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Abstract
Bayesian inference for nonlinear diffusions, observed
at discrete times, is a challenging task that has
prompted the development of a number of algorithms,
mainly within the computational statistics commu-
nity. We propose a new direction, and accompanying
methodology—borrowing ideas from statistical physics
and computational chemistry—for inferring the poste-
rior distribution of latent diffusion paths and model
parameters, given observations of the process. Joint
configurations of the underlying process noise and of
parameters, mapping onto diffusion paths consistent
with observations, form an implicitly defined mani-
fold. Then, by making use of a constrained Hamiltonian
Monte Carlo algorithm on the embedded manifold, we
are able to perform computationally efficient inference
for a class of discretely observed diffusion models. Criti-
cally, in contrast with other approaches proposed in the
literature, our methodology is highly automated, requir-
ing minimal user intervention and applying alike in
a range of settings, including: elliptic or hypo-elliptic
systems; observations with or without noise; linear
or non-linear observation operators. Exploiting Marko-
vianity, we propose a variant of the method with com-
plexity that scales linearly in the resolution of path dis-
cretisation and the number of observation times. Python
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code reproducing the results is available at http://doi.
org/10.5281/zenodo.5796148.
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1 INTRODUCTION

A large number of stochastic dynamical systems are modelled via the use of diffusion processes,
see for example Kloeden and Platen (1992) and Oksendal (2013) and the references therein. An
enormous amount of research has been dedicated to both the theoretical foundations of such
processes and—as with this work—their statistical calibration. Our work lies in the context of
processes observed discretely in time, under a low frequency regime, so that approximations of
typically analytically intractable transition densities are assumed to be inaccurate. In this set-
ting, data augmentation approaches within a Bayesian framework have delivered the prevailing
methodologies, see for example Sørensen (2009) and Papaspiliopoulos et al. (2013), as they pro-
vide various model-specific algorithms for treating a number of different specifications of the
structure of the diffusion process and of the observation regime. The performance of the devel-
oped algorithms can be improved via a combination of model transforms, often motivated by the
Roberts–Stramer critique (Roberts & Stramer, 2001)—that the posterior distribution of the diffu-
sivity parameters given a time discretisation of the process degenerates at finer resolutions—and
more efficient Markov chain Monte Carlo (MCMC) kernels.

The work herein provides a natural approach for Bayesian inference over diffusion processes.
Observations are treated as constraints placed on latent paths and parameters. This gives rise
to the viewpoint that the posterior can be expressed as the prior distribution restricted to a
manifold. We apply existing MCMC methods for sampling from distributions supported on sub-
manifolds based on the simulation of constrained Hamiltonian dynamics (see, e.g. Brubaker
et al., 2012; Hartmann & Schütte, 2005; Lelièvre et al., 2019; Rousset et al., 2010) to effi-
ciently explore this manifold-supported posterior distribution. This class of methods relies on
symplectic integrators for constrained Hamiltonian systems (Andersen, 1983; Leimkuhler &
Matthews, 2016; Leimkuhler & Skeel, 1994; Reich, 1996). Critically, we leverage the Marko-
vian structure of the diffusion process and Gaussianity of the driving noise to design a scalable
inferential procedure. The main contributions of the proposed methodology can be summarised
as follows:

(i) We provide a new viewpoint and accompanying algorithmic methodology for calibrating
stochastic differential equation (SDE) models. The posterior is expressed as a distribution
supported on a manifold embedded in a non-centred parametrization of the latent path
and parameter space. We then make use of a constrained Hamiltonian Monte Carlo (HMC)
scheme to explore this manifold, jointly updating both the parameters and latent path.

(ii) Unlike other algorithms that are often limited to specific model families, our approach is
highly automated and remains unchanged irrespective of the choice of diffusion and obser-
vation models, including: elliptic or hypo-elliptic systems; data observed with or without
noise; linear or non-linear observation operators.
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(iii) We propose a novel constrained integrator that exploits the Gaussianity of the prior distri-
bution on the pathspace. This leads to an improved scaling in sampling efficiency as the
resolution of the latent path discretisation is refined.

(iv) We propose a scheme to exploit the Markovian structure of SDE models to ensure that the
computational cost of the integrator for the Hamiltonian dynamics scales linearly both with
the resolution of path discretisation and the number of observation times. To the best of our
knowledge, the developed approach for leveraging the Markovian structure of the model is
new.

(v) Our method extends the family of SDEs for which statistical calibration is now attainable.
Consider the class of RX-valued SDEs directly observed (without noise) via a non-linear
function h ∶ RX → RY at a finite set of times, forX ≥ Y ≥ 1. In such a scenario, standard data
augmentation schemes fail (for non-trivial choices of h) as the posterior of the latent vari-
ables given the observations does not have a density with respect to the Lebesgue measure.
In contrast, our method remains applicable and unchanged.

Remark 1 (Criteria). To clarify the position of the framework put forward in this work within
the wide field of statistical calibration for SDEs, we list a number of criteria met by our
algorithm:

(i) It carries out full Bayesian inference for the model at hand.
(ii) It respects the Roberts–Stramer critique: the mixing times remain stable as the

resolution of the path discretisation is refined.
(iii) It is applicable in scenarios where data are observed with or without noise; it is stable

in the setting of diminishing noise.
(iv) It is applicable in the case of both full and partial observations. For partial observa-

tions, it accommodates both linear and non-linear observation operators.
(v) It attains the above via a unified and, in principle, automated methodology.

We have chosen the applications in Section 7 to highlight these properties. To our
knowledge, the proposed method is unique in satisfying all of criteria (i)–(v).

The rest of the paper is organised as follows. Section 2 presents a generic class of SDE mod-
els relevant to our work. Section 3 recasts the inferential problem as one of exploring a posterior
distribution supported on a manifold. Section 4 describes the constrained HMC method for
sampling such distributions on implicitly defined manifolds. Section 5 shows how the Marko-
vian structure of SDEs model can be exploited to design a scalable implementation of the
methodology. Section 6 discusses related works. Section 7 illustrates the approach on several
numerical examples, with comments on algorithmic performance and comparisons to alter-
native MCMC methods. Section 8 concludes with a brief summary and directions for future
research.

Notation. Sans-serif symbols are used to distinguish random variables from their realisations
(respectively, x and x). The set of integers from A ∈ Z to B ∈ Z inclusive, B ≥ A, is A∶B. Floor and
ceiling operations are denoted ⌊x⌋ and ⌈x⌉ respectively. A symbol subscripted by a set indicates an
indexed tuple, for example xA∶B = (xs)s∈A∶B. The set of linear maps from a vector space  to a vec-
tor space  is 𝔏( ,). For f ∶ RM → RN, the Jacobian of f is 𝜕f ∶ RM → RN×M and for f ∶ RM → R,
its gradient and Hessian are ∇f ∶ RM → RM and ∇2f ∶ RM → RM×M. For a multiple argument func-
tion g, the Jacobian with respect to the ith argument is denoted 𝜕ig and 𝜕g = (𝜕1g, 𝜕2g, · · ·). The
concatenation of vectors x and y is denoted [x;y] and the concatenation of a tuple of vectors x1∶N
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is [x1∶N] = [x1; · · · ; xN] with the operation acting recursively, for example [x1∶N; y] = [[x1∶N]; y].
The determinant of a square matrix M is |M|. The N × N identity matrix is IN. The block diago-
nal matrix with M1∶N left-to-right along its diagonal is diag M1∶N. The N-dimensional Lebesgue
measure is 𝜆N. The set of Borel probability measures on a space  is 𝔓().

2 DIFFUSION MODEL

We consider the task of inferring the parameters of Itô-type SDEs of the form

dx(𝜏) = a(x(𝜏), z)d𝜏 + B(x(𝜏), z)db(𝜏) (1)

defined on a time interval  ⊆ R≥0, where z is a  ⊆ RZ-valued vector of model parame-
ters, x a  ≡ RX-valued random process, b a  ≡ RB-valued standard Wiener process, a ∶
 × →  the drift function and B ∶  × → 𝔏(,) the diffusion coefficient function. This
time-homogeneous SDE system can be characterised by a family of Markov kernels 𝜅𝜏 ∶  × →
𝔓() with 𝜅𝜏′−𝜏(x, z)(dx) the probability of x(𝜏′) ∈ dx given (x(𝜏) = x, z = z), for (𝜏, 𝜏′, x, z) ∈
 ×  ×  ×. The parameter z is assigned a prior distribution 𝜇 ∈ 𝔓() and, given z, the initial
state x0 is given a prior 𝜈 ∶  → 𝔓().

We assume the system is observed at T times with a fixed inter-observation interval Δ > 0 and
 = [0,TΔ]. The  ⊆ RY-valued observed vectors y1∶T are then defined for each t ∈ 1∶T as yt =
h(x(tΔ), z,wt) with h ∶  × × →  the observation function, and wt ∼ 𝜂 the observation
noise vector at time index t with distribution 𝜂 ∈ 𝔓() and  ⊆ RW.

Remark 2 Two common special cases of our observation model are

(i) Noiseless observations: h(x, z,w) ∶= ℏ(x) with Y ≤ X and W = 0,
(ii) Additive (Gaussian) noise: h(x, z,w) ∶= ℏ(x) + L(z)w (and 𝜂 =  (0, IY)).

In the former case the observation noise vectors w1∶T can be omitted from the model.
Our methodology readily extends to irregular observation times and time-varying model
specification—for the SDE and the observation parts—however, for brevity of exposition,
we only describe the equispaced and time-independent case here.

In general, it is neither possible to exactly sample from the Markov kernels 𝜅𝜏 nor evaluate
their densities with respect to the Lebesgue measure on  . We thus adopt a data-augmentation
approach (Elerian et al., 2001; Roberts & Stramer, 2001) and consider a discrete-time model
formed by numerically integrating the original SDE; although this will introduce discretisation
error, the error can be controlled by using a fine time resolution. We split each interobserva-
tion interval into S smaller time steps 𝛿 = Δ

S
. Given a time discretisation, a variety of numerical

schemes for integrating SDE systems are available with varying levels of complexity and con-
vergence properties (Kloeden & Platen, 1992). The schemes of interest in this article can be
expressed as a forward operator f𝛿 ∶  ×  × RV →  defined such that, given parameters z ∈ ,
a current state x ∈  and a random vector v ∼  (0, IV), f𝛿(z, x, v) is approximately distributed
according to 𝜅𝛿(x, z) for small time steps 𝛿 > 0. The simplest and most commonly used scheme
is the Euler–Maruyama method, where V = B and f𝛿(z, x, v) = x + 𝛿a(x, z) + 𝛿

1
2 B(x, z)v. Impor-

tantly, the methodology developed in this article straightforwardly accommodates higher order
methods, such as the Milstein scheme (Mil’shtejn, 1975).
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For a particular choice of numerical scheme, given the parameters z ∼ 𝜇 and initial position
x0 ∼ 𝜈(z), the states at all subsequent time steps x1∶ST are iteratively generated via the forward
operator f𝛿 with xs denoting the discrete time approximation to the continuous time state x(s𝛿).
The observations y1∶T are computed from the discrete time state sequence x1∶ST via the observation
function h and observation noise vectors w1∶T. The overall generative model is summarised in
Model 1.

3 INFERENTIAL OBJECTIVE ON A MANIFOLD

We are interested in computing expectations with respect to the joint posterior of z, x0, x1∶ST,
given observations y1∶T = y1∶T. However, the states at nearby time steps will be highly depen-
dent under the prior on x1∶ST for small 𝛿. Such strong dependencies are characteristic of centred
parametrisations of hierarchical models, and have a deleterious effect on the performance of many
approximate inference algorithms (Betancourt & Girolami, 2015; Papaspiliopoulos et al., 2003,
2007).

3.1 Non-centred parametrisation

One can instead choose to parametrise the inference problem in terms of the latent vectors v1∶ST
used to numerically integrate the SDE. Given values for z, x0 and v1∶ST, the state sequence x1∶ST
can be deterministically computed. Such a reparametrisation has the property that, under the
prior, all components of the latent vectors v1∶ST are independent standard normal variables. We
further assume the following.

Assumption 1 There exist functions gz ∶ RU →  and gx0
∶  × RV0 →  and correspond-

ing distributions �̃� ∈ 𝔓(RU), �̃� ∈ 𝔓(RV0) with strictly positive smooth density functions
with respect to the Lebesgue measures 𝜆U and 𝜆V0 , respectively, such that gz(u) ∼ 𝜇 and
gx0

(z, v0) ∼ 𝜈(z) ∀z ∈  if u ∼ �̃� and v0 ∼ �̃�.

Under such parametrisation in terms of q ∶= [u; v0; v1∶ST;w1∶T] all of (u, v0, v1∶ST,w1∶T) are
then a-priori independent and the resulting prior distribution 𝜌 ∈ 𝔓(RQ) with Q = U + V0 +
STV + TW, has a density with respect to the Lebesgue measure 𝜆Q,

d𝜌
d𝜆Q

([u; v0; v1∶ST;w1∶T]) ∝
d�̃�
d𝜆U

(u) d�̃�
d𝜆V0

(v0)
ST∏
s=1

exp
(
−1

2
vT
svs

) T∏
t=1

d𝜂
d𝜆W

(wt). (2)

Model 2 gives the generative model under this non-centred parametrisation and defines a
function gy∶

which generates observations given values for the latent variables. The observations
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can be thought of as imposing a series of constraints on the possible values of the latent vari-
ables q; under additional assumptions on the regularity of the mapping gy∶

from latent variables
to observations, the set of q values satisfying the constraints will form a differentiable manifold
embedded in RQ. The posterior distribution on q given y1∶T = y1∶T will not have a density with
respect to the Lebesgue measure 𝜆Q as the manifold it has support on is a 𝜆Q-null set. In the fol-
lowing section, we show, however, that by using a different reference measure we can compute a
tractable density function for the posterior.

3.2 Target posterior on manifold

We define a constraint function c ∶ RQ → RC with C = TY < Q as

c([u; v0; v1∶ST;w1∶T]) ∶= [gy∶
(u, v0, v1∶ST,w1∶T)] − [y1∶T], (3)

with the set of values on the manifold  ∶= {q ∈ RQ ∶ c(q) = 0} corresponding to all inputs of
gy∶

consistent with the observations. We make the following assumption.

Assumption 2 The constraint function c is continuously differentiable and has Jacobian 𝜕c
which is full row-rank 𝜌-almost surely.

The differentiability requirement will be met if f𝛿 , gz, gx0
and h are all themselves continuously

differentiable with respect to each of their arguments. The rank condition on the Jacobian requires
that the observed variables do not give redundant information about the latent variables, that is
no observed variable can be expressed as a deterministic function of a subset of the other observed
variables. In the case of observations subject to Gaussian additive noise this will always be satisfied
if the noise covariance is full-rank. In the noiseless observation case, the condition will be met
if no component of the state at an observation time xSt is fully determined by the state at the
previous observation time xS(t−1) and parameters z, and the function ℏ ∶  →  has Jacobian
with full row-rank everywhere.

Under these assumptions  will be a D = Q − C dimensional differentiable manifold embed-
ded into the Q dimensional ambient space. The posterior distribution 𝜋 ∈ 𝔓(RQ) on q given
c(q) = 0 (and so y1∶T = y1∶T) is supported only on . Note that  has zero Lebesgue measure,
so 𝜋 does not have a density with respect to 𝜆Q. To define an appropriate reference measure we
further assume the following.

Assumption 3 The ambient latent space RQ is equipped with a metric tensor with a fixed positive
definite matrix representation M.

A possible reference measure is then theD-dimensional Hausdorff measure 𝜂M
D on the ambient

space, which has the required property that 𝜋 is absolutely continuous with respect to 𝜂M
D . For
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measurable subsets  ⊆ , we have that 𝜎M

() = 𝜂M

D () where 𝜎M


is the Riemannian measure
on the manifold  with metric induced from the ambient metric (see Lemma S3.2 in Section
S3 in the Supplementary Material). As later results will be more naturally stated in terms of the
Riemannian measure, we will use 𝜎M


as the reference measure here.

Proposition 1 Under Assumptions 1–3, the posterior 𝜋 has a density

d𝜋
d𝜎M



(q) ∝ d𝜌
d𝜆Q

(q)|𝜕c(q)M−1𝜕c(q)T|− 1
2 . (4)

A proof is given in Section S3 in the Supplementary Material. See also Rousset et al. (2010),
Diaconis et al. (2013) and Graham and Storkey (2017). The negative log posterior density thus
reads

𝓁(q) ∶= − log d𝜌
d𝜆Q

(q) + 1
2

log |GM(q)|,
where the C × C matrix GM(q) ∶= 𝜕c(q)M−1𝜕c(q)T is termed the Gram matrix.

4 MCMC ON IMPLICITLY DEFINED MANIFOLDS

In this section, we review MCMC methods for sampling from a distribution supported on an
implicitly defined manifold. We stress at this point that we do not design a fundamentally new
such MCMC method but instead rely on modifying and combining existing methodologies. In par-
ticular, we adopt a symplectic integrator for constrained Hamiltonian systems (Andersen, 1983;
Leimkuhler & Matthews, 2016; Leimkuhler & Skeel, 1994) to simulate Hamiltonian dynamics tra-
jectories on the manifold, and use this as a proposal generating mechanism within a Hamiltonian
Monte Carlo (HMC) scheme (Betancourt, 2017; Duane et al., 1987; Neal, 2011). The use of con-
strained Hamiltonian dynamics within an HMC context has been previously proposed multiple
times—see for example Hartmann and Schütte (2005), (Rousset et al. 2010 Chapter 3), Brubaker
et al. (2012) and Lelièvre et al. (2019). We refer the interested reader to Arnol’d (2013) and Holm
et al. (2009) for general background on constrained mechanics and to (Barp 2020 Chapter 3) for
a comprehensive review of HMC on manifolds.

4.1 Constrained Hamiltonian dynamics

To define the constrained Hamiltonian system, we first augment the latent vector q, henceforth
the position, with a momentum p. Formally the momentum is a co-vector, that is a linear form
in 𝔏(RQ,R) and the metric on the position space induces a co-metric on the momentum space
with matrix representation M−1. As a common abuse of notation, we will not distinguish between
vectors and co-vectors and simply consider p as a vector in RQ equipped with a metric with matrix
representation M−1. The Hamiltonian function h ∶ RQ × RQ → R is then defined as

h(q,p) ∶= 𝓁(q) + 1
2

pTM−1p. (5)

Thus far we have an unconstrained Hamiltonian system. To restrict q to , we introduce a
Lagrange multiplier function 𝝀 ∶ RQ × RQ → RC implicitly defined so that constraint c(q) = 0 is
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enforced, at all times, in the following dynamics. The constrained Hamiltonian dynamics asso-
ciated with the Hamiltonian in Equation (5) are then described by the system of differential
algebraic equations (DAE)

dq
dt

= M−1p,
dp
dt

= −∇𝓁(q) − 𝜕c(q)T𝝀(q,p), c(q) = 0. (6)

The condition that the primary constraints, c(q) = 0, are preserved in time implies a set of
secondary constraints of the form 𝜕c(q)M−1p = 0.

Definition 1 The set of momenta satisfying the secondary constraints at a position q coincides
with the co-tangent space of the manifold  at q, denoted

T∗
q ∶=

{
p ∈ R

Q ∶ 𝜕c(q)M−1p = 0
}
.

Definition 2 The set of positions and momenta in the manifold and corresponding co-tangent
spaces, respectively, are termed the co-tangent bundle, denoted

T∗ ∶=
{

q ∈ ,p ∈ T∗
q

}
=
{

q ∈ R
Q,p ∈ R

Q ∶ c(q) = 0, 𝜕c(q)M−1p = 0
}
.

Remark 3 T∗ is a symplectic manifold with a symplectic form given by the restriction of the
symplectic form on RQ × RQ to T∗, which under Assumptions 2 and 3 is almost surely
non-degenerate.

Definition 3 The symplectic form on T∗ induces a volume form and corresponding Liouville
measure denoted 𝜎T∗, which can be decomposed as

𝜎T∗(dq, dp) = 𝜎M

(dq) 𝜎M−1

T∗
q

(dp), (7)

which is independent of the choice of M (Rousset et al., 2010, proposition 3.40).

The flow map associated with the solution to the DAEs in Equation (6) is Φhc
t ∶ T∗ → T∗,

such that for (q(0),p(0)) ∈ T∗ and t ≥ 0 we have (q(t),p(t)) = Φhc
t (q(0),p(0)). Fundamental

properties of Φhc
t are that it is energy conserving and symplectic.

Proposition 2 The Hamiltonian in Equation (5) is conserved under the flow map Φhc
t .

Proposition 3 The flow map Φhc
t preserves the symplectic form on T∗.

See for example Leimkuhler and Reich (2004 Chapter 7). Proofs are also given in Sections S5
and S6 in the Supplementary Material. Together these properties mean the flow map Φhc

t has an
invariant measure on T∗.

Corollary 1 The conservation properties in Propositions 2 and 3 imply that the measure 𝜁(dq, dp) ∝
exp(−h(q,p))𝜎T∗(dq, dp) is invariant under the flow map Φhc

t corresponding to the con-
strained dynamics in Equation (6).

Using the definitions in Equations (5) and (7), it readily follows that the target posterior
𝜋(dq) ∝ exp(−𝓁(q))𝜎M


(dq) is the marginal distribution on the position under the invariant mea-

sure 𝜁 . Thus, the flow map Φhc
t can be used to construct a family of Markov kernels which

marginally leave 𝜋 invariant.



GRAHAM et al. 9

4.2 Momentum resampling

As the dynamics remain confined to a level-set of the Hamiltonian in Equation (5), a Markov
chain constructed by iterating Φhc

t will not be ergodic. By resampling the momentum between
Φhc

t applications we can however move between Hamiltonian level-sets.
To orthogonally (with respect to the co-metric) project a momentum onto T∗

q, the co-tangent
space at q, we apply the projector PM(q), defined as

PM(q) ∶= IQ − 𝜕c(q)TGM(q)−1𝜕c(q)M−1. (8)

Using PM , we can independently sample a momentum from its conditional distribution given the
position under the measure 𝜁 by projecting a sample from  (0,M).

Proposition 4 If p̃ ∼  (0,M) then p = PM(q)p̃ is distributed with density exp(−pTM−1p∕2) with
respect to 𝜎M−1

T∗
q

, the distribution of p | q = q for q, p ∼ 𝜁 .

See Section S7 in the Supplementary Material for a proof.

4.3 Numerical discretisation

In general, the system of DAEs in Equation (6) will not have an analytic solution, and we are
required to use a time discretisation to approximate the exact flow mapΦhc

t . We will first introduce
a class of symplectic integrators for the unconstrained Hamiltonian system before showing how
they can be used to construct a symplectic integrator for the constrained Hamiltonian system.

4.3.1 Unconstrained integrator: Störmer–Verlet and Gaussian splittings

A standard approach for defining symplectic integrators for Hamiltonian systems is to split the
Hamiltonian into a sum of components for which the exact corresponding flow map can be com-
puted, with a splitting of the form h(q,p) = h1(q) + h2(q,p) particularly common. If Φh1

t and Φh2
t

denote the flow maps associated with the dynamics for Hamiltonians h1 and h2, respectively, then
the symmetric composition Ψt = Φh1

t∕2 ◦Φ
h2
t ◦Φh1

t∕2 is a symplectic and second-order accurate inte-

grator for the Hamiltonian system (Leimkuhler & Reich, 2004). Furthermore, as both Φh1
t and Φh2

t
are time-reversible, Ψt is also time-reversible.

Various choices can be made for splitting the Hamiltonian of interest in Equation (5) between
h1 and h2, subject to the requirement that the flow map Φh2

t can be computed, with Φh1
t (q,p) =

(q,p − t∇h1(q)) always trivial to compute. An obvious splitting is h1(q) = 𝓁(q) and h2(q,p) =
1
2

pTM−1p; in this case Φh2
t (q,p) = (q + tM−1p,p). The composition then corresponds to the

Störmer–Verlet integrator (Verlet, 1967).
In our setting, the log prior density on the ambient space log d𝜌∕d𝜆Q is quadratic in the com-

ponents of the position q corresponding to v1∶ST due to their standard normal prior distribution. It
will typically also be possible to choose an appropriate parametrization such that the prior densi-
ties d�̃�∕d𝜆Z, d�̃�∕d𝜆X and d𝜂∕d𝜆W are equal to or well approximated by standard normal densities.
An alternative splitting, which can be useful in this setting, is then h1(q) = 𝓁(q) − 1

2
qTq, h2(q,p) =

1
2

qTq + 1
2

pTM−1p, with the simplification h1(q) = 1
2

log |GM(q)| when log d𝜌∕d𝜆Q(q) = − 1
2

qTq.
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The quadratic form of h2 and corresponding linear derivatives mean the corresponding flow map
is still exactly computable. If we let R be an orthonormal matrix with the normalised eigenvec-
tors of M−1 as columns and Ω a diagonal matrix of the square-roots of the eigenvalues such that
M−1 = RΩ2RT then we have that

Φh2
t (q,p) =

(
R cos(Ωt)RTq + RΩ sin(Ωt)RTp,R cos(Ωt)RTp − RΩ−1 sin(Ωt)RTq

)
.

This splitting and corresponding integrator has been used previously in various settings (Beskos
et al., 2011; Beskos et al., 2013a; Neal, 2011; Shahbaba et al., 2014). Importantly as the flow-map
Φh2

t exactly preserves Gaussian prior measures, under certain assumptions the change in Hamil-
tonian over a trajectory generated using the integrator does not grow as the dimension Q of the
space is increased, so the probability of accepting a proposed move from the trajectory remains
independent of dimension for a fixed step size. This in contrast to the Störmer–Verlet integrator
for which for a fixed step size the accept probability will tend to zero as the dimension becomes
large (Beskos et al., 2011).

In the context here of inference in partially observed diffusion models, as the time step 𝛿 of
the discretisation of the diffusion is decreased (or equivalently S increased), the dimension of
set of latent noise vectors v1∶ST and so q will increase, with the prior distribution on q tending
to a distribution with a density with respect to an infinite-dimensional Gaussian measure in the
limit 𝛿 → 0. As here the target posterior distribution has support only on a submanifold of the
ambient space, the results of Beskos et al. (2011) do not directly carry over, however, empirically
we have found that a constrained integrator based on this Gaussian splitting gives an improved
scaling in sampling efficiency with S compared to the Störmer–Verlet splitting as we illustrate in
our numerical experiments in Section 7.

4.3.2 Constrained integrator

We now show how a constraint-preserving symplectic integrator can be formed from the uncon-
strained integratorΨt. In (Reich 1996 section 3.1) it is observed that the map defined byΠ𝝀(q,p) =
(q,p − 𝜕c(q)T𝝀(q,p)), with q ∈ , is symplectic for any function 𝝀 that is sufficiently regular
(e.g. continuously differentiable). Reich (1996) then shows that if a second-order accurate sym-
plectic integrator for an unconstrained system with Hamiltonian as in Equation (5) is defined by
the map Ψt, then the integrator with step defined by the composition (q′,p′) = Π𝝀

′ ◦Ψt ◦Π𝝀(q,p),
with 𝝀 implicitly defined by solving for the primary constraints, c(q′) = 0, and 𝝀

′ by solving for
the secondary constraints, 𝜕c(q′)M−1p′ = 0, is a second-order accurate symplectic integrator for
the corresponding constrained system.

Rather than composing instances of Π𝝀 with the overall map Ψt as proposed by Reich (1996),
we can instead consider composing Π𝝀 with the component maps which make up Ψt to enforce
the constraints within each ‘sub-step’. This was proposed for the specific case of Ψt corresponding
to a Störmer–Verlet integrator in the geodesic integration algorithm of Leimkuhler and Matthews
(2016).

For a general quadratic h2 (covering both the Störmer–Verlet and Gaussian splittings intro-
duced above), the associated component flow-maps Φh1

t and Φh2
t can be expressed for suitable

choices of matrices (Γq,q
t ,Γq,p

t ,Γp,q
t ,Γp,p

t ) as

Φh1
t (q,p) ∶= (q,p − t∇h1(q)), Φh2

t (q,p) ∶=
(
Γq,q

t q + Γq,p
t p,Γp,q

t q + Γp,p
t p

)
. (9)
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First considering the flow-map Φh1
t , we define the constraint-preserving composition

Ξh1
t (q,p) ∶= Π𝝀 ◦Φ

h1
t (q,p) =

(
q,p − t∇h1(q) − 𝜕c(q)T𝝀

)
, (10)

with 𝝀 implicitly defined by the condition Ξh1
t (q,p) ∈ T∗ ∀(q,p) ∈ T∗. Solving for 𝝀 yields

the explicit definition Ξh1
t (q,p) ∶= (q,PM(q)(p − t∇h1(q))). As Ξh1

−t ◦Ξ
h1
t (q,p) = (q,p) for all

(q,p) ∈ T∗, the mapping Ξh1
t is time reversible. Now considering the Φh2

t map, we first consider
the composition

Φh2
t ◦Π𝝀(q,p) =

(
Γq,q

t q + Γq,p
t

(
p − 𝜕c(q)T𝝀

)
,Γp,q

t q + Γp,p
t

(
p − 𝜕c(q)T𝝀

))
, (11)

with 𝝀 implicitly defined by requiring the following to hold for any (q,p) ∈ T∗,

c
(
Γq,q

t q + Γq,p
t p − Γq,p

t 𝜕c(q)T𝝀
)
= 0. (12)

For general constraint functions c, this is a non-linear system of equations in 𝝀 that needs to be
solved using an iterative method. Newton’s method gives the update

(qj,pj) = Φh2
t
(

q,p − 𝜕c(q)T𝝀j
)
,

𝝀j+1 = 𝝀j +
(
𝜕c(qj)

(
Γq,p

t
)−1

𝜕c(q)T
)−1

c
(

qj
)

with 𝝀0 = 0. (13)

Assuming for now the iterative solver can find a value for 𝝀 to satisfy Equation (12), the com-
position in Equation (11) preserves the primary constraints, but not the secondary constraints in
general. The secondary constraints can be enforced by composing with a further instance of the
map Π𝝀

′ resulting in the overall composition Ξh2
t (q,p) ∶= Π𝝀

′ ◦Φh2
t ◦Π𝝀(q,p) with 𝝀

′ implicitly
defined by the condition Ξh2

t (q,p) ∈ T∗ ∀(q,p) ∈ T∗. This can be explicitly solved for 𝝀′ to
give Ξh2

t (q,p) = (q,PM(q)p) with (q,p) = Φh2
t ◦Π𝝀(q,p) as defined in Equations (11) and (12).

For sufficiently small t and sufficiently smooth constraint functions, it can be shown that there
exists a locally unique solution to Equation (12) (Brubaker et al., 2012; Lelièvre et al., 2019). In
general, though, there may be multiple or no solutions, and even if there is a unique solution
the iterative solver may fail to converge. This lack of a guarantee of converging to a unique solu-
tion presents a challenge in terms of maintaining the time-reversibility of the Ξh2

t step and so the
overall integrator.

To enforce reversibility on Ξh2
t , we apply a reversibility-check transform R defined such that

R(Ξh2
t )(q,p) = Ξh2

t (q,p) for all (q,p) where Ξh2
−t ◦Ξ

h2
t (q,p) = (q,p), with (q,p) values for which the

condition is not met causing evaluation of R(Ξh2
t )(q,p) to raise an error. Similarly if the iterative

solves in the evaluation of either the forward Ξh2
t or time-reversed Ξh2

t maps fail to converge an
error is also raised. The map R(Ξh2

t ) is then by construction reversible unless an error is raised
that can be suitably handled downstream by the HMC implementation. The approach of using
an explicit reversibility check in MCMC methods using an iterative solver was first proposed
by Zappa et al. (2018) with subsequent application within the context of constrained HMC in
Graham and Storkey (2017) and Lelièvre et al. (2019).

With the reversibility check, the map R(Ξh2
t ) is guaranteed to be time-reversible if it does

not raise an error. As Ξh1
t is also time reversible and both maps are symplectic, the integrator

Ξh1
t∕2 ◦R(Ξh2

t )◦Ξh1
t∕2 defines a time-reversible symplectic map on T∗ whenever an error is not
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raised. In practice, the equality conditions indicating whether the iterative solver has converged
and the reversibility check is satisfied, are both relaxed to an error norm being less than tolerances
𝜃c and 𝜃q, respectively. Further details of the implementation of the integrator and its relation to
previous work are given in Section S8 in the Supplementary Material.

4.4 Choice of metric matrix representation M

We recommend choosing M = cov(q)−1 for q ∼ 𝜌, that is the precision matrix under the prior
𝜌; this requires that 𝜌 has finite second-order central moments. While there is no fundamen-
tal requirement for M to match the prior precision matrix and so a different choice of M could
be used when cov(q)−1 is not defined, heuristically we find that the performance of the pro-
posed methodology is improved when 𝜌 is exactly or ‘close to’ Gaussian in all components, and
this can usually be arranged by transforms of u, v0 and w1∶T and corresponding reparametrisa-
tions of (�̃�, gz), (�̃�, gx0

) and (𝜂, h). The constrained Hamiltonian dynamics in Equation (6) with
M = cov(q)−1 are equivalent to the dynamics under a linear transform q′ = LTq with LLT = M for
which cov(q′) = IQ and normalising for the prior scales and correlations in this manner appears
to improve the robustness and efficiency of the algorithm.

4.5 Overall algorithm

Pseudo-code corresponding to applying the reversible, constraint-preserving and symplectic inte-
grator with step Ξh1

t∕2 ◦R(Ξh2
t )◦Ξh1

t∕2 within a HMC algorithm is summarised in Algorithm 1. Any
errors raised when integrating the trajectory by iteratively applying the ConstrStep function
are handled by terminating the trajectory and the HMC transition returning the initial state,
that is a ‘rejection’. Although for simplicity we have described in Algorithm 1 the use of a
constraint-preserving integrator within a Metropolis-adjusted HMC algorithm with a static inte-
gration timeIt per chain iteration, in practice we use a HMC algorithm which dynamically adapts
the integration time It, in particular the dynamic multinomial HMC algorithm described in the
appendix of Betancourt (2017), an extension of the No-U-Turn-Sampler algorithm (Hoffman &
Gelman, 2014). We also use the dual-averaging scheme of Hoffman and Gelman (2014) to adap-
tively tune the integrator step-size t in a warm-up sampling phase to target an acceptance statistic
of 0.8. A general purpose implementation of the full algorithm is provided in Python package Mici
(Graham, 2019), which we use in the numerical experiments in Section 7.

We have found the suggested defaults values for the various algorithmic parameters work well
in practice for a range of different models. This therefore results in an automated methodology
with a practitioner only needing to specify functions to evaluate the log prior density log d𝜌∕d𝜆Q
and constraint function c for the diffusion model in question, with the required derivatives of
these functions being able to be constructed algorithmically (Griewank & Walther, 2008).

5 COMPUTATIONAL COST

We can apply Algorithm 1 to perform inference in partially observed diffusion models by tar-
geting the manifold-supported posterior distribution in the non-centred parametrisation of the
time-discretised model described in Section 3.2. While this approach allows significant generality
in the choice of the elements of the diffusion and observation model, it can be computationally
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expensive to run. To analyse the cost of Algorithm 1 in this setting, we make the following
simplifying assumption.

Assumption 4 The Newton iteration to solve (12) converges within J iterations for some J > 0
that does not depend on S and T, for fixed t, 𝜃c and 𝜃q.

This assumption appears to hold in practice, and we provide numerical evidence to this effect
in the numerical experiments in Section 7. We then have the following.

Proposition 5 Under Assumption 4, the computational cost of a single constrained integrator step
in Algorithm 1 when directly applied to the posterior density (4) of the generative model in
Model 2 is (ST3).

A proof is given in Section S1 in the Supplementary Material. The cost of Algorithm 1 when
applied directly to the posterior distribution with density in Equation (4) therefore scales lin-
early with the number of discrete time steps per observation S but cubically with the number of
observation times T.

5.1 Exploiting Markovianity for scalability

While we have so far considered only sampling from the posterior distribution on latent variables
(u, v0, v1∶ST,w1∶T) given observations y1∶T, the constrained HMC approach we have described can
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be applied to sampling from any conditional distribution of the joint distribution on observations
and latent variables under the generative model, of which the target posterior distribution is just
one example.

One way to improve the scaling of the computational cost with respect to the number of
observation times is therefore to restrict the information flow through the state sequence x1∶ST
by conditioning on a set of intermediate states in the sequence. Due to the Markovian nature of
the state dynamics, the state sequences x0∶s−1 and xs+1∶ST are conditionally independent given
the state xs and the parameters z for any s ∈ 1∶ST. As a consequence under the non-centred
parametrisation of the generative model in Model 2, we have that if we condition on the interme-
diate state xSt at the tth observation time then we can independently generate the observation
sequences y1∶t and yt+1∶T from respectively (u, v0∶St,w1∶t) and (u, vSt+1∶ST,wt+1∶T).

We can extend this idea to conditioning on multiple intermediate states in the sequence.
If at B − 1 observation time indices t1∶B−1 ⊆ 1∶T, the full state is conditioned on, xStb =
xStb∀b ∈ 1∶B − 1, then we have that the observation subsequence ytb−1+1∶tb and conditioned
state xStb depend only on the latent variables (u, vStb−1+1∶Stb ,wtb−1+1∶tb) for each b ∈ 1∶B − 1
(with t0 = 0) and the final observation subsequence ytB−1+1∶T depends only on the latent variables
(u, vStB−1+1∶ST,wtB−1+1∶T).

Due to these conditional independencies introduced when conditioning on the values of
(xStb)

B−1
b=1, we can ‘split’ the generation of the state sequence in to B independent calls to a func-

tion which given a conditioned state xStb−1 generates the subsequence of states for step indices
Stb−1 + 1∶Stb and outputs the observations ytb−1+1∶tb and final state xStb of the subsequence
(or just observations ytB−1+1∶T for the final subsequence). For noiseless observations, ytb is com-
pletely determined by xStb , and so only ytb−1+1∶tb−1 and xStb should be returned for the non-final
subsequences. The resulting conditioned generative model is summarised in Model 3.

Using gy from Model 3, we can then define partial constraint functions

c1(u, [v0; v1∶St1], [w1∶t1]) ∶= gy(u, v0, v1∶St1 ,w1∶t1 , 1) − y1, and ∀b ∈ 2 ∶ B
cb(u, [vStb−1+1∶Stb], [wtb−1+1∶tb]) ∶= gy(u, xStb−1 , vStb−1+1∶Stb ,wtb−1+1∶tb ,b) − yb

with yb = [ytb−1+1∶tb ; xStb] ∀b ∈ 1∶B − 1 and yB = [ytB−1+1∶T]. We then define, respectively, par-
titioned and full constraint functions c ∶ RU × RV0+STV × RTW → RC and c ∶ RQ → RC, with C =
(B − 1)X + TY the number of constraints, as

c
(

u, [v1∶B], [w1∶B]
)
∶= c

(
[u; v1∶B;w1∶B]

)
=
[(

cb(u, vb,wb)
)
b∈1∶B

]
. (14)



GRAHAM et al. 15

The Jacobian of the full constraint function will then have the block structure 𝜕c([u; v;w]) =[
𝜕1c(u, v,w) 𝜕2c(u, v,w) 𝜕3c(u, v,w)

]
with 𝜕1c(u, v,w) a dense C × U matrix, and 𝜕ic(u, v,w)

for i ∈ {2, 3} block diagonal C × (V0 + STV) (i = 2) and C × TW (i = 3) matrices with
𝜕ic(u, [v1∶B], [w1∶B]) = diag(𝜕icb(u, vb,wb))b∈1∶B.

As u, [v0∶ST] and [w1∶T] are independent under the prior 𝜌, under the recommendation in
Section 4.4 the metric matrix is M = diag(Mu,Mv,Mw) with Mu a U × U matrix, Mv a (V0 + STV) ×
(V0 + STV) block-diagonal matrix and Mw aTW × TW block-diagonal matrix. The Gram matrix can
then be decomposed as

GM([u; v;w]) = 𝜕1c(u, v,w)M−1
u 𝜕1c(u, v,w)T + D([u; v;w]) with

D([u; v;w]) ∶= 𝜕2c(u, v,w)M−1
v 𝜕2c(u, v,w)T + 𝜕3c(u, v,w)M−1

w 𝜕3c(u, v,w)T, (15)

corresponding to a rank U correction of a block-diagonal matrix D([u; v;w]).
Using the matrix determinant lemma, we then have that

log |GM(q)| = log |C(q)| + log |D(q)| − log |Mu|, (16)

with C([u; v;w]) ∶= Mu + 𝜕1c(u, v,w)TD([u; v;w])−1𝜕1c(u, v,w). Similarly, the Woodbury matrix
identity yields, for a vector r ∈ RC and q = [u; v;w], that

GM(q)−1r = D(q)−1 (r − 𝜕1c(u, v,w)C(q)−1𝜕1c(u, v,w)TD(q)−1r
)
. (17)

By applying a sequence of constrained HMC Markov kernels, each conditioning on intermedi-
ate states (xStb)

B−1
b=1 at a different set of observation time indices t1∶B−1 as well as the observations

y1∶T we can construct a MCMC method which asymptotically samples from the target posterior
distribution at a substantially reduced computational cost compared to the case of condition-
ing only on the observations y1∶T. To analyse the computational cost of applying the constrained
HMC implementation in Algorithm 1 to the conditioned generative model, we assume the
following.

Assumption 5 T = BR and tb = bR ∀b ∈ 1∶B − 1, that is, that the observations are split in to B
equally sized subsequences of R observation times.

Assumption 6 The Newton iteration to solve (12) converges within J iterations for J > 0 that
does not depend on R, S and T, for fixed t, 𝜃c and 𝜃q.

In practice, we will need to alternate with conditioning on a different set of observation
times to allow the Markov chain to be ergodic, for example, t′

b = ⌊ (2b−1)R
2

⌋∀b ∈ 1∶B, with in
this case the observation times split in to B − 1 subsequences of R observations times and two
subsequences of ⌊R

2
⌋ and ⌈R

2
⌉ observation times. This alternative splitting will result in only

minor difference in operation cost compared to the equispaced partition hence we consider only
the former case in our analysis. Assumption 6 is motivated by our observation that the aver-
age number of Newton iterations needed for convergence appears to be independent of R, S
and T.

Proposition 6 Under Assumptions 5 and 6, the computational cost of a single constrained inte-
grator step in Algorithm 1 when applied to the posterior of the generative model conditioning
additionally on the values of the states at observation time indices t1∶B−1 as in Model 3 is
(R2ST) operations.



16 GRAHAM et al.

A proof is given in Section S2 in the Supplementary Material. If the number of observations
per subsequence R is kept fixed, the computational cost of each constrained integrator step there-
fore scales linearly with in both the number of time steps per observation S and the number of
observation times T.

6 RELATED WORK

Our approach follows the general framework described in Graham and Storkey (2017) for per-
forming inference in generative models where the simulated observations can be computed
as a differentiable function of a random vector with a known prior distribution. As in this
work, Graham and Storkey (2017) suggest using a constrained HMC algorithm to target the
manifold-supported posterior distribution arising in such a setting, and consider a diffusion
model with high-frequency noiseless observations of the full state as an example. In this set-
ting with S = 1, the constraint Jacobian was observed to have a structure allowing a (T2) cost
implementation of the operations required for each constrained integrator step.

Here we make several important extensions to the framework of Graham and Storkey (2017),
with the scheme proposed in Section 5.1 allowing efficient (ST) cost constrained integrator
steps irrespective of the observation regime (high- or low-frequency, partial or full, with or
without noise) and the use of a constrained integrator based on a Gaussian splitting as pro-
posed in Section 4.3 giving improved mixing performance as the time-discretisation is refined (S
increased). Further by integrating the constrained integrator into an adaptive HMC algorithm
(Hoffman & Gelman, 2014) we eliminate the need to tune the integrator step size and number of
integrator steps per trajectory, giving a more automated inference procedure.

The non-centred parametrisation of the diffusion generative model described in Section 3.1
has similarities to the innovation scheme of Chib et al. (2004), and its later extension in Golightly
and Wilkinson (2008), which recognises for the specific case of an Euler–Maruyama discretisa-
tion, that the state sequence x1∶ST can be computed as a function of the model parameter z, initial
state x0 and increments of the driving Brownian motion process. This relationship can be inverted
to compute the increments given x0∶ST and z. By performing a Metropolis-within-Gibbs update to
z conditioning on the increments and observations, the degeneracy in the conditional distribution
of parameters of the drift coefficient when instead conditioning on x1∶ST asS → ∞ is avoided, thus
producing an algorithm respecting the Roberts–Stramer critique. Our approach generalizes this
idea beyond the Euler–Maruyama case by allowing for a generic forward operator f𝛿 , and jointly
updated all latent variables under this reparametrisation rather than using it to only update the
parameters.

The conditioning scheme proposed in Section 5.1 is similar in spirit to blocking schemes
proposed previously in MCMC methods for inference in partially observed time series mod-
els, see for example Shephard and Pitt (1997), Golightly and Wilkinson (2008) and Mider
et al. (2020); however, the implementation and motivation of the approach here both differ.
In the blocking schemes, conditioning on intermediate states introduces conditional indepen-
dencies allowing proposing updates to blocks of the latent path given fixed parameters in a
Metropolis-within-Gibbs type update, with a separate update to the parameters. Here we jointly
update the parameters and latent path, and use the conditioning to induce structure in the
constraint Jacobian which can be used to reduce the cost of the constrained integrator.

Hypoelliptic diffusions have a rank-deficient diffusion matrix B(x, z)B(x, z)T, but still have
transition kernels 𝜅𝜏 with smooth densities with respect to the Lebesgue measure due to the
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propagation of noise to all state components via the drift function. Prior work on the cali-
bration of such models has often adopted a maximum likelihood approach, in the setting of
high-frequency observations, see for example Ditlevsen and Samson (2019) and the references
therein. The singularity of the Wiener noise increment covariance matrix when discretising using
an Euler–Maruyama scheme can be avoided via the use of a higher-order discretisation scheme:
Ditlevsen and Samson (2019) use a strong order 1.5 Taylor scheme to obtain consistency in the
estimation of parameters in both the drift and diffusion coefficient functions.

In terms of our criteria, in Remark 1, to our knowledge there is currently no alternative
algorithm that satisfies them all for noiselessly observed hypoelliptic systems. The guided pro-
posals framework (Bierkens et al., 2020; van der Meulen & Schauer, 2018; Mider et al., 2021)
comes close, as it allows for Bayesian inference in both elliptic and hypoelliptic systems, fully
or partially observed with noise or with noiseless observations and a linear observation function
ℏ(x) = Lx, and respects the Roberts–Stramer critique. The approach however does not allow for
non-linear noiseless observations, and the methodology requires choosing a tractable auxiliary
process used to construct the proposed updates to the latent path given observations and parame-
ters, with the original and auxiliary processes needing to satisfy matching conditions on their drift
and diffusion coefficients, which can be non-trivial—for example, when the diffusion coefficient
is state dependent—hindering the automation of the methodology. In contrast, our method can
be applied without change to both hypoelliptic and elliptic diffusions.

A long line of previous work has considered MCMC methods for performing inference in dis-
tributions on non-Euclidean spaces, particularly prominent being the influential paper Girolami
and Calderhead (2011) where the latent space is equipped with a user-defined Riemannian metric
which facilitates local rescaling of the posterior distribution across different directions. Related
algorithms have also been proposed based for finite-dimensional projections of distributions with
densities with respect to Gaussian measures on Hilbert spaces (Beskos, 2014; Beskos et al., 2017).

In our case, the manifold structure arises directly from the observational constraints placed on
the latent space of a generative model and the manifold is extrinsically defined by its embedding
in an ambient latent space. Rather than the non-trivial task of selecting a positive-definite matrix
valued function to define a Riemannian metric on the latent space, our method only requires
the user to choose a matrix representing the fixed metric on the ambient space. As discussed in
Section 4.4, we find the prior precision matrix to be a good default in practice.

7 NUMERICAL EXAMPLES

To demonstrate the flexibility and efficiency of our proposed approach we now present the results
of numerical experiments in a range of different settings: hypoelliptic and elliptic systems, simu-
lated and real data, noiseless and noisy observations. In all cases, we use the same methodology,
as described in the preceding sections, for performing inference, and where possible we compare
to alternative approaches.

7.1 FitzHugh–Nagumo model with noiseless observations

As a first example, we consider a stochastic-variant of the FitzHugh–Nagumo model (FitzHugh,
1961; Nagumo et al., 1962), a simplified description of the dynamics of action potential genera-
tion within an neuronal axon. Following Ditlevsen and Samson (2019) we formulate the model
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as a X = 2 dimensional hypoelliptic diffusion process x with drift function a(x, z) = [ 1
𝜀
(x1 − x3

1 −
x2); 𝛾x1 − x2 + 𝛽] and diffusion coefficient operator B(x, z) = [0; 𝜎] where the components of the
Z = 4 dimensional parameter vector are z = [𝜎; 𝜀; 𝛾 ; 𝛽] and the Wiener process b has dimen-
sion B = 1. We initially assume the Y = 1 dimensional observations y1∶T correspond to noiseless
observation of the first state component, that is ℏ(x) = x1, with an interobservation time interval
Δ = 1

5
. Further details of the discretisation and priors used are given in the Section S10 in the

Supplementary Material.
To measure sampling efficiency in the experiments we use two complementary metrics: the

average computation time per constrained integrator step 𝜏step and the estimated computation
time per effective sample 𝜏eff, that is the total chain computation time divided by the estimated
effective sample size (ESS) for the chain for each parameter. Proposition 6 closely relates to 𝜏step,
and so by estimating how this quantity varies with R, S and Twe can empirically test whether the
proposed scaling holds in practice. While our analysis only considers the computational cost of the
constrained integrator, ultimately we are interested in the overall sampling efficiency, which also
depends on the mixing performance of the chains; by measuring 𝜏eff we therefore also gain insight
into how our approach performs on this metric. In order to empirically verify that Assumption 6
holds in practice we additionally record the average number of Newton iterations per constrained
integrator step (averaged over both forward and time-reversed Ξh2 calls) which we denote n.

The ESS estimates were computed using the Python package ArviZ (Kumar et al., 2019) using
the rank-normalisation approach proposed by Vehtari et al. (2019). The chain computation times
were measured by counting the calls of the key expensive operations in Algorithm 1 and separately
timing the execution of these operations—details are given in Section S13 in the Supplementary
Material. The Python package JAX (Bradbury et al., 2018) was used to allow automatic computa-
tion of the derivatives of model functions and all plots were produced using the Python package
Matplotlib (Hunter, 2007).

For all experiments, we use chains which alternate between Markov transitions which condi-
tion on the states at observation time indices {tb∶ bR ∀b ∈ 1∶B} and {tb ∶ ⌊ (2b−1)R

2
⌋ ∀b ∈ 1∶

B} ∪ {T}withB = T∕R. For the experiments in this subsection, we ran all chains with constrained
integrators using both the Gaussian and Störmer–Verlet splittings to allow comparison of their
relative performance. We use the parameter values 𝜎 = 0.3, 𝜀 = 0.1, 𝛾 = 1.5 and 𝛽 = 0.8 and initial
state x0 = [−0.5; 0.2] to generate the simulated data y1∶T for all experiments.

To allow measuring how performance of our approach varies with R, S and T, we ran experi-
ments over a grid values for each of these parameters with the other two kept fixed, specifically:
R ∈ {2, 5, 10, 20, 50,100} with S = 25 and T = 100, S ∈ {25, 50, 100, 200, 400} with R = 5 and T =
100, T ∈ {25, 50, 100, 200, 400} with R = 5 and S = 25. For all (R,S,T) values and splittings tested
we ran three sets of four chains of 1250 iterations each with independent initialisations (details of
the initializations are given in Section S12 in the Supplementary Material), with the first 250 iter-
ations of each set of four chains an adaptive warm-up phase used to tune the integrator step-size
t, with the samples from these warm-up iterations omitted from the ESS estimates but included
in the computation time estimates. For all sets of chains, the split-R̂ convergence diagnostic val-
ues computed from the (non-warm-up iterations of the) four chains for all parameter values using
rank-normalisation and folding were less than 1.01 as recommended in Vehtari et al. (2019). A
dynamic HMC implementation (Betancourt, 2017) was used to set the number of integrator steps
per trajectory in each transition. A summary of all the algorithmic parameter values used in the
numerical experiments is given in Section S14 in the Supplementary Material.

The top panels in Figure 1 show how the number of Newton iterations required to solve (12)
in each of the forward and reverse Ξh2 steps, averaged across the chains, varies with R, S and T
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F I G U R E 1 FitzHugh–Nagumo model (noiseless observations): Average number of Newton iterations per
integrator step n (top) and computation time per integrator step 𝜏step in seconds (bottom) for varying R, S and T.
The markers show the median across three independent runs. The dashed lines in the bottom right two plots
show a log-domain least squares fit to the medians for each splitting

and for the two different Hamiltonian splittings. We see that for a given splitting, the number of
Newton iterations is close to constant in all cases, providing empirical support for Assumptions 4
and 6. The bottom panels in Figure 1 instead show the average time per integrator step 𝜏step varies
with R, S and T for both splittings. We see that the log-domain least-square fits show a very close
to linear scaling of 𝜏step with both S and T, verifying these aspects of the (R2ST) scaling claimed
in Proposition 6. The growth of 𝜏step with R over the range here is sub-quadratic (the dotted line
shows a quadratic trend for reference), however there is visible acceleration in the growth. An
inspection of a breakdown of the total computation time spent on different individual operations
revealed that for smaller R the (RST) computation of the constraint Jacobian is dominating,
with the (R2ST) linear algebra operations only becoming significant for larger R.

Figure 2 shows how the estimated computation time per effective sample 𝜏eff varies with each
ofR,S andT, for each of the four model parameters and for each of the two Hamiltonian splittings.
First considering the results for varying number of observations per subsequence R we see the
efficiency is maximised (𝜏eff minimised) for both splittings for an intermediate value of R ≈ 5,
with a small drop-off in efficiency for R = 2 and a larger decrease in efficiency as R is increased
beyond 5. This reflects the competing effects of the reduced cost of each constrained integrator
step as R is made smaller versus the reduced chain mixing performance in each transition for
smaller R due to the extra states being (artificially) conditioned on. Importantly we see, however,
that the latter effect is less significant (in this model at least), meaning that performance is still
close to optimal for R = 2, suggesting performance will not be too adversely effected if a too small
R value is chosen.

Now turning our attention to the plots of 𝜏eff versus the number of discrete time steps per
inter-observation interval S, we see that there is a clear difference in the scaling of 𝜏eff with S
for the two Hamiltonian splittings, with the Gaussian splitting giving a only slightly above linear
scaling across all four parameters with exponents in the range 1.06–1.10 compared to 1.14–1.44
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F I G U R E 2 FitzHugh–Nagumo model (noiseless observations): Computation time per effective sample 𝜏eff in
seconds for varying R, S and T for each model parameter, in all cases on a log-log scale. The markers shows the
median across three independent runs. The dashed lines in the plots in bottom two rows show log-domain
least-square fits to the medians for each splitting

for the Störmer–Verlet splitting. Inspection of the integrator step sizes t (not shown), which were
adaptively tuned in a warm-up phase to control the average acceptance statistic for the chains to
be fixed, reveals that for the Gaussian splitting the step size t is in the range t = 0.29 ± 0.01 for
all S while for the Störmer–Verlet splitting shows a decrease from t = 0.20 for S = 25 to t = 0.10
for S = 400, consistent with results suggesting that the step size of the Störmer–Verlet integrator
needs to scale with Q−1∕4 to maintain a constant accept probability of a static integration time
HMC algorithm in the unconstrained setting (Beskos et al., 2013b; Neal, 2011), compared to a
dimension-free dependence of the acceptance probability on t for integrators using the Gaussian
splitting in appropriate targets (Beskos et al., 2011). While we have emphasised here the superior
performance of the Gaussian splitting, we note that the growth of 𝜏eff with S for both methods is
very favourable, and shows our approach is able to remain efficient for fine time discretisations
of the continuous time model.

Finally, we consider the bottom row of plots in Figure 2, showing how 𝜏eff varies with the
number of observation times T for each model parameter. We see that in this case both splittings
give very similar scalings, with a close to linear growth in 𝜏eff with T for all four parameters. The
(infinite-dimensional) target posterior being approximated for each T value differs here unlike
the case for varying R and S), in particular becoming more concentrated as T increases. The
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increase in 𝜏eff with T seems to be largely attributable to the increase in the computational cost
of each constrained integrator step with T, and so the mixing performance of the chains seems
to be largely independent of T. This suggests that the constrained HMC algorithm is able to effi-
ciently explore posterior distributions with varying geometries. While here the concentration of
the posterior is due to an increasing number of observations, in the following section we will see
that our approach is also robust to varying informativeness of the individual observations.

7.2 FitzHugh–Nagumo model with additive observation noise

As a second example we consider the same hypoelliptic diffusion model as in the preceding
section, but now with observations subject to additive Gaussian noise of standard deviation 𝜎y,
that is h(x, z,w) = x1 + 𝜎yw and 𝜂 =  (0, 1). The presence of additive observation noise means
that the posterior on (u, v0∶ST) given y1∶T = y1∶T has a tractable Lebesgue density. We therefore
compare our constrained HMC approach to running a standard (unconstrained) HMC algorithm
targeting the posterior on (u, v0∶ST) with details of the posterior density and HMC algorithm
used given in Section S9 in the Supplementary Material. As a further baseline, we also compare
to the approach of Mider et al., 2021), which uses a Metropolis-within-Gibbs scheme alternat-
ing guided proposal Metropolis–Hastings updates to the latent path x0∶ST given parameters z,
with random-walk Metropolis (RWM) updates to the parameters z given the path x0∶ST. An
application of this approach to the FitzHugh–Nagumo model considered here is described in
van der Meulen et al. (2020), and we use the Julia code accompanying that article to run the
experiments.

We use the same priors and time discretisation as in the previous section, and fix S = 40 and
T = 100. Simulated observed sequences y1∶T were generated for each of the observation noise
variances 𝜎2

y ∈ {10−4, 10−3, 10−2, 10−1}. In all cases, y1∶T was generated using the same parameters
and initial state as in the previous section and sharing the same values for v1∶ST and w1∶T (sampled
from their standard normal priors). Chains targeting the resulting posteriors were run for each
𝜎2

y value and for each of the three MCMC methods being considered.
For our constrained HMC algorithm, we used R = 5 and ran chains using a constrained inte-

grator based on the Störmer–Verlet splitting, with results instead using the Gaussian splitting
showing a similar pattern of performance and hence omitted here to avoid duplication. For the
standard HMC algorithm, a diagonal metric matrix representation M was adaptively tuned in
the warm-up iterations with this found to uniformly outperform using a fixed identity matrix
for all 𝜎y values tested here. For both the standard and constrained HMC algorithms, we run
four chains of 3000 iterations with the first 500 iterations an adaptive warm-up phase used
to tune the integrator step-size t (and M for the standard HMC case). For the guided propos-
als/RWM case, we ran four chains of 3 × 105 iterations, with the first 5 × 104 iterations an adaptive
warm-up phase where the persistence parameter of the guided proposals update to x1∶ST | z and
step sizes of the random-walk proposals for the update to z | x1∶ST were adapted as described in
Mider et al., 2021).

Estimated computation time per effective sample 𝜏eff values were calculated for the chains of
each of the three MCMC methods and each of the observation noise variance values 𝜎2

y . The ESS
estimates were calculated as described in the preceding section, however, the true total wall-clock
run times were used for the chain computation times here due the difficulty in ensuring a con-
sistent treatment of different MCMC algorithms in the approach used in the previous section. To
ensure as fair a comparison as possible all chains were run on the same computer and limited to
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F I G U R E 3 FitzHugh–Nagumo model (noisy observations): Computation time per effective sample 𝜏eff for
varying observation noise standard deviation 𝜎y for each model parameter, in all cases on a log–log scale. Points
with cross markers indicate chains with an estimated split- R̂ value of greater than 1.01, indicative of
non-convergence

a single processor core to avoid differences due to varying exploitation of parallel computation in
the implementations.

Figure 3 summarises the results. We first note that despite the large number of iterations used
for the guided proposals/RWM chains (3 × 105), the per-parameter split- R̂ diagnostics (Vehtari
et al., 2019) for the chains indicated non-convergence of the chains in nearly all cases, with only
the chains for 𝜎y = 10−2 appearing to be approaching convergence with R̂ values in the range
[1.01, 1.05] compared to R̂ values in the range [1.39, 1.87] for 𝜎y = 10−0.5. The poor convergence
here seems to be at least in part due to the difficulty in finding globally appropriate values of
the RWM step sizes, with the step sizes still changing significantly in the final iterations of the
warm-up phase and the final adapted values differing significantly across chains for the same 𝜎y.

Given the poor convergence the estimated ESS values must be treated with some caution,
however even for the 𝜎y = 10−2 case where the chains appeared to be closest to convergence
the estimated 𝜏eff values for the guided proposals/RWM chains are between 30 and 80 times
larger than the corresponding values for the constrained HMC chains. As Julia implementa-
tions of numerical algorithms generally significantly outperform Python equivalents (Bezanson
et al., 2017), the superior sampling performance of the (Python) constrained HMC implementa-
tion compared to the (Julia) guided proposals/RWM implementation here seems unlikely to be
just due to differences in the efficiency of the implementations, but rather reflects significantly
improved mixing of the joint gradient-informed updates to the latent variables by the constrained
HMC algorithm, compared to the non-gradient-informed Metropolis-within-Gibbs updates of the
guided proposals/RWM algorithm.

Comparing now the results for the standard and constrained HMC algorithms, we see that
while both algorithms perform similarly for larger 𝜎y values (i.e. less informative observations),
the constrained HMC algorithm provides significantly better sampling efficiency for smaller 𝜎y
values. Inspecting the integrator step size t set at the end of the adaptive warm-up phase for each
of 𝜎y values reveals that, while for constrained HMC all step sizes t fall in the range 0.17–0.18 and
so seem invariant to 𝜎y, for the standard HMC chains, t ranges from 5.1 × 10−4 for 𝜎y = 10−2 to
9.1 × 10−3 for 𝜎y = 10−1, resulting in a need to take more integrator steps per transition to make
moves of the same distance in the latent space and hence a decreasing sampling efficiency as 𝜎y
becomes smaller.

The results for 𝜎y = 10−0.5 break the trend of increasing 𝜎y leading to increased efficiency for
the standard HMC chains, with a significant increase in 𝜏eff compared to 𝜎y = 10−1. This seems
to be due to a roughly halving of the integrator step size t set in the adaptive warm-up phase
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to 5.2 × 10−3 for 𝜎y = 10−0.5, which, combined with the more diffuse posterior for the larger 𝜎y
value, led to a significant increase in the average number of integrator steps per transition and so
computational cost per effective sample. A potential explanation for the decrease in the adapted
step size is that the more diffuse posterior extends to regions where the posterior density has
higher curvature necessitating a smaller step size to control the Hamiltonian error. In contrast,
for the constrained HMC chains, the Hamiltonian error is controlled with a close to constant step
size for all 𝜎y; however, there is a drop in efficiency as 𝜎y becomes larger, which seems to be due to
the more diffuse posterior requiring a greater number of integrator steps to explore and so higher
computational cost per effective sample on average.

7.3 Susceptible-infected-recovered model with additive observation
noise

As a final example, we perform inference in an epidemiological compartmental model given real
observations of the time course of the number of infected patients in an influenza outbreak in
a boarding school (Anonymous, 1978). Specifically we consider a diffusion approximation of a
susceptible-infected-recovered (SIR) model (see e.g. the derivation in Fuchs, 2013 section 5.1.3),
with a time-varying contact rate parameter itself modelled as a diffusion process as proposed in
Ryder et al. (2018), resulting in the following three-dimensional elliptic SDE system

⎡⎢⎢⎢⎣
ds

di

dc

⎤⎥⎥⎥⎦
=
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−N−1csi

N−1csi − 𝛾 i(
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2

)
c
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d𝜏 +

⎡⎢⎢⎢⎣

√
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−
√
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√
𝛾 i 0

0 0 𝜎c

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣
dw1

dw2

dw3

⎤⎥⎥⎥⎦
where 𝜏 is the time in days, s and i are the number of susceptible and infected individuals respec-
tively, c the contact rate, N the population size and 𝛾 the recovery rate parameter. The SDE for
c arises from log c following an Ornstein–Uhlenbeck process with reversion rate 𝛼, long term
mean 𝛽 and instantaneous volatility 𝜎.

As each of s, i and c represent positive-valued quantities, the diffusion state is defined to
be x = [log s; log i; log c] ∈ R3 with drift a and diffusion coefficient B functions derived from the
above SDEs via Itô’s lemma. By computing the time-discretisation in this log-transformed space,
the positivity of s, i and c is enforced and the numerical issues arising when evaluating the
square-root terms in the diffusion coefficient for negative s, i or c are avoided. The observed data
y1∶T corresponds to measurements of the number of infected individuals i = exp(x2) at daily inter-
vals, i.e.Δ= 1, over a period ofT = 14 days, with the observations assumed to be subject to additive
noise of unknown standard deviation 𝜎y, that is yt = exp(x2(t)) + 𝜎ywt. The Z = 5 dimensional
parameter vector is then z = [𝛾; 𝛼; 𝛽; 𝜎; 𝜎y]. Details of the priors and discretisation used are given
in Section S11 in the Supplementary Material.

We compare the performance of our proposed constrained HMC approach to a standard HMC
algorithm, with the noise in the observations meaning that the posterior on u and v0∶ST admits a
Lebesgue density. For each algorithm, we run four chains of 3000 iterations with the first 500 iter-
ations an adaptive warm-up phase. For our constrained HMC algorithm due to the small number
of, and high correlations between, the observations we do not introduce any artificial condition-
ing on intermediate states, that is R = T = 14. Chains using constrained integrators based on both
the Störmer–Verlet and Gaussian splitting show very similar performance here so we show only
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F I G U R E 4 SIR model: Computation time per effective sample 𝜏eff (leftmost panel) and estimated posterior
marginals (right panels) for each model parameter computed using constrained (black) and standard (dark gray)
Hamiltonian Monte Carlo chain samples

the Störmer–Verlet case to avoid duplication. For the standard HMC algorithm, a diagonal metric
matrix representation M was adaptively tuned in the warm-up iterations. The estimated compu-
tation time per effective sample 𝜏eff values were calculated using the total wall-clock run times
for the chains.

The results are summarised in Figure 4. The left plot shows the estimated per-parameter 𝜏eff
values for each of the two MCMC methods: we see that the constrained HMC algorithm is able
to give significantly improved sampling efficiency over standard HMC here. More importantly,
however, it appears that the standard HMC algorithm is in fact failing to explore the full posterior.
The grid of six plots in the right of Figure 4 shows the estimated posterior marginals for each
parameter computed from either the constrained or standard HMC chain samples. There is a clear
discrepancy in the estimated posterior marginal of 𝜎y between the two methods, with the standard
HMC chains having many fewer samples at smaller 𝜎y values compared to the constrained HMC
chains. Figure S2 in the Supplementary Material shows the corresponding estimated pairwise
marginals with 𝜎y on a log-scale, with the poorer coverage of small 𝜎y values by the standard HMC
chains more apparent.

While the per-parameter R̂ diagnostics for the standard HMC chains are all below 1.01,
some hint of the underlying issue being encountered here is given by the high number of iter-
ations in which the integration of the Hamiltonian dynamics diverged for the standard HMC
chains–roughly 4% of the non-warm-up iterations for each chain. Such divergences are indica-
tive of the presence of regions of high curvature in the posterior distribution that result in the
numerical simulation of the Hamiltonian trajectories becoming unstable, and in some cases may
be ameliorated by use of a smaller integrator step size t (Betancourt, 2017).

Here specifically the adaptive tuning of the step size t in the warm-up phase has led to a step
size which is too large for exploring the regions of the posterior in which 𝜎y is small. Although by
setting a higher target acceptance statistics for the step size adaptation algorithm or hand tuning
t to a smaller value we could potentially fix this issue, this would be at the cost of an associated
decrease in sampling efficiency, leading to even poorer performance relative to the constrained
HMC chains. As seen in the results for the FitzHugh–Nagumo model in Section 7.2, if 𝜎y is fixed
the integrator step size t for the standard HMC algorithm needs to be decreased as 𝜎y is decreased
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to control the acceptance rate resulting in a higher computation cost per effective sample—Figure
S1 in the Supplementary Material illustrates this directly for the SIR model. When 𝜎y instead is
unknown as here, standard HMC needs to use a step size appropriate for the smallest 𝜎y value
‘typical’ under the posterior, which if 𝜎y is poorly informed by the data (as is the case for this
model) can require using very small integrator step sizes t. In contrast as the constrained HMC
algorithm is able to use an integrator step size t which is independent of 𝜎y, the sampling efficiency
of the chains is not limited by the need to use a small step size t to explore regions of the posterior
in which 𝜎y is small.

8 CONCLUSIONS AND FURTHER DIRECTIONS

We have introduced a methodology for calibrating a wide class of diffusion-driven models. Our
approach is based on recasting the inferential problem as one of exploring a posterior supported
on a manifold, the structure of the latter determined by the observational constraints on the
generative model. Once this viewpoint is adopted, available techniques from the literature on
constrained HMC can be called upon to allow for effective traversing of the high-dimensional
latent space. We have further shown that the Markovian structure of the model can be exploited to
design a methodology with computational complexity that scales linearly with both the resolution
of the time-discretisation and the number of observation times.

A critical argument put forward via the methodology developed in this work is that prac-
titioners working with SDE models are now provided with the option to refer to a single and
highly automated, algorithmic framework for Bayesian calibration of their models. This algorith-
mic framework employs efficient Hamiltonian dynamics and adheres to all sought out criteria
listed in Remark 1.

When exploring distributions with rapidly varying curvatures, standard HMC methods with
a fixed step size can yield trajectories that either require too small of a step size (as in the
FitzHugh–Nagumo model with noise in Section 7.2), or become unstable and diverge if the
step size is not small enough in areas of high curvature of the posterior on the latent space
(as with our SIR example in Section 7.3 where variations in the scale parameter 𝜎y have strong
effect on the curvature). In both cases, particularly strong effects can render standard HMC
non-operational (as in the SIR case). Although the methodology presented in Girolami and
Calderhead (2011) can in principle be helpful in such contexts, this class of algorithms is intrin-
sically constructed to induce good performances in the centre of the target distribution as it
involves an expectation over the data, and not the given data, for the specification of the employed
Riemannian metric. Constrained HMC dynamics can provide a more appropriate approach for
dealing with rapidly varying curvature across the whole of the support of the target distri-
bution. When combined with efficient discretisations of the dynamics—as in the case of the
class of diffusion models we have studied in this work—they can provide statistically efficient
methods.

The viewpoint adopted in this paper is potentially relevant to a larger class of stochastic
models for time series (e.g. random ordinary differential equations), as well as other Markovian
model classes (e.g. Markov networks). Some of the authors are currently involved in applying
such MCMC methods to Bayesian inverse problems; manifold structures naturally appear in the
low noise regime (Beskos et al., 2018). In general, we believe that the approach presented in this
paper warrants further investigation, with a corresponding study of critical algorithmic aspects,
for example computational complexity and mixing properties.
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