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Abstract 

This paper investigates factors associated with variation in daily total (electricity and gas) energy 

consumption in domestic buildings using linked pre-COVID-19 smart meter, weather, building 

thermal characteristics, and socio-technical survey data covering appliance ownership, 

demographics, behaviours, and attitudes for two nested sub-samples of 1418 and 682 British 

households selected from the Smart Energy Research Laboratory (SERL) Observatory panel. 

Linear mixed effects modelling resulted in adjusted R2 between 63% and 80% depending on sample 

size and combinations of contextual data used. Increased daily energy consumption was significantly 

associated (p-value<0.05, VIF<5) with: households living in buildings with more rooms and 

bedrooms, that are older, more detached, have air-conditioning, and experience colder (more 

heating degree days) or less sunny weather; households with more adult occupants, more children, 

older adult occupants, higher heating temperature setpoints, and that do not try to save energy.  

The results demonstrate the value of smart meter data linked with contextual data for improving 

understanding of energy demand in British housing. Accredited UK researchers are invited to apply 

to access the data, which has recently been updated to include over 13,000 households from across 

Great Britain. This paper provides guidance on appropriate methods to use when analysing the data.  
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1 Introduction 
Increasingly governments are pledging to reduce greenhouse gas emissions to net zero by 2050 [1]. 

The building sector requires rapid decarbonisation of energy supply and wide-spread reduction in 

energy demand through improvements in energy efficiency, changes in behaviour and avoided 

energy use [1,2]. A critical starting point to achieve this is an effective characterisation of energy 

demand in buildings i.e. ‘what norms, values, preferences and structural factors shape energy 

demand?’ [3]. Cooper has emphasised the need for better integration of research approaches across 

social and physical science research for energy policy impact [4] and provides a conceptual 

framework for reasoning how to integrate data validly from different physical and social sources to 

enable socio-technical research [5]. This integration is required to better explain patterns in demand, 

identify the factors which are associated with greatest impact on demand, and to better inform 

effective policy instruments targeted at improving energy efficiency or changing occupant behaviour 

[4,6].  Moreover, effective characterisation can enable improved predictions of demand. This could 

reduce demand in buildings if used to identify (and potentially reward) changes in demand (e.g. due 

to an intervention, or in response to a tariff or energy efficiency installation). Prediction can also be 

used to diagnose problems such as malfunctioning heating systems, poor quality build, or energy 

waste in the form of heating or lighting in unoccupied buildings.  

A greater understanding of energy demand in buildings has been impeded by limited data about 

energy demand and its influencing factors [7–9]. The Smart Energy Research Lab (SERL) is a five-year 

UK research council funded project which aims to address this by bringing together, for the first 

time, half-hourly resolution household-level electricity and gas demand data with detailed socio-

technical and weather data for a representative sample of over 13,000 households in Great Britain 

(GB) (the ‘SERL Observatory’). In this respect the data captures a much wider array of energy 

demand co-variates and more detailed energy use data than has previously been reported in the 

literature. 

The first aim of this paper is therefore to evaluate the SERL Observatory as a data resource to 

improve current characterisations of household-level energy demand. Linear regression is commonly 

used in the literature to characterise household demand given multi-variate demand-side datasets. 

This is usually done in two ways; first by assessing the overall explanatory power of an appropriately 

validated statistical model applied to the data, usually by assessing the model’s errors (residuals) and 

associated statistics such as the R2/adjusted R2, or coefficient of determination. Low errors imply 

that the data includes appropriate variables, and the model captures appropriate relationships 

between them, such that variation in the variable of interest can be explained given the model and 

data. The model can be applied to other data and tested for prediction or forecasting purposes. 

Second, studies scrutinise the results of the model to identify specific variables which are statistically 

significantly associated with variation in the variable of interest and which have a substantively 

interesting or useful effect. Such variables can be interpreted as important factors related to 

household-level demand, leading to a more detailed understanding of residential demand, and can 

inform policies aimed at targeting such key factors and reducing demand in future. This leads to our 

first two research questions:   

1: What is the overall explanatory power of SERL Observatory data with respect to variation 

in household-level daily residential energy consumption and does this improve on studies 

reported in the literature? 
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2: Which variables observed in SERL Observatory data are most strongly associated with 

household-level daily residential energy consumption, are these associations statistically 

significant, and do these confirm and extend results reported in the literature? 

The SERL Observatory links: 

• Energy consumption data from smart meters (at daily and half-hourly resolution) with the 

following three contextual datasets (described in more detail later);  

• Basic data (non-building specific publicly available area data): dwelling region, local area 

Index of Multiple Deprivation1 (IMD) for 2019, and local area hourly weather variables;  

• SERL survey: occupant-reported household-specific sociodemographic characteristics and 

energy saving behaviour, and some building-specific physical characteristics;  

• EPC (Energy Performance Certificate) data: building-specific physical and thermal 

characteristics plus a modelled normative fuel cost. 

These four datasets have different levels of availability: all households in the SERL Observatory have 

daily and half-hourly energy consumption data from smart meters, and the basic data (see above), 

around 80% have complete SERL survey data, and approximately half have EPC data as only about 

half of British properties have an EPC. Researchers using SERL data are therefore presented with a 

choice: to increase sample size but reduce contextual data, or decrease sample size and increase 

contextual data. Determining the usefulness of the datasets separately and together is therefore 

important for the overall objective of characterising demand. This leads to our final research 

question:   

3: What is the additional explanatory power of the EPC and SERL survey contextual data 

beyond that of the basic data? 

We answer this question by investigating how the explanatory power of the model changes with 

different levels of contextual data and sample size, and testing whether the differences are 

statistically significant.  

Our analysis uses the SERL Observatory Edition 2 dataset [10]. This contains data from almost 5000 

households and energy demand data from August 2018 to October 2020. Data collection is ongoing 

and subsequent editions will be updated with this newly collected data. The first coronavirus 

lockdown in GB started on 23rd March 2020, meaning Edition 2 includes data from before the onset 

of the coronavirus pandemic. It is important to understand the impact of the coronavirus pandemic 

on residential energy consumption in buildings and what constitutes the post-pandemic ‘new 

normal’, and the SERL Observatory is a well-suited data resource to do this and currently supports 

several research projects investigating the effects of the pandemic. This paper aims to provide a 

foundation to this forthcoming research by seeking to understand and characterise residential 

energy consumption pre-coronavirus.  

Given the contextual data availability requirements from waves 1 and 2 only, and the focus on the 

pre-lockdown period, the resulting samples of households analysed here are relatively small 

subsamples (N=1418 and 682) compared to the number of households that will be available in later 

editions of the SERL Observatory (Edition 3 increases the sample size to >13,000). These results 

should therefore be seen as an initial analysis and should be interpreted with caution. In particular, 

 
1 Government statistical estimate of relative deprivation in small areas – see 
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019  
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results should not be viewed as representative of the future full-size SERL Observatory sample, nor 

indeed the GB population and so should not be generalised.  

2 Literature review 
A substantial body of existing literature investigates the factors which shape household energy use, 

and the first section below describes this literature. The remaining sections describe relevant 

literature on quantitative approaches to modelling building energy demand. The literature has 

informed the development of the SERL Observatory dataset and the analytical methods used in this 

study. 

2.1 Factors influencing household energy demand 
Household energy demand can be viewed as the outcome of occupants making use of the energy-

using appliances and equipment in their home, largely through everyday activities such as cleaning, 

food preparation, leisure and keeping warm (or cool). At the population level and over periods of 

years, structural drivers can be seen as having a major effect on average energy use for these 

activities, with policy-driven incremental energy efficiency improvements in technology often being 

offset by an increasing intensity of appliance use [11,12]. The development and diffusion of new 

technologies and more radical changes in social norms and expectations can also lead to more 

significant changes in the average energy intensity of such practices [13]. Variation in energy use at 

shorter timescales is a matter of variation between households, the currently available technologies 

they have, and how they make use of them. Multiple studies have attempted to identify which 

aspects of occupants, of their activities, and of the technologies they use and buildings they occupy, 

are most important for explaining inter-household variation in final energy demand. Huebner et al 

[8] found building characteristics, particularly size, type and energy performance rating (as provided 

by EPCs), dominate in explaining between-household variation in energy use in a sample of 

contemporary English households, with household size (number of occupants) also important, as 

well as the length of the heating season and reported beliefs about climate change.  

Other quantitative studies unpack overall energy use. Gram-Hanssen [12] separately investigates 

energy used for heating and energy used for appliances and lighting, in Danish households. Drawing 

on multiple data sources and analytical approaches, she concludes that user behaviour (including 

appliance ownership) is a more substantial factor shaping energy used for appliances and lighting 

than is appliance energy efficiency, noting, for example, that energy use in physically similar houses 

can vary by a factor of 5. Energy use for heating meanwhile is found to be roughly equally explained 

by building characteristics, including size and age, and by user behavioural factors, whilst 

sociodemographic characteristics (age, income and education) explain very little, indicating that they 

only weakly correlate with a person's heating behaviours.  

Many other studies focus on a single fuel type rather than end use. Jones et al. [14] provided a 

literature review of nearly 40 empirical studies of household electricity use, identifying 62 factors 

that potentially affect it, with 20 "found to unambiguously have a significant positive effect on 

electricity use" (defined by the authors as the number of papers confirming a positive effect being 

more than three higher than the number of papers finding a negative or non-significant effect). 

These 'unambiguous' variables were classed by the authors into socio-economic factors (more 

occupants, presence of teenagers, higher income and higher disposable income), characteristics of 

the dwelling (older dwellings, and higher number of rooms or number of bedrooms, or larger total 

floor area; presence of an electric space heating system, air-conditioning and/or an electric water 

heating system) and appliance-related factors (higher number of appliances, ownership of: desktop 

computers, televisions, electric ovens, refrigerators, dishwashers, tumble dryers; greater use of: 
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washing machines, tumble dryers). The categorical variables 'age of household reference person' 

and 'level of detachment of the building' also significantly affected electricity use. Further 

quantitative studies aim to specifically consider the influence of occupant behaviour, by combining 

time use data and electricity use data. Satre-Meloy et al. [15] find that variation between occupants 

in when and how electricity-using activities are performed does have a statistically significant effect 

on energy use, at least over the course of the day, finding from their own data and a review of 

previous studies that quotidian activities related to chores, food consumption and preparation, and 

leisure are particularly high energy intensity, and sleep and rest low intensity. Grunewald and 

Diakonova [16] extend this analysis to consider gendered differences in activity patterns and their 

corresponding electricity use, showing that while women report more household chores, their 

associated consumption of electricity is lower than for men in many cases. Differences and 

similarities between reported activities and associated electricity use for GB and German households 

is investigated in[17], finding that the need for flexibility and willingness to provide it differs 

significantly between two seemingly similar regions. 

Regarding heating use, a review by Wei et al [18] of 41 papers found 27 factors identified in them as 

affecting space heating behaviour in residential buildings, concluding the following eight factors 

'unambiguously' influenced it (using the same definition of unambiguous as above): "outdoor 

climate, dwelling type, room type, house insulation, type of temperature control, occupant age, time 

of day and occupancy".  

Overall, the literature provides evidence that inter-household variation in energy use is related to 

building and appliance characteristics, occupant sociodemographics, behaviours, and contextual 

factors around climate, indoor conditions and time. Although existing studies provide some insight 

into which factors within these broad classes are 'unambiguously' important, Wei et al [18] note that 

the literature does not definitively rule out the influence of any factor that has been studied. 

Huebner et al [8] highlight that limitations in measurement methods, particularly for measuring 

behaviours, and collinearity and interaction effects between variables, can lead to factors appearing 

to have non-significant effects or being excluded from models, while Jones et al. [14] note that the 

often incomplete contextual information about sample characteristics (such as the fuel type used in 

the dwellings for space heating and cooling and water heating, or if there was mechanical 

ventilation) could explain some of the conflicting results found between studies regarding the 

influence of certain factors. We note further that a narrow framing of importance or influence of 

variables on demand in terms of statistical significance is often problematic considering it is not a 

measure of the size of the effect. In sum, there is value in continued research to investigate the 

effects of a wide range of variables within these broad classes of building, appliance, occupant and 

contextual factors. 

2.2 Characterising energy demand in buildings 
Characterising building energy demand is an active field of research employing a wide range of 

methods, depending on the data available and research objectives. Swan and Ugursal [19] provide a 

taxonomy of residential energy demand modelling approaches, grouping them into two broad 

categories of ‘top-down’ (a ‘macro’ approach where the housing stock as a whole is usually the unit 

of analysis) and ‘bottom-up’ (a ‘micro’ approach where the basic unit of analysis is usually individual 

dwellings), with the latter further sub-categorised into ‘statistical’ and ‘engineering’ methods. As this 

paper aims to characterise individual households, we adopt a bottom-up approach. Statistical 

regression is a common bottom-up approach that, while requiring large, detailed datasets, offer 

simple implementation and relatively easy interpretability. Jones et al. [14] provide a recent 

systematic review of studies using regression methods to explain electricity demand in residential 
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buildings. Satre-Meloy et al. [20] provide a complementary and updated summary of the literature. 

Rather than duplicating these works, we draw broad observations relevant to the present work from 

the literature. The focus is on studies that used statistical approaches to characterise energy demand 

in residential buildings. Detailed reviews of alternative ‘bottom-up’ approaches (e.g. engineering, 

artificial neural networks) can be found in [21–24].  

2.3 Explanation versus prediction 
Multiple linear regression using ordinary least squares (OLS) is a technique commonly used in studies 

seeking to characterise energy demand in buildings using linked contextual data [20,25–28]. 

However, OLS relies on an assumption of independent observations which reduces its 

appropriateness for longitudinal data, in which there are repeated observations of individual cases 

[29]. Anderson et al. [28] used a linear mixed effects model (a type of multi-level regression model 

which accounts for grouped data) to address this in their study of daily electricity consumption using 

daily aggregates of sub-half-hourly household level energy use, similar to the current study. 

Recent advances in statistical learning [30] have resulted in the emergence of new techniques in this 

field of research. There has been increased interest in techniques such as tree-based methods, 

support vector machine, and artificial neural networks [23,24]. These can be considered more 

‘flexible’ than OLS because they allow non-linear relationships between variables. However, 

increased flexibility can come at a cost, with greater risk of over-fitting, increased model variance 

error, and potentially less interpretability [23,31]. These techniques tend to be more suitable for 

prediction, rather than inference which is the primary interest of this work. 

As discussed in section 2.1 energy demand in buildings can be characterised by its large number of 

potentially influential factors. Studies seeking to characterise demand can therefore be faced with 

‘dense’ models i.e. with many explanatory variables. Adding more variables to a model can 

spuriously increase its overall explanatory power. Nonetheless, assuming the increase is non-

spurious, denser models can be accompanied by reductions in model interpretability, reductions in 

the reliability of estimates for individual variable coefficients (e.g. due to multi-collinearity), and 

reductions in sample sizes due to missing data. Increased model complexity can also result in over-

fitting and a decrease in the model’s predictive power [31].  

Numerous techniques have been developed to deal with these issues including imputation to fill 

missing data, resampling methods such as cross-validation to test models, regularisation techniques 

to reduce the complexity of the model by selecting a subset of the total number of variables to 

include in the final model [32] and some of these have been applied in the field. For example, 

Kavousian et al. [33] use forward stepwise variable selection, while Huebner et al. [8] and Satre-

Meloy et al. [20] use regularisation methods (or ‘shrinkage’ or ‘penalised’ regression), and the latter 

uses cross-validation and imputation. These techniques can be useful for increasing sample sizes, 

improving interpretation and, depending on the nature of the underlying data, can also improve 

model prediction. Imputation and cross-validation are used in the present paper, while 

regularisation techniques are not.  

2.4 Heating demand and gas meter data 
In GB natural gas is widely used for space and water heating and cooking e.g. 86% of dwellings in 

England supplied by the gas grid [34]. Moreover, heating demand is strongly weather dependent, 

and so it is crucial to understanding how total domestic energy demand changes over time. 

Therefore, observing both gas and electricity demand is necessary to achieve a data-driven 

characterisation of total residential energy consumption in GB dwellings including heating (note that 

cooling is currently very uncommon in UK homes) where gas and electricity are the only fuel sources. 
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In the case of the 14% of English dwellings that are not connected to the gas network, data on oil, 

LPG and solid fuel use would also be required but is not collected by SERL. We note, however, the 

relative difficulty of accessing gas demand data compared to electricity data (smart electricity 

meters are more widespread than smart gas meters [35] and it is easier to retro-fit sensor 

equipment to measure electricity demand data than it is for gas demand). This is reflected in the 

literature, which predominantly focuses on analysis of electricity demand compared to gas demand, 

even in countries where gas demand is present [15,25,27,36–38]. One of this paper’s key 

contributions is that we analyse electricity and gas data where used by the household (as discussed 

below) thereby focussing on total domestic energy consumption including space and water heating 

for these households. 

2.5 Temporal resolution of demand data 
As noted above,  the majority of studies in the literature focus on data of relatively low temporal 

resolution i.e. monthly, seasonal or annual summaries [14]. Studies focussing on daily or higher-

resolution data are comparatively rare, presumably because of the relative difficulty of accessing 

large, high-resolution energy meter data sets which also have the necessary linked contextual data 

to investigate factors explaining variation in high-resolution energy demand [9]. Table 1 summarises 

key characteristics of studies from the literature chosen for their relevance (focus on household-

level residential energy consumption, use of regression, household-level contextual data, annual or 

higher time resolution) and shows how much of the variation in demand (the ‘coefficient of 

determination’ or R2) was explained by their models. We note that interpreting and comparing R2 

values between different studies using different models and different data should be treated with 

caution as R2 values should not generally be compared across different data due to the fact that the 

same model can have highly variable R2 values on different data [39]. Model error (e.g. mean 

squared error) is generally a better measure to compare however we note that often it is not 

reported in the literature. 
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 1 

Table 1 – summary of characteristics and key results of previous relevant studies. 2 

Study Data source Country 

or area 

Sample 

size (N) 

Resolution 

of demand 

data 

Observe

s 

heating

/ 

cooling? 

Contextual data Coefficient of 

determination 

(R2/Adjusted 

R2) 

[26] Korea Energy 

Economics 

Institute survey 

Korea 2436 Annual Yes Building physical characteristics, socio-demographics, 

appliance usage 

R2: 0.009 - 

0.017  

 

[8] Energy Follow-

Up Survey 

England 924 Annual Yes Building physical characteristics, socio-demographics, 

heating behaviour, attitudes and other behaviours 

Adjusted R2: 

0.44 

[20] City of Palo Alto 

Utilities survey 
Palo 

Alto, 

Californi

a 

1008 Annual Yes Building physical characteristics, socio-demographics, 

energy literacy, attitudes 

R2: 0.373-

0.398 

[37] Smart Grid 
Smart City 

New 

South 

Wales 

3446 Annual No (no 

gas 

meter 

data) 

Building physical characteristics, socio-demographics, 

appliances 

Adjusted R2: 

0.55 

[33] Convenience 

sample 

Silicon 

Valley, 

Californi

a 

952 Averaged 

over a 

period of 

238 days 

Yes Weather, building physical characteristics, 

appliances, and behaviour 

Adjusted R2: 

0.43-0.68 
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[27] Irish 
Commission for 
Energy 
Regulation's 
(CER) Smart 
Metering 
Electricity 
Customer 
Behaviour Trials 

Ireland ~4200 Averaged 

over a 

period of 6 

months 

No (no 

gas 

meter 

data) 

Building physical characteristics, socio-demographics, 

appliances 

R2: 0.32 

[25] Convenience 

sample 

Japan 740 Monthly 

averaged 

demand 

No (no 

gas 

meter 

data) 

Weather, building and heating system information, 

household and appliance ownership and usage 

Adjusted R2: 

0.18-0.60 

[40] Smart Grid 

Smart City 

New 

South 

Wales 

3446 Daily peak 

demand 

No (no 

gas 

meter 

data) 

Building physical characteristics, socio-demographics, 

appliances 

Adjusted R2: 

0.29 

[28] Irish 
Commission for 
Energy 
Regulation's 
(CER) Smart 
Metering 
Electricity 
Customer 
Behaviour Trials 

Ireland 3488 Daily No (no 

gas 

meter 

data) 

Income, employment status, presence of children, number 

of residents 

Marginal R2: 

0.20. 

Conditional 

R2: 0.81. 

[15] Convenience 

sample 

UK 173 Daily No (no 

gas 

meter 

data) 

Building physical characteristics, socio-demographics, 

appliances, activity 

Adjusted R2: 

0.44 
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[41] National Energy 

Efficiency Data 

(NEED) 

England 

and 

Wales 

11.3M Annual Yes Property characteristics 
Energy efficiency measures installed 
Household characteristics 
Local area characteristics 

R2: 0.38  

3 
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 4 

McLoughlin et al. [27] analysed half-hourly electricity smart meter data and linked survey data for a 5 

representative sample of approximately 4200 Irish households involved in a time-of-use tariff trial. 6 

Multiple linear regression was used to estimate the influence of survey data (which covered dwelling 7 

and occupant characteristics) on the dwelling-level variability of total electricity demand, maximum 8 

demand, load factor, and the time of maximum demand all averaged over six months. 9 

Anderson et al. [28] analysed the same dataset and investigated the extent to which the data from 10 

the survey can explain variability in load profile ‘indicators’ such as 97.5% percentile load, lunchtime 11 

load, morning maximum, etc. Dependent variables were sampled for midweek days (Tuesday-12 

Thursday) over a four-week period resulting in 12 observations for each variable per participant. A 13 

mixed effects framework was used including a random effects coefficient to quantify how much each 14 

household deviated from the average. 15 

Kavousian et al. [33] examined structural and behavioural determinants of residential energy 16 

consumption for a convenience sample of 1628 Californian households (952 used in final analysis). 17 

Participants were all employees of a single Silicon Valley technology company. As such the sample 18 

was biased towards higher income, higher education, and higher interest in energy efficiency 19 

households. 10-minute resolution electricity data were collected over 238 days and survey data 20 

were collected covering weather, location, building physical characteristics, appliances, and 21 

occupant information. While high-resolution energy data were collected, and daily electricity 22 

consumption was used as the dependent variable in the regression analysis, this was averaged over 23 

the collection period (238 days).  24 

Iwafune and Yagita [25] analysed high-resolution (30-60 min) energy data for 740 Japanese 25 

households collected over a period of one year (Dec 2013-Nov 2014), and performed a regression on 26 

monthly-averaged daily electricity consumption using data on weather, building and heating system 27 

information, household and appliance ownership and usage. The study used a convenience sample 28 

determined by the presence of specific home energy management systems. Separate regressions 29 

were conducted for the different seasons of the year. Unlike Anderson et al. [28] the authors of the 30 

study did not include a household-specific effect but instead used a time-specific effect for each 31 

month. 32 

Satre-Meloy et al. [15] analysed high-resolution (1 second) electricity data measured over a period of 33 

28 hours on a convenience sample of 173 GB households. Electricity data were averaged over the 34 

collection period and within day sub-periods. Satre-Meloy et al. used ‘de-minned’ electricity demand 35 

in their regression in addition to average demand. De-minning subtracts each household’s minimum 36 

demand from its average demand to remove its baseload and is particularly appropriate for studies 37 

aiming to characterise intra-day variations in demand that are affected by occupant activities. 38 

Fan et al. [40] conducted a statistical analysis of drivers of peak demand by analysing half-hourly 39 

electricity consumption data collected over one year (2013) for 9900 households from the greater 40 

Sydney region linked with survey data for 3500 of these households covering housing type, 41 

demographics, appliance ownership, occupant living habits, and socioeconomic status. The study 42 

estimated individual peak demand over 12 selected peak demand periods in a year. A General Linear 43 

Model was used with 5-fold cross-validation. A mixed effects framework for analysing panel data 44 

was not used, unlike in Anderson et al. [28] or Iwafune and Yagita [25]. 45 

The review indicates that a linear mixed effect framework with random effects is appropriate when 46 

analysing panel data (cross-sectional plus time series data) and so will be used here for the analysis 47 
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of daily household-level total energy consumption as we have repeated (daily) observations at the 48 

household level alongside cross-sectional socio-technical and contextual data. Analysis of panel data 49 

without using mixed effects would not be correct as the structure of the model would not account 50 

for the grouped nature of the data [42], effectively assuming that every observation is independent, 51 

even where they are from the same household.  52 

Finally, we note the high variability of R2 for the studies above and, without performing a systematic 53 

analysis, and notwithstanding the previous warning about comparing R2 across studies, make the 54 

general observations that higher R2 appears to be associated with studies with smaller sample sizes, 55 

lower data resolution, more contextual data, and that do not include heating or cooling. 56 

3 Method 57 

This section describes the datasets, data preparation and analysis methods used to address the 58 

research questions.  59 

3.1 Datasets 60 

This paper uses Edition 2 of the SERL observatory which contains data from almost 5,000 households 61 

who have consented for SERL to collect their smart meter data and to link to other datasets, including 62 

Energy Performance Certificate (EPC), Index of Multiple Deprivation 2019 (IMD) quintile and weather 63 

data, as well as an (optional) survey completed at sign up.  The first participants were recruited during 64 

wave 1 in Autumn 2019 and the second tranche were recruited in wave 2 in August 2020 which 65 

broadened the sample to include the North of England and Scotland as described in [43–45]. The data 66 

used in this paper is drawn from the ~5,000 participants recruited in these two waves. 67 

3.1.1 SERL smart meter data 68 

Half-hourly and daily2 electricity and gas readings are collected via the DCC gateway3 [46,47] for all 69 

participants with an accessible gas (76%) and/or electricity (100%) smart meter. Historic data is stored 70 

on the smart meters, and this is collected for up to 12 months prior to recruitment date. The 71 

observations run from 19th August 2018 – 29th February 2020. The latest date of meter data was 72 

chosen to be sufficiently in advance of the start of the first COVID-19 lockdown period in GB (23rd 73 

March 2020) for the observations to be reasonably unaffected by the pandemic. The data 74 

documentation describes the quality of the SERL smart meter data in detail [10] and data quality 75 

processes were applied before conducting the analysis for this research, as described below. 76 

3.1.2 SERL survey 77 

The SERL survey consists of 40 questions covering physical dwelling characteristics, household and 78 

respondent sociodemographic characteristics, energy use and heating behaviour, environmental 79 

attitudes, and appliance ownership. A copy of the survey is available in the documentation [10]. The 80 

aims of the survey were to collect contextual data to enable the production of nationally 81 

representative estimates, allow the creation and comparison of matched samples, and to help 82 

explain the variability of energy demand in the sample based on variables representing factors which 83 

existing research indicates are likely to influence household energy consumption (see literature 84 

review above), while also being reliably self-completed by a member of the public in about 10 85 

minutes. Questions were designed in consultation with SERL consortium partners and Ipsos MORI 86 

 
2 Note that only SMETS2 meters record daily readings, but all record half-hourly. 
3 The Smart Data Communications Company (DCC) is the central communications infrastructure for the GB 
smart meter network. 
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and, where possible, were harmonised with national surveys such as the English Housing Survey, the 87 

2011 Census and Understanding Society. Survey data are available for 4,753 (Edition 2) participants.  88 

3.1.3 Energy performance certificate (EPC) 89 

Energy performance certificates (EPCs) are EU-mandated ratings of domestic building energy 90 

performance which aim to rate a building’s energy performance to enable comparisons of buildings 91 

energy use independent of occupant behaviour [48]. An EPC assessment is required by law when 92 

properties are sold or let in England and Wales. Address-level EPC data is publicly available [49], 93 

along with a description of variables (which include descriptions and energy efficiency estimates for 94 

building components, heating and lighting), and approximately half of the participants have an EPC4. 95 

At present, EPCs are not available for SERL participants in Scotland. While many dwelling-96 

characteristic variables are available, it should be noted that there are measurement uncertainties 97 

associated with EPCs [50] e.g. due to surveyor error, or inaccuracies due to age of EPC and not 98 

reflecting subsequent retro-fitted measures. We note that limiting analysis to those households with 99 

an EPC could be a source of bias, as buildings which have not been sold or let since EPCs were 100 

introduced (in 2008) will not appear in the sample. 101 

3.1.4 Weather data (ECMWF ERA5 reanalysis) 102 

Weather data linked to the SERL observatory households is sourced from the Copernicus ERA5 103 

reanalysis of the ECMWF (European Centre for Medium-Range Weather Forecasts) global weather 104 

data [51]. This combines observations and modelled data to produce a global, complete, and 105 

consistent dataset. The data are available hourly on a grid with spatial resolution of approximately 28 106 

sq. km. The SERL observatory provides over 20 variables relating to temperature, wind, irradiance, 107 

precipitation, and humidity conditions for participant grid cells. The ERA5 website gives full details of 108 

the data, and details of the data available through the SERL observatory are provided in [10]. The 109 

present analysis made use of two weather variables: air temperature 2m above the surface (°C) and 110 

global horizontal irradiance reaching the surface (MJ/m2 per day).  111 

3.2 Data preparation 112 

To avoid the influence of coronavirus lockdowns, this analysis used smart meter data from 19th August 113 

2018 to 29th February 2020. The number of households with smart meter data increases over this 114 

period due to the second recruitment wave in 2020 and the lack of historical data for some households 115 

(up to 12 months before sign-up depending on move in date and meter installation date5).  116 

The following criteria were applied to the initial sample of approximately 5000 households, such that 117 

households were excluded if any of the following applied: 118 

• More than five questions with missing data for the SERL survey data (those with five or less 119 

had this missing data imputed, see below).  120 

• Gas and electricity data did not record most of the energy used in the home (any of the 121 

following): 122 

o Solar thermal hot water heating or solar PV reported in the survey or EPC data, or 123 

electricity export readings in the smart meter data (indicates presence of solar PV). 124 

This will bias the sample away from buildings that tend to have solar PV e.g. more 125 

recent, larger, more likely to be detached, as well as households that are more likely 126 

to have retro-fitted energy efficiency technologies [52]. 127 

 
4 SERL retains the most recent version.  
5 Second-generation GB smart meters ("SMETS2”) can retain up to 13 months historic half-hourly consumption 
data. 
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o Any form of central heating other than gas or electric (for example an oil boiler) 128 

reported in the survey. A consequence of this will be to bias the sample away from 129 

rural households where oil is more commonly used. 130 

o Gas heating reported in the survey or EPC but no gas smart meter data available.  131 

o Electric vehicle reported in the survey, since we are only concerned in this paper with 132 

energy use within the home. This will bias the sample away from the wealthy, middle-133 

aged, male, well-educated, and affluent [53].  134 

o Buildings of multiple occupancy (not ‘self-contained’ in the survey) because the smart 135 

meter data relates to occupants not considered in the survey. 136 

• Insufficient valid smart meter data available (see missing data below) 137 

• Ages of adult occupants not self-reported in the survey as this precludes the calculation of 138 

the average age of adult occupants. 139 

The above criteria produced a first sample of participants used in the following analysis. A second, 140 

smaller sample was also produced which had the additional criteria of requiring EPC data. We refer to 141 

the former as the ‘larger’ or ‘Basic plus SERL survey’ sample, and the latter as the ‘smaller’ or ‘All data’ 142 

sample. To be clear, the smaller sample is a subset of the larger sample. 143 

These two samples allow the analysis of the impact of increasing contextual data availability across all 144 

contextual datasets for the ‘all data’ sample, as well as analysis of the impact of increasing sample size 145 

by comparing the results for equal levels of contextual data across the smaller and larger samples. 146 

Table 2 shows the number of households excluded at each stage. The 65% drop due to insufficient 147 

data can be attributed to participants having smart meters installed close to SERL recruitment and 148 

therefore not having smart meter data for the analysis period. This will not be an issue in future 149 

editions of the SERL data but we expect the level of survey non-response and EPC absence to remain 150 

roughly constant. The exclusion rates shown in Table 2 are therefore the worst case we anticipate.  151 

Table 2. Sample size after the application of successive exclusion criteria 152 

Exclusion criteria Households 

excluded in each 

step 

Sample size 

remaining 

Used in analysis? 

Initial sample of households 

with smart meter data 

 4716 No 

Excluding dwellings with 

insufficient data and where 

not all energy use in the home 

was recorded by smart meters 

3063 (65%) 1653 No 

Excluding dwellings without 

sufficient SERL survey data 

235 (14%) 1418 Yes (‘Basic plus 

SERL survey’ or 

‘larger’ sample) 

Excluding dwellings without 

EPC data 

736 (52%) 682 Yes (‘All data’ or 

‘smaller’ sample) 

 153 
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Both the SERL survey and EPC data contained categorical variables for which small categories of less 154 

than 10 were merged to avoid statistical disclosure. Where possible categories were merged with the 155 

most similar category, otherwise with the next smallest category. 156 

Daily summaries were derived from hourly weather data for use in the regression models. To account 157 

for increased space heating in cold weather, hourly temperature data for each grid cell was 158 

transformed into heating degree days (hdd) using the method described by [54]. We used a UK 159 

standard base temperature of 15.5⁰C. The daily sum of the hourly solar radiation reaching a horizonal 160 

plane at the surface of Earth was also included in the models. This acts as a proxy for solar gains and 161 

day length. Future work will explore the use of different base temperatures and whether more 162 

sophisticated methods, perhaps making use of the hourly resolution of the weather data, could 163 

improve the models. The models contained continuous and categorical variables. The continuous 164 

variables were centred on the population mean to remove structural multicollinearity [55]. Similarly, 165 

the categorical variables were ‘one-hot’ encoded i.e. dummy encoded with the largest category used 166 

as the reference to reduce multicollinearity [56]. 167 

3.3 Imputation of missing data 168 

The SERL Observatory is affected by missing data. It is important to address missing data where 169 

possible as excluding observations due to missing data can lead to biased results [57]. The following 170 

sections describe our approaches to dealing with missing smart meter data and SERL survey data.  171 

3.3.1 Smart meter data 172 

The smart meter documentation provided by Elam et al. [10] describes the conditions used to flag a 173 

read as valid (below a high threshold and in the correct units). In addition, we required valid read 174 

times (midnight for daily, on the hour/half-hour otherwise). Due to higher quality of half-hourly data 175 

overall, the sum of half-hourly readings was used where valid, otherwise daily reads were used.  176 

The following approach was taken to determine a missing data ‘threshold’: the proportion of missing 177 

data for each participant that is considered acceptable. Participants with more missing data than the 178 

threshold are rejected from the analysis: 179 

• Specify estimate of interest to the analysis and estimate its mean and standard deviation 180 

(): here we use daily energy consumption per participant averaged over a period of a 181 

month 182 

• Specify a confidence interval: Here we use a default confidence interval of 95% 183 

• Specify margin of error: Here we use a default 10% margin of error 184 

• Perform a standard sample size calculation, and by extension required threshold for missing 185 

data, using the following formula: Calculation: n = (Z*/E)2, where n is the sample size, Z is 186 

the value from the standard normal distribution for the chosen confidence interval (95%) 187 

and E is the desired margin of error (10%).  188 

The equation shows that higher sample sizes (i.e. less missing data) are required for smaller margins 189 

of error, or higher confidence intervals, or for variables with greater standard deviations. 190 

A key issue with this equation, for the purposes of dealing with missing smart meter data, is that it 191 

applies to situations where the sample size is assumed to be small compared to the population e.g. a 192 

survey of the general population. For missing smart meter data, the population is small compared to 193 

the sample size. For example, the population might be a year or a month’s data for a single 194 

household, and the proportion of missing data might be relatively high for example 10%-20%. 195 
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We are therefore operating in a ‘small population context’, where the sample represents >5% of the 196 

population. For such situations, the ‘finite population correction factor’ fpc = ((N-n)/(N-1)) can be 197 

used to adjust the calculations, where N is the population size (e.g. N=365 for a year), and n is the 198 

sample size (e.g. for 10% missing data in a year n = 365-36 = 329). 199 

This allows the calculation of an adjusted sample size (na), that takes into account the finite 200 

population, na = (n*N)/(n + (N-1)). 201 

We can then calculate the level of missing data (missing), this corresponds to missing = (N - na)/N. 202 

For example, assuming the mean and standard deviation of daily gas consumption over a period of a 203 

month for a household was 21.99 kWh and 10.61 kWh respectively produces a missing data 204 

tolerance of up to 24.9% missing data in a month of daily gas consumption data for a household, and 205 

confidence that 95 times out of 100 the resulting estimate will be within 10% of the true value. 206 

Varying the margin of error (or indeed confidence interval) will result in different required 207 

thresholds, as illustrated in Figure 1, and the required threshold will vary depending on the variable 208 

to be estimated. Variables which do not vary much will tolerate greater levels of missing data than 209 

those which vary more. 210 

 211 

Figure 1. Effect of varying margin of error on required sample size (left) or missing data (right) for estimating average 212 
monthly daily gas demand per participant. 213 
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The above approach implicitly assumes that data is missing at random, and that the missing data has 214 

the same statistical characteristics as the data that is not missing. It means that we assume that the 215 

data that is not missing is representative of the full population. 216 

From an imputation perspective, this is equivalent to filling the gaps created by the missing data with 217 

the estimated variable calculated from the non-missing data. Using the example given above, it is 218 

equivalent to filling the missing data with the mean daily consumption for each month and household 219 

and using the resulting data to calculate the mean for the month. 220 

There are a variety of ways of imputing missing smart meter data found in the literature with varying 221 

complexity. The benefit of the chosen approach is that it is parsimonious by only (implicitly) imputing 222 

observations to the extent that they are required to produce the results, while not altering the 223 

underlying data. The disadvantage is that it assumes data is missing at random which, while a 224 

defensible starting assumption, might not be true in practice. 225 

The missing data threshold was calculated separately for monthly average daily gas and electricity 226 

demand using data from 19 August 2018 to 29 February 2020. The missing data thresholds were 94% 227 

for electricity data and 72% for gas data. 228 

3.3.2 SERL survey  229 

Approximately 20% of participants in the SERL Edition 2 dataset have at least some survey data 230 

missing, see Table 3. Although simple list-wise deletion of cases with missing data is a common 231 

approach, Austin [58] note that this approach is potentially problematic. For example, if data is not 232 

missing completely at random (MCAR) then this may introduce bias in parameter estimations, and if 233 

data are MCAR then the reduction in sample size will reduce precision and increase confidence 234 

intervals in parameter estimation. Kang [57] discusses several approaches to imputing missing data 235 

and their limitations, concluding that multiple imputation is often an appropriate technique. We 236 

imputed missing values if the number of missing survey answers was 4 or fewer. We chose this as a 237 

threshold as it is a relatively low value so that imputed values are associated with reduced 238 

uncertainty, that the missing data might reasonably be the result of respondent oversight (rather 239 

than drop-out), and which was associated with most of the surveys with missing data.We note 240 

however that this is a relatively arbitrary choice of threshold and future research may wish to 241 

investigate the effect of varying threshold on uncertainty in imputed values. Table 3 shows that this 242 

imputation increased the survey sample by 12% and only 7.4% were rejected because they had too 243 

little survey data. 244 

Multiple imputation involves imputing multiple values for the missing data based on the available 245 

data to generate multiple ‘complete data sets’ which are then used in the subsequent analysis [59]. 246 

The spread in the imputed values reflect the uncertainty over the missing values, then repeating the 247 

analysis with each of the imputed datasets indicates how much uncertainty in the results is due to 248 

the uncertainty in the imputed values. For this work we used a Multiple Imputation by Chained 249 

Equations (MICE) algorithm, see for example Austin [58] for details. We repeated the imputation 5 250 

times, to give 5 versions of the survey data with no missing values (having filtered out those surveys 251 

which originally had more than 4 missing values). In the following analysis, we present the results for 252 

one of the imputed datasets. We repeated the analysis for the remaining 4 versions of the 253 

imputation and there were no notable differences in the results, suggesting the imputed values did 254 

cause significant uncertainty in the results.  255 
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Number of missing values 

in survey 

Number (%) of survey 

responses 

0 3713 (80.6%) 

1 - 4 554 (12.0%) 

More than 4 342 (7.4%) 

Table 3. Number of survey responses with different amounts of missing data. 256 

 257 

3.4 Sample representativeness 258 

The SERL Observatory sample was designed to be representative of households in GB with a DCC-259 

enrolled smart meter (see [47] and [60] for further details), but response bias, the exclusion of the 260 

final recruitment wave and the application of the above exclusion criteria will result in biased final 261 

analytic samples. Our results should not be taken as generalisable to the SERL Observatory as a 262 

whole, nor to the broader GB population. Future work will explore the use of larger and weighted 263 

samples to enable results that are more generalisable. Table 4 compares the regional distribution of 264 

the samples compared to the population of England and Wales, showing that in particular they 265 

under-represent the North of England and Scotland (due to delayed smart meter rollout) and areas 266 

with greater deprivation (low IMD quintiles). 267 

Description Response Sample Frequency 
(N) 

Frequency 
(%) 

Population 
Percentage6 

Region EAST MIDLANDS Larger 
(N=1418) 

141 9.90% 7.3% 

Region EAST MIDLANDS Smaller 
(N=682) 

69 10.10% 7.3% 

Region EAST OF ENGLAND Larger 
(N=1418) 

155 10.90% 9.3% 

Region EAST OF ENGLAND Smaller 
(N=682) 

81 11.90% 9.3% 

Region GREATER LONDON Larger 
(N=1418) 

211 14.90% 13.3% 

Region GREATER LONDON Smaller 
(N=682) 

118 17.30% 13.3% 

Region NORTH WEST Larger 
(N=1418) 

120 8.50% 11.5% 

Region NORTH WEST Smaller 
(N=682) 

51 7.50% 11.5% 

Region SCOTLAND Larger 
(N=1418) 

71 5.00% 9.1% 

Region SCOTLAND Smaller 
(N=682) 

0 0% 9.1% 

Region SOUTH EAST Larger 
(N=1418) 

271 19.10% 13.7% 

Region SOUTH EAST Smaller 
(N=682) 

133 19.50% 13.7% 

Region SOUTH WEST Larger 
(N=1418) 

157 11.10% 9.1% 

 
6 Calculated from ONS AddressBase. 
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Region SOUTH WEST Smaller 
(N=682) 

85 12.50% 9.1% 

Region WALES Larger 
(N=1418) 

83 5.90% 5.5% 

Region WALES Smaller 
(N=682) 

45 6.60% 5.5% 

Region WEST MIDLANDS Larger 
(N=1418) 

136 9.60% 8.7% 

Region WEST MIDLANDS Smaller 
(N=682) 

64 9.40% 8.7% 

Region YORKSHIRE AND 
NORTH EAST 

Larger 
(N=1418) 

73 5.10% 12.6% 

Region YORKSHIRE AND 
NORTH EAST 

Smaller 
(N=682) 

36 5.30% 12.6% 

IMD quintile 1 Larger 
(N=1418) 

207 14.60% 20.5% 

IMD quintile 1 Smaller 
(N=682) 

101 14.80% 20.5% 

IMD quintile 2 Larger 
(N=1418) 

272 19.20% 21.0% 

IMD quintile 2 Smaller 
(N=682) 

125 18.30% 21.0% 

IMD quintile 3 Larger 
(N=1418) 

299 21.10% 20.6% 

IMD quintile 3 Smaller 
(N=682) 

153 22.40% 20.6% 

IMD quintile 4 Larger 
(N=1418) 

315 22.20% 19.7% 

IMD quintile 4 Smaller 
(N=682) 

152 22.30% 19.7% 

IMD quintile 5 Larger 
(N=1418) 

325 22.90% 18.2% 

IMD quintile 5 Smaller 
(N=682) 

151 22.10% 18.2% 

Table 4. Regional representation of the dwellings in the samples used for analysis. 268 

Table 5 and Table 6 compare some key characteristics of the sample with the population in England 269 

using data from the English Housing Survey 2018-2019 [61]. The samples under-represent flats and 270 

rental tenures, and this is worse for the larger sample. The smaller sample is comparable to the 271 

national average in terms of size of dwelling and household and building energy efficiency rating 272 

(SAP), but the larger sample has smaller household size (the other measures cannot be calculated as 273 

the larger sample does not have EPC data which is used for their calculation).   274 

Characteristic Category SERL 

Sample 

SERL 

Sample 

number 

SERL Sample 

Proportion 

EHS 

Population 

Proportion 

(England)7 

Built form Detached Larger 

(N=1418) 415 29.3% 

26.1% 

Built form Detached Smaller 

(N=682) 178 26.1% 

26.1% 

 
7 Population proportions are for England for 2018-2019 and are taken from [61]. 
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Built form Semi-detached Larger 

(N=1418) 437 30.8% 

25.4% 

Built form Semi-detached Smaller 

(N=682) 204 29.9% 

25.4% 

Built form Terraced Larger 

(N=1418) 392 27.6% 

28.4% 

Built form Terraced Smaller 

(N=682) 196 28.7% 

28.4% 

Built form Purpose built flat Larger 

(N=1418) 144 10.2% 

16.5% 

Built form Purpose built flat Smaller 

(N=682) 87 12.8% 

16.5% 

Built form Converted house or 

commercial building 

Larger 

(N=1418) 30 2.1% 

3.6% 

Built form Converted house or 

commercial building 

Smaller 

(N=682) 17 2.5% 

3.6% 

Tenure Own / part-own Larger 

(N=1418) 1222 86.2% 

63.3% 

Tenure Own / part-own Smaller 

(N=682) 561 82.30% 

63.3% 

Tenure Private rental Larger 

(N=1418) 90 6.3% 

19.9% 

Tenure Private rental Smaller 

(N=682) 72 10.60% 

19.9% 

Tenure Social rental / rent 

free 

Larger 

(N=1418) 106 7.5% 

16.8% 

Tenure Social rental / rent 

free 

Smaller 

(N=682) 49 7.20% 

16.8% 

Table 5. Key characteristics of the dwellings in the sample used for analysis. 275 

Characteristic Category SERL Sample SERL Sample 

mean 

EHS Population 

mean (England)8 

Household size Number of persons per 

household 

Larger 

(N=1418) 

2.29 2.39 

Household size Number of persons per 

household 

Smaller 

(N=682) 

2.40 2.39 

Building energy efficiency SAP rating Larger 

(N=1418) 

n/a 63.2 

 
8 Population proportions are for England for 2018-2019 and are taken from [61]. 
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Building energy efficiency SAP rating Smaller 

(N=682) 

62.2 63.2 

Size of  dwelling Floor area (m2) Larger 

(N=1418) 

n/a 94 

Size of  dwelling Floor area (m2) Smaller 

(N=682) 

97.5 94 

Table 6. Further key characteristics of the dwellings in the sample used for analysis. 276 

Table 7 shows key statistics regarding the energy consumption of the dwellings in the samples, and 277 

the degree days during the period of analysis. For comparison, in 2019 the mean UK daily domestic 278 

consumption was 31.56 kWh/day for gas (for households connected to the gas grid) and 10.22 279 

kWh/day for electricity [62], mean gas use for the samples is higher and lower for electricity. The 280 

higher gas use is consistent with larger properties (less flats) and wealthier occupants. Note our 281 

sample is drawn from Great Britain not UK (i.e. no dwellings from Northern Ireland). Also note that (as 282 

to be expected) the distributions of energy variables are highly skewed, hence the large relative 283 

standard deviations. 284 

 Sample Mean (SD) 1st quartile Median 3rd quartile 

Total daily household energy 

consumption (kWh) 

Larger 
(N=1418) 

49.25 
(42.97) 15.7 38.7 71.53 

Total daily household energy 

consumption (kWh) 

Smaller 
(N=682) 

46.92 (42.19) 

14.47 35.75 68.17 

Daily gas consumption (kWh) Larger 
(N=1418) 

41.09 (39.89) 8.65 31.97 62.06 

Daily gas consumption (kWh) Smaller 
(N=682) 

39.26 (39.18) 7.73 29.67 59.55 

Daily electricity consumption 

(kWh) 

Larger 
(N=1418) 

9.7 (8.62) 

4.84 7.69 11.9 

Daily electricity consumption 

(kWh) 

Smaller 
(N=682) 

9.41 (7.91) 

4.62 7.53 11.7 

Daily mean external  

temperature (⁰C) 

Larger 

(N=1418) 

10.32 

6.62 9.43 14.05 

Daily mean external  

temperature (⁰C) 

Smaller 

(N=682) 10.44 6.71 9.55 14.2 

Heating degree days (⁰C per day) Larger 

(N=1418) 5.73 1.98 6.08 8.88 

Heating degree days (⁰C per day) Smaller 

(N=682) 5.63 1.87 5.95 8.79 

Table 7. Energy consumption and temperature statistics for the sample used for analysis. 285 

3.5 Statistical analysis 286 

3.5.1 Analytic design 287 

As noted in the method section, linear mixed effects models are an appropriate method for 288 

longitudinal panel data, as this allows the structure of the data (repeated observations for the same 289 

dwelling) to be explicitly accounted for in the model [63]. Coupled with this, linear mixed models are 290 
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relatively straightforward to interpret and for these reasons this method was selected for this work. 291 

As one of the objectives of this paper is to assess the explanatory power of the SERL contextual 292 

datasets separately and in combination, variable subset selection is not implemented. We 293 

acknowledge that the inclusion of large numbers of variables without theoretically or model-driven 294 

selection runs the risk of potentially spurious effects and increases the temptation to ‘fish’ for ‘p-295 

values’. However, the need to assess the associations between the measured variables, and thus 296 

inform both future analysis and future data collection, led us to cautiously proceed with a larger 297 

than normal set of explanatory variables.  298 

To investigate how the explanatory power of the model and results for individual coefficients change 299 

given different levels of contextual data and sample size, linear mixed models of daily total (gas + 300 

electricity) energy consumption per participant were fitted using four levels of contextual data (where 301 

applicable) on two samples of different sizes (the smaller being a subsample of the larger). The first 302 

level of contextual data is ‘basic data’ consisting of: region, IMD quintile, day of the week, bank holiday 303 

indicator, heating degree days and solar radiation. These are widely available, area-based variables 304 

that are easily linked to smart meter data and available for all participants. Additional models were 305 

developed with further levels of added contextual data: from the SERL survey and EPC data separately 306 

and then in combination. This results in the following ‘levels’ of contextual data which, due to missing 307 

data, result in smaller sample sizes: 308 

1. Basic data only 309 

2. Basic plus SERL survey data 310 

3. Basic plus EPC data 311 

4. All data 312 

The first two can be applied to both samples, while the last two can only be applied to the smaller 313 

sample (as not every participant in the larger sample has EPC data, while all do in the smaller sample). 314 

3.5.2 Statistical model  315 

We note that log-transforming of the dependent variable is sometimes performed in previous studies 316 

to address heteroscedasticity [20] or symmetry in residuals [8]. We do not log-transform as the 317 

residuals of the model are normally distributed (an example plot of the residuals for one model is 318 

provided in Supplementary Data) and not strongly affected by heteroscedasticity, and log-319 

transforming has the adverse effect of producing residuals which are not normally distributed. 320 

To take advantage of the longitudinal (repeated measures) nature of the dataset we applied a random 321 

effects (RE) approach, similar to that used by Anderson et al. [28]. We use both random intercepts and 322 

random slopes applied to the heating degree day (hdd) variable; this allows each individual dwelling 323 

to deviate from the group mean intercept and gradient. The thermal performance of each dwelling 324 

will strongly affect the gradient of the hdd variable and the random slope component allows this to 325 

deviate from the mean for each participant. Every variable is included by itself as well as interacting 326 

with the hdd slope variable. Following Snijders and Bosker [42], the random slope model with all 327 

contextual data therefore takes the form:  328 

𝑌𝑡𝑖 = 𝛾00 +∑𝛾𝑝0

𝑃

𝑝=1

𝑥𝑝𝑡𝑖 +∑(𝛾0𝑞

𝑄

𝑞=1

𝑧𝑞𝑖 + 𝛾1𝑞𝑧𝑞𝑖ℎ𝑑𝑑𝑡𝑖) + 𝑈0𝑖 + 𝑈1𝑖ℎ𝑑𝑑𝑡𝑖 + 𝑅𝑡𝑖 329 

Equation 1 330 
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Yt,i is the energy consumption of dwelling i at time period t. The first part of the equation with 𝛾 331 

coefficients is the fixed part (because the coefficients are fixed i.e. non-stochastic), while the 332 

remainder is the random part of the model, comprising ‘level two’ residuals (i.e. participant-level) 333 

random intercept 𝑈0𝑖  and random hdd slope 𝑈1𝑖 for each participant i, and ‘level one’ residual (i.e. 334 

measurement-level) error 𝑅𝑡𝑖. It is assumed that level one and two residuals have mean 0, and that 335 

the pair of level two residuals, and the level one residual, are independent and identically distributed. 336 

The fixed part includes the intercept for the average participant 𝛾00; regression coefficients 𝛾𝑝0 337 

associated with P measurement-level variables 𝑥𝑝𝑡𝑖 i.e. those that change for each participant i and 338 

each time step t (heating degree days and solar radiation); and regression coefficients associated with 339 

Q participant-level variables 𝑧𝑞𝑖, consisting of all other variables, all of which are also interacted with 340 

the heating degree day variable hdd. 𝛾1𝑞 is the hdd slope for the average participant. A full list of the 341 

variables from each dataset used in the regressions is given in Supplementary Data.  342 

EPC variables related to cost, carbon dioxide emissions and environmental efficiency were excluded. 343 

Text descriptions of building elements such as type of external wall were also excluded as a 344 

categorisation of the element’s thermal performance was included instead9. All SERL survey variables 345 

were included except for those relating to the respondent (‘About you’ section)10 as the unit of analysis 346 

of interest here is the household, not the respondent. An interaction term between solar radiation 347 

and heating degree days was included in all models since solar gains can provide space heating during 348 

the heating season. 349 

3.5.3 Statistical tests 350 

5-fold cross-validation [64] is used to compute training and testing statistics of root mean squared 351 

error (RMSE) and R2. As our model is multi-level, with some variables relating to between-household 352 

variation (e.g. SERL survey and EPC data) and others relating to within-household variation (e.g. 353 

weather data), we construct two levels of cross-validation: a ‘level 1’ within-household cross-354 

validation where daily consumption observations are held out for the test ‘fold’ but each fold includes 355 

data from each participant. And a ‘level 2’ between-household cross-validation where households 356 

(and all their contextual data) are held out for the test fold. The former tests for within-sample 357 

prediction errors, and is relevant where counterfactual demand for a sample is to be predicted and 358 

compared with actual consumption. Applications include estimating the impact of the coronavirus 359 

pandemic or energy efficiency interventions on a sample of households’ energy consumption. While 360 

the latter between-house cross-validation tests for out-of-sample errors, and is relevant for predicting 361 

energy consumption of other households that are not included in the sample used to train the model. 362 

Applications include estimating energy statistics, or providing energy efficiency advice to households. 363 

Further, note that as our samples consist of grouped measurements that are unbalanced (i.e. unequal 364 

number of measurements per household), we ensured that each level 1 cross-validation fold was 365 

approximately equally unbalanced. In other words, each fold contains approximately the same 366 

number of daily consumption observations for each household. 367 

Our model contains random effects for each participant. We have not included random effects when 368 

computing training or testing statistics and the errors are therefore associated with the fixed effects 369 

i.e the various levels and combinations of contextual data. Because we omit random effects, we do 370 

 
9 The exception was that the descriptive variable for secondary heating was included as the variable describing 
its energy efficiency had no data. 
10 Note the ‘managing financially’ question is included.  
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not calculate the marginal, conditional and residual R2 developed by Nakagawa and Sheilzeth [65] for 371 

linear mixed effects models. We instead compute the conventional R2 as in [66].  372 

Additionally, we calculate an adjusted R2 as we note that the number of independent variables is 373 

moderately large compared to the number of households in our sample (the parameter/household 374 

ratio is 356/682 = 0.52 for the All Data model and smaller sample). We note that calculating adjusted 375 

R2 for is not well documented in statistical textbooks on multi-level mixed effects models. We have 376 

therefore used number of groups (participants) as the number of observations in the adjustment 377 

factor, though we note this is a conservative estimate of this statistic, given each group can itself 378 

contain several hundred observations. 379 

All of this results in a relatively large number of combinations of sample, method, model, and cross-380 

validation level. We provide a summary of all the combinations tested in Table 8. 381 

 Basic Data only 

model 

Basic plus SERL 

Survey model 

Basic plus EPC 

Data model 

All Data model 

Linear mixed effects Yes Yes Yes Yes 

Level 1 cross-validation Yes Yes Yes Yes 

Level 2 cross-validation Yes Yes Yes Yes 

Smaller sample 

(N=682) 

Yes Yes Yes Yes 

Larger sample 

(N=1418) 

Yes Yes No No 

Table 8. Summary of the different combinations of sample, model, contextual data and cross-validation included in analysis. 382 

We use p-values to evaluate statistical significance of independent regression variables and take 383 

p<0.05 as our statistical significance threshold noting that statistical significance does not necessarily 384 

imply substantive significance. We note that we do not use variable selection and we include many 385 

explanatory variables in our model which means that, given the large number of covariates used in 386 

some of the models, it is highly probable that some of the variables found to be significant will indeed 387 

be spurious results.  388 

Models with larger numbers of independent variables can spuriously appear to fit data better than a 389 

smaller nested model. Therefore, as a further test of statistical significance between the models, we 390 

perform an F-test to compare models with their smaller, ‘nested’, or ‘restricted’ counterparts using 391 

the same underlying data, where applicable. In this case, the F-test gives the probability that the 392 

simpler (nested) model provides a better fit to the data, or rather that any improvements in fit 393 

associated with the larger unrestricted model are spurious. For example, the ‘All data model’ is 394 

compared with the ‘Basic plus SERL survey’ model and ‘Basic plus EPC data’ model. While both the 395 

‘Basic plus SERL survey’ and ‘Basic plus EPC data’ models are compared with the ‘Basic data only’ 396 

model. For each, F-statistics are calculated as in [39]. 397 

We also note the population for which the sample is intended to be representative of is not the SERL 398 

Observatory nor GB population. It is a biased sample affected by sample design, recruitment strategy, 399 

non-response bias, and exclusion criteria (see above for descriptive statistics of the sample that 400 

indicate biases). 401 
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3.5.4 Multicollinearity 402 

Many explanatory variables were included in this analysis and there is multi-collinearity in the original 403 

regressors (prior to transformation). An obvious example is that both the SERL survey and the EPC 404 

data include categorical variables relating to the age of the building. However, many other variables 405 

are also affected by collinearity, a common issue in similar energy demand research [8]. 406 

The effect of multicollinearity is to reduce the accuracy of the estimates of the regression coefficients 407 

[30] and thereby reducing the probability of correctly detecting a significant coefficient, and to make 408 

the coefficient of collinear variables sensitive to changes in the input data. This makes interpretation 409 

of the model’s results challenging, though multicollinearity does not affect the model’s goodness of 410 

fit (R2) or (within-sample) predictive accuracy.  411 

Multicollinearity is commonly assessed using the variance inflation factor (VIF). This showed high 412 

levels of multi-collinearity for our initial data samples prior to transformation (e.g. 98 variables with 413 

VIF > 10). Correcting multicollinearity for categorical variables can involve removing, combining, or 414 

transforming variables. Removing variables is unwelcome as we want to assess the explanatory power 415 

of the dataset in total. Nonetheless an EPC variable which indicates whether a flat was top storey or 416 

not (flatStorey) was also excluded as its inclusion caused the model to fail to converge for one of the 417 

training sets. We believe this is because this variable is highly collinear with other variables in 418 

particular propertyType, which indicates if a property is a flat, and roofEnergyEfficiency which is ‘n/a’ 419 

for flats which are not top storey. To reduce multicollinearity, we therefore use combination and 420 

transformation. Continuous variables were centred (the population mean was subtracted); categorical 421 

variables dummy encoded so that the reference category was the largest, and some categorical 422 

variables were combined (total number of rooms; central heating fuel type). Centred variables are 423 

denoted with the suffix _c. The exception to this is that heating degree day hdd was not centred for 424 

the basic data model. While the resulting VIF for this model are high, this was to retain one model 425 

where the intercept and slope parameters were more intuitive i.e. where the intercept is when hdd 426 

equals zero. 427 

3.5.5 Software 428 

All analysis was performed within the UCL Data Safe Haven using Python (version 3.8), spyder (version 429 

4.1.4), pandas (version 1.0.5) [67,68], and statsmodels (version 0.11.1) [69] for the linear mixed effects 430 

regressions. The code used to perform the analysis of SERL data presented in this paper will be made 431 

available on GitHub11. 432 

4 Results and discussion 433 

In the following subsections we present results which illustrate the main findings from the above 434 

analysis, full results from all models are provided in the supplementary data.  435 

4.1 Cross-validation test statistics 436 

As described above, we performed two types of cross-validation: 'level 1' in which all households are 437 

represented in all cross-validation folds but approximately 1/5 of daily readings from each 438 

household are held-out, and 'level 2' in which approximately 1/5 of households are held out in each 439 

fold. This section considers cross-validation using the smaller sample (N=682) only, while the 440 

following section compares this to cross-validation for the larger sample (N=1418). 441 

Results of the level 1 cross validation are summarised in Figure 2 (full results for the cross-validation 442 

are provided in the supplementary data). The Figure shows that training and testing RMSEs and R2 443 

 
11 https://github.com/smartEnergyResearchLab/ 
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are very similar for all models with level 1 cross-validation. The lack of discrepancy between training 444 

and testing errors indicates the models are not over-fitting, and we can be confident that the errors 445 

in our training data are good estimates of the expected error in predicted values. This suggests that 446 

the models are suitable for predicting energy consumption when historic consumption data from the 447 

dwellings is available to train the models, and that models that use more of the available contextual 448 

data are more accurate than those that use less.  449 

We noted above (and discuss in further detail in section 4.3.1) that several of the models are 450 

adversely affected by high levels of multicollinearity, however the results confirm that while 451 

multicollinearity may be a concern when models are used for inference, it does not affect the 452 

validity of using these models for within-sample prediction, as demonstrated here by the small 453 

differences between training and testing errors.  454 

 455 

Figure 2. Mean training and testing errors and R2 for level 1 within-group cross-validation prediction using smaller sample 456 
(N=682). Error bars indicate the range of values from the cross-validation folds. 457 

Figure 2 shows that there are diminishing returns (in terms of reducing RMSE and increasing R2) 458 

when increasing the number of variables in the model. Although the All Data model has the highest 459 

R2 and lowest RMSE, its improvement over the survey only or EPC only models is modest. Indeed, 460 

Table 9 shows that the All Data model fails the F-test (p=1) compared to the more restricted models. 461 

This indicates the following: 462 

1. The increase in R2 and decrease in RMSE for the All Data model is not significant. Although it 463 

gives lowest RMSEs, the improvement over the more restricted models is not enough that it 464 

could not be down to chance, given the substantial increase in explanatory variables used in 465 

the model.  466 

2. That the All Data model is not correctly specified and that it is unlikely that the model gives 467 

generalisable relationships between the explanatory variables and daily energy 468 
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consumption. Note that this does not mean that the restricted models are themselves 469 

correctly specified, just that compared to them the All Data model is worse. 470 

Despite this, the All Data model is the most accurate for within group prediction. This indicates that 471 

this is an application which is relatively robust to overfitting and to which relatively complex models 472 

are well-suited. It indicates that at least some of the difference between within-sample modelled 473 

and predicted energy consumption is due to model bias error. These models are simple linear 474 

models which are unlikely to fully reflect the complex reality of domestic energy consumption. 475 

Future work to reduce the error associated with predicting energy consumption from dwellings with 476 

historic data should benefit from exploring more complex non-linear models, such as artificial neural 477 

networks, which we note have proven to be highly popular for this purpose but which, to the 478 

authors’ knowledge, have rarely if ever been applied to data comparable to that of the SERL 479 

Observatory.  480 

Both the Basic plus EPC data and Basic plus SERL Survey models have very low p-values (<0.01) when 481 

compared against the more restricted Basic Data Only model and so pass the F-test, indicating that 482 

their improvement in accuracy is not likely to be due to chance. Again, we note that this this does 483 

not mean that these models are necessarily correctly specified. 484 

 485 

Cross-
validation 

Sample Unrestricted 
model 

Restricted 
model 

F-statistic 
(mean) 

p-value 
(mean) 

Level 1 Smaller 
(N=682) 

All data Basic plus SERL 
survey 

0.43 p=1  

Level 2 Smaller 
(N=682) 

All data Basic plus SERL 
survey 

0.27 p=1  

Level 1 Smaller 
(N=682) 

All data Basic plus EPC 
data 

0.36 p=1  

Level 2 Smaller 
(N=682) 

All data Basic plus EPC 
data 

0.24 p=1  

Level 1 Smaller 
(N=682) 

Basic plus EPC 
data 

Basic data only 3.58 p<0.001 

Level 2 Smaller 
(N=682) 

Basic plus EPC 
data 

Basic data only 2.71 p<0.001 

Level 1 Smaller 
(N=682) 

Basic plus SERL 
survey 

Basic data only 1.92 p<0.001 

Level 2 Smaller 
(N=682) 

Basic plus SERL 
survey 

Basic data only 1.38 p<0.01 

Level 1 Larger 
(N=1418) 

Basic plus SERL 
survey 

Basic data only 3.78 p<0.001 

Level 2 Larger 
(N=1418) 

Basic plus SERL 
survey 

Basic data only 2.92 p<0.001 

Table 9. Summary of F-tests evaluated using cross-validation training errors. Level 1 cross-validation refers to within-group 486 
predictions, level 2 refers to between-group predictions. 487 

Turning to the level 2 between-group cross-validation results, the training and testing RMSE and R2 488 

values are notably different from each other, as shown by Figure 3. Training RMSEs are similar in 489 

magnitude and decrease as the number of explanatory variables increase. Contrary to the level 1 490 

results however the testing RMSEs are larger than training RMSEs. This indicates that the models are 491 
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less accurate at between-group prediction than within-group prediction. The level 2 testing errors 492 

however show a different trend to level 1: they are higher than training errors, and the discrepancy 493 

increases with the number of covariates. The Basic Data only model shows the highest testing error, 494 

while the others have similar testing errors, with the Basic plus EPC Data slightly outperforming the 495 

others. The discrepancy between training and testing error indicates that the models are over-496 

fitting, and that this gets worse as the number of variables is increased. The F-test results for level 2 497 

cross-validation (Table 9) are similar to those for level 1, with the All Data model failing the test and 498 

Basic plus SERL survey and Basic plus EPC data models passing. 499 

 500 

Figure 3. Mean training and testing errors and R2 for level 2 between-group cross-validation predictions using smaller 501 
sample (N=682). Error bars indicate the range of values from the cross-validation folds. 502 

These results suggest that for between-group prediction (i.e. for prediction of energy consumption 503 

where there is no historic data), models with a selected, intermediary number of explanatory 504 

variables between 'basic' and 'all data' will likely perform best. In this work we take the admittedly 505 

rudimentary approach of selecting variables according to their presence in different combinations of 506 

contextual data available to be linked in the SERL Observatory. The results show that for this type of 507 

prediction, this type of variable selection, and this sample, the model using Basic plus EPC data 508 

marginally outperforms the others, while having less of a discrepancy between training and testing 509 

errors, indicating it is less affected by overfitting. That being said, the Basic plus SERL Survey model 510 

has the advantages that almost all participants have survey data, whereas only approximately 50% 511 

have EPC data, and it is less affected by multicollinearity than the Basic plus EPC data model.  512 
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4.2 Sample size effects513 

 514 
Figure 4. Comparison of level 2 between-group cross-validation testing errors (coefficient of variation, left) and adjusted R2 515 
calculated from training errors (right) for different models and sample sizes. Error bars indicate range across the cross-516 
validation folds. 517 

Figure 2 and Figure 3 present unadjusted R2 values which can be affected by inflation if models 518 

include many independent variables. Indeed, the results show R2 values increasing as with number 519 

of covariates in the models used here. When R2 values are adjusted, as shown in Figure 4 for training 520 

errors, the models with more variables is penalised. Indeed, the All Data model performs worse 521 

overall, even worse than the Basic Data only model, and the Basic plus EPC data model performing 522 

best. This is because the number sample size (N=682) is not large relative to the number of variables 523 

used in the models.  524 

When the sample size is almost doubled to the larger sample (N=1418) for the Basic plus SERL 525 

Survey and Basic Data only models, these models perform better. Figure 4 compares the CVRMSE 526 

and adjusted R2 for these models trained and tested with the different sample sizes. While the 527 

testing RMSE slightly increased for the larger samples for the Basic Data only and Basic plus SERL 528 

Survey models and both cross-validation types, the mean of the daily energy consumption is larger 529 

for the larger sample (as shown in Table 7), so we compare the (testing) CVRMSE instead. The 530 

CVRMSE decreases and adjusted R2 increases, indicating that the models performed better overall 531 

with the larger sample. We also see that the range of CVRMSE from each cross-validation fold 532 

decreases with increasing sample size, suggesting that the prediction error can be more accurately 533 

characterised. While the results indicate that increasing sample size has the benefit of improving 534 

accuracy the changes resulting from doubling the sample size are nonetheless modest.  535 

4.3 Assessment of individual variables 536 

4.3.1 Variance inflation factors 537 

Model Sample No. covariates (not 
including intercept) 

VIF (mean) VIF >10 VIF >5 
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All Data Smaller (N=682) 355 4.33 29 65 

Basic plus EPC 
data 

Smaller (N=682) 155 3.91 13 20 

Basic plus SERL 
Survey 

Smaller (N=682) 243 2.74 1 19 

Basic plus SERL 
Survey 

Larger (N=1418) 249 2.49 5 19 

Basic Data only Larger (N=1418) 43 5.70 1 28 

Table 10. Summary of variance inflation factors for selected models. 538 

Variance inflation factors were considerably reduced by the measures described in 3.5.4, though they 539 

remained high (both on average, and for individual variables) for some models (see Table 10). The 540 

coefficients of variables affected by collinearity (commonly taken to be where VIF is greater than 5 or 541 

10) should be interpreted with extreme caution as they may be unstable (if a different data set is used) 542 

and have inflated p-values (i.e. reduced significance) due to systematic bias in the underlying standard 543 

errors. Note that the Basic Data only model has unusually high VIF considering its relatively small 544 

number of variables; this is because this model includes hdd, not centred hdd, and this indicates the 545 

importance of centring to reduce VIF. 546 

The All Data model has the most variables with VIF above 5 or 10 and the second highest mean VIF 547 

after the Basic Data only model. The models using Basic Data only and Basic plus SERL Survey data had 548 

lowest mean VIF and, despite including relatively large numbers of covariates, had the fewest number 549 

of individual variables with VIF >5.  550 

The following section therefore only presents results relating to individual variables for the Basic plus 551 

SERL Survey model applied to the two sample sizes. We note however that despite the relatively low 552 

VIF, these results for these models should be viewed with scepticism given the lack of variable 553 

selection, large number of variables and thus high probability of spurious results, and evidence of 554 

over-fitting. The results for the other models are not reported here but provided in the supplementary 555 

data because of the high VIFs and caution with which they should be interpreted. VIFs for all the 556 

models and their individual variables are reported in the Supplementary Data.  557 

4.3.2 Basic and SERL survey model 558 

We now return to our second research question and consider what individual variables observed in 559 

the SERL Observatory data explain household-level daily energy consumption. The following reports 560 

on the effect size and statistical significance of individual variables for the model including Basic plus 561 

SERL Survey data (i.e. not including EPC data), and compares the results for the two sample sizes. For 562 

clarity of presentation, variables are not included if they have VIF > 5 or p-value >= 0.05. Figure 5 and 563 

Figure 6 display the size and 95% confidence interval estimates of the coefficients with the ten 564 

largest positive and negative effects on intercept and hdd slope for the larger sample and smaller 565 

samples respectively. We acknowledge that filtering on p-value runs counter to the prevailing advice 566 

not to use p-values as binary thresholds but the presentation of confidence intervals with point 567 

estimates provides some mitigation. In addition, full regression results for all models are included in 568 

the Supplementary Data to enable detailed examination. 569 

First, note that the confidence interval of many of the coefficient estimates is large, with lower 570 

edges approaching zero. This indicates the large uncertainty regarding the estimates and the high 571 

probability that the significance of estimates may be spurious, particularly given the large number of 572 

variables included in this model.  573 
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Overall, if we consider the size of the coefficients for the covariates for the larger sample, the 574 

variables associated with a larger intercept include presence of an air-conditioning unit (ACU) and 575 

the three oldest dwelling age bands (before 1900, 1900-1929 and 1930 to 1949), a warmer 576 

thermostat set point, and a more detached dwelling.  577 

Answering 'not applicable' to whether changes to the heating or energy supply are being considered 578 

in the next 12 months, having electricity supply hot water for taps and considering installing a gas 579 

boiler are all also associated with an increase in intercept, however these three variables have large 580 

confidence intervals which are close to including zero.  581 

Variables associated with a decreased intercept include having electric rather than gas heating, solar 582 

radiation, the two newest dwelling age bands (1991-2002 and 2003 onwards), dwellings in the East 583 

Midlands, Wales and North West, less opening of windows on warm days, making a great deal of 584 

effort to limit energy use, and having a cooler thermostat set point. 585 

In terms of the effect on the hdd slope we see that, similar to the intercept, the three oldest age 586 

bands, detached dwellings, warmer heating set-points and presence of an ACU have an increased 587 

slope. Number of rooms, number of bedrooms and IMD 5 (least deprived) are also associated with 588 

an increased slope. Having no timing heating control is also associated with an increased slope, but 589 

this has confidence intervals very close to enclosing zero.  590 

For the smaller sample broadly similar trends are observed, with older and more detached dwellings 591 

associated with larger intercepts and steeper slopes and vice versa for newer buildings and flats and 592 

terraces, solar radiation and making a great deal of effort to reduce energy consumption are again 593 

associated with decreased intercept and shallower slope. Variable use of standalone heaters are 594 

associated with decreased intercept and slope for the smaller sample although this was not 595 

significant in the larger sample.  596 

Less switching off lights, always opening windows on cold days, less putting on clothes in cold 597 

weather and having electric and gas heating are associated with increased intercepts for the smaller 598 

sample, but none are significant in the larger sample.  599 

Thermostat set-point question being 'not applicable' is associated with a reduced hdd slope for the 600 

smaller sample, but this has confidence intervals very close to including zero and is not significant for 601 

the larger sample.  602 

Sundays, number of adult occupants, and IMD quintiles 4 and 5 (least deprived) are associated with 603 

increased slopes, but these have confidence intervals very close to including zero and, with the 604 

exception of IMD quintile 5, are not significant for the larger sample.   605 

Comparing to previous studies, our results agree with a number of existing findings regarding the 606 

association between building physical characteristics and energy consumption [14,41]: buildings that 607 

have more rooms, more bedrooms, are more detached, are older, and that experience colder or less 608 

sunny weather are associated with increased energy consumption. 609 

Similarly, we find presence of air-conditioning increases demand, though unlike previous studies 610 

[14], we do not find any significant association between presence of any other appliances and 611 

demand. A possible explanation is that while previous studies have tended to focus on electricity 612 

consumption only, which is more likely to be affected by appliances, we are analysing total energy 613 

consumption, which is dominated by space and water heating, and as such unlikely to be 614 

significantly affected by electrical appliances such as laptops, dishwashers etc.  615 
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Our results confirm a number of existing findings regarding the effect of sociodemographic 616 

characteristics on energy consumption [14,41]: households with more adult occupants, more 617 

children, and with older adult occupants, are associated with increased energy consumption. While 618 

the latter two are not shown in Figure 5 or Figure 6 both have significant coefficients and VIFs < 5 for 619 

both samples. 620 

Previous studies report mixed results for the effect of tenure, and education on energy 621 

consumption. We find no significant effect associated with tenure, or education (a higher proportion 622 

of adults with qualifications) when multiple confounding factors are controlled. 623 

Behavioural factors can include energy conservation behaviour in the form of ‘purchasing’ activities 624 

or ‘habitual’ actions and are less well studied than the previous categories of factors [20]. 625 

Nonetheless some previous studies report an association between habitual energy saving 626 

behaviours and reduced consumption [20,70,71]. We found that households that set lower heating 627 

temperature set-points consumed less than those that set higher set-points. Households who made 628 

‘a great deal of effort’ to limit or reduce their energy consumption were associated with lower 629 

consumption than those who made ‘some effort’.  630 
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Figure 5. Size of coefficients for statistically significant (p<0.05) and low VIF (<5) variables for the Basic plus SERL survey 632 
model and larger sample (N=1418), showing the variables with the ten largest positive and negative effects on intercept 633 
(upper) and hdd slope (lower). Those with negative effect are shown in red, those with positive effect shown in blue. Error 634 
bars show 95% confidence interval of the estimate. 635 

 636 

Figure 6. Size of coefficients for statistically significant (p<0.05) and low VIF (<5) variables for the Basic plus SERL survey 637 
model and smaller sample (N=682), showing the variables with the ten largest positive and negative effects on intercept 638 
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(upper) and hdd slope (lower). Those with negative effect are shown in red, those with positive effect shown in blue. Error 639 
bars show 95% confidence interval of the estimate. 640 

4.4 Comparison with previous studies 641 

Returning to our first research question, ‘What is the overall explanatory power of SERL Observatory 642 

data with respect to variation in household-level daily residential energy consumption and does this 643 

improve on studies reported in the literature?’, we find that when measured in terms of adjusted R2 644 

calculated using cross-validation testing errors, the SERL Observatory data explains between 63% and 645 

80% of the variation in daily household total energy consumption, depending on sample size and 646 

combinations of contextual data used. For a given sample with full data availability, a model using all 647 

available data performs the best for within-group prediction while a model using Basic plus EPC data 648 

(i.e. not including SERL survey data) performs marginally better on between-group prediction. 649 

However, given the relatively small sample sizes considered here, and the resulting penalisation of 650 

adjusted R2 values, the model using Basic plus SERL Survey (i.e. not including EPC data) performed best 651 

overall simply because SERL survey data is available for more participants than EPC data, and this 652 

allowed the sample size to be more than doubled from N=682 to 1418. Other studies in the literature 653 

(see Table 1) report adjusted R2 of 0.29-0.44 for daily demand.  654 

While we report errors for the models, we note that none of the cited studies report comparable 655 

errors with the exception of [15,20]. Direct comparison with these is complicated because they log-656 

transform the dependent variable while we do not. Nonetheless, [20] reports errors that are 657 

approximately 20% smaller than the standard deviation of the dependent variable. The standard 658 

deviation of the dependent variable for our samples is 42.97 kWh/day (87% of the mean) and 42.19 659 

kWh/day (90% of the mean) for our larger and smaller samples respectively. Our best performing 660 

models have RMSE errors ranging from 23.06 to 28.27 kWh/day, equivalent to 45% to 36% smaller 661 

than the standard deviations. Overall, therefore, our results compare favourably with those found in 662 

the literature, however there is clearly substantial scope for improving model accuracy. 663 

4.5 SERL Observatory: a new national data resource for energy demand research 664 

Returning to the final research question, we have shown that the EPC data and SERL survey data, 665 

when included alongside the basic data, are broadly similar in terms of explanatory power, with the 666 

EPC data marginally outperforming the SERL survey data. The SERL survey data is however much less 667 

affected by multicollinearity and has higher data availability for the SERL Observatory. Future 668 

researchers using similar techniques may wish to opt for a balance of maximising sample size and 669 

explanatory power by not requiring complete EPC data for their analytic sample. We believe these 670 

results demonstrate the value of the SERL survey as a tool for collecting useful contextual data with 671 

relatively low participant burden, and note the complementarity of the SERL survey with EPC data 672 

which is nonetheless widely available for UK dwellings.  673 

Overall, our results demonstrate that a large amount of variation can be explained by data collected 674 

within the SERL Observatory, and have demonstrated a number of methodological approaches that 675 

should prove useful for researchers aspiring to use the data. The results largely support existing 676 

theory and add to the empirical evidence base that building physical characteristics, household 677 

sociodemographic information, and household behavioural factors all explain aspects of demand, 678 

across a wide range of contexts. Considering the complexity of the subject under investigation (daily 679 

residential energy consumption), the simplicity of the approach to data selection used here, and the 680 

relatively low burden on participants for data collection, we believe this is a promising result that 681 

demonstrates the value of the SERL Observatory dataset as a data resource for improving the 682 

understanding of energy demand in residential buildings. The final (third) wave of SERL participant 683 

recruitment was completed in March 2021 and over 8,000 further participants were recruited, 684 
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bringing the total participant number to over 13,000. We therefore encourage future energy 685 

demand projects involving surveys to harmonise with the SERL survey to support greater 686 

interpretation, reproducibility and cross-validation between research findings [72]. 687 

4.6 Statistical issues and limitations 688 

Nonetheless, this work has revealed and is subject to a number of statistical issues and limitations, 689 

listed here in no particular order of importance, all of which restrict our ability to draw robust 690 

inferences from these particular results: 691 

• While one of the primary goals of the study is inference and to improve understanding of 692 

residential energy consumption, the samples analysed here are non-random, and non-693 

representative due to biases in data collection and sample preparation. The current results 694 

cannot therefore be generalised to the population from which the SERL sample was drawn; 695 

• The modelling approach is limited: it employs simplified assumptions (e.g. linearity) 696 

regarding the relationship between the variables of interest and makes no attempt at 697 

variable selection beyond combining all variables available in the different combinations of 698 

linkable contextual data; 699 

• The inclusion of such large numbers of variables in models is highly likely to result in a 700 

number of spurious inferences of statistically significant effects (Type I errors). However, 701 

since one purpose of the paper is to guide future analysis we felt it important to 702 

demonstrate this approach (and the potential problem) for rhetorical purposes. To some 703 

extent this is mitigated by the presentation of confidence intervals alongside point estimates 704 

of the effect sizes as suggested by Anderson et al [73]; 705 

• The models are affected by multicollinearity, some severely so. We have however been 706 

careful to highlight and address this problem where possible. This was an outcome of our 707 

aim here to explore the explanatory power of including the full range of data available in the 708 

SERL dataset, which itself supports the aim of highlighting the potential of the dataset for 709 

future studies that focus down on relationships between domestic energy use and specific 710 

contextual factors. We have demonstrated where future analyses using SERL data will need 711 

to guard against this issue by using smaller theoretically-informed or model-based variable 712 

sets. This supports our aim of guiding future high quality analysis of the SERL data. 713 

4.7 Future work 714 

This paper presents a first initial step in a larger programme of research by multiple organisations 715 

using SERL Observatory data. We have started with simple but limited analysis; for example, using a 716 

fixed degree-day base to account for variations in heating of buildings, whereas it is possible that the 717 

temperatures at which heating is turned on is much more complex and interrelated with many of 718 

the variables. We also present models employing more covariates than would be usual and which, as 719 

we have noted, display multicollinearity and instability as a result. We therefore plan more 720 

sophisticated analysis of the above data using weightings to produce population estimates, applying 721 

non-linear methods for inference and predictive models, and using variable selection methods to 722 

identify the most important individual factors.  723 

Further, we plan to use the full 13,000 observatory release 3 data to give greater statistical power 724 

and conduct research of relevance to policy, notably: investigating the impact of coronavirus on 725 

energy demand; producing a range of residential energy statistics of relevance to a wider audience 726 

of non-academics; and investigating the use of the SERL Observatory as a counterfactual group for 727 

the evaluation of energy efficiency measures and policies. We also plan to analyse gas and electricity 728 

use separately to improve our understandings of the factors that correlate with each. There is 729 
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considerable scope for research using the SERL Observatory data. The dataset is available for other 730 

UK academic researchers – we encourage such UK researchers to submit proposals to access it. 731 

More information about how to do this can be found on the SERL website (www.serl.ac.uk) and 732 

UKDS data catalogue [10]. 733 

5 Conclusions 734 

This paper presents analysis of the SERL Observatory: a dataset of linked smart meter data and 735 

socio-technical contextual data for a representative sample of over 13,000 GB households. Here we 736 

analyse data from two nested sub-samples (N=1418 & 682) of the first two recruitment waves (initial 737 

sample N=4716) and for the pre-coronavirus period (taken to be before March 2020). 738 

The first aim was to quantify how much of the variation in total energy consumption can be 739 

explained by different combinations of SERL Observatory variables: ‘basic’ (e.g. local weather, 740 

region, date), EPC (where available), and the SERL survey (questions relating to the dwelling and 741 

occupants). As multiple observations were available per participant, linear mixed effects models 742 

were used to regress household-level daily total energy consumption over time against successive 743 

levels of contextual data to reveal the relationship between energy use and static (constant) and 744 

temporally changing variables (basic: weather, region, IMD and date; EPC; SERL survey; all data 745 

combined).  746 

The explanatory power of the models was quantified using adjusted R2 and root mean squared error 747 

(RMSE). The SERL Observatory data explains between 63% and 80% of the variation in daily 748 

household total energy consumption, depending on sample size and combinations of contextual 749 

data used. For within-sample prediction (i.e. where historic observations for each household are 750 

available), the model using all available contextual data performed best, while for between-sample 751 

prediction (i.e. where historic data is not available) the model using basic plus EPC data marginally 752 

outperformed others for the smaller sample. However, the model using Basic plus SERL Survey (i.e. 753 

not including EPC data) performed best overall as it could be applied to the larger sample (N=1418 754 

rather than 682) and so resulted in smaller penalisation of adjusted R2 value.  755 

The best performing models have RMSE errors ranging from 23.06 to 28.27 kWh/day, equivalent to 756 

45% to 36% less than the standard deviations of the samples. Overall, these results compare 757 

favourably with those found in the literature, however there is clearly substantial scope for 758 

improving model accuracy, and the results indicate that non-linear models and regularisation 759 

techniques could help achieve this. 760 

The second aim was to identify variables observed in SERL Observatory data that are strongly 761 

associated with variation in household-level residential energy consumption using a p-value<0.05, 762 

VIF<5 threshold for demonstration purposes. Given high multicollinearity particularly associated 763 

with EPC data, this was restricted to the Basic plus SERL Survey model applied to the two sample 764 

sizes. The results were broadly as expected: buildings that are older, have more rooms and 765 

bedrooms, have air-conditioning, and experience colder or less sunny weather were associated with 766 

increased energy consumption. Households with more occupants, more children, and with older 767 

adult occupants were also associated with increased energy consumption. Energy consumption in 768 

households was found to be lower in households that set lower heating temperature setpoints, and 769 

that tried to save energy.  770 

In summary, this paper has demonstrated that the SERL Observatory dataset is a rich resource of 771 

energy data and relevant contextual data, and that the contextual data is robust as it explains energy 772 

use to a good degree in much the way that existing literature would lead us to expect. The dataset is 773 
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available to UK Accredited Researchers and we encourage researchers to submit proposals to access 774 

it. This paper provides guidance on appropriate methods to use when analysing the data.  775 

6 Acknowledgements 776 

This work has been funded by EPSRC through grant EP/P032761/1. There are over 30 individuals 777 

across 8 organisations in the SERL Consortium (University College London, the University of Essex 778 

(UK Data Archive), University of Edinburgh, Cardiff University, Loughborough University, Leeds 779 

Beckett University, the University of Southampton and the Energy Saving Trust) who have 780 

contributed to the development of SERL and thus the content of this paper. Particular thanks go to 781 

the SERL technical team at the UK Data Archive: Darren Bell, Deirdre Lungley, Martin Randall and 782 

Jacob Joy and to SERL Consortium Manager James O’Toole at UCL.  783 

We acknowledge support from the SERL Independent Advisory Board, Data Governance Board and 784 

Research Programme Board which played critical role in the establishment and ethical operation of 785 

SERL. 786 

The SERL Observatory includes European Centre for Medium-Range Weather Forecasts (ECMWF) 787 

ERA5 data. Neither the European Commission nor the European Centre for Medium-Range Weather 788 

Forecasts is responsible for any use that may be made of the Copernicus information or data it 789 

contains. 790 

7 Author contributions 791 

Eoghan McKenna: Conceptualization, Methodology, Software, Validation, Formal analysis, 792 

Investigation, Writing - Original Draft. 793 

Jessica Few: Methodology, Writing - Original Draft, Visualization, Software, Formal analysis. 794 

Ellen Webborn: Methodology, Data Curation, Software, Investigation, Writing - Review & Editing. 795 

Ben Anderson: Methodology, Writing - Review & Editing. 796 

Simon Elam: Data Curation, Writing - Review & Editing, Supervision, Project administration, Funding 797 

acquisition, Investigation. 798 

David Shipworth: Investigation, Writing - Review & Editing, Funding acquisition. 799 

Martin Pullinger: Investigation, Writing - Review & Editing. 800 

Adam Cooper: Investigation, Writing - Review & Editing. 801 

Tadj Oreszczyn: Investigation, Writing - Review & Editing, Supervision, Funding acquisition. 802 

8 References 803 

[1] IEA, Net Zero by 2050, Paris, 2021. https://www.iea.org/reports/net-zero-by-2050. 804 

[2] J. Wachsmuth, V. Duscha, Achievability of the Paris targets in the EU—the role of demand-805 
side-driven mitigation in different types of scenarios, Energy Effic. 12 (2019) 403–421. 806 
https://doi.org/10.1007/s12053-018-9670-4. 807 

[3] F. Creutzig, J. Roy, W.F. Lamb, I.M.L. Azevedo, W. Bruine De Bruin, H. Dalkmann, O.Y. 808 
Edelenbosch, F.W. Geels, A. Grubler, C. Hepburn, E.G. Hertwich, R. Khosla, L. Mattauch, J.C. 809 
Minx, A. Ramakrishnan, N.D. Rao, J.K. Steinberger, M. Tavoni, D. Ürge-Vorsatz, E.U. Weber, 810 
Towards demand-side solutions for mitigating climate change, Nat. Clim. Chang. 8 (2018) 811 

https://doi.org/10.1016/j.enbuild.2022.111845


This is an accepted manuscript version of a published journal article in Energy & Buildings (DOI: 
https://doi.org/10.1016/j.enbuild.2022.111845).   

 

268–271. https://doi.org/10.1038/s41558-018-0121-1. 812 

[4] A.C.G. Cooper, Building physics into the social: Enhancing the policy impact of energy studies 813 
and energy social science research, Energy Res. Soc. Sci. 26 (2017) 80–86. 814 
https://doi.org/10.1016/j.erss.2017.01.013. 815 

[5] J. Love, A.C.G. Cooper, From social and technical to socio-technical: Designing integrated 816 
research on domestic energy use, Indoor Built Environ. 24 (2015) 986–998. 817 
https://doi.org/10.1177/1420326X15601722. 818 

[6] A.C.G. Cooper, Evaluating energy efficiency policy: understanding the ‘energy policy 819 
epistemology’ may explain the lack of demand for randomised controlled trials, Energy Effic. 820 
11 (2018) 997–1008. https://doi.org/10.1007/s12053-018-9618-8. 821 

[7] A. Cooper, D. Shipworth, A. Humphrey, UK Energy Lab: A feasibility study for a longitudinal, 822 
nationally representative sociotechnical survey of energy use, London, 2014. 823 
https://www.ucl.ac.uk/steapp/sites/steapp/files/synthesis.pdf (accessed May 20, 2021). 824 

[8] G.M. Huebner, I. Hamilton, Z. Chalabi, D. Shipworth, T. Oreszczyn, Explaining domestic energy 825 
consumption - The comparative contribution of building factors, socio-demographics, 826 
behaviours and attitudes, Appl. Energy. 159 (2015) 589–600. 827 
https://doi.org/10.1016/j.apenergy.2015.09.028. 828 

[9] E. Webborn, T. Oreszczyn, Champion the energy data revolution, Nat. Energy 2019 48. 4 829 
(2019) 624–626. https://doi.org/10.1038/s41560-019-0432-0. 830 

[10] S. Elam, E. Webborn, E. McKenna, T. Oreszczyn, B. Anderson, Ministry of Housing 831 
Communities & Local Government, European Centre for Medium-Range Weather Forecasts, 832 
Royal Mail Group Limited, Smart Energy Research Lab Observatory Data, 2019-2020: Secure 833 
Access, (2020). https://doi.org/http://doi.org/10.5255/UKDA-SN-8666-1. 834 

[11] E. Shove, M. Pantzar, M. Watson, The dynamics of social practice: Everyday life and how it 835 
changes, Sage, Los Angeles, Calif. ; London, 2012. 836 

[12] K. Gram-Hanssen, Efficient Technologies or User Behaviour, Which Is the More Important 837 
When Reducing Households’ Energy Consumption?, Energy Effic. 6 (2013) 447–457. 838 
https://doi.org/10.1007/s12053-012-9184-4. 839 

[13] M. Hand, E. Shove, D. Southerton, Explaining showering: a discussion of the material, 840 
conventional, and temporal dimensions of practice, Sociol. Res. Online. 10 (2005). 841 
http://www.socresonline.org.uk/10/2/hand.html. 842 

[14] R. V. Jones, A. Fuertes, K.J. Lomas, The socio-economic, dwelling and appliance related factors 843 
affecting electricity consumption in domestic buildings, Renew. Sustain. Energy Rev. 43 844 
(2015) 901–917. https://doi.org/10.1016/j.rser.2014.11.084. 845 

[15] A. Satre-Meloy, M. Diakonova, P. Grünewald, Daily life and demand: an analysis of intra-day 846 
variations in residential electricity consumption with time-use data, Energy Effic. 13 (2020) 847 
433–458. https://doi.org/10.1007/s12053-019-09791-1. 848 

[16] P. Grünewald, M. Diakonova, Societal differences, activities, and performance: Examining the 849 
role of gender in electricity demand in the United Kingdom, Energy Res. Soc. Sci. 69 (2020) 850 
101719. https://doi.org/10.1016/J.ERSS.2020.101719. 851 

[17] M. Gleue, J. Unterberg, A. Löschel, P. Grünewald, Does demand-side flexibility reduce 852 
emissions? Exploring the social acceptability of demand management in Germany and Great 853 
Britain, Energy Res. Soc. Sci. 82 (2021) 102290. https://doi.org/10.1016/J.ERSS.2021.102290. 854 

https://doi.org/10.1016/j.enbuild.2022.111845


This is an accepted manuscript version of a published journal article in Energy & Buildings (DOI: 
https://doi.org/10.1016/j.enbuild.2022.111845).   

 

[18] S. Wei, R. Jones, P. de Wilde, Driving Factors for Occupant-Controlled Space Heating in 855 
Residential Buildings, Energy Build. 70 (2014) 36–44. 856 
https://doi.org/10.1016/j.enbuild.2013.11.001. 857 

[19] L.G. Swan, V.I. Ugursal, Modeling of end-use energy consumption in the residential sector: A 858 
review of modeling techniques, Renew. Sustain. Energy Rev. 13 (2009) 1819–1835. 859 
https://doi.org/10.1016/j.rser.2008.09.033. 860 

[20] A. Satre-Meloy, Investigating structural and occupant drivers of annual residential electricity 861 
consumption using regularization in regression models, Energy. 174 (2019) 148–168. 862 
https://doi.org/10.1016/j.energy.2019.01.157. 863 

[21] A. Foucquier, S. Robert, F. Suard, L. Stéphan, A. Jay, State of the art in building modelling and 864 
energy performances prediction: A review, Renew. Sustain. Energy Rev. 23 (2013) 272–288. 865 
https://doi.org/10.1016/j.rser.2013.03.004. 866 

[22] A.T. Nguyen, S. Reiter, P. Rigo, A review on simulation-based optimization methods applied to 867 
building performance analysis, Appl. Energy. 113 (2014) 1043–1058. 868 
https://doi.org/10.1016/j.apenergy.2013.08.061. 869 

[23] K. Amasyali, N.M. El-Gohary, A review of data-driven building energy consumption prediction 870 
studies, Renew. Sustain. Energy Rev. 81 (2018) 1192–1205. 871 
https://doi.org/10.1016/j.rser.2017.04.095. 872 

[24] Y. Wei, X. Zhang, Y. Shi, L. Xia, S. Pan, J. Wu, M. Han, X. Zhao, A review of data-driven 873 
approaches for prediction and classification of building energy consumption, Renew. Sustain. 874 
Energy Rev. 82 (2018) 1027–1047. https://doi.org/10.1016/j.rser.2017.09.108. 875 

[25] Y. Iwafune, Y. Yagita, High-resolution determinant analysis of Japanese residential electricity 876 
consumption using home energy management system data, Energy Build. 116 (2016) 274–877 
284. https://doi.org/10.1016/j.enbuild.2016.01.017. 878 

[26] M.J. Kim, Understanding the determinants on household electricity consumption in Korea: 879 
OLS regression and quantile regression, Electr. J. 33 (2020) 106802. 880 
https://doi.org/10.1016/j.tej.2020.106802. 881 

[27] F. McLoughlin, A. Duffy, M. Conlon, Characterising domestic electricity consumption patterns 882 
by dwelling and occupant socio-economic variables: An Irish case study, Energy Build. 48 883 
(2012) 240–248. https://doi.org/10.1016/j.enbuild.2012.01.037. 884 

[28] B. Anderson, S. Lin, A. Newing, A.B. Bahaj, P. James, Electricity consumption and household 885 
characteristics: Implications for census-taking in a smart metered future, Comput. Environ. 886 
Urban Syst. 63 (2017) 58–67. https://doi.org/10.1016/j.compenvurbsys.2016.06.003. 887 

[29] E.W. Frees, Longitudinal and Panel Data, Cambridge University Press, 2004. 888 
https://doi.org/10.1017/cbo9780511790928. 889 

[30] G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to statistical learning, Springer, 890 
2017. https://link.springer.com/content/pdf/10.1007/978-1-4614-7138-7.pdf (accessed 891 
February 5, 2021). 892 

[31] G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to Statistical Learning, 2000. 893 
https://doi.org/10.1007/978-1-4614-7138-7. 894 

[32] J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning, 2001. 895 
http://statweb.stanford.edu/~tibs/book/preface.ps (accessed February 5, 2021). 896 

[33] A. Kavousian, R. Rajagopal, M. Fischer, Determinants of residential electricity consumption: 897 

https://doi.org/10.1016/j.enbuild.2022.111845


This is an accepted manuscript version of a published journal article in Energy & Buildings (DOI: 
https://doi.org/10.1016/j.enbuild.2022.111845).   

 

Using smart meter data to examine the effect of climate, building characteristics, appliance 898 
stock, and occupants’ behavior, Energy. 55 (2013) 184–194. 899 
https://doi.org/10.1016/j.energy.2013.03.086. 900 

[34] MHCLG, English Housing Survey 2017 to 2018: energy, 2019. 901 
https://www.gov.uk/government/statistics/english-housing-survey-2017-to-2018-energy. 902 

[35] ACER, Annual report on the results of monitoring the internal electricity and natural gas 903 
markets in 2017, 2018. 904 

[36] R. V. Jones, K.J. Lomas, Determinants of high electrical energy demand in UK homes: 905 
Appliance ownership and use, Energy Build. 117 (2016) 71–82. 906 
https://doi.org/10.1016/j.enbuild.2016.02.020. 907 

[37] H. Fan, I.F. MacGill, A.B. Sproul, Statistical analysis of driving factors of residential energy 908 
demand in the greater Sydney region, Australia, Energy Build. 105 (2015) 9–25. 909 
https://doi.org/10.1016/j.enbuild.2015.07.030. 910 

[38] G. Huebner, D. Shipworth, I. Hamilton, Z. Chalabi, T. Oreszczyn, Understanding electricity 911 
consumption: A comparative contribution of building factors, socio-demographics, 912 
appliances, behaviours and attitudes, Appl. Energy. 177 (2016) 692–702. 913 
https://doi.org/10.1016/j.apenergy.2016.04.075. 914 

[39] C. Shalizi, The Truth About Linear Regression, Carnegie Mellon University, 2019. 915 
http://www.stat.cmu.edu/~cshalizi/TALR/TALR.pdf (accessed December 5, 2021). 916 

[40] H. Fan, I.F. MacGill, A.B. Sproul, Statistical analysis of drivers of residential peak electricity 917 
demand, Energy Build. 141 (2017) 205–217. https://doi.org/10.1016/j.enbuild.2017.02.030. 918 

[41] BEIS, NEED Annex D: Determinants of household gas use, 2019. 919 

[42] T. Snijders, R. Bosker, Multilevel analysis: An introduction to basic and advanced multilevel 920 
modeling, SAGE, 2012. 921 

[43] E. Webborn, S. Elam, E. McKenna, Utilising Smart Meter Data for Research and Innovation in 922 
the UK (forthcoming), in: Proc. Eur. Counc. an Energy Effic. Econ. Summer Study, 2019. 923 

[44] E. Webborn, E.J. McKenna, S. Elam, B. Anderson, A. Cooper, T. Oreszczyn, Increasing response 924 
rates and reducing bias: Learnings from the Smart Energy Research Lab pilot study, (n.d.). 925 
https://doi.org/10.31219/OSF.IO/F82B7. 926 

[45] E. McKenna, E. Webborn, … P.L.-E. 2019 S.,  undefined 2019, Analysis of international 927 
residential solar PV self-consumption, Discovery.Ucl.Ac.Uk. (n.d.). 928 
http://discovery.ucl.ac.uk/id/eprint/10075770 (accessed October 4, 2019). 929 

[46] E. Webborn, S. Elam, E. McKenna, T. Oreszczyn, Utilising smart meter data for research and 930 
innovation in the UK, ECEEE Summer Study Proc. (2019) 1387–1396. 931 

[47] E. Webborn, E.J. McKenna, S. Elam, B. Anderson, A. Cooper, T. Oreszczyn, Increasing response 932 
rates and reducing bias: Learnings from the Smart Energy Research Lab pilot study, OSF 933 
Prepr. (2021). https://doi.org/10.31219/OSF.IO/F82B7. 934 

[48] J. Crawley, E. McKenna, V. Gori, T. Oreszczyn, Creating Domestic Building Thermal 935 
Performance Ratings Using Smart Meter Data, Build. Cities. 1 (2020) 1–13. 936 
https://doi.org/10.5334/BC.7. 937 

[49] MHCLG, Energy Performance of Buildings Data: England and Wales, (2020). 938 
https://epc.opendatacommunities.org/. 939 

https://doi.org/10.1016/j.enbuild.2022.111845


This is an accepted manuscript version of a published journal article in Energy & Buildings (DOI: 
https://doi.org/10.1016/j.enbuild.2022.111845).   

 

[50] J. Crawley, P. Biddulph, P.J. Northrop, J. Wingfield, T. Oreszczyn, C. Elwell, Quantifying the 940 
Measurement Error on England and Wales EPC Ratings, Energies. 12 (2019). 941 

[51] H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. 942 
Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, J.-N. Thépaut, ERA5 943 
hourly data on single levels from 1979 to present., (2018). 944 
https://doi.org/10.24381/cds.adbb2d47. 945 

[52] DECC, Energy Trends: December 2014, special feature article - Energy usage in household 946 
with solar PV installations, 2014. https://www.gov.uk/government/statistics/energy-trends-947 
december-2014-special-feature-article-energy-usage-in-household-with-solar-pv-948 
installations. 949 

[53] Brook Lyndhurst, Uptake of Ultra Low Emission Vehicles in the UK, 2015. 950 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_d951 
ata/file/464763/uptake-of-ulev-uk.pdf. 952 

[54] J. Spinoni, J. Vogt, P. Barbosa, European degree-day climatologies and trends for the period 953 
1951-2011, Int. J. Climatol. 35 (2015) 25–36. https://doi.org/10.1002/joc.3959. 954 

[55] D. Iacobucci, M.J. Schneider, D.L. Popovich, G.A. Bakamitsos, Mean centering helps alleviate 955 
“micro” but not “macro” multicollinearity, Behav. Res. Methods. 48 (2016) 1308–1317. 956 
https://doi.org/10.3758/S13428-015-0624-X. 957 

[56] M. Wissmann, H. Toutenburg, Role of categorical variables in multicollinearity in the linear 958 
regression model, 2007. https://epub.ub.uni-muenchen.de/2081 (accessed August 23, 2021). 959 

[57] H. Kang, The prevention and handling of the missing data, Korean J. Anesthesiol. 64 (2013) 960 
402–406. https://doi.org/10.4097/kjae.2013.64.5.402. 961 

[58] P.C. Austin, I.R. White, D.S. Lee, S. van Buuren, Missing Data in Clinical Research: A Tutorial on 962 
Multiple Imputation, Can. J. Cardiol. 37 (2021) 1322–1331. 963 
https://doi.org/10.1016/j.cjca.2020.11.010. 964 

[59] D.B. Rubin, Multiple Imputation after 18+ Years, J. Am. Stat. Assoc. 91 (1996) 473–489. 965 
https://doi.org/10.1080/01621459.1996.10476908. 966 

[60] E. Webborn, J. Few, E. McKenna, S. Elam, M. Pullinger, B. Anderson, D. Shipworth, T. 967 
Oreszczyn, The SERL Observatory Dataset: Longitudinal Smart Meter Electricity and Gas Data, 968 
Survey, EPC and Climate Data for over 13,000 Households in Great Britain, Energies. 14 (2021) 969 
6934. https://doi.org/10.3390/en14216934. 970 

[61] MHCLG, English Housing Survey 2018 to 2019: headline report, 2020. 971 
https://www.gov.uk/government/statistics/english-housing-survey-2018-to-2019-headline-972 
report (accessed May 26, 2021). 973 

[62] BEIS, Energy consumption in the UK - GOV.UK, 2021. 974 
https://www.gov.uk/government/statistics/energy-consumption-in-the-uk (accessed May 26, 975 
2021). 976 

[63] J. Wooldridge, Introductory econometrics: A modern approach, 2015. 977 
https://books.google.com/books?hl=en&lr=&id=wUF4BwAAQBAJ&oi=fnd&pg=PR3&dq=wool978 
dridge+introductory+econometrics&ots=cATyYDlngo&sig=AkalfyXzQggN67iYhrU5UKaKCH0 979 
(accessed September 10, 2021). 980 

[64] G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to statistical learning with 981 
applications in R, 2013. https://doi.org/10.1017/CBO9781107415324.004. 982 

https://doi.org/10.1016/j.enbuild.2022.111845


This is an accepted manuscript version of a published journal article in Energy & Buildings (DOI: 
https://doi.org/10.1016/j.enbuild.2022.111845).   

 

[65] S. Nakagawa, H. Schielzeth, A general and simple method for obtaining R 2 from generalized 983 
linear mixed-effects models, Methods Ecol. Evol. 4 (2013) 133–142. 984 
https://doi.org/10.1111/j.2041-210x.2012.00261.x. 985 

[66] J. Miles,  R -Squared, Adjusted R -Squared , Encycl. Stat. Behav. Sci. (2005). 986 
https://doi.org/10.1002/0470013192.BSA526. 987 

[67] T. pandas development Team, Pandas, (2020). https://doi.org/10.5281/zenodo.3509134. 988 

[68] W. McKinney, Data Structures for Statistical Computing in Python, in: S. van der Walt, J. 989 
Millman (Eds.), Proc. 9th Python Sci. Conf., 2010: pp. 56–61. 990 
https://doi.org/10.25080/Majora-92bf1922-00a. 991 

[69] S. Seabold, J. Perktold, Statsmodels: Econometric and statistical modeling with python, in: 992 
Proc. 9th Python Sci. Conf., 2010: p. 92. 993 

[70] H. Wallis, M. Nachreiner, E. Matthies, Adolescents and electricity consumption; Investigating 994 
sociodemographic, economic, and behavioural influences on electricity consumption in 995 
households, Energy Policy. 94 (2016) 224–234. https://doi.org/10.1016/j.enpol.2016.03.046. 996 

[71] K. Steemers, G.Y. Yun, Household energy consumption: A study of the role of occupants, 997 
Build. Res. Inf. 37 (2009) 625–637. https://doi.org/10.1080/09613210903186661. 998 

[72] G. Huebner, M. Fell, N. Watson, Improving energy research practices: guidance for 999 
transparency, reproducibility and quality, Build. Cities. 2 (2021) 1–20. 1000 
https://doi.org/10.5334/bc.67. 1001 

[73] B. Anderson, T. Rushby, A. Bahaj, P. James, Ensuring statistics have power: Guidance for 1002 
designing, reporting and acting on electricity demand reduction and behaviour change 1003 
programs, Energy Res. Soc. Sci. 59 (2020) 101260. 1004 
https://doi.org/10.1016/j.erss.2019.101260. 1005 

 1006 

https://doi.org/10.1016/j.enbuild.2022.111845

