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a b s t r a c t 

Convolutional neural networks (CNN) can accurately predict chronological age in healthy individuals from struc- 

tural MRI brain scans. Potentially, these models could be applied during routine clinical examinations to detect 

deviations from healthy ageing, including early-stage neurodegeneration. This could have important implications 

for patient care, drug development, and optimising MRI data collection. However, existing brain-age models are 

typically optimised for scans which are not part of routine examinations (e.g., volumetric T1-weighted scans), 

generalise poorly (e.g., to data from different scanner vendors and hospitals etc.), or rely on computationally 

expensive pre-processing steps which limit real-time clinical utility. 

Here, we sought to develop a brain-age framework suitable for use during routine clinical head MRI exam- 

inations. Using a deep learning-based neuroradiology report classifier, we generated a dataset of 23,302 ‘radi- 

ologically normal for age’ head MRI examinations from two large UK hospitals for model training and testing 

(age range = 18–95 years), and demonstrate fast ( < 5 s), accurate (mean absolute error [MAE] < 4 years) age 

prediction from clinical-grade, minimally processed axial T2-weighted and axial diffusion-weighted scans, with 

generalisability between hospitals and scanner vendors ( Δ MAE < 1 year). The clinical relevance of these brain- 

age predictions was tested using 228 patients whose MRIs were reported independently by neuroradiologists as 

showing atrophy ‘excessive for age’. These patients had systematically higher brain-predicted age than chrono- 

logical age (mean predicted age difference = + 5.89 years, ’radiologically normal for age’ mean predicted age 

difference = + 0.05 years, p < 0.0001). 

Our brain-age framework demonstrates feasibility for use as a screening tool during routine hospital exami- 

nations to automatically detect older-appearing brains in real-time, with relevance for clinical decision-making 

and optimising patient pathways. 
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. Introduction 

Convolutional neural networks (CNN) can accurately predict chrono-

ogical age in healthy individuals from structural MRI brain scans.

hen applied in independent samples, deviations between an individ-

al’s brain-predicted age and their chronological age - the so-called

brain predicted age difference’ (brain-PAD), also known as brain-age

ap, or delta - can be used to quantify deviations from healthy age-

ng ( Cole and Franke, 2017b ). Having a brain that more closely re-
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embles that of an older healthy person (i.e., positive brain-PAD) has

een associated with a number of neuropsychiatric diseases, includ-

ng Alzheimer’s disease ( Franke and Gaser, 2012 ), mild cognitive im-

airment ( Gaser et al., 2013 ), schizophrenia ( Koutsouleris et al., 2014 )

nd epilepsy ( Pardoe et al., 2017 ); a positive brain-PAD has also been

ssociated with cognitive impairment following traumatic brain in-

ury ( Cole et al., 2015 ), an increased risk of subsequent dementia

 Biondo et al., 2020 ), and a greater risk of mortality ( Cole et al., 2018a ).

hese findings support the use of MRI-derived brain-age measures as a
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Fig. 1. Comparison of candidate structural MRI sequences for brain-age prediction. Previous studies have overwhelmingly used research-grade volumetric T1- 

weighted scans (a) for brain-age prediction. However, these scans are typically not part of routine hospital head MRI examinations; instead, axial T2-weighted (b) 

and axial diffusion-weighted (c) scans are typically acquired. 
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creening tool (opportunistically or otherwise) for these and other dis-

ases to identify people at higher risk of poor health outcomes. 

Potentially, brain-age could be predicted during routine clinical ex-

minations to detect deviations from healthy ageing that may represent

arly-stage neurodegeneration. This in turn could help improve the pa-

ient pathway by expediting care (including intervention where avail-

ble), and possibly accelerate the development of disease-modifying

rugs through improved clinical trial enrolment. Brain-age could also

easibly guide adaptive MRI sequence acquisition ( Cole et al., 2018b ),

nabling patients with older-appearing brains to undergo additional,

ore targeted, imaging (e.g., ‘dementia protocol’) whilst still in the

canner. To date, however, several key challenges have prevented clin-

cal adoption: 

1) Previous brain-age models have overwhelmingly used high-

resolution volumetric T1-weighted scans, with isotropic or

near-isotropic voxels, for brain-age prediction ( Lemaitre et al.,

2012 )( Franke et al., 2010 )( Franke and Gaser, 2012 )( Gaser et al.,

2013 )( Koutsouleris et al., 2014 )( Cole et al., 2017a )( Jónsson et al.,

2019 ). However, these scans are typically not part of routine clin-

ical examinations as they are time-consuming to acquire. Instead,

anisotropic (e.g., low axial resolution) T2-weighted and diffusion-

weighted images are considerably more common ( ACR, 2019 )

( Fig. 1 ). 

2) Most brain-age models have been trained and evaluated using scans

obtained from curated, open-access research databases (e.g., OASIS,

UK Biobank, IXI, Cam-CAN) which follow precise imaging protocols

and participant inclusion criteria ( Peterson et al., 2010 ). Hospital

scans, by contrast, are more heterogeneous, with variable scanner

vendors, imaging protocols, and patient populations between dif-

ferent sites likely to result in poorer model performance when ap-

plied in real-world clinical settings ( Hosny et al., 2018 )( Kocac et al.,

2020 )( Futoma et al., 2020 ). 

3) Current state-of-the-art brain-age frameworks commonly rely on

computationally expensive pre-processing such as bias-field correc-

tion, skull-stripping and spatial normalisation, which limits real-time

clinical utility and introduces additional modelling assumptions. 

A solution is to train brain-age models directly on ‘raw’ (i.e., mini-

ally pre-processed, image-space) hospital head MRI scans, thereby en-
2 
uring that models are trained on data from a range of scanner vendors

nd acquisition protocols, drawn from a clinically-representative pop-

lation. However, identifying sufficiently large training cohorts of pa-

ients with normal scans for deep learning is challenging, since archived

ospital images are rarely stored with accompanying categorical labels

i.e., ‘radiologically normal for age’ or ‘radiologically abnormal for age’).

n recent years, however, breakthroughs in natural language process-

ng (NLP) have made it feasible to derive accurate radiological labels

rom free-text radiology reports ( Vaswani et al., 2017 )( Devlin et al.,

019 )( Wood et al., 2021b ). This in turn enables the automatic grouping

f large hospital databases of head MRI examinations according to these

abels, facilitating downstream computer vision model development at

cale ( Wood et al., 2021a ). 

The purpose of this study was to build on these breakthroughs and

evelop a brain-age framework suitable for use during routine clin-

cal head MRI examinations. We hypothesized that training at scale

n clinically-representative data would result in generalisable models

hich are robust to variations in scanner vendors, imaging protocols and

atient populations between different hospitals. We examined model

eneralisability by training and testing with different subsets of the

vailable data from each participating hospital. In a separate experi-

ent, we examined generalisability by training and testing with differ-

nt subsets of available data from each scanner vendor. We also hypoth-

sized that training at scale would obviate the need for pre-processing

teps such as skull-stripping and spatial registration, since with sufficient

raining data a CNN should learn to focus on features relevant for brain-

ge prediction (i.e., brain parenchyma) and ignore irrelevant features

uch as extra-cranial tissue and absolute image position ( LeCun et al.,

015 ); we sought to verify this by interrogating model decisions through

nterpretability methods. Finally, we hypothesized that deviation from

ur brain-age predictions could be used to detect atrophy in routine hos-

ital examinations. We tested our model on scans of patients described

ndependently by the radiologist during routine reporting as having at-

ophy ‘excessive for age’; this way, we were able to evaluate brain-age

redictions against expert radiological reports. 

We focused primarily on brain-age prediction from axial T2-

eighted scans as this sequence was performed in > 90% of examinations

n our UK NHS datasets. This is broadly similar to what is seen through-

ut the United States ( ACR, 2019 ). The next most common sequence
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Table 1 

Dataset of scans reported as ‘radiologically normal for age’, used for brain-age model development. 

Hospital Axial T2-weighted scans Axial DWI scans Age (mean ± standard deviation) Age range Unique patients Male/ female 

KCH 9496 6592 43.7 ± 15.9 18 - 95 7425 4498/ 4998 

GSTT 13,806 4806 43.4 ± 14.9 18 - 94 9419 6213/ 7593 

Pooled 23,302 11,398 43.5 ± 15.3 18 - 95 16,844 10,711/ 12,591 
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as axial diffusion-weighted scans, performed in ∼50% of examinations;

herefore, as a secondary goal we investigated the use of axial diffusion-

eighted scans for brain-age prediction. More advanced sequences (e.g.

1-weighted contrast enhanced and susceptibility-weighted scans, as

ell as volumetric scans) were obtained in under 10% of examinations

nd were therefore outside the scope of the current study. 

. Materials and methods 

.1. Datasets 

All data were de-identified. The UK National Health Research Au-

hority and Research Ethics Committee approved this retrospective

tudy (IRAS ID 235,658, REC ID 18/YH/0458). 

.1.1. Hospital head MRI dataset 

All 81,936 adult ( ≥ 18 years old) head MRI examinations per-

ormed at King’s College Hospital NHS Foundation Trust (KCH) and

uy’s and St Thomas’ NHS Foundation Trust (GSTT) between 2008 and

019 were obtained for this study. The MRI scans were performed on

igna 1.5 T HDX (General Electric Healthcare, Chicago, US), Aera 1.5 T

Siemens, Erlangen, Germany), Ingenia 1.5 T (Philips Healthcare, Eind-

oven, Netherlands) or Skyra 3 T (Siemens, Erlangen, Germany) scan-

ers. The text of the corresponding radiology reports produced by ex-

ert neuroradiologists (UK consultant grade; US attending equivalent)

ere extracted from the Computerised Radiology Information System

CRIS) (Healthcare Software Systems, Mansfield, UK). These reports

ere largely unstructured and typically comprised 5–10 sentences of

mage interpretation, along with comments regarding the patient’s clin-

cal history, and recommended actions for the referring doctor. A subset

f these examinations was identified as ‘radiologically normal for age’

 Section 2.1.1.2 ) and included for model training and testing. A separate

ubset of examinations that were reported as having atrophy ‘excessive

or age’ was also identified (section 2.1.1.3) and included for additional

odel testing. 

.1.1.1. ‘Normal for age’ cohort identification for brain ‐age model de-

elopment. ‘Radiologically normal for age’ cohort identification was

erformed using a transformer-based neuroradiology report classifier

 Wood et al., 2020a )( Wood et al., 2021b ). This model was trained and

ested using a dataset of 5000 neuroradiology reports from KCH which

ad been manually labelled by a team of 5 expert neuroradiologists (UK

onsultant grade; US attending equivalent) as either ‘radiologically nor-

al for age’ or ‘radiologically abnormal for age’, following comprehen-

ive pre-determined criteria ( Wood et al., 2020b )( Wood et al., 2021b ).

he model achieved near-perfect classification performance on a hold-

ut set of 500 manually-annotated KCH radiology reports (AUC = 0.991)

nd generalised to an external hold-out test set of 500 reports from

STT (AUC = 0.990, ΔAUC = 0.001). For further information about

he development of this model, see ( Wood et al., 2020a )( Wood et al.,

020b )( Wood et al., 2021b ). 

Once validated, the model was used to classify all 75,778 examina-

ions from KCH and GSTT which included an axial T2-weighted scan

 Fig 2 ); in total, 23,302 examinations were identified as ‘radiologically

ormal for age’ and included for brain-age model training and test-

ng (male/female = 10,711/ 12,591, mean age = 43.5 ± 15.3, age

ange = 18–95) ( Table 1 ). Further dataset information is provided in

ppendix A. 
3 
.1.1.2. Atrophy ‘excessive for age’ dataset identification. A subset of ex-

minations reported as having atrophy ‘excessive for age’ was iden-

ified using the specialised radiology report classifiers described in

 Wood et al., 2021b ) (Fig. B1, Table B1 in Appendix B). Candidate exam-

nations from the larger set of 52,476 ‘radiologically abnormal for age’

xaminations were identified using the ‘atrophy excessive for age’ versus

no atrophy excessive for age’ classifier; these examinations were then

assed to six additional classifiers (‘mass’ versus ‘no mass’, ‘moderate

r severe small vessel disease’ versus ‘no or mild small vessel disease’,

vascular abnormality’ versus ‘no vascular abnormality’, ‘stroke’ versus

no stroke’, ‘white matter inflammation’ versus ‘no white matter inflam-

ation’, ‘previous brain damage’ versus ‘no previous brain damage’) to

xclude patients with these common pathologies. Two neuroradiologists

hen interrogated the radiology reports of the resulting 281 examina-

ions to exclude rare abnormalities, and determined that 228 described

xaminations where excessive atrophy was the only abnormal finding

interrater agreement = 100%; Fleiss’ kappa = 1) (male/female = 127/

01, mean age = 53.1 ± 14.9, age range = 19 - 88). The axial T2-

eighted scans from these examinations were then included for model

esting ( Fig. 2 ). Importantly, this dataset was clinically-representative,

omprising patients with subtle (e.g., described by the reporting radiolo-

ist as ‘slightly excessive for age’ or similar) as well as more conspicuous

e.g., described by the reporting radiologist as ‘markedly excessive for

ge’ or similar) neurodegeneration. 

.1.2. External test dataset 

To facilitate further testing of our model, as well as enable di-

ect comparison of model performance with previous and future

tudies, all axial T2-weighted scans from the Information eXtraction

rom Images (IXI) healthy subject dataset were obtained ( n = 563,

ale/female = 250/ 313, mean age = 48.6 ± 16.5 years, age range = 20

86 years). The scans were acquired at three different London institu-

ions between 2005 – 2008 (Hammersmith Hospital, using a Phillips 3T

ystem; Guy’s Hospital, using a Phillips 1.5T system; Institute of Psychia-

ry, using a GE 1.5T system), and can be downloaded from https://brain-

evelopment.org/ixi-dataset/ . 

.1.3. Research examination dataset for T1 ‐weighted and T2 ‐weighted 

rain ‐age comparison 

Because our hospital datasets contained few ‘radiologically normal

or age’ examinations where volumetric T1-weighted scans were ac-

uired, a separate dataset was required to facilitate a fair comparison

etween volumetric T1-weighted and axial T2-weighted brain-age pre-

iction. To this end, all healthy research volunteer examinations per-

ormed at the Institute of Psychiatry, Psychology & Neuroscience, King’s

ollege London, between 2013 and 2019 were obtained. We identified

 ‘normal for age’ subset of 2387 examinations where both axial T2-

eighted scans and volumetric T1-weighted scans were available (mean

ge = 32.8 years ± 12.3 years, age range = 18 – 87 years), and included

hese for additional brain-age model training and testing. These MRI

cans were performed on a Signa 3T Discovery MR750 (General Electric

ealthcare). 

.2. Neuroimaging processing 

Axial T2-weighted or axial diffusion-weighted scans of arbitrary res-

lution and dimensions, stored as Digital Imaging and Communications

https://www.brain-development.org/ixi-dataset/
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Fig. 2. Flow chart showing data sets used for 

training, validating, and testing our brain-age 

models. KCH (top), GSTT (bottom). To en- 

sure that the training and test sets reflected 

the heterogeneity of examinations seen in rou- 

tine clinical practice, no reported examina- 

tions were excluded on the basis of image 

quality. 
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n Medicine (DICOM) files, were converted into NIfTI format, resam-

led to common voxel sizes and dimensions (1mmˆ3), and then cropped

r padded to a common array size (180 mm x 180 mm x 180 mm);

his final step was necessary since CNNs require fixed-size images as

nput. The intensity of each image was normalised by subtracting the

mage mean and dividing by the image standard deviation. No spatial

egistration, bias field correction or skull-stripping was performed. All

re-processing was carried out using open-access python-based libraries:
4 
ydicom ( Mason et al., 2020 ) was used to load DICOM files; dcm2niix

 Li et al., 2016 ) was used to convert DICOM files to NifTI format; NiBa-

el ( Brett et al., 2020 ) and numpy ( Harris et al., 2020 ) were used to load

nd manipulate NifTI files; Project MONAI ( MONAI, 2020 ) was used to

esample, resize and normalise each image. 

To compare brain-age prediction with and without skull-stripping,

 separate dataset of skull-stripped scans was generated using HD-BET

 Isensee et al., 2019 ), a deep learning-based PyTorch package, to re-
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ove non-brain tissue from all axial T2-weighted scans from GSTT (n

cans = 13,806). 2 Further information about this open-access tool is

vailable at https://github.com/MIC-DKFZ/HD-BET . 

.3. Brain ‐age modelling methods 

Our brain-age models were based on the ‘DenseNet121’ architecture

 Huang et al., 2017 ). DenseNet is a generalisation of the popular resid-

al network (‘ResNet’) ( He et al., 2016 ) which includes shortcut or ‘skip’

onnections between internal neuron layers to overcome the ‘vanishing

radient’ problem ( Pascanu et al., 2013 ) whereby earlier layers in a deep

etwork fail to ‘learn’. We elected to use an ‘out-of-the-box’ standard

enseNet121 configuration, rather than design a custom architecture,

o ensure reproducibility and transparency of our framework. Specifi-

ally, our network consisted of an initial block of 64 convolutional filters

kernel size = [7 × 7 × 7], stride = 2) and a ‘max-pooling’ layer (ker-

el size = [3 × 3 × 3], stride = 3), followed by four ‘densely connected’

onvolutional blocks. Each dense block consists of alternating point-wise

kernel size = [1 × 1 × 1]) and volumetric (kernel size = [3 × 3 × 3]) con-

olutions which are repeated 6, 12, 24 and 16 times in the four blocks,

espectively. Between each dense block are ‘transition layers’ which con-

ist of a point convolution (kernel size = [1 × 1 × 1]) and an average

ooling layer (kernel size = [2 × 2 × 2], stride = 2). Global average

ooling is applied to the output of the 4th dense block, resulting in a

024-dimension feature vector which is converted by a fully-connected

ayer into a prediction for the patient’s age (Fig. C1 in Appendix C). 

Our DenseNet brain-age models were adapted from the im-

lementation available at Project MONAI ( https://docs.monai.io/

n/latest/_modules/monai/networks/nets/densenet.html ), and all

odelling was performed with PyTorch 1.7.1 ( Paszke et al., 2019 )

sing two NVIDIA RTX 2080 11 GB graphics processing units (GPU).

he Adam optimizer ( Kingma and Ba, 2015 ) was used to update model

eights during training, with the learning rate initially set to 1e-4 and

educed by a factor of 2 after every 5 epochs without validation loss

mprovement (i.e., learning rate scheduling). For all experiments, data

ere split into training (65%), validation (15%), and testing (20%) sets.

his split was done at the patient level to prevent ‘data leakage’. For

ach data split, model checkpoints were saved after each epoch, and

he model with the lowest validation loss was used for testing. Mean

bsolute error (MAE) and Pearson’s correlation were used to quantify

odel performance. Confidence intervals were generated by repeating

his procedure 5 times for each model using different, randomly

enerated training/validation/testing splits. Paired t -testing was used

o test the statistical significance of differences in computation time

or the raw and skull-stripped models. Independent-sample t -testing

as used to test the statistical significance of differences in brain-PAD

etween ‘radiologically normal for age’ and ‘atrophy excessive for

ge’ patients. ‘Corrected paired t-testing’ ( Nadeau and Bengio, 2003 )

as used to test the statistical significance of differences in brain-age

rediction between the raw and skull-stripped models, and between

odels using different MRI sequences. Scripts to enable readers to run

ur trained brain-age models using their own scans are available at

ttps://github.com/MIDIconsortium/BrainAge . 

.4. Model interpretability 

To scrutinise model predictions, guided backpropagation

 Springenberg et al., 2015 ) and occlusion sensitivity analysis ( Zeiler and

ergus, 2014 ) were performed. Briefly, guided backpropagation works

y computing the derivative of the model predictions and ‘back-

ropagating’ this signal to the input image. In this way guided
2 Experiments comparing brain-age prediction with and without skull- 

tripping were performed using data from a single hospital (GSTT) to limit com- 

utation time (skull-stripping required > 1 week per hospital dataset). 

f  

m  

(  

t  

A

5 
ackpropagation highlights image regions which, if changed slightly,

ould alter the model’s predictions. In contrast, occlusion sensitivity

nalysis involves ‘masking out’ a (e.g., cubic) region in an image and

assing the ‘occluded’ image to a trained model. If the masked region

ontains features relevant for brain-age prediction, then the model’s

utput is likely to differ from that generated for an unmasked image.

y repeating this masking procedure at different locations in the

mage, a ‘heatmap’ of image regions which most influenced the model’s

redictions can be generated. For our experiments, we set the mask

alue to 0 (which corresponds to the mean image value after intensity

ormalisation), the mask size to 5 × 5 × 5, and the ‘stride’ (i.e., step

ize used to generate subsequent masks) to 3; these values represented

 compromise between heatmap resolution and computational time. 

. Results 

.1. Axial T2 ‐weighted brain ‐age prediction 

Accurate brain-age prediction (MAE = 2.97 years, 95% CI [2.94,

.0], Pearson’s correlation, r = 0.972 [0.970, 0.974]) was achieved using

aw, clinical-grade axial T2-weighted scans pooled from both hospitals

n training = 15,146, n test = 4661) ( Fig. 3 a). Additional T2-weighted

odels generalised well between sites ( Fig. 3 b-d) and between scanner

endors ( Fig. 4 ) ( Δ MAE < 1.0 years). 

By training additional models using different training data sample

izes, we observed that our brain-age framework is operating in an

symptotically optimal data regime ( Fig. 5 a-b); in other words, only

inimal improvement can be expected by further increasing the training

ataset size. We observed only minimal ‘bias’ ( de Lange and Cole, 2020 )

n brain-age predictions (i.e., systematic overestimation and underes-

imation of age in younger and older subjects, respectively) (Pear-

on’s correlation between brain-PAD and chronological age = − 0.18)

 Fig. 5 c). 

.2. Skull ‐stripped versus ‘raw’ brain age prediction 

Accurate brain-age prediction with and without skull-stripping was

bserved (raw MAE = 3.05 years [3.01, 3.09], skull-strip MAE = 3.65

ears [3.60, 3.70], n training = 8974, n test = 2761). The difference

n performance was significant ( p = 0.0002). Guided backpropaga-

ion demonstrated that both models focus on similar regions for brain-

ge prediction (Pearson’s correlation between raw and skull-stripped

aliency maps aggregated across the entire test set ≥ 0.7); these pri-

arily appear to be related to the cerebrospinal fluid spaces, such as

he lateral ventricles ( Fig. 6 ), in agreement with results derived us-

ng occlusion sensitivity analysis (Fig. E1, Appendix E). Computation

ime was significantly faster using raw scans (pre-processing + pre-

iction time = 4.6 ± 0.8 s) compared with skull-stripped scans (pre-

rocessing + prediction time = 48.9 ± 3.2 s) ( p < 0.0001). 

All results from Section 3.1 and 3.2 are summarised in Table 2: 

.3. Brain ‐age prediction with scans reported as having atrophy ‘excessive 

or age’ 

Next, we tested the 228 patients reported as having atrophy ‘exces-

ive for age’, using the axial T2-weighted model trained on scans pooled

rom both sites (n training = 15,146). These patients had systematically

igher brain-predicted age than chronological age (atrophy ‘excessive

or age’ mean brain-PAD = + 5.89 years [5.21, 6.57], ‘radiologically nor-

al for age’ mean brain-PAD = + 0.05 years [ − 0.04, 0.14]) ( p < 0.0001)

 Fig. 7 ). Visualisations of subjects from the ‘atrophy excessive for age’

est set, including model predictions and saliency maps, are provided in

ppendix F. 

https://www.github.com/MIC-DKFZ/HD-BET
https://www.docs.monai.io/en/latest/_modules/monai/networks/nets/densenet.html
https://www.github.com/MIDIconsortium/BrainAge
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Fig. 3. Brain-age prediction using clinical-grade axial T2-weighted MRI scans. a) Highest accuracy was observed when training and testing using scans pooled from 

both KCH and GSTT (n training = 15,146, n test = 4661, MAE = 2.97 years 95% CI [2.94, 3.0], r = 0.972 [0.970, 0.974]). b) When trained on scans from GSTT, 

the model generalised to scans from KCH (MAE = 3.86 years [3.82, 3.90], r = 0.954 [0.951, 0.957], Δ MAE = 0.81 years). c) When trained on scans from KCH, the 

model generalised to scans from GSTT (MAE = 3.46 years [3.41, 3.51], r = 0.962 [0.959, 0.965], Δ MAE = 0.34 years). d) Generalisability to scans from the IXI 

dataset was also observed (MAE = 3.75 years [3.70, 3.80], r = 0.961 [0.958, 0.964], Δ MAE = 0.63 years). 
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.4. Performance comparison with other MRI sequences 

.4.1. Axial diffusion ‐weighted scans 

Using the subset of examinations from KCH and GSTT which in-

luded both an axial T2-weighted scan and an axial diffusion-weighted

can, additional models were trained ( Table 3 ). Accurate brain-age pre-

iction was achieved when training and testing using raw, clinical-

rade axial diffusion-weighted (DWI) scans pooled from both sites

MAE = 3.98 years [3.93, 4.03], r = 0.944 [0.938, 0.950], n train-
6 
ng = 7409, n test = 2280) ( Fig. 8 ), although this was less accurate

han for a model trained and tested on axial T2-weighted images alone

rom the same subset of examinations (MAE = 3.32 years [3.28, 3.36],

 = 0.964 [0.961, 0.967]) ( p < 0.0001). Averaging the predictions of

he T2-weighted and diffusion-weighted models led to no statistically

ignificant improvement over the axial T2-weighted predictions alone

ensemble MAE = 3.31 years [3.27, 3.35], r = 0.964 [0.960, 0.968],

MAE = − 0.01 years, p = 0.41). We observed poor generalisability be-

ween these MRI modalities; a large drop in performance ( Δ MAE = 6.51
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Fig. 4. Generalisability of brain-age predictions between scanner vendors. Top – when trained on scans obtained on GE scanners, the model generalised to scans 

obtained on Siemens scanners (MAE = 3.63 years 95% CI [3.58, 3.68], r = 0.953 [0.948, 0.958]) and Phillips scanners (MAE = 3.97 years [3.93, 4.01], r = 0.949 

[0.945, 0.953]). Bottom - when trained on scans obtained on Siemens scanners, the model generalised to scans obtained on GE scanners (MAE = 3.85 years [3.81, 

3.89], r = 0.954 [0.951, 0.957]) and Phillips scanners (MAE = 3.96 years [3.92, 4.00], r = 0.952 [0.948, 0.956]). Training on Phillips scanners was not performed 

due to the small number of these scans ( n = 923) (see Fig. 5 a-b). 

Table 2 

Brain-age results using clinical-grade axial T2-weighted MRI scans, including generalisability between hospital networks 

and scanner vendors, and a comparison of model performance with and without skull-stripping. 

Training dataset Test dataset MAE (years) [95% CI] Pearson’s correlation [95% CI] 

KCH + GSTT ( n = 15,146) KCH + GSTT ( n = 4661) 2.97 [2.94, 3.0] 0.972 [0.970, 0.974] 

KCH ( n = 6172) KCH ( n = 1900) 3.12 [3.08, 3.16] 0.964 [0.961, 0.967] 

KCH ( n = 6172) GSTT ( n = 13,806) 3.46 [3.41, 3.51] 0.962 [0.959, 0.965] 

KCH ( n = 6172) IXI ( n = 563) 3.75 [3.70, 3.80] 0.961 [0.958, 0.964] 

GSTT ( n = 8974) GSTT ( n = 2761) 3.05 [3.01, 3.09] 0.964 [0.961, 0.967] 

GSTT ( n = 8974) KCH ( n = 9496) 3.86 [3.82, 3.90] 0.954 [0.951, 0.957] 

GSTT (skull-stripped) ( n = 8974) GSTT (skull-stripped) ( n = 2761) 3.65 [3.60, 3.70] 0.961 [0.957, 0.965] 

GE scanner ( n = 5445) GE scanner ( n = 1675) 3.37 [3.32, 3.42] 0.960 [0.956, 0.964] 

GE scanner ( n = 5445) Siemens scanner ( n = 14,002) 3.63 [3.58, 3.68] 0.953 [0.948, 0.958] 

GE scanner ( n = 5445) Phillips scanner ( n = 923) 3.97 [3.93, 4.01] 0.949 [0.945, 0.953] 

Siemens scanner ( n = 9101) Siemens scanner ( n = 2800) 2.98 [2.95, 3.01] 0.968 [0.965, 0.971] 

Siemens scanner ( n = 9101) GE scanner ( n = 8377) 3.85 [3.81, 3.89] 0.954 [0.951, 0.957] 

Siemens scanner ( n = 9101) Phillips scanner ( n = 923) 3.96 [3.92, 4.00] 0.952 [0.948, 0.956] 

Note that training on GSTT and testing on IXI wasn’t performed since IXI contains some data obtained from Guy’s hospital. 

This ensured that the IXI dataset was a truly external dataset. 

Table 3 

Comparison of brain-age modelling using axial T2-weighted and axial diffusion-weighted scans, including generalisability between these modalities. 

Modality Training dataset Test dataset MAE (years) [95% CI] Pearson’s correlation (r) [95% CI] 

Axial diffusion-weighted KCH + GSTT ( n = 7409) KCH + GSTT ( n = 2280) 3.98 [3.93, 4.03] 0.944 [0.938, 0.950] 

KCH + GSTT ( n = 7409) KCH + GSTT axial T2-weighted ( n = 2280) 10.49 [9.25, 11.73] 0.608 [0.558, 0.658] 

Axial T2-weighted KCH + GSTT ( n = 7409) KCH + GSTT ( n = 2280) 3.32 [3.28, 3.36] 0.964 [0.961, 0.967] 

KCH + GSTT ( n = 7409) KCH + GSTT axial diffusion-weighted ( n = 2280) 14.84 [12.49,17.19] 0.176 [0.106, 0.246] 

Ensemble model (axial 

T2-weighted + axial 

diffusion-weighted) 

KCH + GSTT ( n = 7409) KCH + GSTT ( n = 2280) 3.31 [3.27, 3.35] 0.964 [0.960, 0.968] 

7 
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Fig. 5. Dataset size ablation study and brain-age ‘prediction bias’ analysis. a) Test set MAE as a function of training dataset size; rapid improvement (decreased 

MAE) with increasing dataset size is observed between 2000 - 12,000 scans, beyond which only modest improvement is seen. b) Test set Pearson’s correlation as 

a function of training dataset size; a similar relationship to that seen for MAE is observed. c) Minimal ‘bias’ in brain-age prediction is seen (Pearson’s correlation 

between brain-PAD and chronological age = − 0.18). 
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ears) was observed when applying the diffusion-weighted model to

2-weighted scans ( Fig. 8 a). Likewise, a large drop ( Δ MAE = 11.52

ears) was observed when applying the T2-weighted model to diffusion-

eighted-weighted scans ( Fig. 8 b). 

.4.2. Volumetric T1 ‐weighted scans 

To facilitate direct comparison of axial T2-weighted and volumet-

ic T1-weighted brain-age prediction, additional models were trained

nd validated ( Fig. 9 , Table 4 ) on a separate dataset of 2387 research

xaminations which included both sequences (mean age = 32.8 years

 12.3 years, age range = 18 – 87 years). A separate dataset was re-

uired because at our institutions these sequences are rarely acquired

ogether during routine examinations. Axial T2-weighted model perfor-

ance on this dataset (MAE = 3.83 years [3.69, 3.97], r = 0.950 [0.943,

.957]) was comparable to that of a pre-processed (skull-stripped, regis-

ered to MNI152 template) volumetric T1-weighted model (MAE = 3.86

ears [3.67, 4.05], r = 0.949 [0.940, 0.958], p = 0.43), and better

han a raw volumetric T1-weighted model (MAE = 4.86 years [4.64,

.08], r = 0.908 [0.900, 0.916]) ( p = 0.002). Poor generalisability be-

ween these MRI modalities was observed ( Δ MAE > 7 years). No-

ably, an ‘ensemble’ model which averages the predictions of the pre-
8 
rocessed volumetric T1-weighted and axial T2-weighted models out-

erformed each individual single-sequence model (MAE = 3.35 years

3.20, 3.50], r = 0.960 [0.952, 0.968], p = 0.02), suggesting that these

equences provide complimentary information relevant to brain-age

rediction. 

. Discussion 

In this study we have demonstrated accurate brain-age prediction

rom clinical-grade, minimally processed, axial T2-weighted and axial

iffusion-weighted scans. Our models generalise well between hospital

rusts and scanner vendors, and show sensitivity to atrophy ‘excessive

or age’. Taken together, our brain-age framework shows feasibility for

se as a screening tool during routine hospital examinations to auto-

atically detect potentially pathological brain atrophy, with important

mplications for patient care, drug development, and adaptive MRI se-

uence acquisition. 

To the best of our knowledge, this is the first study to present an

ccurate, generalizable 3D brain-age framework for use with axial T2-

eighted scans. This is important because axial T2-weighted scans are

ypically the most commonly acquired sequence in clinical settings. At
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Fig. 6. Guided backpropagation analysis to interrogate brain regions influencing model predictions. Six representative subjects (a-f) from the test set are shown; in 

each panel the axial T2-weighted scan (left) and corresponding saliency map (middle) for that subject, along with the saliency map aggregated across the entire test 

set ( n = 2761) for the same slice (right), are shown for the raw (top) and skull-stripped (bottom) models. Visually, the raw and skull-stripped models seem to focus 

on similar regions when predicting age, which primarily appear to be related to cerebrospinal fluid spaces. This is confirmed quantitatively by the high Pearson’s 

correlation ( r ≥ 0.7) between aggregated saliency maps. 
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CH and GSTT (two large and representative NHS hospital trusts), for

xample, axial T2-weighted scans are acquired during almost all head

RI examinations, both routine examinations and more targeted pro-

ocols, such as those for tumours, stroke or epilepsy. Axial diffusion-

eighted scans are also commonly acquired during routine examina-

ions. To the best of our knowledge, this is also first study to demonstrate

ccurate brain-age prediction using these scans. In contrast, previous

rain-age studies have overwhelmingly used volumetric T1-weighted
9 
cans which, despite being commonly performed in research studies,

re not part of most clinical head MRI examinations. 

A notable exception is the recent study of ( Hwang et al., 2021 ),

hich presented a 2D CNN-based brain-age model for use with axial

2-weighted scans. In that study, image-level brain-age prediction was

chieved by averaging the predictions across all slices. However, two

ey limitations to this approach can be identified, and these likely con-

ributed to the poorer generalisability of this framework ( Δ MAE > 5
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Fig. 7. Our axial T2-weighted model trained on scans from KCH and GSTT systematically predicted higher than chronological age for patients reported as having 

atrophy ‘excessive for age’ at these two hospital networks. Left: scatter plot of brain-age predictions for ‘radiologically normal for age’ (blue) and atrophy ‘excessive for 

age’ (red) patients. Right: Histogram of ‘brain predicted age difference’ (brain-PAD), generated by subtracting chronological age from predicted age, for ‘radiologically 

normal for age’ (blue) and atrophy ‘excessive for age’ (red) patients. Dotted lines represent the mean brain-PAD; 95% confidence intervals are also provided. 

Fig. 8. (a) Accurate brain-age prediction was achieved using clinical-grade axial diffusion-weighted scans (MAE = 3.98 years, r = 0.94), although this was less 

accurate than an axial T2-weighted model (b) trained and tested on the same subset of examinations ( p < 0.0001). Poor generalisability between modalities was 

observed ( Δ MAE > 6 years). 
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ears when tested on external data). First, those slices which do not con-

ain any brain tissue - and therefore should not influence brain-age (e.g.,

he most inferior slice in an image which often shows the jaw and neck,

r the most superior slice which is often outside the head) - contribute

ust as much to the final predicted age as do slices through the centre of

he brain. Second, each slice is treated independently of all others; this

recludes modelling non-linear interactions between axially-separated

eatures (e.g., atrophic changes which have a significant axial extent,

ut are subtle within any given slice). In contrast, our 3D models are

aturally able to model interactions between slices through the use of
10 
depth-wise convolutions’ and have the flexibility to ignore irrelevant

eatures for brain-age prediction (e.g., jaw, neck etc.). A quantitative

omparison of our model with that of Hwang et al. is provided in Ap-

endix D. 

Our study has a number of additional strengths. Firstly, using a

tate-of-the-art neuroradiology report classifier, we have been able to

enerate a large, clinically-representative dataset for model training,

vercoming a critical bottleneck. This is important as it ensured that

ur deep-leaning models could be trained on data from a range of

canner vendors and acquisition protocols, drawn from a clinically-
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Table 4 

Comparison of volumetric T1-weighted and axial T2-weighted brain-age prediction using a dataset of research examinations which included both sequences. 

Modality Training dataset Test dataset MAE (years) [95% CI] 

Pearson’s correlation (r) 

[95% CI] 

Volumetric T1-weighted IoPPN ( n = 1551) IoPPN ( n = 477) 4.86 [4.64,5.08] 0.908 [0.900, 0.916] 

IoPPN ( n = 1551) IoPPN (Axial T2-weighted) ( n = 477) 12.40 [9.6, 15.2] 0.266 [0.257, 0.275] 

IoPPN (skull-stripped and 

registered to MNI152) ( n = 1551) 

IoPPN (skull-stripped + registered to 

MNI152) ( n = 477) 

3.86 [3.67, 4.05] 0.949 [0.940, 0.958] 

Axial T2-weighted IoPPN ( n = 1551) IoPPN ( n = 477) 3.83 [3.69,3.97] 0.950 [0.943, 0.957] 

IoPPN ( n = 1551) IoPPN (Volumetric T1-weighted) 

( n = 477) 

13.90 [11.77, 16.03] 0.224 [0.084, 0.364] 

Ensemble model (pre-processed volumetric 

T1-weighted + axial T2-weighted) 

IoPPN ( n = 1551) IoPPN ( n = 477) 3.35 [3.20, 3.50] 0.960 [0.952, 0.968] 

Fig. 9. Comparison of volumetric T1-weighted and axial T2-weighted brain- 

age prediction using a dataset of research examinations which included both 

sequences. Axial T2-weighted brain-age prediction (MAE = 3.83 years 95% 

CI [3.69, 3.97], r = 0.950 [0.943, 0.957]) was comparable to that using 

pre-processed (skull-stripped, registered to MNI 152 template) volumetric T1- 

weighted scans (MAE = 3.86 years [3.67, 4.05], r = 0.949 [0.940, 0.958], 

p = 0.43). An ensemble model which averaged the predictions of the raw T2- 

weighted and pre-processed volumetric T1-weighted models outperformed ei- 

ther model individually (MAE = 3.35 years [3.20, 3.50], r = 0.960 [0.952, 

0.968], p = 0.02). Box and whisker distributions were generated by repeating 

the training/testing procedure for 10 different training/validation/testing splits. 
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epresentative population covering the full adult lifespan (18–95 years).

his in turn enabled our models to generalise to out-of-sample data (e.g.,

cans from external hospitals and different scanner vendors). Generalis-

bility beyond the training dataset is particularly important when using

rain-predicted age for screening purposes, because in this case model

errors’ (i.e., disagreement between predicted and chronological age) are

mportant. A brain-age model which has been trained on unrepresenta-

ive data may make an erroneously high prediction of age, not because

he patient has an older-appearing brain, but because the scan is an

utlier relative to the training distribution (e.g., due to differences in

agnetic field strength and homogeneity, image resolution, or presence

f motion or other artefacts). 

Training at scale also enabled our models to automatically learn

o focus on features relevant for brain-age prediction (i.e., brain

arenchyma) and ignore irrelevant features such as extra-cranial tis-

ue and absolute image position. We have therefore been able to avoid

hose additional pre-processing steps (e.g., stripping non-brain tissue

nd registering images to a common space) which are typically per-

ormed to mitigate overfitting to small training datasets. An important

onsequence of avoiding image pre-processing is that faster brain-age

rediction can be achieved. Pre-processing can be computationally ex-

ensive, and due to the possibility of errors, requires manual quality
 b  

11 
ssurance. Our framework is able to load axial T2-weighted or diffusion-

eighted scans of arbitrary resolution and dimensions, stored as DICOM

les, and ultimately return a brain-age prediction in under 5 s. This

pens up a range of clinical applications, including real-time adaptive

equence acquisition, whereby patients with older-appearing brains are

utomatically transferred to a more targeted imaging protocol (e.g., ‘de-

entia protocol’) whilst still in the scanner. 

Importantly, by comparing volumetric T1-weighted and axial T2-

eighted brain-age prediction using a dataset of healthy participants

or which both scans were performed during the same imaging session,

e have demonstrated that brain-age prediction using raw, clinical-

rade axial T2-weighted scans is comparable to that using volumetric

1-weighted scans. Notably, however, an ‘ensemble model’ which aver-

ges the predictions of the two models significantly outperformed both

ingle-sequence models; this suggests a possible approach to improve

rain-age prediction during ‘dementia protocol’ imaging sessions, since

hese examinations include both axial T2-weighted and volumetric T1-

eighted scans. 

Our study builds on recent transformative developments in the field

f NLP. Until recently, automatic text-classification-based generation of

 training cohort was infeasible, due in large part to the lexical com-

lexity of neuroradiology reports. In the last two years, however, the

evelopment and open-source release of state-of-the-art ‘transformer’-

ased language models - which have been pre-trained on huge collec-

ions of unlabelled text (e.g., all of English Wikipedia, all PubMed Cen-

ral abstracts and articles etc.) - has made it feasible to derive accurate

ategorical radiological labels from radiology reports (e.g., ‘radiologi-

ally normal for age’, ‘radiologically abnormal for age’ etc.). In this way,

arge hospital databases of head MRI examinations can be automatically

rouped according to these labels, facilitating downstream computer vi-

ion model development at scale ( Wood et al., 2021a ). To enable readers

o generate large training datasets for brain-age model development us-

ng data from their own institution, we have made our neuroradiology

eport classifier training scripts, as well as a dedicated labelling ‘app’,

vailable at https://github.com/MIDIconsortium/RadReports . 

There are some limitations of our study to consider. First, although

ur results support the use of brain-age in clinical contexts to detect

eople with excessive atrophy who might be at risk of neurodegenera-

ive disease and poor cognitive ageing, it is currently unclear how the

odel would perform in individuals with gross abnormalities, since the

odel was trained on radiologically ‘normal for age’ brains. Potentially,

umours and large strokes, for example, may be too far from the learned

anifold/latent space to make the brain-age outputs meaningful. If ex-

essive atrophy occurs alongside other abnormalities, however, the lat-

er are typically the focus of clinical management and excessive atrophy

s typically of minimal clinical relevance; therefore, this limitation may

ot be an issue in practice. Second, although we have used interpretabil-

ty methods to confirm that our models focus on brain parenchyma for

rain-age prediction and not, say, skull or other non-brain tissue, we

ave not systematically analysed which brain features are important for

rain-age prediction. Such analyses could provide important informa-

https://www.github.com/MIDIconsortium/RadReports
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ion about the ageing process, and as further work we plan to investigate

his further. 

onclusions 

In conclusion, we have demonstrated a framework that combines

arge hospital databases, NLP, and 3D CNNs, to deliver fast, accurate and

adiologically-relevant brain-age predictions from minimally processed,

linical-grade structural MRI scans. This demonstrates the feasibility of

sing the brain-age paradigm for automatically detecting neurodegen-

ration during clinical examinations. Moreover, our framework could

e used to leverage the wealth of existing large hospital databases to

rovide powerful new resources for the training, testing, and clinical

alidation of medical image analysis tools beyond brain-age. 
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