic treatment initiation (D0) and the grey

area represents the treatment period (15 days). All groups: n = 8, male Sprague Dawley rats.

https://doi.org/10.1371/journal.pone.0260356.g005
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ipsilateral hind limb. On the contralateral paw (Fig 5B), statistically significant differences

were seen between treatment (F (3, 28) = 3.899, p = 0.0191) and over time (F (5.377, 150.6) =

5.115, p = 0.0002). Tukey’s multiple comparisons test detected statistically significant differ-

ences between the CTRL group day 3 (CFA + CAR p = 0.0448) and day 9 (CFA p = 0.0366)

and CFA + CAR (p = 0.0158).

All mean RGS scores are presented in Fig 6. Scores were below 1 throughout, with the over-

all highest RGS scores detected within the first week, in particular in the CFA group. No statis-

tically significant differences were detected between treatment groups at any time point

analysed by Kruskal-Wallis tests (Fig 6A). But when comparing the RGS scores as AUC values

for three periods—pre-treatment (baseline, Fig 6B), treatment (day 1–15, Fig 6C) and post-

treatment (day 16–22, Fig 6D)—a one-way ANOVA revealed a significant difference in treat-

ment (F (3, 28) = 16.60, p< 0.0001) during the treatment period. No significant differences

were found pre-treatment or post-treatment. In the treatment period, Tukey’s multiple com-

parisons test detected significant differences between CFA vs. CFA + CAR (p = 0.0027) and

CFA + BUP (p = 0.0005) and CTRL (p< 0.0001). Additionally, CFA + CAR had significantly

higher RGS scores compared to CTRL (p = 0.0468), whereas no significant differences were

detected between CFA + BUP and CTRL.

Faecal corticosterone quantitation

Average values of faecal corticosterone metabolites (μg) excreted during 24 hours per cage is

presented in Fig 7. A mixed-effects model revealed a significant difference in time (F (2.603,

30.58) = 8.343, p = 0.0006) and a significant interaction between treatment and time (F (12,

47) = 3.489, p = 0.0010). Significant increases in corticosterone levels were observed in all

CFA-injected groups on day 1 compared to baseline (CFA group (p = 0.0007), CFA + BUP

(p = 0.0071) and CFA + CAR group (p = 0.0123)) (Fig 7B, Sidak’s multiple comparisons test),

but not in the control group. No differences were found between treatment groups at any time

point.

Histopathological assessment

The histopathological changes are presented in a descriptive manner, as a histological scoring

process to depict differences between groups was shown not to be reliable. Representative his-

tological sections are shown in Fig 8. The tibio-tarsal joints from control animals (Fig 8A–8C)

showed a normal joint space, normal synovial lining and intact articular cartilage and sub-

chondral bone tissue. In contrast, the tibio-tarsal joints of CFA-injected animals (Fig 8D–8F)

revealed massive intra–and periarticular lesions. In the subintimal region inflamed granulation

tissue dominated, making the synovium hypertrophic and the synovial lining hyperplastic.

The inflammatory cells in the granulation tissue were identified as macrophages, lymphocytes

and plasma cells, which were surrounding remnants of lipid droplets of CFA present in vary-

ing size. Within the joint space, histiocytic granulation tissue (pannus) was invading from the

capsular angle causing focal erosion/ulcerations in the articular cartilage and subchondral

bone tissue. Adjacent joints (the talo-navicular and talo-calcaneal joints) were found to be

affected as well, with some destruction of articular cartilage and subchondral bone by the for-

mation of similar inflamed tissue.

Discussion

This study examined the effects of buprenorphine treatment on welfare, model-specific

parameters and pain-related behaviour in a rat model of monoarthritis. The aim was to
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investigate whether it would be possible to minimize unnecessary pain related to the induction

of this model, without compromising the quality of the model.

In general, animal welfare was not significantly affected throughout the study, as deter-

mined by the welfare assessment protocol (Hampshire et. al. [39]) (Table 2). However, data

Fig 6. Assessment of the rat grimace scale (RGS). Facial expressions as a measure of non-evoked pain. Scoring was performed

every 24 hours for 21 days with six baseline scorings before induction (D-6 to D0). (A) RGS scores at baseline (D-1) to D21. The

line represents the day of analgesic treatment initiation (D0) and the grey area represents the treatment period (15 days). (B) Area

under the curve (AUC) for baseline (pre-treatment) RGS scores, presented as a scatter plot. (C) AUC for D1-15 (treatment

period), presented as a scatter plot. (D) AUC for D16-21 (post-treatment), presented as a scatter plot. The asterisk (�) represents

statistically significant difference from the CFA group at ��p< 0.001 and ���p< 0.0001. The hash sign (#) represents statistically

significant difference between CFA + BUP and CFA + CAR at #p< 0.05. For all graphs: base = baseline values, D = day, the line

represents the day of analgesic treatment initiation (D0) and the grey area represents the treatment period (15 days). For all data:

presented as mean ± SEM. For all groups: n = 8, male Sprague Dawley rats.

https://doi.org/10.1371/journal.pone.0260356.g006
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revealed two periods where welfare was affected—the first days after CFA injection (day 1–6),

with clear signs of acute inflammation and pain-related behavior, and a less obvious chronic

phase starting from day 10–12, lasting until termination on day 21, aligning with a previous

study from our group [30].

In the first two days after CFA-injection, all rats demonstrated a lack of appropriate daily

weight gain presumably due to loss of appetite as a sequela to anesthesia. The buprenorphine

group stood out with a weight loss trend from day 12. Although this could indicate a decrease

in general welfare, several studies have reported reduced food intake as a result of loss of appe-

tite or metabolic alterations in response to buprenorphine administration [26, 46, 47], and this

is likely the explanation for the decrease in BW and subsequently greater impairment of wel-

fare scores in the current study as well.

Several model-specific parameters such as lameness, joint stiffness, stance and mobility

were affected, as expected. Overall, significant differences in arthritis related parameters were

observed between CFA-injected groups. Primarily in the buprenorphine group, a reduced

degree of impairment from the injury was observed. The buprenorphine group and vehicle

group had similar circumferences of the CFA injected joint, whereas the carprofen group

showed a reduction of circumference almost from the first testing point after CFA injection

and throughout the study. The reduction in joint circumference was expected because of car-

profen’s anti-inflammatory effects [48]. The comparable joint circumferences in the buprenor-

phine and vehicle groups indicate that buprenorphine, in contrast to carprofen, did not

suppress the inflammatory swelling in this model, as hypothesized.

Unexpectedly, no analgesic effect of buprenorphine could be detected in the EVF test, nei-

ther during the first three days after CFA-injection, where the inflammation and pain-related

behaviour peaked, nor later in the treatment period. This may be explained by the dose of the

drug being too low or the dosing interval being too infrequent, calling for further investigation

of treatment protocols with buprenorphine. In addition, studying the first three days after

Fig 7. Faecal corticosterone measurements. (A) Faecal corticosterone metabolites (FCM) measurements are displayed as μg/24 h at

baseline and D2, D9, D16 and D21. (B) Pre (baseline measurements) -and post-CFA-injection (D2 measurements) are compared. The

asterisk represents statistical significant difference at �p< 0.05, ��p< 0.01 and ���p< 0.001. For all data: presented as mean ± SEM. For all

graphs: base = baseline values, D = day, the line represents the day of analgesic treatment initiation (D0) and the grey area represents the

treatment period (15 days). For all groups: n = 8, male Sprague Dawley rats.

https://doi.org/10.1371/journal.pone.0260356.g007
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induction more closely with more frequent intervals of assessment, may provide more robust

data.

Mechanical allodynia, a painful response to a normally non-painful stimulus, is tradition-

ally measured by applying low-intensity stimuli, such as prodding the skin with thin bending

von Frey filaments, while hyperalgesia is exaggerated sensitivity to stimuli, which would also

be considered to be painful before injury, like pricking the skin with a needle [49]. In this

study, we used an electronic von Frey apparatus with a rigid plastic monofilament (punctate

stimulation) rather than a series of filaments with different bending forces [50]. The EVF sti-

muli evoked a punctate withdrawal response before injury, and the animals’ withdrawal

responses were exaggerated after injury, as less force of the monofilament was needed for the

withdrawal response to be elicited. In addition, guarding behavior, paw-shaking and grooming

of the CFA-injected paw was occasionally observed following stimulation. Therefore, the

lower thresholds seen in this study were considered to be hyperalgesia-related. Further, the

pain response was provoked by a stimulation of the plantar surface of the paw, a test-site

remote from the injury site. Therefore, the lowered mechanical thresholds measured in this

study could possibly be due to of secondary hyperalgesia arising from central changes, reflect-

ing the peripheral input on the central nervous system (CNS) [51]. In some previous studies,

secondary hyperalgesia has also been measured in the contralateral hind paw to an injury

Fig 8. Hematoxylin-eosin (HE) sections. A. Normal articular spacing between tibia and the tarsal bone with smooth articular surface and a normal synovial lining

(magnification 4x). B. Normal chondrocytes in columnar orientation and intact subchondral bone (magnification 4x). C. Normal synovial lining structures (Intima

and subintima). Intima made up by 1–3 cells (synoviocytes) and a relatively loose connective tissue layer below with blood vessels and adipose cells (magnification

10x). D. Heavily cell-infiltrated tissue invading cranially and caudally into the tibio-tarsal joint causing local ulcerations in the articular cartilage and subchondral

bone tissue (magnification 4x). E. Massive inflamed granulation tissue in the subintimal region together with synovial membrane hyperplasia (magnification 10x).

F. Cells in the granulation tissue (macrophages, lymphocytes and plasma cells) surrounding lipid droplets of CFA in varying sizes (magnification 20x). In the

pictures: b, bone; c, cartilage; s, synovial tissue; t, tibia; tb, tarsal bone.

https://doi.org/10.1371/journal.pone.0260356.g008
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(reflex neurogenic inflammation) [52–55]. However, contralateral effects were not detected in

this study. In fact, contralateral paws of CFA-injected rats showed a higher tolerance to pres-

sure compared to the control group. This suggests a shift in weight bearing onto the contralat-

eral hind limb, compensating the ipsilateral CFA-injected hind limb. Using other objective

methods to test the effectiveness of analgesia may be of higher translational value than EVF

testing in this model.

In an attempt to detect and quantify spontaneous pain, the rat grimace scale was applied.

The RGS scores were low for all groups (below a score of 1) suggesting mild pain intensity. Dif-

ferences between groups were detected in the treatment-period (day 1–15). Possible positive

treatment effects were seen, as the carprofen and buprenorphine treated groups were signifi-

cantly lower in scores compared to the vehicle group, with the buprenorphine group having

the lowest scores. In addition, the buprenorphine group was not significantly different from

the control group, unlike the carprofen group. In this study, the action units were evaluated

when the rats were in their home cages, after the lid was lifted off in the presence of an

observer. It can be argued that these conditions were not optimal, because animal behaviour

changes in the presence of an observer (observer effect), the observer is able to observe the

whole body and not just the head (observer bias), and there is an overall lower accuracy from

not having video-playback [42]. However, approaches of assessing images or videos is however

far more time-consuming and a given intervention can only be evaluated retrospectively this

way, as opposed to being able to assess the animal’s pain as it occurs. Multiple factors can affect

the RGS outcome and there are studies suggesting that the RGS publication record involves

publication bias, and that it may not be applicable to all studies [56].

It is well known that almost all human contact with rodents, such as handling and restraint

or anaesthesia, is stressful to the animal. This results in an increased release of corticosterone

by the adrenal cortex into the blood stream and subsequent excretion in urine and faeces [57–

59]. Corticosterone levels have been used as a biomarker of stress, and indirectly of pain, in

several species [20, 60–62]. Despite that the FCM scores in general were low in the present

study, all CFA groups demonstrated an increase in scores post-injury compared to pre-injury.

Improvement of scores were detected in both treatment groups in the treatment period, with

the buprenorphine group showing the greatest improvement of scores compared to the

untreated group. The rise in FCM at Day 15 in the control group is mainly due to that one sin-

gle rat had doubled the amount of FCM at that time point. It is thus not a systematic increase,

and the increase is only apparent, not statistically significant. We do not have any particular

explanation for this—if that rat was particularly stressed at that point or if it could be an error

in the quantification process.

All CFA-injected animals displayed severe arthritic pathology, involving inflammatory

granulomatous lesions intraarticular and periarticular to the tibio-tarsal joint, as expected.

However, the formation of granulation tissue within the synovial subintimal region resulted in

hypertrophic synovial tissue expanded to affect several other joints in the ankle. In this study

and a previous study [30], we used a CFA volume of 20 μL to induce TTJ monoarthritis, which

is a smaller volume, compared to many other studies [40, 63–66]. Even with a volume of 20 μl,

unintended massive inflammation affected surrounding tissue in the ankle. Performing the

induction into a bigger and isolated joint, such as the knee joint, could despite other complica-

tions, be an advantage. The use of smaller volumes of CFA will also be investigated in the

future.

A relatively long-term treatment-period seen in this study, may be unnecessary in this

model, especially in relation to possible treatment-related long-term adverse effects, e.g. body

weight decreases upon buprenorphine treatment as indicated in this study, or opioid tolerance

that has been demonstrated in other studies [67, 68]. A shorter treatment-period within the
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first week, may be more desirable, avoiding possible adverse effects of treatment. However, the

study was designed to show that even with the use of long-term buprenorphine treatment, we

managed to develop a relevant model with enhanced animal wellbeing and the desirable histo-

pathological changes of monoarthritis. Therefore, the authors encourages the use of analgesia

initially unless there is a scientific justification otherwise. However, we cannot exclude molecu-

lar changes after buprenorphine treatment in the post-induction period—both in the up/down

regulation of opioid receptors and in the wind-up/development of the central sensitization etc.

and more experiments are required to explore this further.

Findings in this study provide no immediate reason to withhold buprenorphine analgesia

to alleviate unnecessary pain in the complete Freund’s adjuvant-induced monoarthritis rat

model, in the investigated time window. Buprenorphine treatment resulted in some improve-

ment of facial pain expression scores, mobility, stance and lameness scores, and it did not sup-

press the CFA-induced ankle swelling, unlike carprofen treatment. Proper development of

CFA-induced arthritis was confirmed in all buprenorphine treated rats, evaluated histologi-

cally, although it should be pointed out that quantitative analysis of the histopathology is

needed in future studies to clearly validate differences between treatment groups. Our study

highlights the importance of a multimodal-behavioural approach in the assessment of pain

and effects of analgesia. While the current study explored an elaborate long-term analgesia reg-

imen, which may not be necessary for standard experiments, greater attention to alleviating

pain during the first three days post-induction, where the well-being appears to be most com-

promised, should be paid in future studies. Lastly, induction of the model could be further

optimized with regards to confining the inflammation to the joint, avoiding spread to the sur-

rounding tissue. Whilst further studies are needed to elucidate if post-induction analgesia pro-

duces neurobiological changes that may affect the use of the model for specific experiments,

we see no reason for not providing at least a minimal level of analgesia in the immediate post-

induction days to improve the animal welfare.
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