
A neural surveyor to map touch on the body
Luke E. Millera,b,c,d,1 , C�ecile Fabiob,c,d, Malika Azaroualb,c,d, Dollyane Murete , Robert J. van Beersa,f ,
Alessandro Farn�eb,c,d,g,2 , and W. Pieter Medendorpa,2

aDonders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands; bIntegrativeMultisensory Perception Action
and Cognition Team - ImpAct, Lyon Neuroscience Research Center, INSERMU1028, CNRS U5292, Bron 69500, France; cUCBL, University of Lyon 1, Villeurbanne
69100, France; dNeuro-immersion, Hospices Civils de Lyon, Bron 69500, France; eInstitute of Cognitive Neuroscience, University College London, LondonWC1N
3AZ, United Kingdom; fDepartment of HumanMovement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands; and gCenter for
Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy

Edited by Peter Strick, Neurobiology, University of Pittsburgh, Pittsburgh, PA; received February 4, 2021; accepted November 8, 2021

Perhaps the most recognizable sensory map in all of neuroscience
is the somatosensory homunculus. Although it seems straightfor-
ward, this simple representation belies the complex link between
an activation in a somatotopic map and the associated touch loca-
tion on the body. Any isolated activation is spatially ambiguous
without a neural decoder that can read its position within the
entire map, but how this is computed by neural networks is
unknown. We propose that the somatosensory system implements
multilateration, a common computation used by surveying and
global positioning systems to localize objects. Specifically, to
decode touch location on the body, multilateration estimates the
relative distance between the afferent input and the boundaries of
a body part (e.g., the joints of a limb). We show that a simple feed-
forward neural network, which captures several fundamental
receptive field properties of cortical somatosensory neurons, can
implement a Bayes-optimal multilateral computation. Simulations
demonstrated that this decoder produced a pattern of localization
variability between two boundaries that was unique to multilatera-
tion. Finally, we identify this computational signature of multilater-
ation in actual psychophysical experiments, suggesting that it is a
candidate computational mechanism underlying tactile localization.
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In the 18th century, surveyors in France completed the world’s
first topographically accurate map of an entire country. To do

so, they relied on the computation of triangulation; given a pre-
cisely known distance between two baseline landmarks, the
location of a third landmark could be computed from its angles
of intersection with the baseline landmarks. Countries could
utilize this simple geometric computation to accurately map the
location of all landmarks in their borders (Fig. 1A). This is also
possible using multilateration (or trilateration, more specifi-
cally), where the known distance between multiple baseline
landmarks is used to compute the location of another land-
mark. These computations are simple yet robust ways to local-
ize objects and therefore still used in modern surveying and
global position systems.

Geometric computations involving manipulating distances and
angles are also employed by the nervous system of animals to
localize and interact with objects in the environment. During spa-
tial navigation (Fig. 1B), mammals can readily return to their
starting location by taking into account all computed distances
and heading directions traveled (1), a phenomenon known as
path integration. Reaching to grasp a visible target is another
behavior involving geometric computations (Fig. 1C). To do so,
the brain must compute a reach vector from distances derived
from hand and target position signals (2, 3), involving transfor-
mations that take place in the frontal and parietal cortices (4, 5).

Equally crucial to localizing objects in the environment is
localizing objects on the personal space of the body. In the
180 y since Weber’s seminal investigations on the sense of touch
(6), researchers have extensively characterized tactile localiza-
tion at both the behavioral (7–18) and neural (19–25) level.
However, despite this progress, the computations underlying

tactile localization remain largely unknown. Recent accounts
have suggested that tactile localization requires two computa-
tional steps (26, 27). First, afferent input must be localized
within a topographic map in somatosensory cortex (19). How-
ever, an activation within this map is not sufficient for localiza-
tion since it alone is meaningless without a reference frame
that is centered on the body. Localizing touch on the body
therefore requires a neural decoder (28) that can “read” the
topographic landscape of the population response within the
map (22) and reference this information to stored spatial repre-
sentations of the body (29). However, given that the nature of
these computations—and how they might be implemented by
neural circuits—remains largely unknown, it is unclear whether
the brain uses geometric computations to localize objects
touching the body.

We propose that, like a surveyor, the human brain employs
multi/trilateration to localize an object in body-centered coordi-
nates (Fig. 1D). To do so, this “neural surveyor” uses simple
arithmetic to calculate the relative distance between the loca-
tion of the afferent input and the boundaries of the body part
(the baseline landmarks, e.g., elbow and wrist of the forearm in
Fig. 2A). This body-centered coordinate system is tied to a neu-
ral architecture that represents the body’s geometry (29) and
is influenced by proprioceptive feedback about limb size
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(30). In the present study, we provide multiple lines of evi-
dence that the brain may use multi/trilateration to localize
touch on a limb. We first develop a Bayesian formulation of
this computation in the nervous system. We then develop a
population-based neural network model that implements tri-
lateration, thus allowing us to identify its computational sig-
natures. Simulations revealed that trilateration produces a
unique pattern of localization variability across a limb.
Finally, we identify this pattern in actual psychophysical
experiments and provide further predictions of the model to
be tested in future work.

Results
A Bayesian Formulation of Trilateration. In multilateration, the
distances between known locations are used to compute an
unknown location. In the present paper, we will focus mainly on
trilateration, which requires calculating the distance between at
least three unique locations in a common coordinate system.
For simplicity, let us initially consider only a single dimension x
of a body part (Fig. 2A). Distance estimation then amounts to
subtracting each location from one another:

d1 ¼ x3 � x1
d2 ¼ x2 � x3
d3 ¼ x2 � x1,

[1]

where x2 > x3 > x1, and d3 is the distance between two known
locations (x1 and x2) and serves as a baseline for calculating the
location of x3, which is not known.

When applied to estimating the location L of a point of touch
x3 on the limb (Fig. 2A), the baseline d3 corresponds to an inter-
nal representation of limb size (29), and x1 and x2 are the bound-
aries of a limb-centered coordinate system. For many limbs
(e.g., the forearm), these boundaries—or landmarks—are repre-
sented by the position of the proximal and distal joints; however,
this is not the case for every body part (e.g., the fingertip). Given
peripheral input from mechanoreceptors, d1 and d2 can be mea-
sured via a neural surveyor that “reads” a population response
in a central somatotopic map. Assuming noiseless point esti-
mates (e.g., x1 ¼ 0, x2 ¼ 100, x3 ¼ 75) and decoding computa-
tions, we can rewrite Eq. 1 to produce two estimates of location:

~L1 ¼ x1 þ d1
~L2 ¼ x2 � d2:

[2]

Because these estimates are defined within the same limb-
centered coordinate system, a final estimate of location can be
derived by taking their average, though in the case of noiseless
signals both point estimates are equal and therefore redundant
(i.e., both ~L1 and ~L2 equal 75).

In the nervous system, however, noise is ubiquitous (31).
Sensory encoding is corrupted by receptor noise (32), which is
compounded by computational operations performed by the
nervous system (33). One solution for dealing with uncertainty
is to take it into account when making estimates and decisions,
as formalized by Bayes’ theorem (see below). If the brain does
indeed take this approach, we would expect its internal esti-
mates of the body and world are not single points but rather
probability distributions over possible states.

Here, we consider a probabilistic version of trilateration
(Eqs. 1 and 2). In this model, an internal estimate of location is
not taken as a point estimate but rather as a Gaussian probabil-
ity distribution of locations. The locations along dimension x
are therefore specified as Gaussian random variables, and the
landmark-centered estimates ~L are best approximated as inde-
pendent Gaussian likelihoods with distinct means and varian-
ces. Following Bayes’ theorem, touch location L given estimate
~L—that is, the posterior distribution p Lj~L� �

—relates to

p Lj~L� �
∝p ~LjL� �

p Lð Þ, [3]

in which p ~LjL� �
denotes the likelihood, representing probability

density of the estimate ~L given the true location L, and p Lð Þ rep-
resents prior information about the location. If we assume the
prior over L is flat, the integrated posterior p Lj~L1, ~L2

� �
is propor-

tional to the product the two independent likelihood functions:

p Lj~L1, ~L2

� �
∝p ~L1jL
� �

p ~L2jL
� �

: [4]

If the likelihoods are Gaussian distributions, the mean (μINTÞ
and variance (σ2INTÞ of the integrated limb-centered posterior
distribution depend on the means (μ1 and μ2) variances (σ

2
1 and

σ22) of the individual estimates:

μINT ¼ μ1
σ21

þ μ2
σ22

� �
σ2INT , σ2INT ¼ σ21σ

2
2

σ21 þ σ22
: [5]

The integrated posterior thus reflects the maximum likelihood
estimate of touch location L, whose integrated variance is
always smaller than the variance of either individual estimate.
Bayesian inference of this form has been demonstrated in a
range of behaviors, such as visual object recognition (34), multi-
sensory integration (35), sensorimotor learning (36), and coor-
dinate transformations (33, 37).
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Fig. 1. Examples of geometric computations. (A) Idealized example of
how multi/trilateration can be used to localize an object within a country.
Given the distance between two baseline landmarks whose locations are
known (d1), an object (e.g., the Eiffel tower) can be localized by calculat-
ing its distance from each landmark individually (d2 and d3). (B) Path inte-
gration: By computing over distances and angles traveled (d1 and d2), a rat
can calculate how much it needs to travel (d3) to return to its starting posi-
tion. (C) Visuomotor reaching: The distance between the hand and object
(d3) can be computed by evaluating over the eye-centered hand distance
(d1) and object distance (d2). (D) Egocentric tactile localization: The vector
(black arrow) for reaching to a touch (black dot) on the arm may be com-
puted using trilateration. First, an arm-centered touch location is trilater-
ated (see next section; see Fig. 2A) by computing distance between the
touch and the elbow (d1) and wrist (d2). An egocentric representation of
touch could be derived by further taking into account the distance
between the reaching hand and the elbow (d3) and wrist (d4).
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Trilateration, as formulated above, provides a computational
mechanism to localize touch in body-centered coordinates. In
the next section, we explore how it could be implemented by the
nervous system. We describe a simple population-based neural
network model that can trilaterate the location of touch from the
population activity within a somatotopic map (Fig. 2A). Impor-
tantly, determining the neural signatures of a trilateral computa-
tion for tactile localization will allow us to make predictions that
can be validated using actual psychophysical data.

Neural Network Implementation of Trilateration. In the current sec-
tion, we aim to ground the trilateral computation, as described in
Eqs. 1 to 4, in a biologically plausible feedforward neural network.
Here, we implement trilateration in a probabilistic population cod-
ing network with three processing stages: First, touch is initially
encoded in the activation of an early somatotopic map (encoding
layer). Second, this activation pattern is transformed into body-
centered coordinates (cf. Eqs. 1 and 2) via two decoding subpopu-
lations whose units are tuned to distance from each landmark
(cf. Eq. 2). The population activity of each decoding subpopula-
tion reflects the likelihoods in Eq. 3 (38). Lastly, the final body-
centered location estimate is derived by a Bayesian decoder (39)
that integrates the activity of both subpopulations (cf. Eq. 4).

The encoding layer reflects the initial somatotopic map and
is composed of evenly spaced, broadly tuned artificial neurons
with Gaussian (bell-shaped) tuning curves f E (Fig. 2B; see Eq.
10 in Materials and Methods), with likelihood functions p rEi jL

� �
denoting the probability that location L caused rEi spikes in
encoding neuron i. The likelihood function p rEi jL

� �
can be

modeled as a Poisson probability distribution with equal mean
and variance (i.e., a Fano factor of 1), according to

p rEi jL
� � ¼ e�f E

i
Lð Þf Ei Lð ÞrEi
rEi !

, [6]

in which f Ei is the tuning curve of neuron i. The population
response of the encoding neurons is denoted by a vector

rE ≡ rE1 ,…
�

, rENg, where rEi is the spike count of neuron i. The
encoding layer thus approximates the receptive field properties
of cutaneous neurons in layer IV of Area 3b whose tuning
curves are relatively homogenous (40) and whose Fano factor is
close to 1 (41).

The function of the decoding layer is to estimate the location
of L in body-centered coordinates given the population
response rE in the somatotopic map. We implemented this
computation in two independent decoding subpopulations,
each of which was “anchored” to one of the boundaries of the
limb. The population activity rD of each subpopulation corre-
sponds to rDi ¼ wD

i � rE þ εi, where wD
i is the vector of synaptic

weights connecting neuron i to the encoding layer, “�” is the
dot product, and εi is the additional (i.e., uninherited) Poisson
noise in the decoding neuron’s spiking behavior (Eq. 6).

To embody the distance computations in Eqs. 1 and 2, the
gain (i.e., peak firing rate; see Eq. 11 in Materials and Methods)
of each subpopulation’s units f D formed a distance-dependent
gradient (close-to-far: high-to-low gain) across the length of the
limb (Fig. 2B). The width of each tuning curve can be uniform
in either linear or log space. In the latter case (see Eq. 12 in
Materials and Methods), tuning width also forms a distance-
dependent gradient (close-to-far: narrow-to-wide tuning) in lin-
ear space (42), consistent with the Weber-Fechner law. This
tuning scheme has been observed in boundary vector cells (43),
neurons with an analogous distance-computing function that
are important for place field formation (44).

Crucially, when the neuronal noise is Poisson-like (as in Eq.
6), the gain of a neural population response reflects the preci-
sion (i.e., inverse variance) of its estimate (39). Therefore, given
the aforementioned distance-dependent gradient in gain, noise
in each subpopulation’s location estimate (that is, its uncer-
tainty) will increase as a function of distance. For example,
when localizing touch near the wrist, the location estimate
made by the elbow-based subpopulation will be highly noisy,
whereas the location estimate made by the wrist-based subpop-
ulation will be more precise (Fig. 2C). A similar formulation
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Fig. 2. Neural network implementing tri-
lateration. (A) Trilateral computation for
tactile localization: The location of touch
on the arm is computed by integrating two
estimates (d1 and d2) of the distance
between each joint (x1 and x2; elbow and
wrist) and the sensory input x3. (B) Neural
network implementation of trilateration:
(Lower) the encoding layer is composed of
homogenous tuning curves across the space
of the sensory surface (in percent); (Upper)
the decoding layer is composed of two sub-
populations of neurons with distance-
dependent gradients in tuning properties
(shown: firing rate and tuning width). The
distance of a tuning curve from its
“anchor” is coded by the luminance, with
darker colors corresponding to neurons
that are closer to the limb boundary. (C)
Activations for each layer of the network
averaged over 5,000 simulations. Each circle
corresponds to a unit of the neural net-
work. (Lower) Encoding layer; (Middle)
decoding layer; (Upper) posterior probabili-
ties of localization for each decoding sub-
population (blue and red) and their inte-
gration by the Bayesian decoder (purple).
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would be appropriate for many other body parts, such as when
localizing touch near the fingertip.

The exact form of the Bayesian decoder depends upon how
a population response encodes the probability distribution over
a stimulus. If, as several authors have argued (38, 39), popula-
tion responses encode log probabilities, we can rewrite Eq. 3 as
follows to correspond to the maximum likelihood estimates of
each subpopulation:

p ~L1jL, rD1
� � ¼ exp hD1 Lð Þ � rD1� �

p ~L2jL, rD2
� � ¼ exp hD2ðLÞ � rD2� �

,
[7]

where hD is a kernel and rD is the subpopulation response.
When neural responses are characterized by independent Pois-
son noise (Eq. 6), hD is equivalent to the log of each subpopula-
tion’s tuning curve f D at value L (38, 39). Assuming that the
population response reflects log probabilities, optimally inte-
grating both estimates (Eq. 4) amounts to simply summing the
activity of each subpopulation.

p ~LINT jL, rD1, rD2
� �¼ exp hD1 Lð Þ � rD1 þ hD2ðLÞ � rD2� �

, [8]

where the optimal estimate ~LINT on a given trial n can be writ-
ten as the location for which the log-likelihood of the summed
population responses is maximal.

~L
ðnÞ
INT ¼ argmax

L

ðhD1 Lð Þ � rD1 þ hD2ðLÞ � rD2Þ: [9]

It is important to note that the integration of location esti-
mates in Eqs. 4 and 5 assumes that they have independent
sources of noise. However, given that both decoding layers are
connected to the same encoding layer, they will both inherit
its noise and may therefore be correlated. Simulations found
that the correlation of the noise in each decoding subpopula-
tion for each location of touch was minimal (all r < 0.1) and
can therefore be ignored. As can be seen in Fig. 2C, the out-
put of the trial-specific output of the Bayesian decoder laid
out in Eqs. 8 and 9 produces an estimate whose noise is lower
than both landmark-specific estimates and is consistent with
maximum likelihood integration. The aforementioned formu-
lation of trilateration is not restricted to our one-dimensional
simplification but can be generalized to the two-dimensional
case as well (SI Appendix).

Simulations Identify a Plausible Neural Signature of Trilateration.
So far, we have provided a Bayesian formulation of trilateration
and presented a plausible model of how this computation could
be implemented in a simple feedforward network. We next
investigated the localization behavior of this model by simulat-
ing single points of touch at each position within a limb-
centered coordinate system (5,000 simulations per location).
The parameters of the units in our initial simulations were
within the range of known properties of somatosensory neurons
(see Materials and Methods). The units in the encoding layer
had uniform gain and tuning curve width. The units in the
decoding layer had distance-dependent gradients in the gain,
with uniform tuning width in either linear or log space (Fig.
2B). These initial simulations included only two landmarks and
therefore best reflect body parts with two boundaries, such as
the forearm. We consider potentially more complicated body
parts, such as the fingers, later in the present report.

Both subpopulations in the decoding layer (Fig. 2B) were
able to localize touch with minimal constant error (Fig. 3 A,
Top), demonstrating that each could produce unbiased esti-
mates of location from the sensory input. However, as pre-
dicted given the gradient in gain, the noise in their estimates
rapidly increased as a function of distance from each landmark
(Fig. 3 B, Top). The pattern of location-dependent noise for
each landmark-specific subpopulation was almost completely

anticorrelated (r = �0.99), forming an X-shaped pattern across
the surface of the limb. Noise thus renders the estimate of each
subpopulation unreliable for most of the limb.

We next examined the output of the Bayesian decoder from
Eqs. 8 and 9 (Fig. 2C). As expected, integrating both estimates
increased the reliability (Fig. 3 B, Bottom; for accuracy: Fig. 3
A, Bottom) of localization. Intriguingly, the noise of the Bayes-
ian decoder’s estimate formed an inverted U-shaped curve
across the surface of the limb (Fig. 3 B, Bottom), with the low-
est decoding noise near the landmarks and the highest decod-
ing variance in the middle. This exact pattern of variability was
also found when we computed the integration directly from the
two simulated likelihoods (Eq. 4), demonstrating that our net-
work optimally combines both estimates.

Unlike these initial simulations, the properties of tuning
curves in real biological networks—including in Areas 1 and 2
(21, 22, 45)—are heterogenous. It is therefore important to
determine whether the simulation results follow from unrealis-
tic assumptions of homogeneity. We performed additional sim-
ulations where the tuning properties (gain and width) of each
unit were varied slightly, creating local inhomogeneities in tun-
ing. In all additional simulations (2,500 distinct tuning configu-
rations), decoding was accurate, and the variability followed the
inverted U-shaped pattern (SI Appendix, Fig. S1A). Regressions
that modeled the decoding noise in each simulation as an
inverted U (see Materials and Methods) always found a high
goodness-of-fit (mean ± SD of R2: 0.73 ± 0.08), replicating our
original simulations across a variety of tuning configurations.

This signature of trilateration is independent of the chosen
decoder (Eqs. 8 and 9) and is instead the product of integrating
both decoding subpopulations. We observed the same inverted
U-shaped pattern of variability with a winner-take-all decoder
[~L ¼ argmaxL ðrD1 Lð Þ þ rD2 Lð ÞÞ], although the decoding noise
was higher, consistent with its known inefficiencies. The pattern
of noise is therefore a consequence of implementing trilateration
of the form in our neural network and not the specific decoder
used the extract information from it.

A B

Fig. 3. Simulation results for trilateration. (A) Localization accuracy for the
estimates of each decoding subpopulation (Upper; L1, blue; L2, red) and after
integration by the Bayesian decoder (Lower; LINT, purple). (B) Decoding noise
for each decoding subpopulation (Upper) increased as a function of distance
from each landmark. Note that distance estimates are made from the 0%
and 100% locations for the first (blue) and second (red) decoding subpopu-
lations, respectively. Integration via the Bayesian decoder (Lower) led to an
inverted U-shaped pattern across the surface. Note the differences in the y
axis range for both panels.
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These simulations suggest that the inverted U-shaped noise
profile is a consequence of a linear probabilistic population
decoder performing trilateration. However, it is possible that this
decoding performance reflects inhomogeneities in the tuning of
individual units in the encoding layer. Simulations rule out this
possibility (SI Appendix, Fig. S1B), as our regression analysis
never observed a high goodness-of-fit in any of the 2,500 configu-
rations tested (mean ± SD of R2: 0.05 ± 0.06). Importantly, there
is also a conceptual argument against this possibility that bears
repeating: the encoding layer merely reflects an activation within
a topographic map; without the necessary extra step of referenc-
ing this activation to the body itself (as is done in trilateration),
localization is impossible.

In all, our simulations suggest that inverted U-shaped pat-
tern of variability is a computational signature of trilateration.
We next conducted psychophysical experiments to test the pres-
ence of this pattern of variability in behavioral data. This is a
necessary validation that our model is capturing something real
in the computations underlying tactile localization. Importantly,
observing an inverted U-shaped pattern of localization variabil-
ity in our experiments would suggest that humans trilaterate
touch location near-optimally.

Trilateration Explains Tactile Localization on the Arm. In two psy-
chophysical experiments, we investigated patterns of perceptual
variability during tactile localization on the arm (see Materials
and Methods and SI Appendix, Fig. S2). In Experiment 1 (n =
11), participants localized points of touch passively applied to
the volar surface of their forearm. In Experiment 2 (n = 14),
participants localized touch after they actively contacted an
object with their forearm. Importantly, the space of possible
responses was not restricted to the forearm but included both
the hand and upper arm, preventing any truncation in the
range of responses (SI Appendix, Fig. S10).

To assess localization, we initially fit each participant’s responses
with a linear regression, and the slope was taken as an overall mea-
sure of localization accuracy. Participants were generally quite
accurate at localizing passive (Experiment 1; slope: 1.04, 95% CI
[1.00, 1.08]; Fig. 4 A, Top and SI Appendix, Fig. S3) and active
touches (Experiment 2; slope: 1.06, 95% CI [0.99, 1.12]; Fig. 4 B,
Top and SI Appendix, Fig. S4). Importantly, in both experiments,
we observed the expected inverted U-shaped pattern of variability
(Fig. 4 A and B, Bottom). Thus, perceptual variability was depen-
dent upon where the touch occurred, as predicted by trilateration.
We focus on these results for the remainder of the study.

We used a reverse engineering approach (37) to validate that
the observed perceptual variability was due to trilateration.
Because we cannot measure the parameters of trilateration
directly, we inferred them by using least-squares regression to
model each participant’s variable error as a function of location
(see Materials and Methods). Our regression model had three
free parameters: one parameter that quantified the distance-
dependent noise (σ̂) and two intercept parameters, i.e., one per
landmark (ε̂1 and ε̂2). As in Eq. 4, the model consisted of inte-
grating landmark-specific patterns of noise to form a final pat-
tern based on an optimal estimate of location.

Trilateration explained a large portion of the location-
specific patterns of variability in each experiment. We found
good fits for the group-level variable errors for both passive
(Fig. 4 A, Bottom; R2 = 0.89) and active touch (Fig. 4 B, Bottom;
R2 = 0.86). Importantly, trilateration provided a good fit (R2 >
0.5) for every participant in Experiment 1 (mean ± SEM: 0.81
± 0.04; range: 0.54 to 0.94) and Experiment 2 (mean ± SEM:
0.80 ± 0.04; range: 0.57 to 0.98). The fits for each participant in
Experiment 1 can be seen in SI Appendix, Fig. S5, and those for
Experiment 2 can be seen in SI Appendix, Fig. S6.

Finally, we statistically analyzed the fit parameters for each
experiment. The parameter values for each participant in

Experiments 1 and 2 are listed in SI Appendix, Tables S1 and S2,
respectively. We focused specifically on the noise parameter (σ̂),
as trilateration specifically predicts that it should be greater
than zero—that is, noise should scale positively with distance.
The results in both experiments were consistent with this pre-
diction (one-sample t test versus zero: both Ps < 0.01, cor-
rected). Every participant had positive distance-dependent noise
(minimum of 0.27 in Experiment 1 and 0.15 in Experiment 2),
demonstrating that none showed a pattern opposite from our
model prediction (i.e., U-shaped variable error). This can fur-
ther be observed in SI Appendix, Figs. S5 and S6.

Trilateration Explains Tactile Localization on the Finger. Thus far,
we have shown that a neurally plausible implementation of tri-
lateration accurately explains patterns of tactile localization in
humans. However, these simulations and experiments were
restricted to the relatively simple case of localization on body
parts with two landmarks. What would trilateration look like on
limbs with complicated linkage systems that would have more
than two landmarks?

We simulated this situation with our neural network, which
now had a third decoding population whose receptive fields
were anchored midway between the other two (Fig. 5 A, Inset).
Decoding variability exhibited two hills, one on each half of the
limb (Fig. 5A). The presence of two hills of decoding variability
was independent of the location of the third landmark and
would therefore also be found in cases where the third land-
mark was off-center. We next explored whether this pattern of
variability is observed in real localization data.

Using the results of these simulations as our guide, we
investigated the presence of multiple landmarks within a sin-
gle body part (Experiment 3). To do so, we characterized tac-
tile localization on the index finger (n = 9; ventral surface), a
body part with a high degree of articulation. As expected, all
participants were highly accurate at doing so (slope: 0.98, 95%
CI [0.91, 1.05]; SI Appendix, Fig. S7). In the present case of

A B

Fig. 4. Results of behavioral experiments. The results of (A) Experiment 1
and (B) Experiment 2. Perceived location and perceptual variability as a
function of touch location (0 = elbow; 100 = wrist). Tactile localization in
both experiments was very accurate (Upper rows). The line corresponds to
a linear regression fit to the group-level data. The variable errors in per-
cent (Lower rows) exhibited the expected signature of trilateration. The
line corresponds to a trilateral regression (see Materials and Methods) fit
to the group-level data.
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the finger, four landmarks could be potentially used to trilater-
ate touch location: the two boundaries of the finger (metacar-
pophalangeal joint and fingertip) and the two intervening
joints (proximal and distal interphalangeal joints). As before,
each participant’s variable errors were used to explore the
nature of their trilateral computation.

We fit several trilateration models related to distinct combi-
nations of the aforementioned landmarks: a two-landmark
model (i.e., boundaries only), two three-landmark models, and
a four-landmark model. Trilateration provided a good fit (R2 >
0.5) to the location-specific patterns of variability in each partic-
ipant (mean ± SEM: 0.73 ± 0.04; range: 0.54 to 0.94; SI
Appendix, Fig. S8 and Table S3). Crucially, the data for five out
of the nine participants were best fit with one of the three-
landmark models (P < 0.05; Fig. 5B); the proximal phalange
served as the third landmark in two participants and the distal
phalange in the other three. The variability for these partici-
pants was clearly characterized by two hills, as predicted by our
simulations. The remaining four participants were best fit with
the boundaries-only model and showed the typical inverted
U-shaped pattern of variability.

These findings demonstrate that trilateration on individual
body parts can include the position of intervening joints and not
just body part boundaries. However, individual differences in
which intervening joint was involved in trilateration on the fin-
ger, as well as the number of landmarks used, raise questions
about what factors contribute to this computational variability.
These factors should be explored in future work. Importantly for
the purpose of the present study, all our behavioral experiments
thus far have revealed broad agreement with the predictions of
our population-based neural network model.

The Effect of Adding a Third “Artificial” Landmark. Trilateration is
not necessarily restricted to landmarks that are intrinsic to a body
part (i.e., boundaries and joints). There is evidence that salient
objects, such as jewelry, are represented by an internal model of
a body part (46). It is therefore possible that the somatosensory
system can incorporate “artificial landmarks” into the trilateral
computation. In these cases, we would expect the emergence of
two hills of variability on a limb, one on either side of an artificial
landmark that has been added to it. We explored this possibil-
ity next.

We applied our trilateration model to the results of a previ-
ously published study whose methods are conducive to addressing
the aforementioned question (11). Participants in this study local-
ized vibrotactile objects on their forearm. How these objects

vibrated was varied in two conditions: (i) their vibration was at a
uniform frequency across the limb or (ii) the object at the fore-
arm’s midpoint vibrated at a frequency that was distinct from all
other locations. In the latter condition, we predicted that the mid-
point object functioned as an additional landmark by which to tri-
laterate tactile location.

The results of our modeling confirmed these predictions
(Fig. 5C). As in Experiments 1 and 2, localization in the first
condition was characterized by a single hill of variability,
which was well-fit (R2 = 0.96) by a trilateration model where
only the elbow and wrist were landmarks. Crucially, localiza-
tion in the second condition was characterized by two hills of
variability. These results were well-fit (R2 = 0.88) by a trilater-
ation model where the midpoint of the forearm was an addi-
tional landmark used for localization and bear a strong
resemblance to the effect of a third internal landmark on the
finger (Fig. 5B and SI Appendix, Fig. S8). The somatosensory
system can therefore integrate extrinsic landmarks when
localizing touch on the body.

Our Results Are Not Due to Range and Categorical Effects. Thus
far, we have argued that the observed inverted U-shaped vari-
ability profile reflects a trilateral computation underlying tactile
localization. In the present section, we rule out two alternative
explanations simultaneously. First, this pattern of variability
may be related to a range effect (47); that is, participants were
aware of the range of possible locations and therefore likeli-
hoods at or near the boundaries were truncated. Second, and
relatedly, the observed variable errors may be the result of dis-
tortions in spatial memory caused by the presence of category
boundaries (48). Both explanations assume that the likelihoods
for all locations p ~LjL� �

are of uniform width (i.e., σ does not
scale with distance) but are truncated by the aforementioned
cognitive processes. This truncation could theoretically produce
something akin to an inverted U-shaped pattern of variability.

To rule out these alternatives, we fit the participant-level var-
iable errors from Experiments 1 to 3 with a truncation model.
Like the standard trilateration model, the truncation model
had three free parameters: the width of the likelihood σ and
the locations of the truncation boundaries (see Materials and
Methods). The truncation model was able to fit the data moder-
ately well (R2 mean ± SEM: 0.40 ± 0.04; range: 0 to 0.82).
However, it was a significantly worse model when directly com-
pared with trilateration (mean ± SEM of ΔBIC: 7.71 ± 0.72;
range: 0.09 to 16.58). At the individual participant level, 32 out
of 34 participants had a ΔBIC > 2 (moderate evidence) and 21

A B C

Fig. 5. Effects of a third landmark on localization. (A) Simulation results of the first prediction: adding a third landmark in the middle of sensory surface
predicts an inverted W-shaped pattern of decoding variance. Inset: The receptive fields of the decoder subpopulation centered on this third landmark.
(B) Results from a single participant in Experiment 3. The purple line corresponds to the fit of the model with only two landmarks. The green line corre-
sponds to the fit of the model with a third landmark on the proximal interphalangeal joint. This model provides a significantly better fit. (C) Model fits
to Experiment 3 from Cholewiak and Collins (11): An inverted U-shaped pattern was observed when there were two landmarks (elbow and wrist; purple).
Confirming the model’s prediction, an inverted W-shaped pattern was observed when there was an additional third landmark (a stimulator) added to the
middle of the forearm (green).
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of the 32 had a ΔBIC > 6 (strong evidence) in favor of the tri-
lateration model.

Further evidence against the truncation model comes from
analysis of the constant errors (SI Appendix, Fig. S9). If locali-
zation responses are truncated, they would be systematically
shifted inward toward the center of the body part. We did not
observe this shift in any of our three experiments. Instead, we
found that touch localization was slightly biased toward the
wrist in Experiments 1 and 2 and toward the knuckle in Experi-
ment 3. These findings are consistent with studies that have
observed joint-ward biases (13, 18). Curves based upon the
expected errors due to truncation could not fit the data of any
participant in any our experiments (all R2 < 0; SI Appendix,
Figs. S10–S12). Furthermore, an examination of the distribu-
tion of responses made by participants (SI Appendix, Fig. S13)
found that responses occasionally crossed body part boundaries—
localizing touch near the wrist on the palm, for example—
further ruling out the possibility that these alternative explana-
tions could account for our experimental results.

Computational Predictions. A major benefit of our computational
and neural network models is that we can use it to build predic-
tions about how localizers should behave under different exper-
imental conditions. We investigated three predictions made by
our model of trilateration that can be tested empirically.

Correlated noise can have detrimental effects on population
coding (49) and the optimality of integration (50). Our first pre-
diction is that noise correlations should increase the magnitude
of decoding noise while maintaining the overall inverted
U-shaped pattern. To test this, we simulated the localization of
a rigid object (i.e., a continuous line), a stimulus that would
introduce local noise correlations in the encoding layer. As

expected, the magnitude of decoding noise (i.e., the offset of
the inverted U-shaped pattern) increased as a function of
object length (Fig. 6A). Other manipulations that increase the
magnitude of noise correlations, such as arm movements (51),
would be expected to have a similar effect on decoding.

Our second prediction is that increasing the localization vari-
ability of a single landmark will modify the shape of the percep-
tual variability across the limb. Specifically, as the variability of
a landmark increases, the inverted U-shaped pattern of vari-
ability will become less symmetrical (Fig. 6B). The variability of
joint-based feedback can be modified, for example, by adding
noise into the system via tendon vibration (52). In the most
extreme case of completely deafferenting a joint, variability
would become linear. This might not be realistic, however,
given that stored offline representations of body size also play a
role in the position of a landmark within a body-centered coor-
dinate system.

Third, as our neural network is not specific to a single body
part, for simplification purposes, we expressed space in percent-
age of limb surface. However, the spatial extent of each body
part is an important factor during actual tactile localization
(Eq. 1). Several studies have found that manipulating the inter-
nal representation of body part size (e.g., through illusions)
modifies tactile spatial perception (30), including where touch
is localized in space (53). Given a fixed number of units, a
change in represented body part size would lead to a corre-
sponding change in the widths of the tuning curves. Neural net-
work simulations found that decoding noise scales linearly with
a change in body part size but always maintained the inverted
U-shaped profile (Fig. 6 C and D). Thus, localization noise
should decrease when the internal representation shrinks and
increase when it expands. This prediction is consistent with

A C E

B D F

Fig. 6. Computational and implementational model predictions. (A) First computational prediction: Baseline decoding noise increases as a function of
stimulus length (blue curves) and is substantially higher than when the stimulus is modeled as a point (purple curve); all experiments in the present study
used point-like stimuli. (B) Second computational prediction: Effect of increased variability in the second landmark location (the mark 100% on the sur-
face). As variability increases (from 0 to 30% of tactile space; in steps of 5%), the inverted U-shaped pattern becomes more linear (less symmetrical). (C)
Third computational prediction: Patterns of decoding variance for sensory surfaces of different sizes. (D) Decoding noise increases linearly as a func-
tion of size. Modifying the size of tactile space will modify perceptual variability. (E) Fourth implementational prediction: Simulated subpopulation
response for touch at 15% in two conditions: without (orange curve) and with (blue curve) microstimulation of neurons coding for the third quarter
of the limb. (F) Decoded log-likelihoods for these two conditions. In the case of E, microstimulation would modify the distance estimate derived by
the Bayesian decoder.
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known changes in allocentric coding when the size of a space
changes. For example, when the space of a room is elongated,
place fields stretch along the axis of elongation (54), an effect
mediated by boundary vector cells (44).

Predictions for Neural Implementation. The computations per-
formed by a neural network are intimately tied to the tuning
properties of its units. Therefore, given the specifics of the
aforementioned network’s computational architecture, we can
make predictions at a neurophysiological level. In the following,
we detail four predictions. We anticipate that they would aid in
testing whether a brain region is performing multilateration of
the kind embodied in our network.

First, given their importance for our implementation of mul-
tilateration, we predict the existence of distance-dependent gra-
dients in the tuning properties of body maps in somatosensory
regions. These gradients should be found in the firing rate and/
or shape of the tuning curve and follow a well-defined pattern
across the representation of the body part (Fig. 2B). Indeed,
the wide diversity of receptive field properties present in our
network (see also SI Appendix, Fig. S15) is also found in early
somatosensory regions (21). That is not to say that these gra-
dients are a global feature that is observed in all neurons across
the map. Instead, it is more likely that they will be found in
neurons serving a spatial function related to localization.

Second, owing to these gradients, we predict that the range
of tuning curve properties (firing rate and shape) will be higher
near the border of a body part than at its midpoint. The tuning
properties of units in each decoding subpopulation were almost
completely anticorrelated. Therefore, neurons that belong to
each distance-computing subpopulation will have tuning that is
maximally different near the borders of the body part. How-
ever, since the coded distance is equal at the midpoint, the
tuning of neurons with receptive fields near the midpoint in
each subpopulation should be relatively similar. Put another
way, if one were to divide a body part into subsections, the
extremes in response properties should be most apparent near
the border.

The activity of each (sub)population in the aforementioned
neural network model represents a full likelihood estimate,
both its mean and its uncertainty. Each estimate is therefore
encoded by a probabilistic population code (39). Our third pre-
diction is that somatosensory neural populations will also
encode the full likelihoods relevant to multilateration and will
thus represent the signature distance-dependent pattern of
uncertainty. Machine learning approaches, such as deep neural
networks (55), could be used to decode these likelihoods from
populations of neurons recorded during tactile localization.
Furthermore, identifying neural responses with this pattern of
population coding could determine the brain regions imple-
menting multilateration.

Fourth, we predict that individual neurons perform specific
computational functions that map onto our network; that is,
encoding, distance computations, or Bayesian decoding. Since
modifying the components of multilateration leads to predict-
able behavioral changes (see previous section), a neuron’s
computational role could be identified by altering its response
properties, for example, via cortical microstimulation or cool-
ing. Stimulating one or more distance-computing neurons
(Fig. 6E) would have predictable effects on the shape of the
likelihood encoded by the neural population (Fig. 6F), influenc-
ing the decoding and therefore the behavior.

Discussion
We proposed and tested the computation of multilateration as
a candidate mechanism underlying tactile localization, directly
linking sensory input to a body-centered reference frame.

Neural network modeling showed that this computation can be
simply implemented in a feedforward network that integrates
multiple location estimates into a single optimal surface-centered
estimate. Simulations further indicated a location-dependent
pattern of perceptual variability that reflects a signature of near-
optimal trilateration. This novel signature was then found in three
psychophysical experiments involving touch on the forelimb as
well as one reanalyzed dataset. We conclude that multilateration
is an important computation for localizing touch in the intrinsic
coordinates of a sensory surface.

Multilateration Provides a Unified Account of Tactile “Perceptual
Anchors.” Tactile perception varies across the surface of an indi-
vidual body part. Perhaps the most striking example is the
increased perceptual precision near boundaries of joints. Evidence
for this “perceptual anchoring” has been observed on the arm (7,
11, 12, 16), hands (8), abdomen (56), and feet (9). Despite being
first observed over 180 y ago by the psychophysicist E. H. Weber
(6), the underlying reason why perception is tied to the proximity
to joints is unknown. It is unlikely that “perceptual anchors” have
a peripheral origin since the receptive fields of mechanoreceptors
are not more densely distributed near joints (57). Instead, they
likely have a central explanation. For example, the integration of
cutaneous and proprioceptive signals during movement may solid-
ify joint-based landmarks as category boundaries between somato-
sensory representations (58). How this could be instantiated
computationally has never been made explicit.

The present study suggests that the perceptual anchoring of
tactile localization is a consequence of Bayesian trilateration in
the nervous system. In our neural network, each decoding sub-
population is organized in reference to a specific landmark
(e.g., a joint), consistent with their role as boundaries between
different body-centered coordinate systems (i.e., category
boundaries). Because these subpopulations represent the dis-
tance between touch and a specific landmark using a gradient
of firing rates, decoding noise increases linearly as a function of
distance (Eqs. 8 and 9)—the closer touch is to a landmark, the
more precisely it will be decoded. Therefore, integrating esti-
mates with distance-dependent noise naturally leads to higher
perceptual precision near landmarks, both boundary-based
(Experiments 1 to 3) and artificial (Experiment 4). Our findings
thus provide a unified computational explanation of perceptual
anchoring in touch and may extend to other tactile spatial phe-
nomena (SI Appendix).

Neural Candidates for the Distance Computations. We have con-
trasted the process of activating a region within the somatosen-
sory homunculus with the mapping of touch in a body-centered
reference frame. The latter requires calculating the distance of
the somatotopic activation—presumably in Area 3b—from the
boundaries of a limb. This raises the question of which neural
region(s) implements the distance computation (Eqs. 1 and 2).

Later stages of primary somatosensory processing likely
implement this computation. According to our network, gra-
dients in tuning gain and width reflect the coding of distance
from a boundary. Consistent with this, a high degree of hetero-
geneity in firing rates has been observed in Areas 3b, 1, and 2
(21, 22, 41, 45). Furthermore, receptive field sizes of cutaneous
neurons in somatosensory Areas 1 and 2 vary on a continuum
from small to large (21) and often span one or more joint seg-
ments (59). These large receptive fields have previously been
implicated in tactile localization (22) and may in fact reflect the
tuning of distance in log space.

Neuroimaging studies in humans are consistent with this pro-
posal. Several studies have implicated somatosensory cortex in
body-centered tactile localization (60, 61). Furthermore, a
recent study found evidence that tactile localization occurs at a
stage recurrent processing among the three cutaneous regions
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of the primary somatosensory cortex (25). Recurrence may be
important for the implementation of optimal estimation (62).
This suggests higher-order processing rather than just topo-
graphic mapping. However, these studies are only suggestive, as
they lack the resolution necessary to determine the types of
computations occurring in the underlying neural circuitry.

Another possibility is that distance is computed outside primary
somatosensory cortex. Regions in the posterior parietal cortex
play a role in the spatial coding of touch (24, 25, 60). These
regions are likely important for referencing sensory signals to
stored knowledge of body size (63), an important component of
multilateration (Eqs. 1 and 2). A more speculative possibility is
that tactile localization involves the hippocampal complex. As dis-
cussed previously, the tuning of units in our decoding layer is con-
sistent with boundary vector cells (43). Though research was
initially almost exclusively focused on navigation, the hippocampal
complex has been found to play a general role in spatial computa-
tion including mapping auditory (64), visual (65), and conceptual
(66) spaces. Interestingly, cells with these properties were recently
observed in the somatosensory cortex of foraging rats (67). It is
thus possible that they may play a role in coding tactile space,
including trilateration during tactile localization.

In the subsection Predictions for Neural Implementation, we
provided a path forward for future neurophysiological research
by detailing ways to identify trilateration in neural populations,
though we were intentionally vague about the types of somato-
sensory neurons involved. One limitation of our model is that
very little is currently known about how joint and skin informa-
tion are combined in the somatosensory system. It is possible
that, even if they are formed from multimodal signals during
movement (see previous section), distance-dependent gradients
are implemented in populations of purely cutaneous neurons.
Alternatively, given that distances are often (though not always;
see Experiment 3) computed from joints, these gradients may
be encoded by multimodal cutaneous-proprioceptive neurons
(e.g., in Area 2). In line with our fourth implementational pre-
diction, modifying the responses of neurons (Fig. 6 E and F)
with different representational properties—and in distinct sub-
regions of somatosensory cortex—could adjudicate between
these possibilities.

Neural Implementation of the Bayesian Decoder. In our neural
network, the distance between touch and each landmark (Eqs.
1 and 2) is represented by the pooled activity of two subpopula-
tions of decoding neurons (Eq. 8). By summing each subpopu-
lation weighted by the log of each tuning curve (38, 39), the
Bayesian decoder could estimate the location of touch near-
optimally (Eq. 9). Unlike the encoding and decoding layers, we
left the implementation of the Bayesian decoder largely unspe-
cified. There are therefore several open questions about the
nature of this computational step.

First, it is unclear whether the pooling of activity in each sub-
population would be implemented by single neurons or an
entire neuronal population. Single neurons in the lateral intra-
parietal cortex (68) are known to integrate information from an
entire sensory population (69). While this has never been
directly demonstrated for somatosensory processing, several
somatosensory regions have neurons with receptive fields cov-
ering an entire limb (21, 59, 70), suggesting that they pool
across a population of tactile neurons as formulated in Eqs.
8 and 9. Alternatively, pooling could be implemented by an
entire population of neurons (28). Indeed, it is often argued
that Bayesian inference is best implemented at the population
level (39), such as with basis functions with multidimensional
attractors (62).

Second, it is unclear whether the Bayesian decoding would
be implemented in somatosensory cortex or higher-order asso-
ciative regions, such as posterior parietal cortex. Low-level

sensory regions can implement Bayesian inference. For exam-
ple, auditory spatial cues are optimally integrated by the owl
midbrain during sound source localization (71). It is therefore
possible that a subpopulation of neurons in somatosensory
Areas 1 or 2 could optimally integrate signals from both decod-
ing subpopulations. Instead, Bayesian decoding might be per-
formed by somatosensory regions in the posterior parietal cor-
tex (24). Most likely, Bayesian decoding during tactile
localization is implemented by both feedforward signals in
somatosensory cortex and feedback signals from posterior pari-
etal cortex (25).

Furthermore, our behavioral experiments revealed a joint-
ward bias in constant error that would be consistent with the
presence of a prior in tactile space (Eq. 3). As our network pro-
duced unbiased estimates, it is best conceptualized as embody-
ing the likelihood (Eqs. 3 and 4). This raises the question about
how a prior might be implemented in a neural network per-
forming tactile localization. One possible mechanism to implic-
itly encode a prior is through biases in the distributions of
tuning curves (72). However, other studies suggest that the like-
lihood and the prior are encoded in distinct brain regions (73).
Future work should investigate how a prior is encoded in neu-
ral networks underlying the spatial coding of touch.

Is Multilateration a General Spatial Computation? In the present
section, we consider whether multilateration is a general spatial
computation in the somatosensory system and in other cognitive
domains. Whereas the present study was concerned with multi-
lateration within a body part, it is worth considering whether it
also underlies higher-level somatosensory behaviors such as
reaching toward touch on the forearm (17; Fig. 1D). Early theo-
ries of spatial perception argued that the perceived location of
an object is derived from the orienting movements needed to act
on it (74). Indeed, everyday tactile localization typically involves
reaching toward the tactile object; doing so requires transform-
ing an initial forearm-centered code (computed via trilateration;
Experiments 1 and 2) into egocentric coordinates (14) by inte-
grating it with postural information about the elbow. How might
multilateration play a role in this case?

One possibility is that knowing the elbow’s spatial position is
sufficient for precisely reaching toward touch on the forearm,
and thus multilateration is unnecessary. In contrast, the posi-
tions of both the elbow and wrist may be necessary to spatially
align the reaching hand with the arm (Fig. 1D). Multilateration
would therefore also be crucial for the reaching component of
tactile localization. Future research could adjudicate between
these two possibilities by varying the relative distances between
the reaching hand and arm joints and characterizing how this
modulates the level of variability in tactile localization. Only
the multilateration account would predict that the proximity of
the reaching hand to the wrist would have significant effects on
the precision of localization on the arm.

If trilateration is indeed a fundamental computation underly-
ing somatosensory localization, it should be employed regard-
less of the sensory surface. We have recently demonstrated that
humans can accurately localize where a tool has been touched
(75) and that mechanisms in somatosensory cortex for localiz-
ing touch on an arm may be reused to localize touch on a tool
(25). Furthermore, tool use leads to lasting changes in somato-
sensory perception (53, 76) that are likely driven by plasticity in
somatosensory cortex (77). Thus, given the high degree of flexi-
bility in the somatosensory system, we predict that the compu-
tation of trilateration is also used to localize touch on tools.
However, the specific details of its implementation—for exam-
ple, the nature of the encoding layer—are likely somewhat dif-
ferent from the body and thus need to be fully worked out and
investigated thoroughly.
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Whether multilateration is involved in other forms of spatial
cognition is also unclear. However, its equations map onto other
known distance-based geometric computations implemented in
the nervous system. Consider the example of reaching to grasp a
coffee mug (Fig. 1C). Per Eq. 1, the magnitude of the reach vec-
tor (d3) can be computed simply by subtracting the vector
between the eyes and the coffee mug (d2) from the vector
between the hand and the eyes (d1). This operation is thought to
be performed by neurons in posterior parietal cortex (3, 5).

Distance-dependent gradients in neural tuning could be one
way to identify the presence of a multilateral computation.
These gradients appear to be present in the neural coding of a
body part’s peripersonal space (78, 79), a spatial representation
involved in both keeping track of an object’s distance from the
body and in directing actions toward it. Several studies have
found that the firing rate of visuo-tactile premotor and parietal
neurons (80, 81) decreases as a nonlinear function of the dis-
tance between a body part and an object. The shape of the non-
linear function is consistent with the shape of the gradients in
our network, suggesting that they share statistical properties.
One possibility is that these neurons are involved in the reach
computation described previously, particularly in encoding d3.

As shown in our study, when distance is encoded by a popu-
lation’s response gradient, noise in each location estimate scales
linearly with distance (Eq. 8). Given that distance is treated as
a magnitude in this computation, distance-dependent noise is
consistent with Weber’s law and may therefore be a general fea-
ture of multilateral computations. This suggests that patterns of
distance-dependent noise in behavior can serve to identify mul-
tilateration in other domains. This appears to be the case in
allocentric vision, where noise in the estimated location of an
object is dependent upon its distance from landmarks in the
scene (82). Furthermore, the dominant source of error during
path integration is noise that accumulates with distance trav-
eled (83). Interesting, similar errors are found for path integra-
tion in the tactile domain (84), suggesting that they may involve
multilateration as well.

Conclusion
In sum, our results suggest that, like a surveyor, the somatosen-
sory system employs near-optimal multilateration to localize a
tactile stimulus. This computation is likely implemented, at least
partially, in the somatosensory cortex. Future work should address
how multilateration can be extended to cases of localization in two
(SI Appendix) or three dimensions (15) as well as when touch
occurs under more dynamic contexts (17, 18). Furthermore, it
remains to be seen to what extent other spatial behaviors—such as
path integration, allocentric vision, and reaching—could be refor-
mulated as implementing multilateration.

Materials and Methods
Neural Network Modeling.
Network parameters. Wedevised a simple two-layer feedforward neural net-
work that implements trilateration to localize touch on a sensory surface.
Each layer of the networkwas composed of artificial neurons whose preferred
locations were evenly spaced across the sensory surface in our initial simula-
tions (Fig. 2 and SI Appendix, Table S4). The space of the surface was always
modeled in terms of percentage (i.e., 0 to 100% of the surface). The properties
of the units in each layer approximated important aspects of actual neurons
found in the somatosensory cortex.

All units in the neural network were modeled as broadly tuned Gaussian
tuning curves f of the following form:

f xð Þ ¼ κ exp
� x� μð Þ2

2σ2

" # !
, [10]

where κ is the peak firing rate (i.e., gain), μ is the tuning center, σ is the tuning
width, and x is the stimulus location. As described in the main text, the values
of κ and σ depended on the specific layer of the neural network. For tuning

curves fE in the encoding layer, both their gain and width were independent
of location. For tuning curves fD in the decoding layer, both the gain and
width could exhibit distance-dependent gradients.

When the response properties of units exhibit independent Poisson
noise—as is the case for primary somatosensory neurons—the overall gain of
a population response r corresponds to how precisely it encodes a variable
(39). As described in Neural Network Implementation of Trilateration, the
encoding of tactile location in each decoding subpopulation exhibited
distance-dependent noise. The gain of our decoding units therefore exhibited
the following distance-dependent gradient:

κðdÞ ¼ κ0

ð1þ βdÞ2 , [11]

where κ0 corresponds to the gain of the tuning curve centered on the land-
mark’s location (i.e., distance zero), d is the distance from the center of the
tuning curve (d ≥ 0) and the landmark, and β is a scaling factor.

The tuning width of units with respect to distance could either be uniform
in linear or log space. In the latter case, σ also exhibited a distance-dependent
gradient of the following form:

σðdÞ ¼ ðγlog dþ 1ð Þ þ 1Þσ0, [12]

where σ0 corresponds to the width of the tuning curve centered on the land-
mark’s location, d is the distance from the center of the tuning curve and the
landmark (d ≥ 0), and γ is a scaling factor.

Each unit in the decoding layer was fully connected to each unit in the
encoding layer via a synaptic weight vector wD. We used the MATLAB func-
tion fmincon to find the positive-valued weight vector that produced the
decoding unit’s prespecified tuning curve.
Network simulations. To investigate the consequences of a trilateral compu-
tation, we simulated 5,000 instances of touch at wide range of locations (5 to
95%; see behavioral study) on the sensory surface using the aforementioned
network. The values for the aforementioned parameters in the encoding and
decoding layers can be seen in SI Appendix, Table S4. Sensitivity analysis dem-
onstrated that the pattern of results in the main text was not dependent on
our chosen parameter values. In these initial simulations, all units of each layer
shared the same parameter values. We used a maximum log-likelihood
decoder to localize touch from the overall response of each subpopulation
separately or added together (see Neural Network Implementation of Trilater-
ation). We found an identical pattern of results using a winner-take-all
decoder. Results did not depend on whether tuning width in the decoding
layer was uniform in linear or log space.

In follow-up simulations, we investigated the extent to which localization
was influenced by the homogeneity in tuning curve parameters. We therefore
simulated 2,500 decoding layers where the values for κ and σ of each unit
were corrupted with Gaussian noise (mean: 0, SD: 0.1 × parameter value). For
all decoding layers, we simulated 500 instances of touch at each location. To
quantify the presence of an invertedU-shaped variance profile, wefit the vari-
ance profile of the decoding with the following regression equation, which
produces a concave shape:

σðxÞ ¼ β0 � β1ðx� 50Þ2: [13]

We also investigated the probability that inverted U-shaped variance was the
consequence of a highly heterogenous encoding layer. We simulated 2,500
encoding layers whose values for κ and σ of each unit were randomly selected
from the range of values in the distance-dependent gradients of the decoding
layer (Eqs. 11 and 12). All neural network simulationswere implemented using
custom code inMATLAB (MathWorks Inc.).

Behavioral Experiments.
Subject details. Thirty-six right-handed participants in total completed our
behavioral experiments. Twelve participated in Experiment 1 (8 females, 24 ±
0.63 y of age), 15 in Experiment 2 (9 females, 24.2 ± 0.56 y of age), and 9 in
Experiment 3 (5 females, 27.9 ± 1.30 y of age). One participant from both
Experiments 1 and 2 was removed due to inability to follow task instructions.
All participants had normal or corrected-to-normal vision and no history of
neurological impairment. Every participant gave informed consent before the
experiment. The study was approved by the ethics committee (CPP SUD EST IV,
Lyon, France).
Tactile localization on the forearm (Experiments 1 and 2). The task of partic-
ipants was to localize touches applied passively (Experiment 1) or actively
(Experiment 2) to their forearm, which was hidden behind an occluding
board. In an experimental session, participants completed two tasks with dis-
tinct reporting methods (order counterbalanced; combined in the results of
the main text). In the “drawing task,” participants indicated the correspond-
ing location of touch on a downsized drawing of a human lower forelimb
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(i.e., forearm and hand). In the “external space task,” participants moved a cur-
sor to indicate the corresponding location of touch within in an empty LCD
screen (70 × 30 cm; white background) placed directly next to and in parallel
with the arm. The location of the elbow and wrist were not indicated on the
drawing or in the empty screen. Participants never received feedback about
their performance.

In each experiment, there were six evenly spaced touch locations between
5 and 95% the length of the arm (18% intervals; elbow-to-wrist; mean arm
length: 23.9 ± 0.4 cm). In each task, there were 10 trials per touch location,
making 60 trials per task (pseudorandom order) and 120 trials in total. See the
SI Appendix for moremethodological detail.
Tactile localization on the finger (Experiment 3). The task of participants
was to localize touches applied passively to the ventral surface of their index
finger. Participants reported the perceived location of touch on a life-sized
image of their own finger (knuckle-region to tip). The image was presented
against a black background on a computer screen. On each trial, the touch
was presented at one of nine locations, three locations per phalanx (at 25, 50,
and 75% of the actual phalanx length). Each location was touched a total of
20 times, for 180 trials in total. The specific location for each trial was chosen
pseudorandomly. Participants never received feedback about their perfor-
mance. See the SI Appendix for more methodological detail.

Statistical Analyses and Modeling. For Experiments 1 to 3, we used least-
squares linear regression to analyze participants’ localization judgements and
computational modeling to characterize their variable errors. To analyze
Experiment 3 from Cholewiak and Collins (11), we extracted the data fromfig-
ures in their paper and then fit the datawith our computational model.

Our model of trilateration in the somatosensory system assumes that the
perceived location of touch is a consequence of the optimal integration of
multiple independent location estimates (Eqs. 4, 5, 8, and 9). Trilateration
predicts that noise in each estimate varies linearly as a function of the distance
of touch from a landmark i, the numberN of whichwill vary across body parts.

For any location of touch L along a tactile surface, the variance in a landmark-
specific location estimate ~Li can therefore be written as follows:

σ2i ðLÞ ¼ ε̂ i þdiσ̂ð Þ2, [14]

in which ε̂ i is a landmark-specific intercept term, di is the distance between
touch location L and the landmark (Eqs. 1 and 2), and σ̂ is the landmark-
independent magnitude of noise per unit of distance. The distance-dependent
noise for the integrated estimate takes into account the uncertainty in all N
estimates involved in the trilateral computation on a body part.

σINT ðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
σ–2i ðLÞ

� ��1
s

: [15]

There are two landmarks for the arm (Experiments 1 and 2) and up to four for
the finger (Experiment 3). We inferred the values of the aforementioned
parameters and using a reverse engineering approach (37). All modeling for
each experiment was done with the combined data from all localization tasks.
Each participant’s data were also fit with a model of boundary truncation. See
the SI Appendix for more detail on our model fitting and model comparison
procedures.

Data Availability. The neural network model and anonymized behavioral
data have been deposited in the Open Science Framework (https://doi.org/10.
17605/OSF.IO/7NY2D).
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