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Abstract

Multi-pathway approaches for the treatment of complex polygenic disorders are emerging as alternatives to classical
monotarget therapies and microRNAs are of particular interest in that regard. MicroRNA research has come a long way
from their initial discovery to the cumulative appreciation of their regulatory potential in healthy and diseased brain.
However, systematic interrogation of putative therapeutic or toxic effects of microRNAs in (models of) Alzheimer’s
disease is currently missing and fundamental research findings are yet to be translated into clinical applications. Here,
we review the literature to summarize the knowledge on microRNA regulation in Alzheimer’s pathophysiology and to
critically discuss whether and to what extent these increasing insights can be exploited for the development of
microRNA-based therapeutics in the clinic.
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Alzheimer’s disease complexity: on a quest for
network-based approaches to therapy
Alzheimer’s disease (AD) was until recently perceived as a
neuron-centric disorder with linearly evolving pathology, ini-
tiated by the deposition of β amyloid (Aβ) peptides followed
by the accumulation of hyperphosphorylated TAU (pTAU)
into neurofibrillary tangles and ultimately leading to a full-
spectrum neurodegenerative condition with prominent de-
mentia after a long period of 10-20 years [1–4]. Novel mo-
lecular and genetic insights have challenged the
unidirectional linearity of the pathogenic cascade in AD and
underscored the significance of intertwined complex cellular
pathways, gene networks and feed-forward regulatory loops
that may differentially impact distinct pathogenic endophe-
notypes and cellular phases of the disease [4–7]. Multi-omics
data suggest that the genetic risk of AD functionally trans-
lates into molecular networks involved in neuroinflamma-
tion, synaptic, lysosomal and phagocytic dysfunction,

vascular and metabolic alterations and white matter changes
[7–11]. Mapping the mechanistic heterogeneity and multifac-
torial nature of AD is a key challenge, given the current scar-
city of effective disease-modifying monotherapies [12, 13].
Just as treating multiple pathways and molecular networks in
other diseases, such as cancer and human immunodeficiency
virus-1 has improved outcome [13–15], a similar network
medicine approach can be envisaged for AD [10, 13, 16, 17].
The rationale for advancing combination therapy in AD was
clearly laid out recently during the Alzheimer’s Association
Research Roundtable meeting [18]. Combination therapies
that can exert multiple effects on disease biology (e.g. anti-
amyloid and/or anti-TAU and/or anti-inflammatory agents)
have been recently considered and are currently in the drug
development pipeline as stand-alone or add-on treatments to
those already in the clinic (cholinesterase inhibitors and
NMDA receptor antagonists) for AD (for a systematic review
of ongoing AD clinical trials, see [13, 19, 20]). These combin-
ation schemes can either involve the multi-modal, combina-
torial administration of more than one therapeutic agents
(e.g. ALZT-OPT1: anti-amyloid & anti-inflammatory
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treatment, NCT02547818; ANAVEX2-73: anti-amyloid &
anti-TAU & anti-inflammatory, NCT03790709) or the use of
multifunctional molecules (e.g. Rasagiline: neuroprotective &
anti-amyloid, NCT02359552).
MicroRNA-targeted therapeutics are particularly suited

for such multi-targeting purposes, as they can typically
‘hit’ multiple sensitive nodes of various molecular cascades
deregulated in disease conditions. MicroRNAs (miRNAs)
are small, ~22nt-long, non-protein coding RNAs that in-
duce posttranscriptional gene silencing by binding their
complementary messenger RNA (mRNA) targets and
inhibiting translation and/or inducing mRNA degradation
[21, 22]. Under physiological conditions, miRNA-
dependent gene regulation acts to ensure precise protein
output and minimal protein expression noise [23, 24].
miRNAs are also able to sense and rapidly respond to the
presence of stressors in their microenvironment, providing
molecular robustness to cellular stress and restoring tissue
homeostasis [25–27]. While miRNAs may only modestly
repress individual targets, their regulatory power relies on
the context-specific, synergistic cross-talk between subsets
of miRNAs over prioritized sets of transcripts [28–32].
Under pathological conditions, as it is the case in cancer
tissue or in neurodegeneration, this network-based mode
of gene regulation converges onto distinct molecular path-
ways, which potently drive disease phenotypes [30, 33, 34].
Yet, profiling the impact of miRNA-based multi-targeting
therapeutic strategies in AD with respect to efficacy and
toxicity remains a daunting task, which is reflected by the
current sparsity of miRNA therapeutics undergoing clin-
ical trials in AD, as we discuss below.

Functional pleiotropy of microRNAs in the central
nervous system: one molecule, several pathways
miRNAs in the central nervous system (CNS) control
gene expression in various cell types and in a highly reg-
ulated time-, space-, and neuronal activity- dependent
manner [35–39]. Emerging evidence points towards a
complex multicellular gene silencing repertoire for sev-
eral of the studied miRNAs in the brain (for a compre-
hensive review refer to [40]). The miRNA transport
across different brain-resident cell types along with the
periphery-CNS miRNA interchange further contribute
to the intercellular signaling crosstalk [41, 42].
A prototype of the intricate multicellular miRNA func-

tions in CNS are ‘NeurimmiRs’, a term collectively refer-
ring to miRNAs acting at the interface between the
neuronal and the immune systems [43]. miR-124, miR-
132 and miR-146 exemplify this sort of miRNA regula-
tory pleiotropy with direct implications in neurodegener-
ation [30, 43]. miR-124 is a brain-specific miRNA
regulating neurogenesis [44, 45], synaptic plasticity [46]
and behavior [47]. In addition, its immunomodulatory
role is exerted via the targeting of the transcription

factor CCAAT/enhancer-binding protein-α, which con-
verts microglia from an activated and inflammatory state
to a quiescent phenotype [48]. Microglia endogenously
express miRNA-124 and can also receive neuronally-
derived exosomal miR-124 [49]. miR-124-mediated para-
crine signaling between SH-SY5Y neuroblastoma cells
overexpressing an AD mutation and microglia in culture
induces a shift of microglial phenotype from an initially
proinflammatory to a more regenerative state, re-
establishing homeostasis [50].
The brain-enriched miR-132 is a key regulator of

neuronal morphogenesis [51–55], synaptic plasticity
[56–59], neuronal survival [60, 61] and cognition [62–
66]. We recently reported a novel role for miR-132 in re-
storing hippocampal neurogenesis in the adult AD
mouse brain by regulating several stages of the neuro-
genic process, including proliferation, differentiation,
maturation and providing neurotrophic and neuropro-
tective support [67]. Emerging evidence suggests add-
itional roles for miR-132 in immunomodulation,
although extensive in vivo documentation in CNS is cur-
rently missing. More specifically, miR-132 exerts signifi-
cant anti-inflammatory effects in monocytes and
macrophages in vitro [63, 68]. In addition, miR-132
overexpression in the U251 human astrocytic cell line
targets interleukin-1 receptor-associated kinase, resulting
in decreased secretion of pro-inflammatory cytokines IL-
1β and IL-6 [69]. In vivo, miR-132 targets acetylcholin-
esterase, thereby increasing the levels of acetylcholine, a
key suppressor of pro-inflammatory cytokines [70].
Moreover, astrocytic and microglial miR-132 levels in-
crease in epileptic rat and human brain as a protective
response, while miR-132 transfection in human primary
astrocytes represses expression of pro-inflammatory and
pro-epileptogenic genes [71]. Although these observa-
tions support a role of miR-132 in the fine-tuning of in-
flammation, evidence of direct regulation of the innate
immune response by miR-132 in the brain is currently
lacking. Attempts to profile the baseline miR-132 levels
in microglia and astrocytes in vivo and their response to
AD onset and progression can provide an initial basis
for further mechanistic assessment.
miR-146 is abundantly expressed in microglia and to a

lesser extent in neurons and astrocytes. miR-146 re-
presses the nuclear factor kappa-B (NF-κB) signaling
pathway in several cell lines in vitro by directly targeting
IRAK1 and TRAF6 [72–75]. miR-146 knockout mice fail
to induce effective microglia-mediated phagocytosis in
response to lipopolysaccharide pro-inflammatory stimu-
lation, suggesting that miR-146 is essential for the
microglial response to inflammation [76]. In addition,
miR-146 induces pro-neurogenic effects, promoting
neuronal differentiation and neuronal lineage commit-
ment of human neural stem cells in vitro [77], while
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miR-146 knockout in mouse hippocampus impairs radial
glia-like cell differentiation and causes severe memory
impairment [78]. Interestingly, miR-146 was also shown
to exert inflammation-mediated synaptic alterations in a
non-cell autonomous manner via the functional intercel-
lular crosstalk between neurons and microglia. More
specifically, inflammatory microglia in culture shuttle
miR-146 in extracellular vesicles to neurons, where it
induces synaptic loss through targeting of Nlg and
Syt1 [79]. Whether the immunomodulatory effects of
miR-146 also occur in the brain under physiological
or pathological conditions and if they may addition-
ally mediate its impact on memory formation has not
been addressed yet.
Evidently, considering NeurimmiRs to tackle both

neuronal and immune aspects of AD pathogenesis is an
attractive hypothesis. However, most of the studies dis-
cussed here do not concomitantly explore miRNA ef-
fects in both immune and neuronal functions in the
brain. Moreover, current evidence is primarily based on
‘one miRNA-one target’ experimental design, which pre-
cludes the unbiased systematic mapping of both disease-
and tolerability-relevant effects. In addition, miRNA
effect sizes are often relatively small (20-30%) when
assaying single targets. However, the network-based
regulatory potential of miRNAs can be addressed in un-
biased multi-target or genome-wide studies, where the
global impact on multiple targets acting within one
pathway or endophenotype is considered as a whole [32,
80, 81]. This novel approach to studying miRNAs eluci-
dates the functional significance of miRNAs as network
regulators, however, has not yet been widely applied in
CNS systems.

MicroRNAs in key AD pathways: targeting
endophenotype complexity
miRNA profiles in the brain of AD patients are altered
compared to healthy controls, often in a stage- and/or
region- specific manner [82–87]. How these alterations
impact disease onset and progression and whether they
act as cause or effect along the disease trajectory remains
unclear. Nevertheless, specific early miRNA aberrations
along AD progression in human brain, indicate that dis-
ruption of miRNA homeostasis may act as a (co-)driver
of certain pathological cascades [84]. Indeed, miRNAs
have been shown to be responsive to a wide range of
neuropathological processes, including oxidative stress,
neuroinflammation, protein aggregation, and alterations
in neuronal connectivity and plasticity, suggesting that
miRNA-regulated molecular pathways may be interfer-
ing with pathology early on in the progression of neuro-
logical disorders [54, 68, 69, 88–94].
Of note, evidence of genetic association between miR-

NAs and AD is scarce and most of the pertinent studies

are underpowered. Only a handful of single nucleotide
polymorphisms have been identified to date in precursor
miRNA sequences in genome-wide association studies of
AD patient cohorts, of which rs2291418 in the miR-1229
precursor is one of the best studied examples [95–97].
miR-1229 targets SORL1, an AD risk gene involved in
amyloid precursor protein (APP) processing. Although
potentially very interesting, this association has not yet
been functionally validated. Nevertheless, strong correla-
tive evidence links miRNAs to several key AD endophe-
notypes in human brain. One of the best studied
miRNAs in this series is miR-132, which is among the
most consistently downregulated miRNAs in AD [84, 86,
98]. We and others have previously shown that miR-132
levels are anti-correlated with deposition of both intra-
neuronal hyperphosphorylated TAU and extracellular
amyloid aggregation in the prefrontal cortex of human
AD brain [33, 84, 98]. Interestingly, miR-132 expression
variation explains 6.7% of the observed variance in histo-
pathological AD endophenotypes in the Religious Order
Study and the Rush Memory Aging Project. This actually
outperforms the 6.1% of variance explained in the same
patient cohorts by Apolipoprotein E4 (APOE4), the lar-
gest risk factor for AD [98]. In addition, miR-132 is
among the core set of variables that explain the contri-
bution of an individual’s polygenic risk score to cognitive
impairment in AD [99]. This evidence suggests a puta-
tive functional link between miR-132 and amyloidosis/
TAU pathology/dementia in human AD brain and offers
a direct proof-of-principle as to how one miRNA may
concomitantly regulate multiple pathways associated
with AD pathophysiology.
miR-203 provides another interesting example of miR-

NAs potentially playing multilayered roles in AD [32].
miR-203 was identified as a hub regulator of the neur-
onal/synaptic- and microglial/inflammatory modules in
the TauP301S tauopathy mouse model. Similar modules
were also mapped in other mouse models of frontotem-
poral dementia (FTD) and in human postmortem FTD
brain. While a set of targets involved in apoptotic cell
death were shown to be regulated by miR-203, miR-203
per se has not been previously reported among the
deregulated miRNAs in neurodegeneration. Hence, even
though the notion of network regulation is a pivotal one,
the conditions under which miR-203 may actively and
potently regulate neuronal death still remain to be
addressed.
Recently, a meta-analysis study identified a signature

of 10 commonly deregulated miRNAs with predicted or
previously validated neuroimmune functions, including
miR-9-5p, miR-21-5p, the miR-29 family, miR-132-3p,
miR-124-3p, miR-146a-5p, miR-155-5p, and miR-223-
3p, across several neurodegenerative disorders ranging
from AD to multiple sclerosis and prionopathies [30].
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These correlative observations strongly suggest that
miRNAs may represent prime candidates for interven-
tion as common downstream regulators of functionally
diverse molecular pathways in AD. Yet, while some of
these miRNAs have been previously studied and are dis-
cussed here, experimental testing of newly identified cor-
relations in the appropriate model systems is critical for
mechanistic assessment prior to any consideration in
drug development pipelines.
One of the main arguments used in favor of a putatively

central role for miRNAs in AD, is that many of the mole-
cules with central roles in disease pathogenesis, such as
APP [100–112], β-secretase (BACE1) [104, 111, 113–124],
APOE [125–127] and TAU [33, 61, 64, 128–130], are dir-
ect or indirect miRNA targets. We have previously dem-
onstrated that miR-132 can bimodally regulate both
amyloidosis and Tau phosphorylation via regulating one
single target, ITPKB, acting upstream of both cascades
[33]. The functional convergence of miR-132 regulation
on repressing Tau pathology has been demonstrated via
multiple additional targets acting on Tau phosphorylation,
splicing or even Tau mRNA itself [64, 84, 131, 132]. Along
with a role in suppressing neuronal apoptosis via direct
regulation of PTEN, FOXO3a and P300, the multi-
pathway regulatory repertoire of miR-132 in AD is among
the most extensively studied and validated [60].
Of note, functional evidence for beneficial roles of

miRNAs in AD suggests that modifying their expression
might counteract pathology. Intracerebral infusion of
lentiviral constructs expressing miR-188-5p in 5xFAD
mice restores dendritic spine density and memory defi-
cits in contextual fear conditioning and T-maze tests
[93], while restoring miR-132 levels through direct deliv-
ery of miR-132 synthetic mimics into the brain of differ-
ent AD mouse models (APP/PS1, 3xTg AD and
APPNL-G-F mice), ameliorates Aβ40-42 levels, Tau phos-
phorylation, deficits in adult hippocampal neurogenesis
and cognition [33, 64, 67]. Additionally, stereotactic in-
jections of lentiviral constructs expressing miR-338-5p
in the dentate gyrus of 5xFAD mice, decreased BACE1
protein levels, Aβ42 and neuroinflammation, and rescued
spatial memory deficits in the Morris water maze test
[133]. More recently, non-invasive, nose-to-brain deliv-
ery of miR-146 synthetic antisense oligonucleotides in
APP/PS1 mice, was shown to ameliorate amyloid and
Tau pathologies, neuroinflammation and memory defi-
ciency [134].
Taken together, these observations provide proof-of-

concept that modulating miRNA levels in AD brain may
be considered therapeutically, as it could concomitantly
modify multiple aspects of the pathology (Figure 1) and
potentially lead to amelioration of memory deficits.
Context-specificity is a significant aspect of miRNA biol-
ogy, hence, results from studies using only in vitro

systems or a single transgenic mouse line may not be
easily extrapolated to describe widespread miRNA-
mediated effects in AD. Along the same lines, increasing
the levels of miRNA in a tissue or cell population, where
it was previously absent or lowly expressed, may elicit
‘de novo’ target repression with unpredictable effects. In
addition, in order to enable a therapeutic effect, careful
dose titration to determine the required therapeutic win-
dow must be considered. We and others have shown
that ‘supraphysiological’ (>3-fold) miR-132 levels follow-
ing overexpression, may exert negative effects on mem-
ory [66, 67]. This narrow dose window is in line with the
role of miRNAs as fine-tuners of their target’s protein
levels around a physiological set-point, indicating that
both too high and too low levels can be detrimental [94].
Yet, this aspect of manipulating miRNA levels in preclin-
ical mouse models is often overlooked in the literature.

MicroRNAs as biomarkers of Alzheimer’s disease
The remarkable stability of miRNAs in the extracellular
environment and hence, in bodily fluids, together with
the availability of sensitive methods for their detection
and quantitation, has led to circulating miRNAs being
widely employed as biomarkers for various human disor-
ders [135]. Several miRNA-based diagnostic tests are
already used in the clinic, mostly assessing panels of
miRNAs, in different types of biological samples and
conditions ranging from liver injury to cardiovascular
disease and cancer [136–138].
In the AD field, currently available biomarkers include

Aβ40-42, total TAU and phosphorylated TAU levels in
the cerebrospinal fluid (CSF), along with brain imaging,
such as positron emission tomography and structural
magnetic resonance imaging scans to visualize Aβ/TAU
deposits and atrophy, respectively [139–141]. More re-
cently, also blood and plasma biomarkers have emerged
as promising diagnostic tools, such as Aβ40/42 levels,
plasma TAU phosphorylation at residue 181 (pTAU181)
and plasma neurofilament light chain levels [142–148].
The use of peripheral miRNA levels as AD diagnostics is
currently at relatively advanced stages of clinical devel-
opment. miRNA profiles in CSF, blood, plasma and
serum have been measured and compared between AD
patients and healthy controls [83, 149–155]. Leidinger
and colleagues have proposed a panel of 12 miRNAs in
blood that discriminates AD from other CNS diseases
and allows to distinguish between AD and MCI patients
with an accuracy of 76%, which comes close to the 80%
accuracy of blood pTau181 [144, 156]. The 12-miRNA
signature could differentiate healthy from AD individuals
with an accuracy of 93%, a specificity of 95% and a sensi-
tivity of 92% [156]. These data were thereafter confirmed
in independent patient cohorts and validated using ma-
chine learning approaches [157, 158], however, they have
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not been implemented in the clinical testing pipeline yet.
Recently, a combination of 3 miRNAs and 3 Piwi-
interacting RNAs (piRNA) isolated from CSF-circulating
exosomes were found significantly altered in AD patients
compared to controls. By adding the information of this
miRNA/piRNA signature to CSF pTAU and Aβ40/42 ra-
tio values, the classification accuracy for AD patients in-
creased from 83% to 98% [159], suggesting that, possibly
in combination with other existing biomarkers, the im-
plementation of such signatures could contribute to
stable, high-performance diagnostic tests for AD. Capit-
alizing on these observations, multiple products are cur-
rently in the pipeline by several companies [136].
CognimiR, a diagnostic panel of 24 brain-enriched and
inflammation-associated miRNAs in blood, for early de-
tection of mild cognitive impaired (MCI) and asymp-
tomatic AD patients with 90% discrimination accuracy
from controls (which compares with and outperforms
the specificity levels achieved by plasma Aβ40-42 assess-
ment [160]), was recently branded by DiamiR and is cur-
rently in phase I of clinical development [136]. Another
miRNA-based diagnostic test for AD is being developed
by Hummingbird Diagnostics, however, clinical valid-
ation has not been initiated yet [136]. Given that miR-
NAs in blood are easier to detect than those in CSF
[161, 162], they have been found to change more con-
sistently across independent cohorts of AD patients than

CSF miRNAs [154], and there is a scarcity of standard-
ized miRNA isolation protocols from CSF samples [161],
it becomes obvious that the choice of biological fluid
can be critical for the clinical development of miRNA
diagnostics. Along with their minimal invasiveness,
plasma- or serum-based assays may therefore be of ad-
vantage. In addition, elevated levels of miR-206 have
been measured in the nasal mucosa of AD patients com-
pared to healthy controls [163], while increased miR-
200b-5p abundance was detected in tear fluid from AD
patients [164]. Once validated in larger populations,
these latter findings could represent novel promising
non-invasive strategies for early diagnosis and further
suggest that miRNAs could be harnessed for biomarker-
guided drug development in AD. Future high-powered
cohort studies implementing diverse patient cohorts will
be required to further confirm these observations.

Bringing microRNA therapeutics into the clinical
practice: hurdles and challenges
Federal Drug Agency (FDA)-approved drugs for AD in-
clude cholinesterase inhibitors, memantine and just very
recently, also the first disease-modifying drug, the mono-
clonal antibody aducanumab, which has been shown to
lower Aβ levels [20, 165, 166]. Along with a long list of
other agents currently undergoing clinical trials, these
approaches all exhibit distinct differences to miRNA-

Fig. 1 microRNAs regulate multiple AD-related cellular and molecular pathways. In healthy brain, miRNAs can maintain homeostasis through
negative regulation of targets in neuronal and immune pathways. In Alzheimer’s brain, miRNAs are dysregulated impacting cellular and molecular
cascades involved in AD endophenotypes.
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based strategies (Table 1). The current gap in miRNA-
related clinical studies as compared to other therapeutic
strategies in AD, is indicative of a set of distinct limita-
tions, which the development of miRNA-based thera-
peutics is currently facing.
Even though miRNAs mechanistically differ from

small-interfering RNAs (siRNAs) with respect to their
multi-targeting potential (Table 2), both classes of small
noncoding RNAs are short duplex RNA molecules exert-
ing gene silencing effects at the post-transcriptional level
and facing a similar set of barriers for clinical develop-
ment: delivery issues, poor in vivo stability, off-target ef-
fects and safety [167].
miRNA-based therapeutics mainly comprise synthetic

miRNAs used to restore endogenous miRNA levels (e.g.
miRNA mimics) or antisense inhibitor oligonucleotides
aimed at reducing the functionally available endogenous
miRNA (e.g. antamiRs or antagomiRs). While several
miRNA-based therapeutics have undergone preclinical
testing and have now entered clinical trials for the treat-
ment of a wide variety of pathologies, ranging from car-
diac failure to several types of cancer [80, 81, 168–175],
none of them is yet targeted towards AD.
Of note, the multi-targeting mode of miRNA action

asks for extensive preclinical assessment. A single
miRNA can bind several transcripts [23, 176, 177], while
one mRNA can be targeted by multiple miRNAs simul-
taneously. In addition, a miRNA can target mRNAs that
exert opposing effects within the same molecular path-
way [178]. The relative endogenous abundance of a
given miRNA, of other ‘competing’ miRNAs and of their
common targets in a particular cell also impacts the
strength of the effect of a particular miRNA on its cog-
nate mRNA [21, 179, 180]. Yet, this complex regulatory
repertoire may not merely involve ‘random’ transcripts:
miRNA targets are often identified within the same mo-
lecular pathway(s) and, hence, need to be regulated in a
highly coordinated manner [61, 181–185]. Reliable
miRNA target identification is a laborious task, further
complicated by the high false positive rates of most of
the target prediction algorithms [186, 187]. While each
miRNA target validation technology bares its own
strengths and limitations (systematically reviewed in
[188]), the optimization of genome editing tools, such as
CRISPR/Cas9 systems, to edit miRNA binding sites
in vivo holds great promise for direct and more precise
functional target validation in the future [189, 190]. Sys-
tematic mapping of the genome-wide and cell (type)-
specific miRNA targetomes and the affected biological
cascades is an absolute requirement for clinical applica-
tion, and, hence, proteomics and single-cell transcripto-
mics in vivo or high-throughput targetome profiling in
human cell lines in vitro, are key prior to launching
miRNA-based approaches in the clinical development

pipeline [191, 192]. Recent studies performing extensive
preclinical evaluation of miRNAs, have deployed a so-
called ‘miRNA pharmacodynamic signature’ to assess
dose-dependent target engagement in vivo [80, 81].
Using a panel of previously identified, robustly affected
miRNA targets was shown to be an effective measure of
miRNA activity in animal models, which considers the
functional significance of network regulation by miR-
NAs. For human-validated targets, such approaches
could also be considered in the clinic, if the target panel
can be reliably measured in clinically relevant biological
fluids, such as blood or CSF. Nevertheless, while this
strategy would assess engagement of relevant targets, it
would still not address genome-wide disease-relevant
and non-disease-relevant effects.
In a recent small-cohort, phase I clinical trial with

CDR132L, an anti-miR-132 oligonucleotide for the treat-
ment of heart failure, besides the primary outcomes of
safety, target engagement was also considered as second-
ary outcome [193]. Even though due to ethical con-
straints this information was derived from prior
preclinical studies in large animals [80, 194], it still en-
abled the prediction of the effective human dose based
on plasma miR-132 levels after administration of
CDR132L [193].
On- and off-target side effects are currently a major

hurdle for miRNA-therapeutics to overcome in order to
transit to the clinic. The usage of miRNA therapeutics in
combination with other drugs or miRNAs that target the
same gene networks can reduce dose and eliminate on-
target toxicity [195, 196]. Conversely, off-target toxicity
can occur through activation of the immune system by
administered double-stranded RNA molecules and the
often highly positively charged delivery vehicles [197,
198]. In 2016, a phase I clinical trial testing a liposomal
miR-34a mimic (MRX34) for the treatment of advanced
solid tumors was halted due to the adverse immune re-
actions reported in a subset of patients, even though
anti-tumor effects were observed [199]. While it is un-
clear whether the toxicity was caused by the vehicle or
the oligonucleotide per se, these results underscore the
importance of careful dosage titration and preclinical
safety assessment with well-designed, standardized tox-
icity studies in multiple preclinical species.
Efficient and targeted delivery and cellular uptake of

RNA therapeutics will be key in eliminating unwanted
side effects, as it can significantly limit systemic expos-
ure and high dose requirements. Of note, the intrinsic
properties of miRNAs, including their hydrophilic na-
ture, negative charge and relatively high molecular
weight, render them poorly permeable across biological
membranes [167]. Recent technological advances and in-
sights from the cancer field have paved the way for the
development of several distinct DNA and RNA delivery
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vehicles for transport to the brain, either by crossing the
blood-brain-barrier (BBB) or by direct delivery into the
CNS. Viral approaches, and in particular recombinant
AAV-based systems are a potent CNS delivery platform,
which can target specific tissues or cell types (making
use of different capsids and promotors) and are safe in
the clinic demonstrating durable transgene expression
[200]. Intrathecal delivery of AAVs containing an artifi-
cial miRNA suppressing superoxide dismutase 1 (SOD1)
(a genetic cause of familial amyotrophic lateral sclerosis
(ALS)), was shown to be efficient in SOD1 gene silen-
cing in nonhuman primates, yet it did induce peripheral
immune responses [201]. Recently, a single-dose gene
replacement therapy (Zolgensma) for spinal muscular

atrophy (SMA) based on an AAV9 delivery system that
can cross the BBB, was approved by the FDA [202].
However, long-term safety studies and improvement of
the efficacy of AAV-mediated gene delivery are required,
as high doses (1014 viral genomes/kg) of AAV9 are ne-
cessary to transduce around 20% of the target cell popu-
lation in the brain, leading to numerous adverse side-
effects in animal models and in humans, such as neutral-
izing antibodies, elevated serum aminotransferase levels
and liver toxicity [202–207].
Besides viral gene delivery, non-viral strategies are also

emerging for brain targeting of small RNA molecules.
Most of the existing knowledge here stems again from
siRNA applications, although some preliminary evidence

Table 1 Examples of different types of therapeutic agents in clinical trials for Alzheimer's disease, each with their own advantages
and disadvantages. For a complete list, see Cummings et al. (2021) [19]

Agent type Name Target type Mechanism of action Clinical
stage

Advantages Disadvantages

Small molecule Donepezil
Galantamine
Rivastigmine

Cholinergic
system

Cholinesterase inhibitor,
increases level of
neurotransmitter acetylcholine

FDA-
approved

Often easy dosing,
such as oral
administration
Can target
extracellular and
intracellular
targets
Some can cross
the BBB
Combination
therapy possible/
ongoing
Faster clearance
than mAbs, good
to avoid some
side-effects
Stable

'One-drug, one target'
Specificity can be dependent
on binding-site, affinity, etc.
Slow and laborious
optimizationMemantine Glutamatergic

system
N-methyl-D-aspartate (NMDA)
receptor antagonist, affects
glutamatergic transmission

LMTX
(TRx0237)

TAU-targeting
agent

TAU aggregation inhibitor Phase III
ongoing

ALZT-OP1 Inflammation-
modifying
agent

Combination therapy:
ibuprofen is a nonsteroidal
anti-inflammatory; cromolyn is
a mast cell stabilizer with anti-
Aβ effects

Phase III
ongoing

Mastinib Tyrosine kinase inhibitor,
modulates neuroinflammation

Phase III
completed

Immunotherapy/
antibody/
protein

Aducanumab Aβ-targeting
agent

Monoclonal antibody, binds
aggregated Aβ fibrils and
soluble oligomers

FDA-
approved

Targeted, specific
therapeutics
Available
knowledge, plenty
of antibody-based
drugs approved
Not a lot of
toxicity due to
humanization of
antibody-based
drugs

Only one monoclonal
antibody has shown
sufficient efficacy in humans
so far (due to low effective
dose in brain)
Delivery issues, do not cross
BBB
Mostly extracellular targets,
unstable, difficult
manufacturing/slow and
laborious optimization
Need relative invasive
intravenous or subcutaneous
injections

BAN2401 Monoclonal antibody, binds
soluble Aβ protofibrils

Phase III
ongoing

Gantenerumab Monoclonal antibody, binds
aggregated Aβ

Phase III
ongoing

Gosuranemab TAU-targeting
agent

Monoclonal anti-TAU antibody,
binds extracellular, N-terminal
fragments of tau

Phase II
ongoing

RNA-based AAVrh.10-
APOE2

APOE Viral delivery of APOE2 Phase I
ongoing

Single
administration,
targeted delivery

Delivery issues, do not cross
BBB
Need invasive intathecal
injections
CytotoxicityIONIS-MAPTRx TAU-targeting

agent
ASO, binds TAU mRNA and
inhibits translation

Phase I/II
ongoing

Easy to
manufacture,
targeted/specific
therapeutic, can
target at any site

miRNAs Multi-
targeting
agent

miRNA mimic oligonucleotides
(miRNA supplementation),
miRNA antisense
oligonucleotides (miRNA
knockdown)

Preclinical Simultaneous
targeting of
multiple AD-
related pathways
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on miRNAs has been reported. miRNA encapsulation
into nanoparticles could offer novel opportunities for
controlled and putatively cell type-specific miRNA deliv-
ery into the brain for therapeutic purposes, either by
systemic or direct CNS administration [208, 209]. Ad-
vantages of nanoparticle-mediated delivery include in-
creased molecular stability of the RNA payload,
protection against endogenous nucleases and the possi-
bility for cell type-specific targeting. Lipid nanoparticles
are the most intensively investigated and were the ones
approved by the FDA in 2018 for siRNA delivery to the
liver [210]. We recently reported the feasibility of
nanoparticle-encapsulated miR-132 mimic delivery via
intranasal administration into the brain of an AD mouse
model [211]. However, assessment of the expression
levels of a limited set of predicted targets did not yield
consistent results. Systematic functional validation to ad-
dress broad target engagement in vivo is still pending.
Key remaining challenges include the widely reported
nanoparticle immunogenicity, nonspecific uptake, rapid
clearance by macrophages and peripheral toxicity as a
result of inefficient targeted delivery [208, 212].
The use of administration routes, such as intracerebro-

ventricular, intrathecal or intranasal infusion, for direct
delivery into the CNS, can enable the functional delivery
of ‘naked’ oligonucleotides (in the absence of any deliv-
ery vehicle) both in mice and humans [134, 213–216].
Chemical modification of the RNA backbone is often re-
quired in this case, to augment stability and half-life. A
very recent report by the group of Don Cleveland, dem-
onstrated a high efficiency versus toxicity ratio for a
novel modified, naked antisense oligonucleotide (ASO)
intracerebroventricularly administered in mice, targeting
polypyrimidine tract binding protein 1 and inducing the
generation of new neurons in the aged mouse dentate
gyrus [217]. Evidently, targeted delivery of oligonucleo-
tides is key in order to improve efficacy and safety. For
CNS applications, antibody- or peptide- oligonucleotide
conjugates may offer a promising strategy for targeted

delivery of RNA-based therapeutics across BBB and to
specific brain cell types [218–222]. While similar strat-
egies are chemically applicable to a wide range of oligo-
nucleotides, this knowledge emerges once again from
nucleotides other than miRNAs, like siRNAs.
Poor stability once inside the cellular environment is

another major obstacle towards successful clinical devel-
opment [191, 192, 223]. Naked, unmodified RNAs are
degraded rapidly after administration by the abundant
cellular and serum nucleases, resulting in a short half-
life in vivo [167]. RNA molecules are additionally highly
reactive, and hence unstable, due to the presence of the
2’—OH chemical group in the ribose sugar [136]. Chem-
ically modified miRNA mimics or inhibitor oligonucleo-
tides are routinely manufactured commercially and
employed to improve stability and binding affinity. In
particular, the addition of phosphorothioate nucleotides
and methyl groups to the RNA backbone shows a sig-
nificant increase in protection against nucleases and
binding affinity in vivo [192, 223, 224]. Moreover, intro-
ducing locked-nucleic acid (LNA) modified nucleotides
into anti-miRNA oligonucleotides greatly improves their
miRNA-targeting efficacy and has been proven safe in
non-human primates this far [225–228].
The knowledge gained over the last ten years on

miRNA biology and synthetic oligonucleotide technolo-
gies only emphasizes the need for systematic preclinical
efficacy and safety assessment of miRNA-based AD ther-
apeutics in disease-relevant models. While miRNA-
based strategies may offer certain advantages over other
therapeutic approaches in AD (Table 1), the existing
limitations of this type of therapeutics remain to be crit-
ically addressed.

RNA-based therapeutics in the clinic
RNA-based therapeutics are emerging as a potent new
class of drugs in various clinical fields, including neuro-
degeneration. While extremely promising, these efforts

Table 2 Differences between siRNA- and miRNA-based therapeutic agents.

siRNA miRNA

Structure Double-stranded RNA duplex, 2 nucleotides 3'-overhang Double-stranded RNA duplex, 2 nucleotides 3'-overhang

Target complementarity Fully complementary to mRNA target Partial and imperfect complementarity

mRNA targets One specific target Multiple context-specific targets

Mechanism of action mRNA cleavage by endonucleolytic capacity mRNA cleavage

mRNA decay

Translational repression

Clinical application Therapeutic agent to knockdown specific mRNA target Drug target (miRNA mimics & inhibitors)

Therapeutic agent for the regulation of multiple mRNA
targets (miRNA inhibitors)

Diagnostic tool (biomarkers)
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do not yet include miRNA-based strategies targeted
against AD pathology.
The first siRNA drug (Patisiran) was approved by the

FDA in 2018 for the treatment of hereditary
transthyretin-mediated amyloidosis. The siRNA is en-
capsulated in lipid nanoparticles directing it to the liver
after systemic administration, where it binds the mRNA
of transthyretin and prevents the production of the mu-
tant protein [229–231]. Groundbreaking advances re-
cently led to the first FDA-approved drug for SMA, a
rare neuromuscular disorder. Treatment for SMA was
approved at the end of 2016 using a 2′-O-2-methox-
yethyl phosphorothioate-modified ASO that is adminis-
tered through intrathecal infusion. The ASO interferes
with the splicing of SMN2 mRNA, thereby increasing
the amount of functional SMN2 protein, which can
compensate for the loss of SMN1 [213, 214]. More re-
cently, another RNA-based therapy (Zolgensma) was ap-
proved by the FDA for SMA, wherein a functional copy
of SMN1 gene is delivered using an AAV9 delivery sys-
tem, enabling durable SMN1 expression following a sin-
gle intravenous injection [202]. In AD, the most
advanced RNA-based therapeutic is based on transla-
tional inhibition of TAU mRNA also using an ASO-
based approach (NCT03186989, BIIB080, IONIS-
MAPTRX), and is currently at clinical trial phase I/II.
Most notably, over the last year the world has witnessed
the first mRNA vaccines to enter the clinic, developed
my Moderna and Pfizer against the SARS-CoV-2 virus
[232, 233].
The miRNA-targeted pharmaceutical market is less

advanced with numerous clinical trials currently under-
way (CDR132L, Cardior Pharmaceuticals GmbH; RG-
012, Genzyme/Sanofi/Regulus Therapeutics; MRG-106,
MRG-110, MRG-201, miRagen/Viridian Therapeutics;
TargomiRs [172, 234–236]), yet none of them in AD.
Miravirsen, an LNA-modified inhibitor of miR-122 with
modified phosphorothioate backbone, to treat hepatitis
C infection in the liver, was the first anti-miRNA drug
to enter the clinic [225, 228]. Miravirsen naturally accu-
mulates in the liver (as a modified small RNA molecule)
and therefore does not require a special delivery strategy.
This facilitates its application in hepatitis patients but
presents a major issue for brain delivery of similar for-
mulations. Following successful initial clinical trials [237,
238], additional phase II clinical trials were performed
by Roche. Even though the viral load did decrease in pa-
tients, further clinical development was ended due to
undisclosed reasons [239]. Similarly, the clinical develop-
ment of another anti-miR-122 therapy (RG-101) for the
treatment of hepatitis C infection, developed by Regulus
Therapeutics, was halted in 2017 due to high levels of
bilirubin found in the blood of some participants of the
phase II clinical trial [240]. Yet, steps towards the right

direction are made also for brain diseases. Regulus Ther-
apeutics announced in 2019 the successful termination
of preclinical development of RGLS5579, an ASO to in-
hibit miR-10b, in the treatment of a highly aggressive
brain cancer, glioblastoma multiforme. In combination
with temozolomide, the inhibition of miR-10b had a syn-
ergistic effect and increased the median survival of a
glioblastoma chimeric mouse model from 27% to 159%
[241]. Similarly, MRG-107, a miR-155 inhibitor has been
preclinically validated by miRagen Therapeutics against
ALS [242]. Preparations for a phase I clinical trial are
ongoing for both RGLS5579 and MRG-107, however, no
information on the delivery strategy has been disclosed
to date. This far, the preliminary outcomes of the clinical
testing of miRNA therapeutics largely suggest that the
delivered oligonucleotides can reach their target sites
and can also exert functional effects. However, the sus-
pension or discontinuation of some of these clinical tri-
als (e.g. MRX34, Miravirsen, RG-101), calls attention to
putative miRNA-specific risks, which may, at least
partially, be explained by issues related to multi-
targeting-related toxicity. Once again, these observations
emphasize the unquestionable necessity for systematic
preclinical targetome profiling and for deep understand-
ing of the mechanistic action of miRNA-based drugs,
akin to the process followed in the case of any other mo-
dality with polypharmacological potential. Interestingly,
multitargeted therapeutics modulating gene expression,
such as drugs targeting nuclear receptors/transcription
factors or epigenetic enzymes, are already used in the
clinic and can provide valuable knowledge in that regard
[243, 244]. Notably, while the drop-out rate of miRNA
therapeutics in clinical trials does not dramatically differ
from that of siRNA-based drugs (50% versus 35,38%),
there is a significant difference in the number of miRNA
and siRNA formulations that enter the clinical pipeline,
with over six times more siRNA target drugs [245]. Even
though it is not clear whether this is attributed to nega-
tive or inadequate evaluation, there is an evident need
for intensification of preclinical research on miRNAs.
Although several clinical trials are ongoing to test

miRNA-based therapeutics against several peripheral
diseases, no such formulations have reached clinical tri-
als so far for the treatment of AD. Nevertheless, gemfi-
brozil, a previously FDA-approved drug to decrease
cholesterol and lipids, has undergone a phase I trial to
assess its ability to increase miR-107 levels for preven-
tion of AD in cognitive healthy and MCI individuals
(NCT02045056). 48 control and 24 MCI individuals
were treated with gemfibrozil or placebo and gemfibrozil
appeared safe, inducing a change in miR-107 plasma
levels. The secondary outcomes, including CSF Aβ42,
pTAU, Aβ42/pTau ratio, brain atrophy and plasma TNF-
α levels, did show trends for a decrease in the treatment
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group, however, these measures did not reach statistical
significance [246]. While potentially promising, such
studies do not directly address efficacy and toxicity of
miRNA-based oligonucleotides in AD. Future clinical
studies of adequate power may lay the groundwork for
further miRNA-relevant drug repurposing or develop-
ment in AD.

Conclusions and future perspectives
The paradigm shift from the reductionist view ‘one tar-
get – one disease’ to the endophenotype network-
informed strategy ‘multiple targets – multiple disease
pathways’ has started influencing pharmacological ap-
proaches against complex multigenic disorders. Network
biology and multi-modal therapies begin to attract atten-
tion also in AD research [10, 13, 17, 18]. miRNA-
targeted therapeutics are particularly suited for such
purposes, as they regulate multiple components of sev-
eral molecular cascades converging on disease-relevant
patho-phenotypes. However, as emphasized in this re-
view, the clinical application of miRNAs in brain dis-
eases faces distinct challenges, reflected in the current
scarcity of miRNA-based clinical trials in neurodegener-
ation in general and in AD in particular.
The field of miRNA-based therapeutics is developing

in the slipstream of other oligonucleotide-based thera-
peutics (siRNA, ASO). Further basic research first, to
better characterize how miRNAs target pathways of
interest, and second, to systematically map on- and off-
target toxic effects, is a prerequisite for effective clinical
application in AD and other neurodegenerative disor-
ders. Targeted brain delivery and additional investigation
of the tolerability of miRNA supplementation or inhib-
ition strategies are key issues to address. The acquisition
of miRNA-based companies by major pharmaceutical
companies could signal that prime time is approaching
for this novel category of drugs [136]. However, despite
their promise, as discussed here, application of miRNA
therapeutics in AD is lagging behind other disease areas,
like cancer, which represents a more generic discrepancy
between the two fields, with approximately 30 times
more new molecular entities in clinical trials in cancer
than in AD [247]. Technology maturation, but also more
aggressive investment in the AD field, are needed to
bridge the valley between promising initial miRNA re-
search and clinical application [248], very much similar
to the path previously followed with other therapeutic
approaches, such as monoclonal antibodies. With several
companies focusing on miRNA preclinical, clinical and
large screening studies, the next years will put these
newly emerging approaches to the test and will define
how far miRNA biologics are from clinical practice in
AD, and whether the many miRNA targets could turn
out to be ‘too many’ for clinical application.
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