
Information Leakage
Attacks and Countermeasures

Vasilios Mavroudis

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

2021

2

I, Vasilios Mavroudis, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

The scientific community has been consistently working on the pervasive problem

of information leakage, uncovering numerous attack vectors, and proposing various

countermeasures. Despite these efforts, leakage incidents remain prevalent, as the

complexity of systems and protocols increases, and sophisticated modeling methods

become more accessible to adversaries. This work studies how information leakages

manifest in and impact interconnected systems and their users.

We first focus on online communications and investigate leakages in the Trans-

port Layer Security protocol (TLS). Using modern machine learning models, we

show that an eavesdropping adversary can efficiently exploit meta-information (e.g.,

packet size) not protected by the TLS’ encryption to launch fingerprinting attacks

at an unprecedented scale even under non-optimal conditions. We then turn our

attention to ultrasonic communications, and discuss their security shortcomings and

how adversaries could exploit them to compromise anonymity network users (even

though they aim to offer a greater level of privacy compared to TLS).

Following up on these, we delve into physical layer leakages that concern a

wide array of (networked) systems such as servers, embedded nodes, Tor relays, and

hardware cryptocurrency wallets. We revisit location-based side-channel attacks and

develop an exploitation neural network. Our model demonstrates the capabilities

of a modern adversary but also presents an inexpensive tool to be used by auditors

for detecting such leakages early on during the development cycle. Subsequently,

we investigate techniques that further minimize the impact of leakages found in

production components. Our proposed system design distributes both the custody of

secrets and the cryptographic operation execution across several components, thus

making the exploitation of leaks difficult.

Impact Statement

The problems addressed in this thesis, as well as the analyses, results, and tools we

present herein, advance the state-of-the-art in areas of systems security and privacy.

Moreover, researchers and industry practitioners will be able to use and adapt our

techniques to secure their systems at various stages of manufacturing and operational

lifecycle. The contents of this thesis have been published in conference proceedings

and in open access repositories.

Our work on webpage fingerprinting provides novel insights on the privacy

properties of the Transport Layer Protocol and shows that eavesdropping adversaries

can reliably infer the webpage loaded based on traffic patterns. This work has

been published as a preprint and has been presented at ScAINet 20’ (collocated

with the USENIX Security and AI Networking Summit). The visualization of the

embeddings produced by the deep neural network received an honourable mention

at the “Research Images Cross-Disciplinary Competition 2020” at UCL 1.

Our analysis of the ultrasonic communications ecosystem identified issues

affecting hundreds of Android applications, used by millions of users at the time.

Several frameworks modified their operation in line with our proposals. This work

was presented at the Privacy Enhancing Technologies Symposium (PETS 2017),

Black Hat EU 2016, RSA 2018 and several other venues and seminars. A non-

exhaustive list of press coverage of this work can be found on the project’s website:

https://ubeacsec.org.

Our work on hardware leakages demonstrates that modern machine learning

techniques enable adversaries to launch significantly more accurate side-channel

1https://www.grad.ucl.ac.uk/comp/2019-2020/research-images-competition/

https://ubeacsec.org
https://www.grad.ucl.ac.uk/comp/2019-2020/research-images-competition/

Impact Statement 5

attacks that can reliably extract keys from high-performance embedded processors.

It was presented at the 25th Annual International Conference on the Theory and

Application of Cryptology and Information Security (Asiacrypt 2019) in Kobe,

Japan.

Finally, our trojan-resilient design, Myst, is one of the first practical system ar-

chitectures that can mitigate low-level attacks (e.g., hardware trojans, side-channels)

with only a small performance overhead. This work was presented at the ACM Con-

ference on Computer and Communications Security (CCS 2017) and various other

industrial and academic venues such as Defcon 25 in Las Vegas, US. Our prototype

is currently used in production by Enigma Bridge and was a finalist in the CSAW

Applied Research Contest 2018. Together with our work on location leakages, Myst

introduces a new design approach that aims to break the detection-evasion cycle

between manufacturers and adversaries. As part of this project, we also released

the first open-source cryptographic library for Java Cards and presented it at Black-

Hat US in 2017. This work, as well as our study of the ultrasonic communication

ecosystem, were conducted as part of the Panoramix research project.

Acknowledgements

This thesis would not have been possible without the patience and kindness of my

supervisor George Danezis. It has been an honor and a privilege working with

George. I was also very lucky to have great people supporting me along the way;

making me a better researcher and person: David Kohan Marzagao, Federico Maggi,

Jamie Hayes, Jonathan Bootle, Katerina Tsarava, Kostas Papagiannopoulos, Petr

Svenda, Sebastian Meiser and Yanick Fratantonio.

To all the great minds that I have had the pleasure of collaborating with - Alberto

Sonnino, Andrea Cerulli, Aritra Dhar, Christos Andrikos, Dan Cvrcek, Dusan Klinec,

Giorgos Rassias, Guilherme Perin, Hayden Melton, Kari Kostiainen, Karl Wüst,

Lejla Batina, Liran Lerman, Lukasz Chmielewski, Nikolaos Samaras, and Srdjan

Matic - thank you for all the lengthy discussions, the arguments, the late nights,

the rejections, the rebuttals, and the successes. I am also indebted to Bernhard

Esslinger, Carmela Troncoso, Chris Kruegel, Giovanni Vigna, and Srdjan Capkun

for giving me opportunities I never knew existed. Furthermore, I would like to thank

my officemates at UCL (6.22) and ETH Zurich; without their hospitality this Ph.D.

experience would not have been the same.

Last but not least, I would like to thank Anastasia Gkigkoudi, Kostas Mavroudis,

Vasileios Gkigkoudis, and Eva Bugallo Blanco for their endless support on this

journey and beyond; your impact cannot be overstated.

Contents

1 Introduction 14

1.1 Thesis Organization . 15

1.2 Publications & Works done in collaboration 18

1.3 Other works . 20

1.4 Responsible Disclosure & Ethics 21

2 Definitions & Preliminaries 22

2.1 User Tracking . 22

2.1.1 Profiling . 23

2.1.2 Ultrasound Tracking Frameworks 23

2.2 Ultrasonic Beacons . 23

2.3 Internet Communications . 25

2.3.1 The Transport Layer Security Protocol 25

2.3.2 Fingerprinting Attacks . 26

2.4 Dimensionality Reduction . 27

2.5 Neural Networks . 27

2.5.1 Convolutional Networks 28

2.5.2 Low-dimensional Embeddings 29

3 Related Works 31

3.1 Traffic Fingerprinting . 31

3.2 Audio Channels . 33

3.3 Hardware Side-channels . 34

Contents 8

3.4 Malicious circuitry . 35

3.5 Fault-Tolerant Systems . 37

4 Internet Communications 39

4.1 Introduction . 39

4.2 Adversarial Setup . 43

4.2.1 Threat Model . 43

4.2.2 Realistic Fingerprinting Scenarios 44

4.2.3 Practicality Considerations 45

4.3 Adaptive Fingerprinting . 46

4.3.1 Provisioning . 47

4.3.2 Fingerprinting . 50

4.3.3 Adaptation . 51

4.4 Datasets . 52

4.5 Experimental Evaluation . 55

4.5.1 Implementation & Parameterization 55

4.5.2 Experiment 1: Static Webpage Classification 57

4.5.3 Experiment 2: Adaptability & Cross-class Transferability . . 59

4.5.4 Experiment 3: Sensitivity to Website themes and TLS versions 62

4.5.5 Operational & Adaptation Costs 64

4.5.6 Limitations & Open Challenges 64

4.6 Defenses . 66

4.7 Conclusions . 67

5 Ultrasonic Communications 69

5.1 Introduction . 69

5.2 Ecosystem Overview . 71

5.2.1 Proximity Tracking . 71

5.2.2 Cross-device Tracking . 74

5.3 Vulnerabilities & Attacks . 77

5.3.1 Unauthorized Audio Monitoring 79

Contents 9

5.3.2 Deanonymization . 79

5.3.3 Profile Inference . 82

5.3.4 Profile Confluence . 84

5.3.5 Profile Corruption . 86

5.4 Information Flow Control Mechanisms 87

5.4.1 Ultrasound-filtering Browser Extension 88

5.4.2 Android Ultrasound Permission 89

5.4.3 Standardization & uBeacon API 90

5.5 Tracking the Ecosystem . 91

5.6 Conclusions . 92

6 Hardware Side-Channels 94

6.1 Introduction . 94

6.2 Threat Model . 96

6.3 Experimental Setup & Dataset . 97

6.4 Leakage Detection . 100

6.5 Leakage Exploitation . 102

6.5.1 Transfer Learning . 103

6.5.2 Convolutional Neural Networks 104

6.6 Conclusions . 105

7 Leakage-tolerant Systems 108

7.1 Introduction . 108

7.2 Threat Model . 111

7.3 System Overview . 112

7.3.1 Access Control . 115

7.3.2 Reliability Estimation . 115

7.4 Secure distributed protocols . 116

7.4.1 Distributed Key Pair Generation 117

7.4.2 Encryption . 120

7.4.3 Decryption . 121

Contents 10

7.4.4 Random String Generation 122

7.4.5 Signing . 122

7.4.6 Key Propagation . 125

7.5 Implementation . 126

7.5.1 Hardware Design & Implementation 127

7.5.2 Software . 128

7.5.3 Optimizations . 129

7.5.4 System States . 130

7.6 Evaluation . 130

7.6.1 Experimental Setup . 130

7.6.2 Performance Impact . 131

7.6.3 Scalability & Extensibility 133

7.6.4 Tolerance levels . 134

7.6.5 Other Considerations . 136

7.6.6 Physical Security & Diversity 136

7.6.7 Code & Parameter Provisioning 137

7.7 Myst Prototype Extensions . 137

7.8 Conclusions . 138

8 Conclusions & Future Work 139

Bibliography 143

Appendices 182

List of Figures

2.1 Spectrum plot of a uBeacon. 24

2.2 A convolutional neural network architecture. 29

4.1 Overview of a webpage fingerpringing scenario. 40

4.2 An adaptive webpage fingerprinting pipeline. 47

4.3 Each traffic trace is split into IP sequences. 48

4.4 Training using positive and negative trace pairs. 49

4.5 Subsets of our Wikipedia dataset are used in experiments 1 and 2. . 58

4.6 The performance of our fingerprinting model in experiment 1. . . . 58

4.7 The performance of our fingerprinting model in experiment 2. . . . 61

4.8 The performance of our fingerprinting model in experiment 3. . . . 63

5.1 Overview of the mobile advertising ecosystem. 75

5.2 An unsafe, non-standardized tracking implementation. 76

5.3 A deanonymization attack against anonymity network users. 81

5.4 Our proof-of-concept webpage upon a successful Tor deanonymization. 82

5.5 Profile confluence attacks. 84

5.6 Operational steps of a profile corruption attack. 86

6.1 The modified Riscure Pinata board. 98

6.2 An ICR HH 100-27 Langer microprobe. 98

6.3 The surface of the chip without the plastic layer. 99

6.4 Distinguishing two SRAM regions with the difference-of-means. . . 101

6.5 The STM32F417IG chip after removing the top metal layer. 102

6.6 Plot of the leakage exploitation model’s accuracy. 106

List of Figures 12

7.1 Overview of Myst’s components and communication buses. 113

7.2 Flowchart of the distributed key pair generation protocol. 118

7.3 Flowchart of the distributed decryption protocol. 121

7.4 Flowchart of the distributed signing protocol. 125

7.5 Flowchart of a multi-signature issuance with cached randomness. . . 125

7.6 Overview of the components of our custom high-assurance device. . 127

7.7 Myst’s smartcard board with 120 ICs. 128

7.8 The runtime of each distributed cryptographic protocol. 132

7.9 Runtimes of the low-level smartcard instructions. 133

7.10 The average system throughput in relation to the number of quorums. 135

7.11 Myst’s prototype with 240 JavaCards fitted into an 1U rack case. . . 138

List of Tables

4.1 Hyperparameters for our classification neural network. 56

4.2 The number of classes vs. embedding collisions. 62

5.1 Types of attacks exploiting ultrasound-enabled tracking. 78

6.1 Hyperparameters for our classification neural network. 105

7.1 The system’s tolerance under different error scenarios. 135

Chapter 1

Introduction

This thesis studies information leakage in interconnected systems, a pervasive prob-

lem that has been the subject of a large body of research on exploitation techniques

and their corresponding mitigation approaches.

In 1937, the US Navy set up a complex arc of receivers (spanning from Philip-

pines through Samoa, Midway, and Hawaii to Alaska) to track the movements

of Japanese warships through their encrypted radio transmissions [1]. While the

Japanese encryption cipher had not been broken yet [2], leakages enabled the allies

to still extract valuable information. Using a network of sensitive antennas, US

Navy officers would first find the direction at which a signal was the strongest and

then use triangulation techniques to pinpoint the transmitter’s location on the map.

Successive measurements were used to extract information about the course and

speed of warships, while the communication patterns revealed the lines of command

(by ascertaining which radios talked to which) and impending military operations

(through unusual spikes in the transmission volume).

In modern systems and protocols, information leakages take various forms

and can occur for a wide range of reasons. One of the most well-studied areas are

hardware side-channel attacks [3, 4, 5, 6, 7, 8], where the adversary extracts sensitive

information (e.g., secret/private keys) from a chip by measuring and analysing its

physical parameters (e.g., power consumption, electromagnetic emanations, oper-

ation latency). Through the analysis of those (noisy) measurements, the adversary

deduces parts of the secret key or other sensitive information stored in the chip.

1.1. Thesis Organization 15

Such attacks pose a risk to several systems (cryptocurrency hardware wallets, TLS

nodes, Internet-of-Things devices, anonymity network nodes) that need to retain their

security properties even when the adversary has physical access to their hardware.

Besides physical leakages, eavesdropping adversaries may exploit leakages

on the communication protocol layer. For example, fingerprinting attacks against

anonymity networks (e.g., the Tor anonymity network [9, 10, 11]) that analyze the

size, direction and inter-arrival times of the encrypted packets. Such attacks allow

adversaries to infer the websites visited by the user, even if the underlying encryption

scheme remains secure.

Overall, this work studies several types of leakages that occur when information

or secrets are transmitted (Chapters 4 and 5), processed (Chapter 6) and stored

(Chapter 7). We investigate how the advances in machine learning enable adver-

saries to attain very high accuracy in extracting sensitive information in various

scenarios [12, 13] and launch fingerprinting attacks at an unprecedented scale [14].

Moreover, we show how the inter-connectivity of modern systems increases the risk

for leakages as adversaries may exploit one application or platform to breach the

security properties of another [15]. Finally, we expand on the idea of resilience to

breaches and introduce a novel architecture for high-assurance systems that goes

beyond the detect-evasion arms race [13].

1.1 Thesis Organization

In Chapter 2, we introduce fundamental concepts and ideas related to information

leakage, machine learning and communication channels, as well as provide the

background on techniques used later on. Related works are discussed in Chapter 3,

while additional papers are introduced in the chapters when relevant.

Chapter 4 investigates whether machine learning models could enable adver-

saries to launch very accurate and large-scale traffic fingerprinting attacks. Such

attacks enable adversaries to infer the websites or webpages loaded by users of the

Transport Layer Security protocol or anonymity networks [16, 17, 18, 19, 20, 21,

22, 23]. We find that not only adversaries can achieve high inference accuracy but

1.1. Thesis Organization 16

that attacks are possible at an unprecedented scale even under non-optimal (for the

adversary) assumptions. We thus revisit some of the main assumptions in past works

and propose three realistic scenarios simulating non-optimal fingerprinting condi-

tions. Then, we introduce an adaptive fingerprinting adversary and experimentally

evaluate its accuracy and operation. Our experiments show that adaptive adversaries

can uncover the webpage visited by a user among several thousand potential pages,

even under considerable distributional shift (e.g., the webpage contents change sig-

nificantly over time). Such adversaries could infer the products a user browses on

shopping websites or log the browsing habits of state dissidents on online forums

and encyclopedias.

We then investigate the real-world uses of the ultrasonic communications chan-

nel, analyze Android apps and examine their privacy and security characteristics

(Chapter 5). We find that tracking techniques based on ultrasounds are susceptible

to various information leakage attacks and expose to risks other unrelated privacy-

sensitive applications that co-exist on the user’s devices. In particular, we show that

1) an eavesdropping adversary could use beacon spoofing techniques to acquire sen-

sitive information about a user, and 2) ultrasound cross-device tracking deployments

can be abused to perform stealthy deanonymization attacks (e.g., to unmask users

who browse the Internet through anonymity networks such as Tor). To curb those

risks, we introduce two immediately deployable defense mechanisms that enable

practitioners, researchers and everyday users to filter out ultrasonic emanations. Our

Chrome browser extension and our patch for Android’s permissions system allow

for the suppression of the frequencies falling within the ultrasonic spectrum, thus

preventing any unauthorized information transmission. Moreover, we discuss how

the standardization of the channel and flexible OS-level APIs can both simplify app

development and abuse.

Chapter 6 revisits the location side-channel and, given the fairly uncharted

nature of such leakages, works to broaden the state-of-the-art on modeling and

exploitation. Recent works have shown that near-field microprobes have the capacity

to isolate small regions of a chip surface and enable precise measurements with high

1.1. Thesis Organization 17

spatial resolution. Being able to distinguish the activity of small regions has given

rise to location-based side-channel attacks, which exploit the spatial dependencies

of cryptographic algorithms in order to recover the secret key. Our work performs

the first successful location-based attack on the Static Random-Access Memory

(SRAM) of a modern ARM Cortex-M4 chip and investigates the effectiveness of

neural network classifiers in distinguishing accesses to SRAM regions of varying

size (in the context of single-shot attacks). Our results show that such machine

learning models are capable of achieving high classification accuracy and suggest

that the security of cryptographic implementations that may demonstrate location

dependencies (e.g., RSA/ECC with large memory footprint, AES with lookup tables)

needs to be carefully examined.

Finally, Chapter 7 proposes Myst, a practical high-assurance design, that uses

commercial off-the-shelf (COTS) hardware, and provides strong leakage-tolerance

guarantees, even in the presence of multiple compromised components. The key

idea is to combine protective-redundancy with modern threshold cryptographic

techniques to achieve tolerance to (intentional and unintentional) errors that could

be exploited by an adversary to extract sensitive information from the system. To

evaluate our design, we build a Hardware Security Module that provides the highest

level of assurance possible with COTS components. Specifically, we employ more

than one hundred COTS secure cryptographic coprocessors, verified to FIPS140-2

Level 4 tamper-resistance standards, and use them to realize high-confidentiality

random number generation, key derivation, public key decryption and signing. Our

experiments show a reasonable computational overhead (less than 1% for both

Decryption and Signing) and an exponential increase in compromises as more ICs

are added. This design takes a step in a different direction from the bulk of works in

leakage-prevention, as it focuses on how critical systems could become resilient to

compromised components. Myst can be also combined with any countermeasures

that are available in the individual hardware components (e.g., masking), thus further

minimizing the likelihood of successful attacks.

1.2. Publications & Works done in collaboration 18

1.2 Publications & Works done in collaboration
In this section, we provide an overview of the research works comprising this report

and outline the author’s contributions.

Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio, Federico Maggi, Christo-

pher Kruegel, and Giovanni Vigna. On the Privacy and Security of the Ultrasound

Ecosystem. Proceedings on Privacy Enhancing Technologies, 2017(2):95–112,

2017

To the best of our knowledge, this is the first study that was published on the ultra-

sonic communications ecosystem. It examines the different encoding techniques

used in ultrasonic communications along with existing and future use cases of the

technology. We introduce a number of novel attacks that abuse this newly established

channel to breach the users’ privacy and implement a series of countermeasures for

end-users. The author designed and implemented all the attacks and defenses pre-

sented in this paper, with the exception of the Android patch that was conceived and

implemented by Yanick Fratantonio. The original idea for the study was contributed

by Federico Maggi. The software was released under the Apache 2.0 open-source

license and is available at https://github.com/ubeacsec.

Vasilios Mavroudis and Jamie Hayes. Adaptive Traffic Fingerprinting: Large-

scale Inference under Realistic Assumptions. 2020

This paper examines the adversarial assumptions made by past works on traffic

fingerprinting and proposes additional parameters that should be considered when

evaluating a fingerprinting methodology. The author was the primary investigator of

this work and was responsible for compiling the three fingerprinting scenarios as well

as the design and implementation of the fingerprinting adversary. The experiments

were designed collaboratively with Jamie Hayes and implemented by the author.

https://github.com/ubeacsec

1.2. Publications & Works done in collaboration 19

Christos Andrikos, Lejla Batina, Lukasz Chmielewski, Liran Lerman, Vasil-

ios Mavroudis, Kostas Papagiannopoulos, Guilherme Perin, Giorgos Rassias,

and Alberto Sonnino. Location, location, location: Revisiting modeling and

exploitation for location-based side channel leakages. In Advances in Cryp-

tology - ASIACRYPT 2019 - 25th International Conference on the Theory and

Application of Cryptology and Information Security, Kobe, Japan, December

8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in Computer

Science, pages 285–314. Springer, 2019

This work revisits the location side-channel and examines novel exploitation tech-

niques that outperform the current state-of-the-art. This project was conceived and

led by Kostas Papagiannopoulos. The author handled the raw data (i.e., timeseries)

collected from the microprobes, and compiled them into 2D matrices to be processed

by the neural networks classifiers. Alberto Sonnino and the author, designed and

executed a series of inference experiments with pre-trained neural networks on the

ARM Cortex-M4’s SRAM. Moreover, the author designed, trained and evaluated the

custom neural network classifier based on convolutional layers.

Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek, Dusan Klinec,

and George Danezis. A Touch of Evil: High-Assurance Cryptographic Hardware

from Untrusted Components. In Proceedings of the 2017 ACM SIGSAC Confer-

ence on Computer and Communications Security, CCS 2017, Dallas, TX, USA,

pages 1583–1600, 2017

This work proposes a novel and practical high-assurance system architecture that re-

tains its security properties in the presence of several malicious or faulty components.

The author led the effort of designing and implementing the cryptographic protocols,

prepared the performance and scalability experiments and processed the results.

George Danezis had the original idea and direction of the project, and contributed

in the protocol design. Petr Svenda and Dusan Klinec worked on debugging and

1.3. Other works 20

optimizing the JavaCard implementations to further improve our experimental results.

Dan Cvrcek built our hardware prototype and provisioned the smartcards before

the experiments. Andrea Cerulli contributed the security proof for our threshold

signature scheme.

1.3 Other works
This section lists works that are not part of this thesis and were published by the au-

thor either individually or in collaboration with others. While not all the publications

listed here are related to the problem of information leakage, many of them investi-

gate relevant topics. Our research on market manipulation [24, 25, 26] is inspired

by past works on the effects of information leakages on the market efficiency [27]

and study how sophisticated traders exploit infrastructure inefficiencies to gain an

informational advantage. Moreover, [28] proposed a privacy-preserving scheme that

aims to improve the state of the art on data privacy and non-interactive publicly

verifiable computations.

Vasilios Mavroudis, Karl Wüst, Aritra Dhar, Kari Kostiainen, and Srdjan Capkun.

Snappy: Fast On-chain Payments with Practical Collaterals. In 27th Annual Network

and Distributed System Security Symposium, NDSS 2020, San Diego, California,

USA. The Internet Society, 2020

Vasilios Mavroudis and Petr Svenda. JCMathLib:Wrapper Cryptographic Library

for Transparent and Certifiable JavaCard Applets. In Proceedings of the 1st In-

ternational Workshop on lightweight and Incremental Cybersecurity Certification,

CyberCert 2020, all-digital. IEEE, 2020

Vasilios Mavroudis and Hayden Melton. Libra: Fair Order-Matching for Electronic

Financial Exchanges. In Proceedings of the 1st ACM Conference on Advances

in Financial Technologies, AFT 2019, Zurich, Switzerland, pages 156–168. ACM,

2019

Vasilios Mavroudis. Bounded Temporal Fairness for FIFO Financial Markets. In

Proceedings of the 26th International Workshop on Security Protocols. Springer,

1.4. Responsible Disclosure & Ethics 21

2019

Vasilios Mavroudis. Market manipulation as a security problem: Attacks and

defenses. In Proceedings of the 12th European Workshop on Systems Security,

pages 1–6, 2019

Vasilios Mavroudis and Michael Veale. Eavesdropping whilst you’re shopping:

Balancing personalisation and privacy in connected retail spaces. In Living in the

Internet of Things: Cybersecurity of the IoT, pages 1–10. IET, 2018

Alexander Hicks, Vasilios Mavroudis, Mustafa Al-Bassam, Sarah Meiklejohn, and

Steven J. Murdoch. VAMS: Verifiable Auditing of Access to Confidential Data.

CoRR, abs/1805.04772, 2018

1.4 Responsible Disclosure & Ethics
In some of our works, we identified vulnerable or compromised production systems.

In all such cases, we provided all the available information to the operators of the

affected systems and worked with them to ensure that the problems had been patched

before we publicly communicated our findings. We did not acquire or handle any

user information, and all our experiments used data from publicly available sources

that did not contain sensitive or personal information.

Chapter 2

Definitions & Preliminaries

Information leakage can be broadly defined as [32]:

“The exposure of sensitive information to an actor that is

not explicitly authorized to have access to that information.”

While the above definition is generic and agnostic to the individual characteristics

of the underlying system or protocol, leakages are better understood when studied

within the context of the system or protocol affected. In fact, most works adopt

definitions of leakage specific to the systems and protocols considered. For exam-

ple, [33] studies the exposure of sensitive user data and introduces a metric that

quantifies leakage by estimating it through the loss of privacy. In the same con-

text, [34] uses differential privacy which defines and bounds leakage with regard to

parameters ε and δ . Studies on hardware side-channel attacks focus on protecting a

secret encryption key and thus define leakage as key bits recovered or the number

of possible key candidates [35]. In the context of finance, information leakage is

often considered to be the early exposure of information that can be exploited by a

receiving trader, and not the release of the information in general [27].

We now provide the background on various technologies that are core to the

systems and protocols we evaluate in later chapters.

2.1 User Tracking
Every time a user visits a website or other online resource, their behaviour provides

highly specific information about their interests and needs. This information is

2.2. Ultrasonic Beacons 23

collected and analysed by advertisers who can then tailor their content accordingly.

2.1.1 Profiling

Behavioral targeting is a common practice in the advertisement industry, where the

user’s past activity is used to build a personalized profile on the user’s interests.

This profile, along with demographic data (e.g., gender, location), is then utilized

by ad networks to better target their campaigns. A common way this information

is passed on to advertisers is through real-time bidding (RTB) auctions where ad

buyers compete for advertising inventory on a per-impression basis and decide

their bids depending on the specific characteristics of the users (e.g., jewelry ads

may have different prices depending on the user’s gender) [36]. Since 2011, more

than 80% of the North-American advertisers have switched to RTB for buying ad

impressions [37]. Not surprisingly, this fine-grained data collection comes also with

various privacy implications, and even though the data are not directly provided to

the ad buyers, it has been shown that leakage of user profile information is hard to

prevent [36, 38, 39].

2.1.2 Ultrasound Tracking Frameworks

Ultrasound tracking frameworks (e.g., [40, 41, 42, 43, 44]) are software compo-

nents released by tracking service providers. These frameworks enable applications

(e.g., an Android app) to perform user/device tracking using ultrasonic beacons

(see Section 2.2). They are usually provided as libraries and are incorporated in

the app owned by the client (e.g., supermarket loyalty apps). Such libraries expose

proprietary methods needed for uBeacon-related operations (e.g., discovery, trans-

mission demodulation, correctness verification) and almost always require access to

the device’s microphone.

2.2 Ultrasonic Beacons
Ultrasound beacons (i.e., uBeacons) are high-frequency audio tags that can be emitted

and captured by most commercial speakers and microphones but are not audible by

humans. These beacons encode a small sequence of characters and symbols, which

in most cases serves as an identifier for fetching content from an external server or

2.2. Ultrasonic Beacons 24

A
H

L

s U

18000Hz 20000Hz19000Hz

-69dB

-60dB

-48dB

-36dB

-27dB

Figure 2.1: Spectrum plot of a uBeacon encoding five symbols using the MFSK frequency
modulation scheme.

for pairing two devices together. Currently, there is no commonly accepted standard

or specification, and thus each company uses its own beacon encoding format and

communication protocol. As a result, there are multiple incompatible frameworks,

providing varying levels of security. From a technical perspective, an ultrasound

beacon has a duration of only few seconds but the exact encoding method varies

greatly depending on the requirements of the application (e.g., range of transmission,

volume of information to be sent) and the vendor.

One of the most commonly used modulation techniques is Multiple frequency-

shift keying (MFSK) [45, 46] that divides the spectrum between 18,000 Hz and

20,000 Hz in smaller chunks and assigns each one of them to a symbol (e.g., a char-

acter). Parameter M determines the size of the alphabet. For instance, for a chunk

size of M = 26 (75Hz), a tone in 18,000 Hz could correspond to character ‘A’, while

one at tone in 18,075 Hz to character ‘B’ (see also Figure 2.1). Another parameter is

the duration of each tone (i.e., symbol duration time), with many applications opting

for a period of one second per symbol. Besides these, vendors often also incorporate

some built-in error-prevention features. For example, many vendors use a set prefix

to signal the beginning of a new uBeacon and disallow subsequent occurrences of the

2.3. Internet Communications 25

same character. To decode an MFSK uBeacon, frameworks apply a fast Fourier trans-

form and Goertzel’s algorithm to each incoming signal. This process distinguishes

the individual frequencies and retrieves the original characters/symbols [47]. It is

computationally lightweight and can be performed on mobile devices with limited

computational resources. In advertisement applications, the extracted sequence is

then submitted to the company’s backend and the corresponding resource (e.g., ad)

is fetched over the Internet.

2.3 Internet Communications
A very large percentage of modern communications is conducted over the Internet

with tens of thousands petabytes being transferred on a monthly basis. As a result,

Internet communications have been the subject of an abundance of research works

and a prime target for malicious parties that seek to breach the security or the privacy

of the users. To prevent such attacks several protocols and systems have been

established over the years.

2.3.1 The Transport Layer Security Protocol

The Transport Layer Security (TLS) protocol is a cryptographic protocol that is com-

monly used to establish secure two-party communication channels on the Internet.

It is utilized in a wide range of applications such as web browsing, email, instant

messaging and voice over IP, and employs end-to-end encryption between the two

parties to protect the integrity and the confidentiality of the transmitted data. The

two participants first negotiate the ciphersuite’s parameters and then perform an

one-time handshake to generate the cryptographic keys that will be used to protect

the contents of their communication. Following a successful handshake, all the data

exchanged is encrypted. To prevent man-in-the-middle attacks a client accessing a

TLS-enabled server verifies the identity of the server through a public-key certificate

issued by a trusted certification authority. For a detailed analysis of the TLS protocol

please refer to [48, 49, 50, 51]. As the TLS specifications have undergone various

changes over the years, we focus on the latest two versions of TLS: 1.2 [52] and

1.3 [50].

2.3. Internet Communications 26

2.3.2 Fingerprinting Attacks

As Internet protocols matured, it became increasingly harder for adversaries to launch

successful attacks against the underlying encryption schemes at a reasonable cost.

Instead, another class of attacks emerged. Fingerprinting attacks aim to exfiltrate

sensitive information from a given encrypted traffic stream by exploiting pattern in

the encrypted data.

The majority of past works in the area has focused on website fingerprinting that

targets users routing their traffic through anonymity networks (e.g., the Tor anonymity

network) [23, 16, 17, 19, 20]. Such works aim to uncover the website visited by

the user from a pool of possible websites that are of interest to the eavesdropping

adversary.

Webpage fingerprinting is orthogonal to that goal as it aims to identify the

specific page accessed by the user. Such attacks can be launched against both

anonymity networks and standard end-to-end encryption protocols such as TLS

(e.g., [53, 54]). So far, webpage fingerprinting has not received much attention in the

literature, despite the fact that the Tor user-base is only a fraction of the total number

of TLS users (see Section 3.1).

From a technical perspective, both adversaries exploit the leakages occuring

through the various data-transmission patterns (i.e., byte counts, sender and recipient)

to uniquely identify a loaded website or a webpage. However, webpage fingerprinting

presents additional challenges, as websites tend to reuse the same template/theme

in all their pages. Thus, webpages belonging to the same website exhibit only

partially unique transmission patterns (i.e., reduced leakage volume), with the only

differentiating factor being the content of each page. This limits the amount of

useful identifying information one can extract from the traffic stream. In contrast,

in website fingerprinting, the whole stream can be uniquely-identifying as websites

usually use different themes/template.

2.4. Dimensionality Reduction 27

2.4 Dimensionality Reduction

We now review a class of techniques commonly used to transform data from a

high-dimensional space into low-dimensional representations. Traditional clustering

algorithms such as k-means [55], Gaussian mixture models [56], and DBSCAN [57]

operate on hand-crafted features designed to expose data structure and similarity.

However, as the data dimensionality grows, uncovering the structure and designing

reliable similarity metrics becomes a more difficult task. Transforming the data to a

lower-dimension representation that retains structure is therefore an appealing goal.

Guo et al. [58] argue that the scope of shallow techniques for structure-

preserving dimensionality reduction such as Principle Component Analysis (PCA)

is limited. To counter this problem, a more recent line of work [59, 58, 60, 61] has

focused on applying deep learning methods for dimensionality reduction upon which

clustering can be applied. Broadly, deep learning-based clustering algorithms fall

into two categories: (1) learning a lower-dimensional representation of the data and

then applying clustering, and (2) jointly accomplish feature learning and clustering

by defining an objective in a self-learning manner. One of the most widely used

techniques is Stacked AutoEncoders (SAE) [61, 62, 63, 64, 59] which fall into the

former category. For instance, Alom and Taha [65] used a SAE to learn a lower-

dimensional data embedding and then use k-means clustering for intrusion detection.

The drawback of SAE is that they often require layer-wise pretraining which can

make their deployment expensive as a large number of training samples is required.

2.5 Neural Networks

Neural networks and stochastic gradient descent (SGD) are the core work horses

behind the “deep learning revolution” [66, 67]. Given access to data, X with a label

set Y , the goal of supervised machine learning is to learn the conditional distribution

p(Y |X). Neural networks define a parameterized function fw : X → Y that when

trained with SGD attempts to approximate the conditional p(Y |X). A neural network

is a composition of one or more layers of artificial neurons (i.e., perceptrons) such

that given an input x, to layer i, the input to layer i+1 is given by:

2.5. Neural Networks 28

σ(wT
i · x+bi)

where wi denotes the model weights that govern the strength of a connection between

two neurons, bi is a bias vector, and σ is a non-linear activation function. Popular

choices of non-linear activation functions are ReLU(x) = max(0, x) and the sigmoid

function. The final layer can be interpreted as a probability vector by applying the

softmax function to outputs (sometimes referred to as logits). Given an input x,

logits fw(x), where fw(x)k is the logit value of the kth class, and true label y, a loss

function outputs a scalar based on how strongly an input would be assigned the true

class label. The most common loss function to use in supervised neural network

training is the log-loss defined as −y log(fw(x)y).

Model weights are then updated based on ∂−y log(fw(x)y)
∂w ; averaging this loss

over batches of inputs, computing the derivative with respect to model weights, and

updating these weights in the opposite direction to this derivative is what is known as

SGD and has produced state-of-the-art results on classification problems in a large

number of fields [67, 68].

2.5.1 Convolutional Networks

Convolutional Neural Networks (CNNs) are defined as a mathematical workflow

composed of a combination of convolutional, nonlinear, pooling (downsampling),

and fully connected layers:

1. Convolutional layers: During the forward phase, input data are convoluted with

some filters (features) to produce feature maps depicting where the features

are actually located. During the backward phase, filter weights are readjusted

(learned) so as to minimize a chosen loss function.

2. Pooling layers: The feature maps are downsized to reduce computational

complexity and increase model robustness.

2.5. Neural Networks 29

Figure 2.2: A basic convolutional neural network architecture, also featuring pooling, non-
linear and fully connected layers.

3. Nonlinear layers: Nonlinear functions are invoked to provide normalization.

Thus, scores generated by previous layers are converted to a probability distri-

bution over the classes or are set to zero if they are negative.

4. Fully connected layers: Usually the final layers of the entire stack; a classic

multi-layer perceptron that implements a voting scheme during the forward

phase, while during the backward phase the weights are readjusted (learned)

by minimizing a loss function.

Figure 2.2 depicts a sample CNN with the above basic layers. The key difference

between CNNs and typical deep forward networks is that in CNNs, dimensionality

reduction is an immediate result of the training process. Considering two or more

inputs of high dimensionality, CNNs are able to learn the voting weights of the

fully connected layers, as well as the features (filters) on the convolutional ones

through back propagation. Due to their high performance, CNNs are one of the most

well-studied neural network architectures and in many cases have been shown to

outperform prior works in various problem domains [69]. [69]

2.5.2 Low-dimensional Embeddings

Neural network embeddings are learned representations of discrete variables

(e.g., words or sequences of words) as continuous vectors in a low-dimensional

space [70, 71]. Such representations significantly reduce the dimensionality of the

input data, while they retain most of its information content. Embedding techniques

are commonly used in recommendation systems as the reduction in the feature space

makes learning easier. Similar benefits have been also observed in the context of

classification, where the accuracy of a classifier and the volume of the training

2.5. Neural Networks 30

data needed, depend heavily on the dimensionality of the input space [72, 73]. Be-

sides these, dimensionality reduction can also provide additional application-specific

advantages e.g., enhance the robustness of the classifier to perturbations [74, 75].

Chapter 3

Related Works

This section discusses prior works on research areas relevant to our contributions.

As outlined in Chapter 2, the literature on information leakages is fragmented across

several research areas as its definition varies depending on the specificities of each

case. Additional research works, related to our findings, methodologies and the

security of the schemes used are also presented in later chapters.

3.1 Traffic Fingerprinting
The literature on Internet traffic fingerprinting is very elaborate and covers several

different manifestations depending on the context. Several works attempt to identify

the browser/app or infer characteristics of the setup (e.g., operating system) used by

the user [76, 77, 78, 79]. Such techniques are usually used to either identify malware

initiating TLS connections or to keep track of various traffic and application trends

on the Internet. For example, one of the most recent works in the area, [80] uses 8

billion unlabeled TLS sessions from several countries to identify popular enterprise

TLS applications. This line of research does not aim to exploit any of the leakages

present. In fact, many of these works argue that their techniques do not pose a threat

to the end-users’ privacy.

To the best of our knowledge, Cheng et al. [81] were the first to focus on

privacy leakages on SSL 3.0 and introduced webpage fingerprinting in 1998. Their

methodology was validated through a series of simulations on three small datasets,

assuming static content. Mistry et al. [21] is another early work in the area which

3.1. Traffic Fingerprinting 32

manages to fingerprint a small scale website (<100 pages) by observing the transfer

sizes of SSL packets. Following up on these works, Sun et al. [82] proposed a Jaccard-

coefficient-based similarity metric between observed and collected encrypted traffic

traces. This technique achieved a low false positive rate, however, their results

were based on traffic from websites. Moreover, Danezis et al. [53] outlines a small-

scale experiment on a static dataset (the exact size of the dataset is not reported),

while Bissias et al. [22] and Cai et al. [23] propose improvements on the existing

fingerprinting methodologies and verify their results on small (<100 webpages),

static datasets too. Miller et al. [54] is one of the most recent works in the area. They

use a dataset of webpages from various different websites and train and test their

model on subsets of the whole set (up to 500 webpages each). They achieve a 90%

accuracy on a top-15 adversary. They provide no experiments on larger websites

or setups that would show how their technique could handle distributional shift.

Finally, Dubin et al. [83] studies traces from video streaming services and proposes

a technique that reaches 95% classification accuracy on a dataset of 100 Youtube

videos.

Various insights used in webpage fingerprinting papers were motivated by works

on website fingerprinting attacks against the Tor anonymity network [9]. Such attacks

focus on inferring the website that the user has visited but not the specific webpage

loaded [16, 17, 18, 19, 20]. Previous works on Tor-based website fingerprinting

have employed standard machine learning techniques for classification such as k-

NN [16], Support Vector Machines [17], random forests [19], and more recently

neural networks [18, 20]. Overall, the state of the art in website fingerprinting is

considerably more advanced compared to that of webpage fingerprinting with some

works being able to fingerprint up to 3,000 separate classes [20]. However, to our

knowledge, [84] is the only past work (both in website and webpage fingerprinting)

that considers the problems of distributional shift and operational-cost and proposes

a model that exhibits some adaptability. The main limitations of these works are: 1)

they use the machine learning model for both feature extraction and classification,

and 2) they test their techniques on sets of up to 100 classes. The former entails

3.2. Audio Channels 33

that some form of retraining is still needed every time a webpage/website changes

considerably, while the latter does not provide a reliable indication on the scalability

of the technique to larger sets.

3.2 Audio Channels

It has been known for several years that audible and inaudible audio can be used

for data transmission [85]. In fact, there are open-source implementations of soft-

ware modems [86] and TCP/IP networking stacks [87] specifically tailored to the

characteristics of the audio medium. Security research has focused primarily on

the ultrasonic part of the audio spectrum (due to it being imperceptible by humans)

and various studies have shown its capacity to operate as a low-cost covert or side

channel [88, 89, 90, 91, 92, 93].

For example, [94] introduces an optimized modulation technique for ultrasonic

frequencies that provides reasonable bandwidth and allows for inter- and intra-device

communication. A noticeable side-effect of such channels are audible “clicks” that

occur due to the sudden frequency changes. However, the authors in [94] manage to

eliminate this effect too, making the channel completely imperceptible by humans.

Petracca et al. [95] focus on modern mobile devices and conclude that a wide range of

attacks that use audio as a covert channel are possible due to the lack of fine-grained

access control. The authors demonstrate that a malicious app can use the phone’s

speaker to issue commands that would be picked up and blindly executed by other

benign applications on the same phone through the microphone. For example, the app

can trigger and control voice-activated apps (e.g., “OK Google, play some music” or

“browse on evil.com”). In a similar vein, they show that the microphone can be also

abused by malicious applications that eavesdrop sensitive information (e.g., while a

screen-reading, text-to-speech application is “reading” a user’s confidential email).

In chapter 5, we also find that vulnerabilities in multi-application environments can

adversely affect the security of other co-hosted applications.

Besides security research, audio channels have also found other uses in the

industry. One instance is Intrasonics [96], a technology, which exploits the natural

3.3. Hardware Side-channels 34

echo filtering of the human brain to encode data in inaudible echo sequences.

3.3 Hardware Side-channels

In 2002, D. Agrawal et al. demonstrated that electromagnetic (EM) emanations

can be used to retrieve information from cryptographic devices where the power

side-channel is unavailable [3]. This work spawned a whole new branch of research

on side-channel attacks, while much later served as the basis for location-based

exploitation techniques. For example, the work of Sugawara et al. [97] demonstrates

the presence of location-based leakage in an Application-specific integrated circuit

(ASIC). In particular, they show that the power consumption of the chip’s SRAM

conveys information about the memory address that is being accessed. They refer to

this effect as “geometric” leakage since it relates to the memory layout. Similarly,

Andrikos et al. [98] performed preliminary analyses using the EM-based location

leakage exhibited at the SRAM of an ARM Cortex-M4. The work of Heyszl et al. [99]

manages to recover a secret scalar by exploiting the spatial dependencies of the

double-and-add-always algorithm for elliptic curve cryptography. The experiments

were carried out on a decapsulated FPGA, using near-field microprobes that identify

the accessed register. Schlösser et al. [100] use the photonic side-channel in order

to recover the exact SRAM location that is accessed during the activation of an

AES Sbox lookup table. This location information can assist in key recovery, thus

even cases of photonic emission analysis can be classified as location-based leakage.

Moreover, countermeasures such as RSM [101] rely on rotating lookup tables to

mask the data. Location-based leakage can identify which lookup table is currently

under use and potentially weaken masking.

We distinguish between “location leakage” and “localized leakage”. The former

arises when knowledge of a component’s (e.g., register, memory region) placement

assists the recovery of the key. The latter occurs when the adversary is able to

focus on analyzing the leakage of only a specific (usually small) region of the

chip. For example, recovering the memory address accessed during an Sbox lookup

implies a location leakage. Being able to measure the leakage right on top of a

3.4. Malicious circuitry 35

processor’s register file implies that the adversary is capturing localized leakage.

Note that capturing localized leakage can be useful for data-based attacks as well as

for location-based attacks. The works of Unterstein et al. [102], Immler et al. [103]

and Specht et al. [104, 105, 106] acquire localized leakage via a microprobe in order

to improve the signal-to-noise ratio of their data-dependent leakage. The work of

Heyszl et al. [99] uses the same technique in order to improve the signal-to-noise

ratio of their location-dependent leakage.

For clarity, we also distinguish between “location leakage” and “address leak-

age” [107]. Address leakage refers to leakages that occur through addressing mech-

anisms (e.g. the leakage of the control logic of a storage unit). Such leakages can

be observed even far from the storage unit itself (e.g., at memory buses or at the

CPU). In contrast, location leakages encapsulate both address-related and spatial

effects. In location leakages, the leakage is caused by the address leakage as well as

the leakage of the unit itself, which is often observed near it. We refer to the latter as

“spatial leakage”. For example, accessing a table in memory requires indexing and

memory addressing in the CPU (address leakage). In addition, accessing causes the

memory itself to be activated (spatial leakage). In most cases, the adversary is able

to observe both types of leakage but it is often hard to distinguish the exact origin of

the emanations measured.

3.4 Malicious circuitry

Malicious circuitry has been the subject of a large number of works with numerous

new attacks and exploitation techniques being proposed in the last decade. For

instance, the authors in [108] design two hardware trojans and implement a proof-

of-concept attack against the PRINCE cipher [109]. The novelty of their attacks

is that they use dopant polarity changes (first introduced in [110]), to create a

hard-to-detect fault-injection attack backdoor. [111] also introduces a hardware

trojan attacking RSA applications. In this attack, the adversary is able to use power

supply fluctuations to trigger the trojan, which then leaks bits of the key through

a signature. Another hard to detect class of trojans (inserted by fabrication-time

3.4. Malicious circuitry 36

attackers) was introduced by Yang et al. in [112]. Such trojans leverage analog

circuits and require only a single logic gate to launch their attack (e.g., switch the

CPU’s mode). Apart from these, evasive and stealthy triggering techniques have

been proposed in [113, 114, 115, 116, 117].

Faulty components have been also reported in commercial and military hard-

ware [118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]. In all these

cases, the errors were eventually attributed to honest design or fabrication mistakes

but the systems were left vulnerable to leakages regardless. One instance of weak

cryptographic hardware exploitation is introduced in [130]. In that work, Bernstein

et al. study the random number generators used in smart cards and discover various

malfunctioning pieces. For example, this attack allowed them to break 184 public

keys used in “Citizen Digital Certificates” by Taiwanese citizens. Similarly, [131]

uncovered several smart card chips with leaky cryptographic algorithm implementa-

tions.

To address the aforementioned threats, different approaches have been proposed.

The most common ones attempt to either detect malicious circuitry or prevent its

insertion. Detection techniques aim to determine whether any hardware trojans

exist in a given circuit and involve a wide range of methods such as side-channel

analysis [132, 133, 134, 135], logic testing [136], and trust verification [137, 138, 139,

140]. On the other hand, prevention techniques aim to either impede the introduction

of trojans or make such circuitry easier to detect. Common prevention methods

involve split manufacturing [141, 142, 143] which tries to minimize the circuit/design

exposure to the adversary, logic obfuscation [144] and runtime monitoring [145, 146].

Other works consider verifiable computation architectures (such as [147]) to

provide guarantees for the correctness of the computation on untrusted platforms.

However, they come with a significant overhead and do not address the secure

handling of secrets or the protection from side-channel attacks. The use of multi-

party computation protocols to distribute trust between untrusted manufacturers

during the fabrication process has been theoretically discussed in [148, 149]. Finally,

a smaller body of work attempts to tackle the even harder problem of inferring

3.5. Fault-Tolerant Systems 37

additional information about the malicious circuitry (e.g., its triggers, payload, exact

location) [132, 133].

3.5 Fault-Tolerant Systems

Component redundancy and diversification are both key concepts of N-variant sys-

tems that aim to achieve high tolerance [150] against non-intentional faults. Such

a system is the Triple-Triple Redundant 777 Primary Flight Computer [151, 152]

that replicates all its computations in three processors and then performs a majority

voting to determine the final result. The applications of N-variance in adversarial

scenarios have been studied in only a few works that focused mainly on software

attacks. In particular, [153] introduces a method for memory safety by generating

randomized system copies which result in disjoint exploitation sets. This method

can effectively thwart buffer overflow attacks. Similarly, [154] proposes a N-variant

design that also aims to generate disjoint exploitation sets. Unfortunately, these meth-

ods can only protect against (potentially exploitable) unintentional errors and are not

effective against fabrication-time attacks. Heterogeneous architectures with commer-

cial off-the-shelf components have been also proposed in [155, 156]. However, the

proposed designs provide protection against integrity attacks but not leakages as the

computations are simply replicated between the different components of the system.

Another relevant line of work studies fault-tolerance in decentralized systems

and the ability of the participating nodes to reach an agreement under specific

latency and responsiveness assumptions. Notable problems in the area are state

machine replication (SMR) [157, 158, 159, 160] and reaching consensus [161, 162]

in the presence of byzantine (BFT) [163] or fail-safe failures. Interestingly, solving

consensus and SMR is not equally expensive (computationally) in all cases [164].

Those problems are considered under three types of timing models (synchronous,

partially synchronous [165] and asynchronous [166]) depending on the latency of

delivering messages between the participating nodes. The asynchronous model is

typically more challenging, in particular due to results such as the FLP theorem [167,

168] showing that it is not possible to guarantee the termination of a deterministic

3.5. Fault-Tolerant Systems 38

protocol if at least one process may have a crash failure. In contrast, the same

problem has solutions under the synchronous assumption [163].

Chapter 4

Internet Communications

This chapter studies leakages in the Transport Layer Security (TLS) protocol [52, 50],

one of the most widespread protocols used by billions of people to protect the

confidentiality and integrity of Internet communications. While TLS has been

deployed in various applications (e.g., email, voice-over-IP, instant messaging), we

focus on its primary use as part of the Hypertext Transfer Protocol Secure (HTTPS).

In particular, we investigate whether encrypted traffic from TLS 1.2 and 1.3 leaks

sufficient information for an adversary to attack the privacy of web users at a large-

scale.

4.1 Introduction
The Internet has grown to host 1.2 billion websites and serves 161.3 Exabytes of

traffic per month [169, 170, 171]. As a result, the security and privacy properties

of communications over the Internet have been studied extensively, and various

protocols and standards have been established. An abundance of works focused on

the cryptanalysis of these protocols, improving their security significantly over time.

In this chapter, we go beyond cipher cryptanalysis and study traffic fingerprinting, a

class of attacks that exploit leakages in the traffic encryption protocols and extract

sensitive information about the users or the contents of their communication. Unlike

cryptanalytic attacks, traffic fingerprinting does not assume any flaws of the encryp-

tion scheme but instead uses patterns and meta-data leaked by the traffic stream

itself.

4.1. Introduction 40

Figure 4.1: Illustration of a webpage fingerprinting scenario where the user loads a website
through a TLS tunnel while an adversary eavesdrops on the encrypted traffic for
surveillance or censorship purposes. Such a passive adversary can be someone
sniffing traffic on a local wireless connection, an Internet router or the victim’s
Internet service provider.

Traffic fingerprinting is one of the most well-studied types of attacks against

anonymity networks [23, 16, 17, 19, 20, 18, 84, 172, 173], where eavesdropping

adversaries attempt to distinguish the websites visited by users. These adversaries

extract features from the encrypted data exchanged between a targeted user and

the entry node of the anonymity network without any assumptions of flaws on the

network’s encryption. For example, neural networks have been shown to be able

to fingerprint websites based only on the sequence of packet lengths transmitted by

each party and their respective direction [18, 84, 172].

Despite the fact that the TLS protocol is used by several billions of users, the

literature on webpage fingerprinting is sparse and aged compared to that on website

fingerprinting. This chapter extends the considerably smaller body of work on

fingerprinting attacks against TLS [81, 53, 22, 23, 52, 54]. Fingerprinting adversaries

against TLS have a different goal as they aim to uncover the specific webpage loaded

by the user and not just its parent website. The latter would be trivial as TLS versions

1.2 and 1.3 reveal the IP address of the website visited by the user. However, TLS

conceals the requested webpage by encrypting all transmitted data as well as the

webpage path.

Nonetheless, both lines of research (webpage and website fingerprinting) share

a mostly common methodology when evaluating techniques. In particular, they

adopt scenarios that study the performance of the proposed fingerprinting model

under the worse-case scenario for the user (optimal for the adversary conditions).

4.1. Introduction 41

This is a common practice in the security literature as the accuracy of the model

serves as a privacy upper-bound that the user can reliably assume under all possible

circumstances. However, optimal fingerprinting scenarios are not always reliable

indicators of a model’s practicality. For example, a fingerprinting model that has a

very high classification accuracy under some very specific optimal conditions is not

guaranteed to remain as performant in other more realistic settings.

This leaves a gap in the literature on fingerprinting attacks and raises doubts

about the degree of threat they pose [54, 76]. For example, despite the fact that

webpage fingerprinting attacks are a known problem, generic claims about “privacy”

on TLS appear in several specifications and industry documents [174, 175, 176,

177, 178, 179, 52]. Moreover, the TLS 1.2 Request for Comments (RFC) explicitly

includes “privacy” in the primary goals of the protocol [52] but does not provide a

definition for it:

“The primary goal of the TLS protocol is to provide privacy and

data integrity between two communicating applications.”

Similarly, privacy is also mentioned in a variety of articles and technical re-

ports [174, 175, 176, 177, 178, 179]. While TLS provides some “privacy” compared

to plaintext communications, it cannot be assumed to reliably protect the user’s

browsing habits from sophisticated eavesdropping adversaries. On the other hand,

the constrained scenarios considered in the literature ([53, 22, 23, 52, 54]) do not

provide strong evidence that those attacks are practical and scale to larger websites,

while they could potentially provide a false sense of privacy to Internet users.

In this chapter, we revisit those assumptions and argue that fingerprinting models

should be also evaluated under non-ideal conditions. We compile a list of important

factors that can directly affect the performance of a model and, consequently, its

practicality. This list is not exhaustive but it includes some of the main difficulties

faced by passive adversaries in modern deployments (e.g., large number of webpages,

fast-changing contents). We then outline the basic properties that a fingerprinting

adversary should have in order to be practical and argue that most of the existing

4.1. Introduction 42

fingerprinting techniques fail to meet one or more of them. This is because those

models were designed to operate optimally under static, non-changing conditions

(e.g., constant webpage/website contents) and provide no adaptation mechanisms.

Thus, an adversary has to constantly retrain the model in order to keep up with any

form of distributional shift.

To evaluate if a realistic and performant adversary is possible, we use adaptive

fingerprinting and study it under various adverse scenarios. This technique allows

for rapid and inexpensive adaptation to distributional shift without the need for

retraining. Our results show that it performs very well on static settings and that it

retains similar levels of accuracy in scenarios where the fingerprinting targets evolve

over time. Moreover, we find that neither TLS 1.2 and TLS 1.3 can reliably provide

privacy in the presence of webpage fingerprinting adversaries, even in the case of

websites with thousands of pages. Thus, users can rely on the TLS protocol to protect

their credit card numbers and other private information (e.g., medical results) but

not their browsing habits (e.g., eBay product pages, frequently visited subreddit

webpages, online encyclopedias).

Besides attacks, fingerprinting techniques have also found applications in mal-

ware detection in network settings [180, 76, 77, 181, 182]. Network administrators

employ fingerprinting techniques to identify malware, based on the TLS channels

it establishes with its remote command & control servers (e.g., botnets using Twit-

ter profiles to receive commands from their controllers [183, 184, 185, 186, 78]).

In the rest of this chapter, we focus on surveillance scenarios due to the ramifica-

tions of such leakages to the privacy of individuals. However, we believe that our

results could inform advancements in malware detection too. Overall, this chap-

ter revisits the adversarial setting adopted in the fingerprinting attacks literature,

discusses various new practicality factors and argues for scenarios that consider

non-optimal fingerprinting conditions. While fingerprinting in such settings is more

difficult, it allows for more reliable conclusions with regards to the practicality and

the performance of the proposed models.

Adaptive fingerprinting can reliably classify thousands of webpages, has low

4.2. Adversarial Setup 43

overhead and is robust to various forms of distributional shift (e.g., content, website,

and TLS protocol version changes). Based on it, we show how an adversary can train

their model only once and through a rapid and inexpensive adaptation procedure

fingerprint webpages/classes that were not included in the original training set. Our

findings indicate that the TLS protocol cannot provide privacy with regard to the

users’ browsing habits even in the case of large websites. Moreover, we demonstrate

that fingerprinting attacks can be effective on websites with thousands of webpages,

regardless of the website’s details and the protocol version used (TLS 1.2 or 1.3).

4.2 Adversarial Setup

In this section, we introduce the threat model, the attack scenarios and the practicality

constraints that we will consider in the rest of this chapter.

4.2.1 Threat Model

We assume a polynomially-bound passive adversary that can capture (but not tamper

with) the packets exchanged between the client and the server. Such adversaries

are used in the majority of the works on traffic fingerprinting [16, 17, 18, 172, 84,

23, 19, 20, 173]. The client communicates with a server over an encrypted channel

established through TLS while the adversary intercepts some or all of the packets

exchanged. For instance, the adversary may reside on the same home network, an in-

termediate Internet traffic router or the victim’s Internet service provider (Figure 4.1).

The goal of the adversary is to infer the specific webpage visited by the user (e.g.,

Wikipedia lemma, eBay product page). As neither TLS 1.2 nor 1.3 conceal the IP

address of the webserver, we assume that the adversary is aware of the website that

the user is visiting1. The above threat model is in line with the adversarial setup

outlined in the specifications of the TLS protocol versions 1.2 and 1.3 [52, 50]:

1Even though an IP address may correspond to many websites (i.e., multihosting), this is nei-
ther guaranteed (e.g., large websites have dedicated servers) nor provides a provably large/secure
anonymity set.

4.2. Adversarial Setup 44

4.2.2 Realistic Fingerprinting Scenarios

We now focus on fingerprinting scenarios that provide a realistic representation

of the conditions under which an adversary has to operate. While this may make

it harder to design and implement effective attacks, it enables us to draw reliable

conclusions about the capabilities of the adversary in real settings. In particular,

we focus on three aspects of such scenarios: 1) Number of classes (e.g., webpages,

websites), 2) Distributional shift (e.g., content updates), and 3) Shared resources

(e.g., common HTML theme, shared images).

Number of classes

Past works on webpage fingerprinting considered scenarios where the user is as-

sumed to visit a fixed set of known webpages while the adversary aims to infer

which webpage was loaded [23, 81, 53, 22]. Unfortunately, their experiments were

conducted on datasets of up to 500 webpages. Such datasets have been criticized

as being unrealistically small [18] and led to doubts about the practicality of the

proposed attacks, especially as many modern websites comprise of several hundred

or even thousands of unique webpages. In comparison, recent works on website

fingerprinting evaluated their proposed techniques to significantly larger sets (a few

thousand websites) and showed that adversaries achieve a high performance under

ideal conditions [18, 20]. Overall, we argue that fingerprinting techniques should be

evaluated in at least one scenario with a moderate or large number of classes.

Distributional Shift

Another common assumption in past works on fingerprinting is static web-

page/website contents. While assuming content invariability may look reasonable

at first glance, it results in significant performance degradation in practice as pages

change [172]. A model that is trained to classify a set of pages (e.g., Wikipedia

articles, subreddits, eBay listings) will have to retain its accuracy as their contents

get updated. This can be achieved either by retraining the classification model

on the latest version of the webpages/websites or through other means. From an

4.2. Adversarial Setup 45

adversarial perspective, the cost of keeping up with the ever-changing contents is

directly connected to the practicality of the technique. For example, a model that

needs to be retrained each time one or more webpages get updated is likely to incur

large operational costs thus making the technique impractical, even if it achieves

high accuracy. Overall, the degree of tolerance to distributional shift and the cost

of adapting to changes are also important factors that must be considered when

evaluating a fingerprinting technique.

Shared Resources

While the previous two factors concerned both webpage and website fingerprinting,

webpage fingerprinting scenarios should also account for an additional parameter.

It is common for the pages of a website to share a HTML theme (e.g., the same

stylesheet, Javascript imports, background image files). This reduces the volume

of unique information transferred in each page load, thus making it harder for the

adversary to uniquely identify each webpage.

4.2.3 Practicality Considerations

We now introduce a list of requirements for a fingerprinting technique to be consid-

ered practical and realistic.

Accuracy & Scalability. An effective fingerprinting technique needs to provide high

inference accuracy for at least medium-sized and preferably large-sized websites

(with regards to their number of webpages). For example, a technique that achieves

80% accuracy on a set of 100 websites is not necessarily equally accurate when used

on larger sets.

Adaptability. As discussed in Section 4.2.2, websites periodically add and remove

webpages, as well as update their contents. Practical fingerprinting techniques must

be resilient to such distributional shift and retain their accuracy [172]. Moreover,

while adversaries may be able to cope with small page updates, it is not uncommon

for webpages to have most of their content gradually replaced (through small but

4.3. Adaptive Fingerprinting 46

frequent updates). This gradual process leads to a large distributional shift where

the current version of a page has a very small overlap with the version the model

was initially trained on. The practicality and the performance of a fingerprinting

technique depend on its ability to adapt to such changes (e.g., frequent retraining,

low generalization error) and the operational cost this entails.

Provisioning & Operational Costs. Making inferences from traffic traces should

come at a reasonable operational cost (i.e., in time and computational resources),

while provisioning the fingerprinting model may have a larger one-off cost. Mini-

mizing these costs results in more practical and easily-applicable models

Protocol-agnostic. While past works have focused on a specific protocol version, it

is advantageous for a practical adversary to be able to fingerprint webpages/websites

regardless of the underlying protocol version used by the user. For example, a

fingerprinting deployment that is tailored to only one protocol version of the TLS

protocol could potentially be temporarily circumvented by switching to a different

version (e.g., from TLS 1.2 to 1.3) or even to a different ciphersuite than the current

one. This is not a strict requirement (protocol-specific attacks can be also very

effective) but we consider this a desirable (albeit not necessary) feature for highly-

transferable models.

4.3 Adaptive Fingerprinting

Our proposed methodology allows adversaries to fingerprint webpages from non-

static, changing websites. The core components of our system (Figure 4.2) are the

embedding neural network and the classification algorithm that attributes samples to

classes (i.e., traffic traces to webpages). Its operation comprises of three processes:

provisioning, fingerprinting, and adaptation.

The computationally demanding provisioning process takes place only once,

while the lightweight fingerprinting and the adaptation processes are executed it-

eratively throughout the lifecycle of the deployment. This is primarily possible

due to the generic nature of the embeddings generated as part of the mapping step

(Section 4.3.2). The following sections provide the details of these operations.

4.3. Adaptive Fingerprinting 47

Figure 4.2: The eavesdropping adversary maintains a dataset of labeled traces from the
webpages they monitor. These traces are processed by the embedding neural
network and form the set of reference points. The reference points are then used
to classify the user’s traffic based on a proximity-based algorithm (e.g., k-nearest
neighbours). Optionally, the adversary can keep populating the dataset with
new reference points to stay up-to-date with the latest version of the webpages,
without the need to retrain the embedding model.

4.3.1 Provisioning

Before the system is usable, the embedding neural network that reduces the di-

mensionality of the input traffic traces needs to be trained. Our training process is

illustrated in Figure 4.4 and involves four steps.

Data Collection & Preprocessing.

Initially, the adversary compiles a list of webpages (preferably from the website(s) to

be fingerprinted) and then proceeds to repeatedly load each webpage several times.

For each visit, the network traffic between the client and the server is stored in a

packet capture file (pcap file) and placed in a library of raw traces.

Following the collection of the raw traffic traces, the adversary processes them

into sequences of integers (Figure 4.3). Each sequence corresponds to one of the IP

addresses that transmitted data during the pageload and contains the byte-counts sent

by that IP address over time.

In particular, each time an IP addresses sends out traffic, the new byte-count

is appended to the corresponding sequence while the rest of the sequences are

appended with a zero-count element. This is done to preserve the relative order of

the transmissions. If an IP address sends more than one consecutive packets (i.e., no

traffic from other IP addresses is interleaved), the byte-counts of those packets are

aggregated and only their sum is appended.

4.3. Adaptive Fingerprinting 48

Figure 4.3: Illustration of how a network traffic of a pageload (labelled “A”) is converted
into IP sequences. Large websites often load various parts of their pages (e.g.,
JavaScript files, images) from different servers (e.g., for load balancing). Thus,
each time the webpage is loaded, the client establishes TLS sessions with and
fetches content from several different servers. Each sequence corresponds to the
bytes sent by one of these servers while the first sequence always corresponds
to the user.

Unlike our approach, prior works on website fingerprinting represent the data

exchange as a single sequence where incoming packets are denoted by their byte-

count and a negative sign, while outgoing by the byte-count with a positive sign [17,

19, 20]. This is equivalent to using only two IP sequences, one for incoming and one

for outgoing traffic. The reduction in the number of sequences is because anonymity

networks (e.g., Tor) conceal the IP addresses involved in a pageload as all the traffic

is routed through an entry node of the network. In contract, TLS does not protect

the IP addresses of the servers involved in a page load (e.g., user’s client, main

Wikipedia server, servers for auxiliary JavaScript files and images).

Following this step, the sequences can be optionally quantized to eliminate

noisy artifacts (e.g., small differences in the byte counts). At the end of this process,

the adversary has a dataset of labeled traces (each trace is a set of IP sequences

corresponding to a single page load) that can be used to train the neural network

(leftmost block in Figure 4.4).

Pair Generation

Given the dataset of labeled traces, the adversary generates positive and negative

pairs. Positive pairs comprise of two traces corresponding to the same webpage,

while negative pairs to different ones. The most straightforward strategy to generate

pairs is at random, while more advanced techniques have been also proposed in the

4.3. Adaptive Fingerprinting 49

Figure 4.4: To train the embedding model, we use a dataset of labeled traffic traces that
originate from the same website (e.g., Wikipedia). Using that set, we generate
pairs of traces from the same class and from different ones (i.e., positive and
negative pairs). These pairs are then used to iteratively train the model until
sufficient accuracy has been achieved.

relevant ML literature (e.g., Hard-Negatives, Semi-Hard-Negatives [187, 188, 189]).

The pairs are labeled based on the similarity of the samples (1 for similar, 0 for

different) and are then used to train the embedding model.

Training

In this step, we train the machine learning model to produce embeddings that are in

close proximity when the input traces originate from the same webpage, and far-apart

otherwise. Intuitively, the role of the embedding network is to extract robust features

that are less sensitive to artifacts (e.g., packet re-transmissions, non-deterministic

resource loading order) and map the samples in the embedding space (Figure 4.2).

As outlined in Section 2.5.2, classification algorithms (e.g., k-nearest neighbours)

that rely on the distance between the samples (e.g., euclidean, cosine) perform

significantly better in low-dimensional spaces compared to when they operate on

the original high-dimensional feature space. The specific architecture of the neural

network and its training details depend on the needs of the adversary and the use

case.

Following the methodology outlined in [190, 191], for every training pair, we

embed the two input sequences and compute the similarity of the two embeddings.

For positive pairs, the similarity must be approximately equal to 1, while for negative

pairs approximately equal to 0. To estimate the correctness of our model and update

the network parameters accordingly, we compute the contrastive loss [191] given by

4.3. Adaptive Fingerprinting 50

the formula:

L (d,y) = yd2 +(1− y)max(margin−d,0)2 (4.1)

where d is the (euclidean) distance between the two embeddings e1 and e2

(d = ||e1− e2||2), y is the known similarity label of the pair and the margin is a user

defined parameter used to improve the separation between the different classes in the

embedding space (i.e., dissimilar pairs should have a distance at least equal to the

margin). The training process is completed once sufficient performance has been

achieved and produces a model that can determine if two traffic sequences originate

from the same website based only on the leakages of the cryptographic protocol used.

Initialization

Following the training of the embedding model, the system is populated with data

that serve as reference points when classifying unlabeled traffic traces captured

by the adversary. The adversary compiles a list of the webpages they intend to

fingerprint, crawls them and and embeds the traffic sequences to generate a reference

set of labeled embeddings (steps 1 and 2 in Figure 4.2). The reference set is then

stored and used every time an unlabeled traffic trace is classified.

4.3.2 Fingerprinting

Given an initialized deployment with a populated reference set, the adversary can

then proceed to fingerprint unlabeled samples captured from the user’s traffic.

Capturing and Mapping

Depending on the setup, the adversary may capture the user’s traffic at an Internet

service provider (ISP) level or may reside in the same network and thus capture the

traffic locally. Upon converting the packet capture into sequences, the adversary

uses the embedding model to map the unlabeled sequence into the embedding space

(step 3 in Figure 4.2). As outlined in Section 2.5.2, the embeddings generated

for each sequence are continuous vectors that represent the packet exchange in

4.3. Adaptive Fingerprinting 51

a low-dimensional space. It should be noted that, while this step determines the

spatial proximity of the embeddings (based on their characteristics), the process is

completely label-agnostic. This provides greater flexibility to the whole system as

the embedding model does not need to be retrained if the labels change. In contrast,

the majority of past works perform both the feature-extraction and the classification

through the same model (e.g., convolutional neural networks [18]), thus fitting it

specifically to the labels seen during the training. This is an important difference

with past works as it minimizes the memorization of the specific characteristics of

the webpages in the training set. In Section 4.5, we examine how accurately the

embedding model can map sequences from webpages never seen during training.

Classifying

The adversary then classifies the embedding that corresponds to the user’s traffic

trace (step 4 in Figure 4.2). Intuitively, each captured sample is classified based

on the labeled traces (reference points) that are in its proximity in the embedding

space. The distance metric and the classification algorithm can be freely chosen by

the adversary. In most cases, the algorithm outputs a list of the most probable labels

for the examined sample and the frequency each one of them occurred (i.e., number

of samples in proximity with that label).

4.3.3 Adaptation

Besides the initialization and the fingerprinting processes, our methodology involves

an optional adaptation process. It provides a computationally lightweight process that

brings the deployment up to date with changing webpages and prevents performance

degradation [172].

Initially, the adversary crawls and identifies the webpages/websites that have

been updated. The adversary can sequentially visit the webpages or in cases of

larger websites, use techniques for monitoring and detecting changes in millions of

webpages that were originally developed for web-archiving purposes [192, 193].

Given one such page, the adversary loads it, collects a traffic trace and finger-

prints it as outlined in the previous section. If the accuracy of the classifier is not

4.4. Datasets 52

adequate, the adversary crawls the page several times and updates the labeled traces

in the reference samples dataset. The decision to update the reference samples of a

particular class (in case the contents of the page have changed) can be taken based

on a user-defined accuracy threshold (e.g., maximum discrepancy from the accuracy

of the freshly-initialized deployment).

The main advantage of this process is that it does not require any retraining of

the model or of any other component of the system (unlike the majority of past works

on fingerprinting [16, 17, 19, 20, 18, 53, 54, 23]). Retraining a machine learning

model is a costly operation and would impede the scalability of the attack if it was to

be executed every time one of the thousands of pages/websites is updated. Instead,

adaptive fingerprinting enables the adversary to remain up to date with fast-changing

pages through a short sequence of inexpensive and low-complexity operations.

4.4 Datasets
To better understand the performance of fingerprinting adversaries under non-ideal

conditions, we evaluate our proposed fingerprinting technique on two datasets with

TLS traffic traces: one with traces from Wikipedia and the other with traces from

Github. We focus on TLS as webpage fingerprinting attacks can affect many more

users and have received little attention in the relevant literature. Moreover, webpage

fingerprinting presents some additional practicality challenges (compared to website

fingerprinting) that have not been studied thoroughly in the literature (e.g., the effect

of shared HTML templates across all the pages of a website).

To the best of our knowledge, there are other no publicly-available datasets of

that size with TLS traces, partially due to the little attention webpage fingerprinting

has received. As outlined in Section 4.1, our goal is to enable further research into

(adaptive) adversaries, scalability and webpage fingerprinting. For this purpose, we

will publicly release both our datasets as well as our trained models. However, in

order to limit potential abuse of our published data and models, we sought to crawl

websites that:

v Do not have inherently sensitive contents (e.g., medical websites).

4.4. Datasets 53

v Explicitly allow crawling (e.g., “crawl-delay” directive is present in the

robots.txt).

v Have a large number of pages with varying types of content under a common

HTML theme.

We identified Wikipedia and Github as services that fulfill the above require-

ments: Both websites have a large number of webpages that use the same theme

but the text and media contents varying significantly between the webpages. They

also explicitly permit crawling and their contents are generally not privacy-sensitive

(we removed entries on potentially sensitive topics). Targets such as Amazon, eBay

and Reddit do not permit crawling and public fingerprinting models trained on these

websites have a high abuse potential.

Technical Details. Each dataset contains (encrypted) traffic traces as they would be

captured by the eavesdropping adversary introduced in Section 4.2.1. We employed

100 Amazon EC2 instances distributed over five geographical regions (20 instances

in each region). We opted for the “t3.small” instance type, which features 2 GBs of

RAM and up to 5 Gbps network bandwidth.

The instances crawled a list of URLs, captured the generated traffic, stored it as

a pcap file and processed it into sequences of bytes (Figure 4.3). To automate the

crawling process, we used Python 3.7 with the Selenium automation framework2.

To determine the browser to be used with selenium, we ran a small-scale experiment

that did not indicate significant differences in the captured traces between Chrome

and Firefox. However, instances using Firefox exhibited decreased stability. For

this reason and due to the substantial difference in their market shares, we opted to

use Google Chrome. The instances loaded the webpages strictly sequentially using

incognito mode. In addition to this, we made sure that there were no prefetched

resources, history or caches. No page loads took place in non-incognito browsing

mode to prevent artifacts in our traces from cached favicons [194].

Each instance ran only one crawling process that visited each URL on the

list sequentially in a random order. Before each visit, the crawler launched a Tcp-
2https://selenium-python.readthedocs.io/

4.4. Datasets 54

dump [195] process and then proceeded to load the page with Google Chrome.

Upon waiting 10 seconds for the contents to fully load, the Tcpdump process was

terminated and the captured traces were stored on a pcap file.

The Wikipedia dataset. Our Wikipedia dataset (i.e., Wiki19000) consists of encrypted

traffic traces from 19,000 distinct Wikipedia articles. We randomly chose 20,000

Wikipedia webpages and removed stub articles, articles on sensitive topics and

indexing pages. The remaining ∼19,000 webpages where placed in a list to be used

by the crawlers. To diversify our traces, each crawler shuffled the list and visited

each article only once in a random order. The crawling process lasted approximately

three days and costed approximately $300, thus making it relatively inexpensive to

replicate our data collection and further extend the dataset.

Wikipedia uses TLS 1.2 and the page contents are usually loaded from two

servers (one for text content and another one for media resources). We examined

the contents of the Wikipedia articles crawled over the period these three days and

found only minor changes on some articles. In total, the resulting dataset contains

1,900,000 traffic traces (100 traces for each URL). Capturing 100 samples per class

is on the lower end and is consistent with in some recent works [84].

The Github dataset. For our second dataset (i.e., Github500), we chose Github as

it was one of the few websites that had deployed TLS 1.3 at the time of the data

collection and permits crawling of its pages. Moreover, it features a moderate number

of webpages (i.e., projects) all sharing a common HTML theme.

Github allows projects to display a README page with information on the

project as well as with installation and usage instructions. The overlaying Github

template is common for all the projects but the contents of each page are managed

by the project’s contributors. Such pages include text, images and sometimes videos.

Images and videos are stored either internally on Github or on external servers. Our

dataset was generated by visiting the top 500 Github project pages3, 1,000 times

each. Each crawler instance shuffled the list of URLs and then visited each Github

page 10 times over the span of several hours. We chose to use the top-500 projects,

3https://gitstar-ranking.com/repositories

4.5. Experimental Evaluation 55

as actively maintained projects with substantial contributions almost always have a

detailed README page with information. In contrast, a random selection of pages

(similar to that of Wiki19000) gave us mostly README pages with either no or

minimal content (e.g., a single command line to compile the project).

Github uses TLS 1.3 and exhibits increased variability across various dimen-

sions. It employs a significantly distributed infrastructure and advanced load bal-

ancing techniques causing various discrepancies between subsequent pageloads of

the same page. Moreover, the number of servers involved is heavily dependent on

the contents of each project page (e.g., externally hosted images, scripts and media).

Due to this variability of the traffic patterns, we opted to collect 1,000 traces per class

(in line with [18]). The dataset contains 500,000 traffic traces: 500 articles visited

in random order 10 times by 100 crawler instances. Similarly with Wikipedia, we

observed that Github project pages were not updated frequently (e.g., on an hourly

basis) nor radically as they mostly provide compilation and usage details.

4.5 Experimental Evaluation
In this Section, we evaluate our proposed methodology by deploying and testing its

performance on real data. We use three scenarios that simulate real-world finger-

printing setups with non-optimal conditions for the adversary. We focus on webpage

fingerprinting scenarios as such attacks 1) have been systematically overlooked in

the literature (cf. website fingerprinting attacks), 2) are more severe as they can

affect many more users (i.e., the number of Tor users compared to that of Web users)

and 3) pose a more pressing threat to the privacy of individuals. For example, a

website fingerprinting attack could infer that the user is visiting Wikipedia, while

webpage fingerprinting attacks uncover the exact article loaded.

4.5.1 Implementation & Parameterization

For the implementation of our neural network, we use the Python deep learning

library Keras [196] as the front-end, and Tensorflow [197] as the back-end. For the

data preprocessing and classification algorithm, we use Numpy [198] and Scipy [199],

respectively.

4.5. Experimental Evaluation 56

Parameter Value(s)

Input layer 30 LSTM units

hidden fully connected layers 4 layers

Size of hidden fully connected layers 100 to 2000 neurons

Activation for hidden layers ReLU [202]

Size of output layer 32 neurons

Activation for output Leaky ReLU [203]

Optimizer Stochastic Gradient Descent [68]

Dropout 0.1

Learning rate 0.001

Batch Size 512 pairs

Distance Metric Euclidean distance

Contrastive Loss Margin 10

Table 4.1: The hyperparameters (top half) and the training parameters (bottom half) of our
embedding neural network.

As outlined in Section 4.3, we use contrastive loss [191] to train our model

on both positive and negative pairs. The margin of the loss function was set to be

10 and was determined through grid search ([200, 201]) among smaller and larger

values. To measure the proximity of the traffic embeddings, we use the euclidean

distance. The sizes of the hidden layers and the dimensionality of the produced

embeddings were determined through grid search (see Table 4.1). The architecture

of the embedding model and its hyperparameters were chosen carefully so as to

maximize the fingerprinting performance and accuracy. However, as explained in the

intro, past works have already shown that modern machine learning techniques can

achieve a very high accuracy [16, 19, 18]. Thus, our focus is not to outperform all

previous works but to study whether an adversary can retain such a high performance

in a considerably larger scale while simultaneously alleviating the need for static

targets.

For our classifier, we used the k-nearest neighbours algorithm with k = 250 for

the first three experiments. We were able to achieve better classification results by

adjusting the k parameter depending on the testing set but k = 250 produced consis-

4.5. Experimental Evaluation 57

tently good results regardless of the number of classes. An advantage of maintaining

the same configuration across all three of our experiments on webpage fingerprinting

is that we can compare our findings more reliably. In the four experiment, due to

the small dataset sizes we opted for k = 10. In all our experiments, we report the

average performance of 10 runs of the testing phase.

4.5.2 Experiment 1: Static Webpage Classification

In this experiment, we assume an adversary that aims to fingerprint the pages of a

small- or medium-sized website where all the pages share the same HTML template.

This first experiment studies the performance of our proposed technique against a

website with mostly-static webpages and a moderate percentage of shared content

(the HTML template and the graphics).

Using our methodology from Section 4.3, we train the adversary’s embedding

model on pairs of samples from our Wikipedia dataset. In particular, we use Set A

(Figure 4.5) that includes 90 samples for each of the 6,000 distinct webpages/classes

included in that Set. Upon completing the training phase, we deploy the model and

use it to classify the samples in set B (Figure 4.5). The samples in set B originate

from the same 6,000 classes but correspond to traffic traces that were not used during

the training phase (i.e., not included in Set A). During the classification phase, we

use set A as the adversary’s labeled sequences corpus (∼90 samples per class) and

then use the trained model to classify the remaining ∼10 samples per class from set

B (60,000 samples in total).

To better study the performance of our model, we run our recognition task on

different versions of Sets A and B containing 500, 1,000, 3,000 and 6,000 classes

respectively. As seen in Figure 4.6, out of a pool of 500 possible classes/articles, a

top-3 adversary (i.e., the adversary is allowed to guess up to three classes) is able

to correctly identify the Wikipedia article visited in more than >90% of the cases.

Moreover, top-1 adversaries have 58% probability of correctly labeling the encrypted

traffic trace, while top-10 adversaries are always able to correctly identify the page

loaded. In comparison, [54] reported a top-15 adversary with accuracy up to 90%.

4.5. Experimental Evaluation 58

Figure 4.5: For experiments 1 and 2, we use our Wikipedia dataset. The dataset is split into
four smaller sets, both across its classes and its samples. Experiment 1 trains
the embedding model on Set A and then validates the accuracy of the produced
embeddings on previously-unseen samples from the same classes (Set B). In
contrast, Experiment 2 reuses the trained model from Exp. 1 (trained on set A)
to embed samples from Set C as reference points. Experiment 2 uses Set D as
its test set. Note that the classes in Sets C and D are not represented in sets A
and B and vice versa. Moreover, no samples are shared between the Sets (e.g.,
no sequence from Set A is included in B, C or D).

Figure 4.6: We evaluated the accuracy of the model in sets that required the adversary to
attribute an encrypted traffic trace to a specific class from a set of 500, 1,000,
3,000 and 6,000 possible Wikipedia articles. For each class, we collected 100
samples, with 90 being used as reference points and the remaining 10 being
classified by the model.

4.5. Experimental Evaluation 59

The top-15 adversary from [54] has been the state-of-the-art so far as later works did

not report superior performance on datasets or similar size. Moving on to larger sets,

we evaluate the classification accuracy of our model in slices of Sets A and B with

1000, 3000 and 6000 classes (Figure 4.5). In the scenario of 1000 classes, a top-1

adversary is able to correctly classify previously unseen samples with 50% accuracy,

while in larger sets with 3000 and 6000 classes the same adversary achieves 35%

accuracy. In the 1000- and the 3000-classes scenarios, the top-10 adversaries are

able to correctly classify more than 90% of the samples. In the 6000-classes case, a

top-20 adversary also achieved above-90% accuracy. In other words, an adversary

who is allowed to choose 20 out of the 6000 labels (0.3% of the possible labels) has

on average > 90% likelihood of correctly inferring the page visited by the user. In

this and the following experiment, the classification of a single example in the testing

phase required ≤2 seconds. Adversaries that need to improve the performance

further can easily parallelize the mapping and classification steps.

Overall, we demonstrated that adaptive fingerprinting adversaries are scalable

and can classify with high accuracy samples originating from a large pool of potential

webpages. This result extends past works ([53, 54]) on webpage fingerprinting that

presented adversaries capable of classifying up to 500 pages but did not evaluate

on webpages with significant content overlap. We conclude that attacks against

webpages/websites that share part of their content are realistic and can be launched

even by adversaries with limited resources.

4.5.3 Experiment 2: Adaptability & Cross-class Transferability

One of the goals of our methodology is to investigate whether an adversary can

retain their classification accuracy even in cases of distributional shift (e.g., content

changes, addition of new classes) at a minimal cost. Such a characteristic would

significantly exacerbate the severity of fingerprinting attacks as it would make it

practical to fingerprint a dynamic set of webpages where classes are added, changed

and removed. Our fingerprinting methodology decouples these two tasks and allows

the ”encoding” model to remain class-agnostic, thus avoiding the need for any

4.5. Experimental Evaluation 60

costly retraining. Instead, the adversary can easily adapt to changes in the set

of webpages/websites or the contents of the webpages by updating the reference

samples in the corpus of labeled traces.

To simulate a scenario of extreme distributional shift, we design an experiment

where the adversary is classifying a set of articles that is completely disjoint from the

set that the model was trained on. This is the worst-case scenario for an adversary

who classifies samples from a set of webpages that is completely disjoint to the set

the training samples originated from. Such a difference between the training set

and the testing set can occur in cases where the pages change drastically. For that

purpose, we reuse the model trained in Experiment 1 (on Set A) to embed samples in

Sets C and D. As shown in Figure 4.5, Set A does not overlap with Sets C (and D) as

the former contains samples from 6,000 classes while the latter contain samples from

13,000 different classes. We consider our testing set to comprise Sets C and D, where

Set C populates the adversary’s dataset of reference samples and Set D contains the

samples that need to be classified. As in Experiment 1, we investigate the accuracy

of the model for slices of Sets C and D with different numbers of classes i.e., 500,

1,000, 3,000, 6,000, 13,000.

As seen in Figure 4.7, the classification accuracy of the adversary remains

almost identical to the accuracy achieved with sets of the same size in Experiment 1

(i.e., without distributional shift). A top-1 adversary achieves 58% accuracy in the

500-classes set and a top-3 adversary ∼90% accuracy. Similarly, a top-1 adversary

achieves almost 50% accuracy in the 1000-classes set and a top-4 adversary almost

∼90% accuracy.

This shows that the embedding model is learning the general leakage charac-

teristics of TLS streams rather than simply memorizing patterns that apply only

to specific pairs of samples or classes from the training set. For example, through

manual inspection of the traffic traces collected, we observed that the transmission

patterns of two samples from the same class can differ significantly. In one of them,

the images were downloaded in multiple consecutive chunks of fixed length, while

in the other they were fetched as a whole. Despite these differences, the model was

4.5. Experimental Evaluation 61

Figure 4.7: Accuracy of our fingerprinting model for varying numbers of classes (Wikipedia
articles) that were never encountered during training. The model was trained on
a fixed set of 6000 Wikipedia articles and evaluated on a completely disjoint set
of articles whose size ranged from 500 to 13,000 classes. For each class, our
dataset included 100 samples, with 90 being used as reference points and the
remaining 10 being classified by the adversary.

correctly embedding the two samples in relative proximity.

Moreover, the adversary performs considerably well in even larger sets of new

classes. In particular, a top-10 adversary achieved an accuracy of 90%, 80% and

70% in Sets with 3000, 6000, and 13000 classes respectively. This shows that our

fingerprinting methodology can be reliably used to embed and classify samples from

classes that were never encountered during training.

As seen in Figure 4.7, the adversary needs to increase their number of guesses

(i.e., parameter n of a top-n adversary) as the number of classes increases in order

for them to maintain the same level of accuracy (e.g., 90%). This is due to the

increasing number of collisions between cross-class samples in the embeddings

space. Intuitively, as the number of classes increases, the number of samples who

are erroneously mapped in proximity to another class increases as well. However, as

seen in Table 4.2, n increases slower than the number of classes. This implies that

while the absolute number of collisions increases with the number of classes, the

increase in collisions has a sublinear relationship with the increase of the number

4.5. Experimental Evaluation 62

Table 4.2: As the number of classes increases the accuracy of the embeddings decreases
as cross-class collisions become more likely. Thus, adversaries need to increase
parameter n to maintain the same level of accuracy. However, as seen in the
rightmost column n has a sublinear relationship with the number of classes.

Classes Top-n Accuracy n
#Classes%

500 3 89% 0.6%
1000 4 89% 0.4%
3000 10 90% 0.33%
6000 20 92% 0.33%

13000 30 89% 0.23%

of classes. In other words, for any percent increase in the number of classes the

adversary needs to increase their n by less than 1%.

4.5.4 Experiment 3: Sensitivity to Website themes and TLS ver-

sions

In this experiment, we examine the learning characteristics of our adaptive finger-

printing adversary. In particular, we evaluate 1) the effect of retaining multiple IP

sequences, and 2) the degree that the model can sustain distributional shift across

websites and TLS versions simultaneously.

As in Experiment 1, we train an embedding model on 6,000 Wikipedia arti-

cles (90 samples for each article) but we use it to classify traces from our Github

README dataset (500 webpages from the top 500 open-source projects, Sec-

tion 4.4). However, Wikipedia pageloads involve strictly 3 IP addressed (i.e., the

client’s browset, text server media server), while Github pages load resources from an

arbitrary number of servers. As our model operates on a fixed number of sequences,

we opted to represent the traffic as two sequences (i.e., traffic from and towards the

user’s browser). For this reason, we could not reuse our model from Experiment

1 (as it is trained to process three sequences) and had to retrain it to work on two

sequences. We then ran the recognition task again on the original Wikipedia dataset

(for a baseline) and on the Github dataset (both represented as two sequences).

4.5. Experimental Evaluation 63

Figure 4.8: We trained our embedding model on two-sequence traffic traces from Wikipedia
(TLS 1.2) and used it to embed and classify traces collected from Github (TLS
1.3). The model performs considerably better when operating on traces from the
same website and with the same protocol version it was trained on. However, it
still retains some of its accuracy. This indicates that some leakage characteristics
are preserved even across very different setups.

Figure 4.8 illustrates the results of our experiment. We observe that the classifi-

cation accuracy in the Wikipedia-500 set is reduced compared to that in the previous

experiments where we used one sequence per IP. This shows that using just two

traffic sequences (one for incoming and one for outgoing traffic) results in some

information loss.

Moreover, the performance of the model on the three versions of the Github

dataset (i.e., Github 100, 250, 500) shows that adversaries are able to retain a

fair classification accuracy even in this case of extreme distributional shift across

multiple dimensions. This indicates that some leakage characteristics persist across

IP encoding, websites and protocol versions and can be exploited by sophisticated

adversaries. Nonetheless, the reduced accuracy between Wikipedia-500 and Github

hints that the embedding model is sensitive to at least one of the dimensions that

were affected by the distributional shift.

4.5. Experimental Evaluation 64

4.5.5 Operational & Adaptation Costs

The above experiments study several aspects of modern fingerprinting attacks and

show that adaptive fingerprinting adversaries are scalable and accurate, even under

non-ideal conditions. We now discuss the costs of operating such a fingerprinting

deployment.

As seen in Experiment 2, the adversary can use the adaptation process (Sec-

tion 4.3.3) to swiftly swap the samples in the reference traces dataset with new ones

so as to keep up with content updates or to include additional webpages in the set.

This process does not involve any retraining as the embedding model can operate

on any traffic trace even if it originates from a class not encountered during train-

ing. This simplifies the adaptation process to only a few low-complexity operations

(i.e., collecting and embedding new samples) and enables the adversary to easily

compensate for any distributional shift. Moreover, the deployment and the operation

of the pipeline is inexpensive, as it requires only a small number of samples per

class (∼100) and only one training session for the embedding model. Nevertheless,

the training of the model requires access to a computer with a capable Graphics

Processing Unit card. However, this is an one-off cost (provisioning phase) that can

be easily overcome with on-demand cloud computing resources.

In comparison, all past works on webpage fingerprinting assume a non-changing

target set and would require some form of retraining to keep up with changes in

the input distribution [53, 22, 23, 54]. While this cost may seem reasonable when

considering small, fixed target sets (< 500 webpages), it quickly grows (due to the

constant retraining required) when considering several hundreds or thousands of

changing pages.

4.5.6 Limitations & Open Challenges

Despite our best efforts, there are still aspects of our experimental evaluation that

do not faithfully emulate all the challenges faced by a fingerprinting adversary. To

begin with, the traffic traces were generated by our crawler and do not correspond

to pageloads by real users. This is a common practice in traffic analysis works as

the produced dataset is ensured to be diverse and balanced (e.g., all webpages are

4.5. Experimental Evaluation 65

loaded as many times). However, the true pageload distribution of real users is

likely skewed with only a few webpages dominating the loads. Consequently, the

success of a fingerprinting adversary will depend mostly on their inference accuracy

on this small subset of frequently loaded webpages. In contrast, works that rely on

balanced datasets examine the average accuracy of the adversary which may deviate

significantly from the actual accuracy.

Moreover, all the traces were generated using the Chrome browser while in

practice the users may use various other browsers too. To our knowledge, this aspect

of webpage fingerprinting has not been studied. Interestingly, this factor is less

important in website fingerprinting, as the Tor browser is used by the vast majority of

the users. Additionally, our datasets do not include dynamically generated websites

that may partially alter the contents on each pageload, thus affecting the accuracy of

the embeddings.

Note also that we do not consider scenarios where the adversary has to classify

out-of-distribution samples (open-world scenarios in website fingerprinting). Such

scenarios are very common in website fingerprinting evaluations as the users can load

any website available on the whole world wide web (WWW). The adversary cannot

be assumed to have fingerprinted all WWW websites and thus needs to maintain a

separate class for traces from an unknown origin. In contrast, webpage fingerprinting

is concerned with websites that are practically finite. Thus, in many cases, it is

possible for an adversary to fingerprint all the pages of a website. For example,

Experiment 1 shows that an adversary could accurately fingerprint a website with up

to 6,000 pages. However, this requires that the adversary keeps track of all the pages

and updates their reference set each time a new one is added. This can become less

practical in cases of websites with millions of pages. Thus, it would be beneficial to

examine the performance of fingerprinting adversaries in scenarios with traces from

pages that do not belong to the reference set.

4.6. Defenses 66

4.6 Defenses

We now look into the space of potential defences against adaptive fingerprinting

adversaries and examine the applicability of solutions from the existing literature.

While introducing a new defence policy is beyond the scope of this chapter, our

findings allow us to rule out some approaches and draw attention on others that show

potential in thwarting such attacks.

One important observation is that adaptive fingerprinting attacks can affect both

the users of anonymity networks and the users of the TLS protocol (i.e., a very

large portion of the Internet users). However, the scope of potential defenses for

the TLS protocol is limited to only those countermeasures that have only a very

light impact on the bandwidth used. Intuitively, a protocol-level countermeasure

with a 10% bandwidth overhead, would result in an approximately equal increase in

the web-traffic bandwidth worldwide. For this reason, the majority of the defenses

proposed for Tor are not directly applicable to TLS.

In the rest of this section, we focus on defenses against webpage fingerprinting

attacks. This is due to the widespread adoption of the protocol and the limited

coverage that TLS fingerprinting countermeasures have received in the literature (cf.

fingerprinting defences for Tor).

As specified in Section 4.2.1, webpage fingerprinting aims to infer the specific

page visited by a user from a set of pages all of which belong to the same website.

This is a major difference to the website fingerprinting setup. In particular, each

website can be treated as a separate entity and thus the defenses can be deployed and

adjusted on a per-website basis. For example, a website with non privacy-sensitive

pages (e.g., a list of hardware drivers) could decide to not deploy any countermeasure

or optimize the deployment for low bandwidth impact (cf. for privacy). On the other

hand, a website with sensitive content could use a more conservative configuration.

Being able to configure the countermeasure on a per-website basis, allows us to

achieve protection without increasing the bandwidth overhead disproportionately.

In comparison, defenses for website fingerprinting attacks rely on a cross-website

anonymity set and thus require the deployment of the specific countermeasure by

4.7. Conclusions 67

several websites in order to be effective.

Furthermore, each website could configure the selected countermeasure so as

to always guarantee a minimum anonymity set size (i.e., number of webpages that

are indistinguishable) depending on the sensitivity of its content. We expect that

smaller websites (< 500 webpages) could make all their pages indistinguishable at

a relatively low bandwidth cost, while websites with more pages (e.g., Wikipedia)

will have to split their content into smaller anonymity sets and aim for intraset

indistinguishability.

Finding the optimal countermeasure, its policy and its configuration is an open

problem that could be studied in future works. For example, a realization of such a

per-website policy could be to use padding so as to conceal the byte length of the

webpages loaded. This is approach conceals not only the length of each individual

transmitted packet but also prevents timing attacks (e.g., with additional dummy

packets). An advantage of this approach is that TLS already has this capability

and thus would not require any protocol changes [50, 204]. Moreover, given that

padding is a well-studied technique, we could draw useful lessons from prior works

in the area (e.g., Pironti et al. [205] have shown that random-length padding is not

sufficiently effective).

4.7 Conclusions

The widespread adoption of encrypted communications (e.g., the TLS protocol on the

Internet) significantly reduced the scope of eavesdropping attacks and increased the

security of their Internet communications. However, it did not completely eliminate

the attacks that passive adversaries could launch. This chapter investigates how

leakages in the TLS protocol. can be exploited to launch webpage fingerprinting

attacks that target TLS traffic streams. It shows that sophisticated adversaries can

use embedding deep neural networks to infer the webpages loaded by the user and

for the first time demonstrates that they retain their accuracy under various types

of distributional shift. Based on these findings, we argue that leakages in TLS

is a pressing issue that has received disproportionately low attention. Especially,

4.7. Conclusions 68

when considering the number of users that are exposed to such attacks and the

nature of the data that can be leaked (e.g., health information from users browsing

condition-specific articles on medical websites).

A common solution to the privacy shortcomings of the TLS protocol is to use

anonymity networks which offer greater privacy by concealing the users’ communi-

cation meta-data. In the following chapter, we show how leakages in a seemingly

unrelated channel can be exploited to launch attacks against even such networks. In

particular, Chapter 5 focuses on leakages affecting the ultrasonic communications

channel and discusses how adversaries can utilize them to either breach the privacy

of its users directly or to launch deanonymization campaigns against anonymity

networks.

Chapter 5

Ultrasonic Communications

In this chapter, we study the security of the ultrasonic communications channel and

discuss how its shortcomings could be exploited to attack its users and seemingly

unrelated anonymity protocols such as Tor.

In chapter 4, we investigated how an adversary can use embedding models

to analyse the leakage of the TLS protocol and breach the users’ privacy. Several

such fingerprinting attacks have also been proposed for the Tor anonymity network.

In fact, due to the emphasis Tor places on the users’ privacy, the majority of the

past fingerprinting works have focused exclusively on it. This chapter expands the

literature on Tor towards a different direction. Instead of exploiting leakages in

the protocol itself, we show how an adversary could exploit other communication

channels to launch side-channel attacks against Tor.

Overall, the contributions of this chapter are twofold: 1) we study the security

and privacy properties of the less-studied ultrasonic communications channel, and

2) showcase how leakages on one channel could be used as a side-channel to attack

protocols on another channel.

5.1 Introduction
The increasing number of personal devices (e.g., smartphones, laptops, wear-

ables) [206, 207] has created a new need for technologies that track the users across

their different devices. To meet the demand, a set of novel tracking techniques based

on ultrasounds has emerged.

5.1. Introduction 70

Such techniques use a specific part of the audio spectrum to transmit information

in the form of inaudible sound beacons and link devices that belong to the same

user. Most of the technologies in the market use near-ultrasounds1 with frequencies

between 18,000 Hz and 20,000 Hz, which are inaudible to humans and can be

handled by standard computer speakers and microphones. For simplicity, in the rest

of this thesis, we will refer to all sound waves with frequencies higher than or equal

to 18,000 Hz as ultrasounds.

One example of such an app is Google Cast [208] that uses ultrasounds to pair

the user’s smartphone to Google Chromecast devices, even if the devices are not

part of the same wireless network. Apps such as Lisnr [44], ShopKick [209] and

CopSonic [42] use ultrasonic beacons to track the in-store position of the customers’

smartphones, study their behavior and serve them with relevant information and ads.

Cross-device tracking solutions require an even more complex setup and capture

ultrasonic beacons embedded into online/TV content so as to identify the different

devices owned by a user and subsequently push targeted ads (e.g., SilverPush [210]).

We first explore the security and privacy implications of these technologies and

study the surrounding application ecosystem for information leakages. We uncover

various security shortcomings and show that malicious third parties can abuse ultra-

sound beacons to launch a wide range of attacks against end-users. More specifically,

we find that existing ultrasonic communication protocols allow eavesdroppers to

passively collect information on the online activities and interests of a victim user,

while active attackers can even alter the user’s profile maintained by the advertisers.

Additionally, we find that state-level adversaries can coerce tracking operators to

launch deanonymization campaigns against individual anonymity network users and

communities (e.g., Tor anonymity network). To mitigate these risks, we design and

develop an extension for the Chrome browser that selectively suppresses the frequen-

cies within the ultrasonic spectrum. Moreover, we release a patch for the Android

permission system that enables apps to request access only to the ultrasonic spectrum

(and not to audible frequencies), as well as allows the user to grant or revoke access

1Cf. ultrasounds with frequencies higher than 20,000 Hz.

5.2. Ecosystem Overview 71

to that part of the spectrum on a per application basis. Finally, we discuss the need

for standardization of the ultrasonic beacon format, and we envision a new operating

system-level (OS-level) application programming interface (API) (similar with the

Bluetooth low energy beacons [211, 212, 213] in Android) that implements in a

single, trusted location the functionality to detect and decode beacons.

Overall, we conduct a thorough study of the security and privacy aspects of

the ultrasound-based tracking ecosystem, identify two information leakage vectors

and showcase their severity. We find that the introduction of a new communication

channel increases the risk of leakages and that vulnerabilities in multi-application

platforms can even affect applications do not directly make use of the channel. We

also discuss potential countermeasures and argue that fine-grained permission control

along with protocol standardization can prevent leakages in emerging communication

channels without impacting their usability.

5.2 Ecosystem Overview
In this section, we study products that use the ultrasonic communications channel

and discuss their technical details and capabilities. We organize the discussion by

grouping the apps and the techniques used depending on their objective: 1) proximity

tracking, and 2) cross-device tracking.

5.2.1 Proximity Tracking

Proximity tracking aims to determine the precise (e.g., at the vegetables’ isle in

supermarket XYZ) or relative (e.g., two meters from the device emitting the beacons)

location of a user. It has found applications in device pairing and marketing [40, 41,

42, 43, 44, 208, 214]. In a pairing scenario between two devices A and B, A encodes

a random PIN in an ultrasonic beacon and broadcasts it to all devices in proximity.

If device B is within the broadcast range, it captures the transmission, decodes it and

submit the PIN back to A through another channel (e.g., the Internet). This process

allows B to prove its relative physical proximity to A.

In marketing applications, ultrasounds are used track the customers’ in-store

behavior through their smartphones. Vendors often incentivise their customers (e.g.,

5.2. Ecosystem Overview 72

through discounts) to install new beacon-receiving apps or simply incorporate beacon

capabilities in their already existing loyalty apps. Ultrasonic tracking is suitable

for various types of venues (e.g., casinos, museums, retail shops, airports) and

relies on a grid of beacon transmitters installed in the premises. As a visitor moves

around the space, their mobile device captures the location-specific beacons and

submits them to the operators’ backend. The backend processes the information and

pushes notifications relevant to the location of the visitor (e.g., discounts for products

in proximity). Compared to Wifi and Bluetooth solutions, ultrasound tracking

deployments have a considerably smaller cost as they do not require expensive

transmitters and can make use of the already existing audio infrastructure of the

venue.

5.2.1.1 Google Cast

Google Cast [208] is an app developed by Google that reportedly utilizes ultrasound

beacons to facilitate device pairing between smartphones and Google Chromecast

devices [215]. A Chromecast device is a digital media player that, among others,

enables mobile devices to stream content on a television or on an audio system. In

this case, ultrasound beacons are used to prove physical proximity to the device,

taking advantage of the inability of ultrasonic beacons to penetrate through walls.

Ultrasound-enabled pairing allows users to connect to a Google Chromast device

and stream their content even if their smartphone is not connected to the same Wifi

network. Any user in the vicinity of a Google Chromecast device can request to pair

with it through the Google Cast app. The device then responds by broadcasting an

ultrasonic beacon carrying a unique 4-digit sequence. The Cast app captures the

beacon through the smartphone’s microphone, decodes it and submits it back to

Google’s backend through the Internet [215]. The pairing process is always initiated

by the user and the device supports also alternative manual pairing methods.

5.2.1.2 Lisnr framework

The Lisnr framework [44] is another product that uses the ultrasonic part of the

spectrum for proximity marketing and location-specific content, and has been already

incorporated in various smartphone applications. For example, an American football

5.2. Ecosystem Overview 73

team used the framework in its official app (with hundreds of thousands downloads)

to deliver content to fans in its home stadium [216, 217]. Moreover, the “Made

in America Festival” Android App [218] (also available for iPhone) used Lisnr to

stream real-time information to the event’s audience. In both cases, ultrasounds were

chosen as a convenient technology that makes use of the existing audio infrastructure

and requires no additional transmission equipment.

From a technical perspective, the Lisnr framework implements all the necessary

methods to capture ultrasonic beacons and fetches location-specific content from

the service provider. Upon execution, the app incorporating the framework runs

on the background and periodically accesses the device’s microphone to listen for

beacons. This is because the user is not expected to keep the app on the foreground

for the whole duration of the events (e.g., games, concerts). Once an ultrasonic

beacon is captured, the framework decodes it and extracts its content. If the content

is a message, the app displays it on the device’s screen. If the beacon encodes

a content identifier, the app fetches the corresponding data from the company’s

backend through the Internet. While the ultrasonic channel could be used to transmit

the data directly, its limited bandwidth and moderate transmission error rate make this

alternative impractical. For users that do not want to receive constant notifications,

some applications provide an option to deactivate the default listening behavior.

However, this is an application-specific feature and is not enforced by the Lisnr

framework.

5.2.1.3 Shopkick

Another real-world deployment using ultrasounds is the shopping application Shop-

kick [209] (available on Google Play Store). Shopkick aims to incentivise customers

to visit and purchase products from specific stores and brands. The app is listening

for ultrasonic beacons (i.e., walk-in tones) emitted by speakers installed in businesses

and stores cooperating with Shopkick [219]. When a user visits a store, the app gets

activated and reward points are credited to the user’s account. These points can be

later spent by the user for discounts or products at a reduced price.

To realise this functionality, Shopkick has developed its own framework for

5.2. Ecosystem Overview 74

ultrasonic communications. Shopkick uses beacons to encode the unique identifier

of the store and the precise in-store location. When the app captures a beacon, it

decodes the encapsulated identifiers, and submits them to the Shopkick servers,

along with the user’s details. Then, the company’s backend verifies the validity of the

“walk-in” and credits the user with the points. In contrast to the majority of the other

implementations, the user must manually launch the app to access the microphone

and start monitoring the spectrum for beacons. This is possible in this particular use

case because the customers are strongly incentivized to use the app but would likely

result in very low usage rates in scenarios where the users are not directly rewarded.

5.2.2 Cross-device Tracking

Cross-device tracking (XDT) aims to “follow” a user accross their different devices,

and is currently used by many major advertisement networks to track users across dif-

ferent platforms. These techniques provide various degrees of precision, depending

on the use case and the user identification method used. For instance, probabilistic

XDT techniques are used in cases where the identification method does not guarantee

high accuracy (e.g., when user fingerprinting techniques are used) and thus there is a

degree of uncertainty regarding the set of devices owned by the user. On the other

hand, deterministic XDT techniques achieve much higher precision but are often

cumbersome. For example, deterministic techniques may require users to sign in to

the advertiser’s service from all the devices they own (e.g., “Sign in with Facebook”).

Ultrasound cross-device tracking (uXDT) is also classified as deterministic but

has considerably fewer requirements compared to other deterministic techniques.

Figure 5.1 illustrates the actors participating in the ultrasound-based mobile adver-

tising ecosystem and their interactions during an example tracking scenario. At

first, the advertising client sets up a new advertising campaign and provides the ads

to the uXDT provider along with the profile of the users to be targeted (¶). The

advertising client may be a company or an individual that is interested in promoting

their services or products (e.g., a supermarket chain), while the uXDT provider is

the vendor providing the infrastructure for user-tracking. The uXDT provider then

generates a unique inaudible ultrasonic beacon b and associates it with the client’s

5.2. Ecosystem Overview 75

Figure 5.1: The interactions between the actors of the mobile advertising ecosystem during
a beacon-enabled cross-device tracking scenario.

campaign (·). b is then forwarded to the content provider (¸) chosen by the client

(e.g., TV station, news website, media portal), who then embeds it in its content

(¹). When a user accesses that content, b is emitted and captured by any of the

uXDT-enabled devices in proximity (e.g., the user’s smartphone) (º). Those devices

then report b to the backend of the uXDT service provider and receive ads that

are targeted to the user’s interests (»). The uXDT device displays those ads (¼)

prompting the user to visit the advertising client’s store (½).

uXDT is one of the most advanced uses of ultrasonic beacons, as it requires both

sophisticated infrastructure (e.g., profiling algorithms processing millions of sub-

missions) and a network of publishers who incorporate beacons in their ads/content.

Thus, only a few companies are able to provide uXDT services. Additionally, the

use of uXDT techniques is a controversial topic (e.g., [220, 221]) and is common

for companies to not publicize the details of their tracking deployment.

5.2.2.1 SilverPush uXDT framework

One of the most widespread uXDT frameworks was developed by SilverPush and in

April 2015 was tracking more than 18 million devices [221]. To study the operation

of the framework, we reversed-engineered the History GK application [222] (an app

incorporating the SilverPush uXDT framework), as neither the source code nor their

5.2. Ecosystem Overview 76

POST /V2/register HTTP/1.1

HOST: app.silverpush.co

Content-Length: 605

isp=comcast&lon=-77.0544012&lat=38.9046093&lan=en&osv=5.1&appv=1.0.3.12&mk=motorola&time=1453335684308

&mac=34%3Abb%3A26%3Aff%3A90%3A7b&appn=History+GK+in+Hindi&ct=Wifi%2FWifiMax&os=android&phn=2024569876&res=888px+X+540px&imei=

359300051224119&ua=Mozilla%2F5.0+%28Linux%3B+Android+5.1%3B+XT1023+Build%2FLPC23.13-34.8%3B+wv%29+AppleWebKit%2F537.36+%28KH

TML%2C+like+Gecko%29+Version%2F4.0+Chrome%2F46.0.2490.76+Mobile+Safari%2F537.36%0A%0ADalvik%2F2.1.0+%28Linux%3B+U%3B+Android+

5.1%3B+XT1023+Build%2FLPC23.13-34.8%29&mo=XT1023&co=us&pkg=com.gktalk.history&aid=926b0b3f5a1d710d&acc=_ultrasoundxdt%40gmail.com

Send over HTTP (not HTTPS)

Location

MAC address Google account ID

Phone number

Figure 5.2: Example of an insecure, non-standardized tracking implementation: The frame-
work collects sensitive information on the user (e.g., Google account ID, phone
number, geolocation, the device’s MAC address) and submits them over a
plaintext HTTP connection to the tracking service provider’s servers.

uBeacon specifications were made public.

The framework runs in the background and monitors the spectrum for ultrasonic

beacons (every 20 seconds) though the device’s microphone. To assist in beacon

discovery, the app starts up automatically each time Android boots. When a uBeacon

is captured, its sequence is decoded, verified and then submitted to the company’s

backend. Each such submission contains the Android ID of the device and the beacon

sequence, and is performed through a plaintext HTTP connection. If there is no

access to the Internet at the time, the information is stored and reported later. When

the app is first executed, the framework extracts a wealth of identifiers including the

user’s phone number, longitude and latitude, the IMEI of the device, the Android

ID, and the Google account ID (email address) and reports them to the company’s

backend (Figure 5.2). This information is used (1) to build and maintain the user’s

profile, (2) to display targeted ads, and (3) as filtering parameters for real-time

bidding auctions (e.g., targeting users in a specific city).

During the installation process, the user grants permission to the app to use

the microphone and to be launched at boot. However, the user is neither explicitly

notified that a uXDT framework is being installed, nor that the microphone will be

periodically active. We were not able to find any way for the user to disable the

tracking functionality, apart from completely uninstalling the app.

5.3. Vulnerabilities & Attacks 77

5.3 Vulnerabilities & Attacks

This section examines different security and privacy shortcomings of the ultrasonic

communications ecosystem and investigates whether they can be exploited to leak or

corrupt user data. We first outline how an adversary can inject and replay beacons and

introduce the concept of bacon traps. We then outline how these simple constructs

can be utilized by sophisticated adversaries to realise more complicated attacks

(Table 5.1). In all the scenarios considered, we assume that there is at least one

user that has an ultrasound-enabled app installed on their device (e.g., a game app

embedding a uXDT framework).

Beacon Injection & Replay. Due to the lack of authentication and replay-protection

mechanisms in many of the apps examined, the ultrasonic channel is prone to

injection and replay attacks. For instance, an adversary can trivially capture and

replay a uBeacon from an existing advertisement campaign to any uXDT-enabled

device. Capturing an ultrasonic beacon does not require any sophisticated equipment

and can be performed using the recorder app of most commercial smartphones.

Alternatively, the adversary can craft their own beacons and inject them to nearby

ultrasound-enabled devices. To emit a uBeacon, the adversary can use a commercial

smartphone, the audio infrastructure of a venue or any other device with speakers that

support frequencies up to 20,000 Hz. Beacon replays have been already reported in

production systems. For instance, users of the shopping application Shopkick [209]

(available on Google Play Store), soon after the deployment of the system, started

uploading collections of near-ultrasonic walk-in tones that other users could replay

from their computer speakers to get the reward points. Large-scale injection attacks

could also be used to influence TV analytics, where inaudible beacons are often

used to track user engagement and behavior. An adversary could replay the beacons

corresponding to a specific TV program to a large number of ultrasound-enabled

devices resulting in inaccurate measurements and results. Unfortunately, replay-

prevention mechanisms (e.g., monotonically increasing nonces) are impractical due

to the very limited bandwidth of the channel.

Beacon Traps. A beacon trap is a maliciously crafted resource (e.g., webpage)

5.3. Vulnerabilities & Attacks 78

that an attacker uses to inject beacons into a user’s ultrasound-enabled device. The

advantage of beacon traps compared to plain beacon replay is that they do not

require physical proximity to the victim’s device. The attacker can use a small

snippet of code that, when loaded on a browser, automatically reproduces one or

more attacker-chosen ultrasonic beacons. For this technique to be effective, the

adversary needs to attach the snippet to a resource that is accessed by the user. For

example, an attacker could set up an innocuous-looking web page that, once visited,

would play the audio beacon in the background. An attacker could also use existing

cross-site scripting vulnerabilities present in third-party websites to emit beacons.

Alternatively, an attacker could inject beacon-playing JavaScript (or HTML) in the

users’ traffic by launching a man-in-the-middle attack or by setting up a (malicious)

Tor exit node [223, 224]. As a last example, an attacker could also send beacon

through an audio message. Beacons emitted by traps are captured and handled by

ultrasound-enabled devices as valid beacons (e.g., a uXDT app would report the

beacon back to the uXDT backend).

Attack Goal Attacker capabilities

Unauthorized Audio Monitoring Monitor parts of the audio spectrum
abusing the user’s consent.

� Developer of an
ultrasound-enabled app, or

� Corrupt the source code of an
ultrasound-enabled app.

Deanonymization Retrieve the identity of anonymity
network users.

� Physical proximity or lure the
user to a beacon trap.

� Gain access to PII collected by
the ultrasound service provider.

Profile Inference Collect information on a user’s
interests and activities.

� Access to network traffic.

Profile Confluence Collect information on a user’s
interests and activities.

� Physical proximity to the user.

Profile Corruption Alter the user’s profile maintained
by the service provider.

� Physical proximity to the user
or lure the user to a beacon trap.

Table 5.1: Types of attacks exploiting ultrasound-enabled tracking to leak and corrupt user
information.

5.3. Vulnerabilities & Attacks 79

5.3.1 Unauthorized Audio Monitoring

Due to the granularity of the Android permission system, beacon discovery currently

requires full access to the device’s microphone (requesting access to a specific part

of the audio spectrum is not possible). Consequently, this practice violates the least

privilege principle as ultrasound-enabled apps gain also access to audible frequencies

which are not relevant to their operation.

This could be exploited by a malicious developer who may request access to

the microphone under the pretense that their app performs ultrasound pairing and

then update their app to monitor the audible spectrum too. Such practices are not

uncommon and researchers have found hundreds of malicious apps disguising as

benign apps [225, 226]. Moreover, while the initial version of the app may be benign,

a security breach in the development firm could allow third-party actors to exploit

the permission by stealthily pushing an eavesdropping update. While such a security

breach may occur in any app, the fact that the microphone permission has already

been granted, makes the attack much easier for the adversary as the users will not be

prompted for the permission again during the update.

Another side-effect of overprivileged apps is that benign vendors who use

ultrasound technologies risk to be perceived as “potentially malicious” by users.

Users are more concerned about their privacy after realizing that their decisions have

put them at risk of data exfiltration [227], and could, thus be more hesitant with apps

that require sensitive permissions such as access to the device’s microphone. This

could be further exacerbated by the wide discrepancies in the practices followed

by companies when it comes to informing the users and providing opt-out options.

In particular, our examination of ultrasound-enabled apps showed that in several

cases no notice or opt-out option is given to the user (apart from the mandatory

microphone permission request during installation).

5.3.2 Deanonymization

This attack enables an adversary to deanonymize one or more users of an anonymity

network (e.g., Tor, I2P, VPN). For example, a journalist could uncover the identity

of a whistleblower who uses the Tor anonymity network to leak highly confidential

5.3. Vulnerabilities & Attacks 80

documents. To perform the attack, a malicious journalist would need to either be

in proximity to the whistleblower or lure them to visit a beacon trap (by social

engineering or other means).

Figure 5.3 shows the stages of the attack and how the different entities interact

within the ultrasound tracking deployment. First, the adversary A starts a campaign

with an ultrasound tracking provider and captures the inaudible beacon associated

with it (¶). Then, A creates a beacon trap that emits the uBeacon (·). An example of

a beacon trap can be seen in Figure 5.3 where the adversary incorporates the trap in a

hidden service targeting Tor users. Subsequently, the adversary lures the anonymous

user to visit the trap (¸). This step may involve social engineering or it may simply

be that the trap uses a resource that the user visits often (i.e., a watering-hole attack).

Alternatively, if the adversary is a Tor exit node operator, they can inject the source

code of the trap on the requested web pages without any need to interact with the

user. The process of becoming a Tor exit node is similar with that of a normal relay,

and does not require many resources or a lengthy reputation-building period.

In the next step, the victim uses their “anonymous” device to load the resource

(¹). Once this happens, the beacon trap is triggered and the device starts to periodi-

cally emit the beacon from its speakers (º). The beacons are inaudible and thus the

user is completely oblivious to the fact that ultrasounds are being emitted and that a

deanonymization attack is being carried out. Simultaneously, any ultrasound-enabled

device in proximity (e.g., the user’s smartphone) is actively monitoring the spectrum

for ultrasonic beacons. Once it detects one, it verifies its validity and reports it (along

with a number of unique user/device identifiers) to the provider’s server, where the

data get stored (»).

Adversaries then seek to obtain the unique identifiers of the user who reported

their beacon at the specific time and day the beacon trap was triggered (¼). State-

level adversaries (who are within Tor’s threat model) can achieve this through a

subpoena or a court order to the tracking service provider. Once the provider responds

with the information, the real identity of the user can be trivially uncovered. For

instance, uXDT frameworks often use the international mobile equipment identity

5.3. Vulnerabilities & Attacks 81

Figure 5.3: Steps of a deanonymization attack against a user of an anonymity network.

(IMEI) number as unique device an identifier. An IMEI can be easily attributed to a

real person by the telecommunication operators [228, 229]. Moreover, uXDT service

providers often store multiple unique identifiers, which make it even easier for the

adversary to infer the identity of the user (e.g., the Google account name).

To practically validate our proposed attack and evaluate its effectiveness, we

conducted a proof of concept attack against a demo user. This enabled us verify that

a state-level adversary with access to the ultrasound service provider’s data could

indeed trap and deanonymize a Tor user. We hosted our beacon trap in malicious

hidden service under our own .onion domain and had our PoC victim load the

webpage using the Tor browser (version 6.0.1) configured with the default settings

(step ¹). We provided to the victim a smartphone with one uXDT-enabled app from

the Google Play store installed. However, since we didn’t want our experiments

to interfere with production systems, we redirected the traffic from the app to our

own server. This allowed us to accurately and safely conduct numerous experiments.

Figure 5.4 contains a visual representation of all the user information that our attacker

was able to extract during the attack. Upon retrieval of this information, the identity

of the previously-anonymous user has been fully uncovered.

The impact of the deanonymization attack is substantial as it relies on minimal

assumptions, which are compatible with the threat models of anonymity networks

5.3. Vulnerabilities & Attacks 82

Figure 5.4: Screenshot of the proof-of-concept webpage upon a successful Tor deanonymiza-
tion. The proof-of-concept attack can extract the user’s location, ISP, phone
number, Google account ID, and other sensitive information, even though the
user is browsing through the Tor browser.

(e.g., Tor) [9]. Moreover, the majority of the ultrasound-enabled apps are vulnerable

to this attack as most of the existing frameworks report the uBeacons captured (often

along with user data) to an server operated by the service provider. We thus believe

that the deanonymization attack poses an immediate threat for the users of anonymity

networks and services and it is critical that mitigation measures are deployed by both

network operators and service providers.

5.3.3 Profile Inference

This attack is an adaptation for the ultrasound ecosystem of the attack introduced

in [39]. The adversary exploits the lack of confidentiality and opt-out mechanisms

to collect sensitive information on the user’s online activities and interests. For

example, such an attack could enable a malicious employer to acquire information

on the online purchases and the shopping habits of their employees.

As in [39], we assume that the user operates in two or more environments

with different behavioral requirements and expected levels of privacy (e.g., a user

who uses a home computer and a workplace computer). There is a clear separation

between the activities the user carries out in each of these environments, while the

adversary is assumed to be present in only one of them (e.g., employer at work). We

also assume that the user owns a smartphone with an ultrasound-enabled app that is

5.3. Vulnerabilities & Attacks 83

monitoring the ultrasonic spectrum for beacons. We recall that uXDT deployments

use ultrasonic beacons to push user-specific ads across their different devices (see

also Sections 2.1 and 5.2). An advertising network may push ads on both the

smartphone and the home computer of a user, while searches and activities on the

home computer will affect the ads displayed on the smartphone (and vice versa).

Consequently, a user that carries their uXDT-enabled smartphone at work risks

having their work computer associated with their personal ad profile. The pro-

cesses is as follows: When browsing the Internet on the work computer, ultrasound-

enabled ads emit inaudible beacons that are captured by the user’s smartphone. The

uXDT framework on the phone then reports those beacons to the ultrasound service

provider’s backend and the user’s ad profile is updated based on their work-related

searches, purchases and activities. The advertiser can now push ads at the devices

of the user based on the overall user’s profile built based on their both home and

work activities. Depending on the ultrasound service provider’s configuration, it may

take several ads before a device is associated with an existing user profile, however,

the prolonged use and repeated uBeacon emissions from the work computer will

eventually lead to an association of the two devices (i.e., the user’s smartphone and

the work computer).

Once such a link has been established, the work computer will display ads

related to activities or searches the user conducted at their home computer or their

smartphone. This enables anyone with access to the local area network traffic (e.g.,

network administrator, employer) to launch a privacy attack and infer the user’s

interests profile. In particular, as shown in [39, 230, 231, 38], even the analysis of

a small number of targeted ads suffices for an adversary to reliably infer the user’s

Google interest categories with very high accuracy. In a nutshell, the adversary

first removes the noise by filtering for contextual and location-specific ads and then

rebuilds the user’s profile by attributing each of the remaining ads to one broad

category (e.g., car rental, travel) [39, 38]. As we will see in Chapter 4, even if

all the advertising networks encrypted the transmitted data (e.g., TLS encryption),

sophisticated adversaries may be still able to make accurate inferences about the

5.3. Vulnerabilities & Attacks 84

(a) Passive profile confluence attack. (b) Active profile confluence attack.

Figure 5.5: An adversary with physical proximity to a victim user could exploit the lack of
authentication and replay protection in ultrasonic beacons to infer sensitive user
information by reconstructing the user’s interests profile.

content loaded.

While this user interests leakage occurs due to a combination of factors, ul-

trasonic pairing techniques and cross-device tracking make it considerably harder

for the user to control the use of their personal information and maintain a clear

separation between their work and personal interests profiles.

5.3.4 Profile Confluence

As discussed in the previous section, an adversary with access to the network traffic

of a user can reconstruct the interests profile of the user by analysing their ad traffic.

While such profile inference attacks had been introduced in prior works [39], we

found that cross-device tracking made it especially hard for users to maintain their

home and work interests profiles separate. We now outline how an adversary without

access to the user’s traffic could also launch an interests inference attack by (1) being

periodically in proximity of the user and (2) exploiting the lack of authentication and

replay protection in ultrasonic beacons.

Figure 5.5a illustrates the passive version of the attack where the adversary

eavesdrops the uBeacons emitted by the work computer of a user with a uXDT-

enabled smartphone. As before, the user maintains a separation between the activities,

5.3. Vulnerabilities & Attacks 85

online searches and purchases they conduct at home and at work, while the adversary

tries to infer the overall interests profile of the user. Every time the user comes across

an ultrasound-enabled ad, their work computer emits the corresponding uBeacon

which is captured by their smartphone (¶). Then, the ultrasound tracking framework

running on the phone parses the beacon and reports it to the ultrasound service

provider (·). Based on the beacons reported, the provider updates the user’s interest

profile and pushes targeted ads to the devices of the user (¸).

Due to the lack of confidentiality and authentication mechanisms, an eaves-

dropping adversary can intercept the uBeacons emitted by the user’s work computer

(e.g., with another uXDT-enabled smartphone). Those beacons do not necessarily

contain sensitive information by themselves, as they are relevant to the work-related

activities of the user. However, by repeatedly capturing and submitting such beacons

the adversary can work towards 1) having their device associated with the user’s

profile and 2) gradually adapting their own profile to match that of the user.

In the former case, once the adversary’s device is classified by the cross-device

tracking service provider as belonging to the victim user, the adversary will start

receiving ads based on the overall interests profile of the user. In fact, it is com-

mon among vendors that utilize behavioral profiling methods to match identically

behaving users [232, 233, 234]. This information suffices to reconstruct the interests

profile of the user [39, 38].

The latter scenario is relevant if the tracking service does not maintain a strict

list of devices per user but instead updates and queries an ad or product recommender

system. As both the user and the adversary repeatedly capture and submit (to the

ultrasound service provider’s backend) the same beacons, the recommender system

will, with increasing likelihood, start pushing ads to the adversary’s device influenced

by the interests and choices of the victim user. While the actual precision of this

variant of the attack depends on the technical details of the deployment (e.g., model

used, number of users, possible recommendations), several works on recommender

systems have shown that systems are prone to such attacks [235, 230, 231, 236].

To further increase the effectiveness of the above attack, the adversary may

5.3. Vulnerabilities & Attacks 86

Figure 5.6: Operational steps of a profile corruption attack.

actively interfere with the submission of uBeacons by the victim (Figure 5.5b).

Initially, the adversary collects a large number of beacons from various sources (¶)

and then replays them to the victim’s device (·). Ultrasonic beacons have not replay

protection and thus the victim’s device cannot distinguish them from those emitted

by valid sources. Simultaneously, the adversary submits the same beacons to the

ultrasound service provider’s backend server (¸). This practice aims to artificially

increase the overlap between the interest profiles of the two actors thus making it

more likely that the two profiles will be linked and that the adversary would receive

recommendations influenced by personal activities of the victim (¹).

While authentication, replay-prevention or confidentiality mechanisms could po-

tentially prevent the above attacks, the ultrasonic channel has very limited bandwidth

and thus it is common for vendors not support only basic integrity checks.

5.3.5 Profile Corruption

An adversary can exploit the lack of replay protection to influence the user interest

profiles maintained by the ultrasound service provider. For example, an attacker

equipped with a simple beacon-emitting device (e.g., a smartphone) in a crowded

venue can inject beacons to several ultrasound-enabled smartphones simultaneously,

thus influencing their interest profiles and the ads served to them en masse.

As seen in Figure 5.6, the adversary initially acquires one or more valid beacons.

To do this, they can set up an advertising campaign with an ultrasound service

5.4. Information Flow Control Mechanisms 87

provider and capture the beacon associated with it (¶). Alternatively, they can

record the beacons associated with existing campaigns ran by others. Then, the

adversary replays the captured beacons to the ultrasound-enabled devices of the

victim users (·). This step of the attack can be realized in many ways, depending

on the goals of the adversary. For instance, the beacons can be replayed through the

adversary’s phone, the speakers of a venue, a computer or mobile device botnet or

by injecting JavaScript as a Tor exit node (as discussed also in Section 5.3.2). Once

the ultrasound-enabled devices of the users capture the beacons, they perform some

basic integrity checks and forward the beacon sequence to the ultrasound service

provider’s backend server (¸).

Ultrasonic beacons have no replay protection and thus there is no way for the

devices to detect that the beacon is replayed. Upon reception, the ultrasound service

provider analyzes the uBeacon to determine the ad campaign it is associated with

and updates the user’s interest profile accordingly (¹). As a result, an adversary can

pollute the user’s profile to include activities or interests that are unrelated to their

habits [237, 238]. The effectiveness of the attack can be further amplified by running

multiple beacon injection rounds. In some implementations, beacons also act as a

trigger for their corresponding ad to be displayed. This provides additional control to

the adversary who can now directly influence the ads shown to the user’s device. For

example, malicious parties could use this side-effect to launch targeted malvertising

campaigns [239, 240]

As in previous attacks, the bandwidth constraints of the ultrasonic channel [94]

make it impractical to deploy on-channel authentication and/or replay-prevention

mechanisms. With this knowledge, solutions should be sought in other parts of the

ecosystem (e.g., smartphone’s operating system).

5.4 Information Flow Control Mechanisms

We now discuss potential solutions to the security and privacy issues identified

earlier, and evaluate their effectiveness and applicability. A jamming device emitting

ambient ultrasonic noise may appear as a straightforward way to prevent ultrasonic

5.4. Information Flow Control Mechanisms 88

tracking but such a solution has several drawbacks (e.g., contributes to noise pol-

lution, impractical to carry at all times). Instead, we propose two immediately

deployable security mechanisms designed to mitigate the leakage risk for browser

and smartphone users, while still retaining any ultrasonic-related functionality (if

the user chooses so). Moreover, we propose a new OS-level API that would enable

developers to implement ultrasound-based mechanisms without having to request

full access to the microphone, thus abiding by the principle of least privilege.

5.4.1 Ultrasound-filtering Browser Extension

We develop an extension for the Google Chrome browser that filters out all ultra-

sounds from the audio output of the websites loaded by the user. Instead of simply

detecting beacons, the extension proactively prevents webpages from emitting in-

audible sounds and completely thwarts unsolicited attempts to stealthily broadcast

beacons (unless the user opts to allow the specific tab to emit ultrasounds).

From a technical perspective, the extension mediates all the audio outputs of

the page and filters out the frequencies that fall within the range used by inaudible

beacons. To do this, each time a new webpage is loaded, a JavaScript snippet is

inserted and executed in the page. The snippet uses the Web Audio API, which is

part of the HTML5 specification. This API models all the audio modules of the

page as AudioNodes. An AudioNode can be an audio source (e.g., an embedded

YouTube video), an audio destination (e.g., the speakers) or an audio processing

component (e.g., a low-pass filter). HTML5 also introduces the concept of audio

graphs, where different AudioNodes are linked together to create a path from the

audio source to the audio destination. This path can be arbitrarily long and may

include multiple filters that process the signal before it reaches the destination node.

Our extension uses the AudioNode’s linking capabilities and prepends a new

filter before the audio destination of the page. More specifically, upon execution,

the snippet generates a high-shelf filter AudioNode and sets its base frequency

and gain to 18kHz and -70db respectively. As a result, the filter attenuates all the

frequencies above 18kHz, while leaving lower frequencies unaltered. Subsequently,

the snippet identifies all the audio sources of the page and modifies the audio graph

5.4. Information Flow Control Mechanisms 89

so that their signal passes through the high-shelf filter before it reaches the speakers.

From this point on, any audio played by the page is first sanitized by the high-shelf

filter and then forwarded to the system’s speakers. This procedure happens in real-

time and it has minimum impact on audible frequencies. Our extension provides

additional settings that allow the user to adjust the filter’s parameters so as to optimize

the coverage to their needs.

5.4.2 Android Ultrasound Permission

We now outline a modification to the Android OS that realises a filtering mechanism

for the Android permissions system used by the apps. In particular, we extend

Android and expose new functionality that allows users to selectively filter out high-

frequencies from the signal captured by the smartphone’s microphone. Our idea is

to provide two microphone permissions: one for accessing the audible part of the

spectrum and an additional one that allow access to the inaudible, high-frequency

(i.e., ultrasonic or near-ultrasonic) parts too. This separation forces apps to clearly

communicate their intention to capture inaudible emissions during the installation of

the app, thus ensuring that the user is informed.

To achieve this, we modify the Android OS and extend the existing permission

RECORD AUDIO. An app that needs to record audio from the microphone can now

selectively request only for the RECORD AUDIO permission, whereas an ultrasound-

enabled app will have to also request RECORD ULTRASOUND AUDIO that provides

access to the higher frequencies too.

Since the vast majority of apps does not require access to the high-frequency

parts of the spectrum, we believe that the any request for access to higher-frequencies

could indicate that a more careful inspection of that app (by the app store) is needed.

The implementation of this new permission requires the modification of two

Android Open Source Project (AOSP) parts. First, we define a new permission,

which is done by modifying an OS configuration file.2 The second modification

relates to the AudioFlinger component. AudioFlinger is the main sound server in

2In AOSP, the file is found under the following path:
./base/core/res/AndroidManifest.xml.

5.4. Information Flow Control Mechanisms 90

Android: when an app wants to obtain a data read from the microphone, the app

communicates through the Binder Inter-process communication (IPC) mechanism

with the AudioFlinger component. This component, in turn, reads the data stream

from the kernel sound driver (e.g., ALSA, OSS, custom driver) and makes the content

accessible to the requesting app (again through the Binder IPC mechanism).

Our modification in the AudioFlinger component implements the following

logic. Consider an app that wants to acquire data from the microphone. If this app has

both the RECORD AUDIO and the RECORD ULTRASOUND AUDIO permissions,

then the stream is not modified in any way. However, if the requesting app does not

request the RECORD ULTRASOUND AUDIO permission, our patched AudioFlinger

would filter out frequencies above a certain threshold. The filter implemented by our

current prototype is a standard low-pass filter that attenuates signals with frequencies

higher than the cutoff frequency (i.e., 18,000 Hz). Our current implementation filters

sound in the time domain and can operate in real-time as it only requires a few bytes

of extra memory. Furthermore, our patch is not invasive and comprises less than one

hundred lines of codes.

5.4.3 Standardization & uBeacon API

The countermeasures proposed above can significantly reduce the likelihood of

leakages giving end-users better control of their devices. However, such application-

agnostic filtering mechanisms can also potentially interfere with benign use cases.

For this reason, we argue for the standardization of an ultrasound beacon format and

envision a new OS-level API that implements in a single, trusted place the logic for

detecting, decoding and emitting uBeacons.

The first step towards this goal is to specify the format and structure of ultrasonic

beacons. Based on this specification, an API for handling uBeacons can be then

designed and implemented. Such an API should expose calls for: (1) uBeacon

discovery and capturing, (2) uBeacon decoding and integrity validation, and (3)

uBeacon generation and broadcasting. We note that a similar API for Bluetooth low

energy (BLE) beacons is already used in Android [211, 212, 213].

From a technical perspective, such an API would require a privileged process

5.5. Tracking the Ecosystem 91

(e.g., a system process on Android) that realises and exposes the relevant uBeacon

functionality. This would eliminate the need for apps to gain direct access to the

device’s microphone and would instead require access only to the relevant functions

of the API. Besides protecting end-users from eavesdropping developers, apps would

no longer need to request a security-sensitive permission (i.e., microphone access),

thus avoiding being labeled as “potentially malicious”. Moreover, such an API

would allow for a central point in the operating system that keeps track and monitors

all ultrasound-related activity (e.g., provide a full list of beacons captured). By

delegating the task of monitoring and capturing uBeacons to the operating system,

we improve the transparency of the ecosystem’s operations and ensure that the user

can easily enable and disable the channel.

In order to enforce the use of such an API, the ultrasonic spectrum must be

accessible only to privileged components of the system. To achieve this, the system

module handling the microphone should filter out ultrasonic frequencies by default

and the user should be able to grant access to that part of the spectrum on a per-app

basis. Our Android filtering countermeasure presented earlier, shows how such a

feature can be technically realised.

As third-party apps would never get direct access to any signal in the ultrasonic

spectrum (even when requesting the microphone permission), it would not be possible

for developers to use beacon formats that do not abide by the standard. If a non-

standard beacon is captured, the system’s parsing process will fail to decode it and

return an error. Such an API could prevent the attacks outlined in Section 5.3 as

it would allow users to keep the channel disabled permanently or during privacy-

sensitive tasks. This functionality can be easily exposed through a central switch,

similar to that of Bluetooth or Wifi.

5.5 Tracking the Ecosystem

To better understand the evolution of ultrasound-enabled frameworks and relevant

technologies over time, we now discuss developments that followed our initial study

of the ecosystem [15]. Our initial study took place in 2016 when we identified

5.6. Conclusions 92

several companies developing solutions based on ultrasonic beacons. Since then, we

kept track of the adoption of ultrasonic beacons and conducted periodic searches for

Android apps that use the SilverPush framework. In 2016, we identified approxi-

mately 100 Android apps that used the SilverPush framework, which was also in line

with the findings of other sources [241]. The download counts for the most popular

of these apps ranged from several hundreds thousands to a few millions (e.g., [242]).

In subsequent searches, we observed that the number of applications incorporating

the specific framework declined. At this stage, the decline was likely due to both

the community backlash forcing developers to remove the framework from their

apps [243, 244, 245, 221]. Moreover, Silverpush reportedly withdrew its product

from the US market and the framework steadily declined further in popularity in all

markets until it was discontinued in 2017. This was also indicative of a change in

the whole ecosystem as most companies moved from offering tracking products into

device pairing, payment products and indoor navigation.

On the standardization side, our proposal for more fine grained control over

the audio channel in Android has not been implemented. However, Android 11

introduced “one-time” permissions that make monitoring the audio spectrum on the

background considerably harder [246]. In particular, the user has now the option

to grant a permission “Only while using the app” which allows apps to use the

microphone only while the app is in the foreground or has a foreground service that

is visible to the user.

A detailed list of companies and frameworks participating in the ecosystem can

be found in [247], where City Frequencies maintain an frequently updated report

(last updated May 2021).

5.6 Conclusions

This chapter evaluated the privacy and security aspects of the ultrasonic communi-

cations channel. In particular, we found that the lack of fine-grained permissions

in mobile devices, combined with poorly implemented communication protocols

can expose users to a series of privacy attacks. Such attacks range from leakage of

5.6. Conclusions 93

sensitive user information to targeted deanonymization campaigns against anonymity

network users. Such networks aim to provide stronger privacy guarantees compared

to browsing over TLS, which we studied in Chapter 4. Despite this, they are also

vulnerable to fingerprinting attacks (Section 3.1) and, as we saw in this chapter, side-

channel attacks where an adversary exploits one application or channel to breach the

security properties of another.

The latter attack vector is particularly difficult to address as the inter-

connectivity of modern systems and the multitude of apps hosted on a single device

make accurate threat modeling complex. In the case of ultrasonic communications,

many of the issues identified were due to the immaturity of the protocols and we

observed a self-correction in the ecosystem over time. Countermeasures at the

operating-system level (e.g., OS-controlled APIs) have the potential of mitigating

such leakages and their exploitation even if the app developers do not have access to

the channel directly. A similar approach was used in Bluetooth Low Energy where

the channel is managed exclusively by the OS.

In the following chapters, we move our focus on leakages that affect the physical

layers of the computing stack. Such leakages concern most devices that handle

sensitive keys including Internet servers and traffic relaying nodes. We first study

how modern machine learning techniques can contribute to the detection of leakages

in that context (Chapter 6) and then investigate designs for leakage-tolerant systems

(Chapter 7).

Chapter 6

Hardware Side-Channels

In Chapters 4 and 5, we treated networked devices as monolithic components that

could reliably protect secrets and information. On that basis, we examined the impact

of leakages in communication channels (e.g., ultrasonic communications, secure

connections through the Internet) and showed that security and privacy shortcomings

can be utilized by passive and active adversaries.

We now switch on to the physical layer and investigate leakages in intra-device

communication channels (e.g., buses) and low-level components. Such leakages

have the potential to affect critical devices such as web servers, embedded nodes,

hardware security modules, anonymity network relays, and hardware cryptocurrency

wallets

This chapter puts forward a side-channel exploitation model and evaluates its

efficiency against a commercial ARM core that is used in both commercial products

and academic works. As in chapter 4, we find that the advancements in machine

learning have significantly enhanced the analysis capabilities of the adversaries and

alleviated the need for in-depth knowledge of the protocol or system.

6.1 Introduction
Side-channel analysis enables adversaries to leak sensitive information by monitor-

ing and analyzing the physical characteristics and emanations of a cryptographic

implementation. Usually, physical observables (e.g., power consumption, electro-

magnetic emissions) of a device [248, 249] are closely related to the data accessed,

6.1. Introduction 95

stored or processed. Such data-based leakages compromise the device’s security

and may allow an adversary to infer the secret key or other confidential information

the device stores or operates on.

In this chapter, we focus on location-based leakages that exploit the electromag-

netic (EM) emanations which occur when certain chip components such as registers,

memory regions, storage units and their respective addressing mechanisms (control

logic, buses) access stored data. The power of the EM side-channel potentially

conveys information about the location of the accessed component, i.e. it can reveal

the particular register or memory address that has been accessed, regardless of the

data stored in it. In cases, where there is dependence between the secret key and

the location of the activated component, a side-channel adversary can exploit it to

recover the key or other sensitive information.

Unlike the well-established power and electromagnetic data leakage mod-

els [250, 251], high-resolution EM-based location leakage remains less explored.

The main reason is the semi-invasive nature of location attacks (often requiring

chemical decapsulation), the time-consuming chip surface scanning and the lengthy

measurement procedures involved. We argue that such attacks are increasingly

relevant as they allow adversaries to circumvent established leakage protection

mechanisms [252, 253] at a moderate, or even low, cost.

Overall, this chapter performs the first practical location-based attack on the

SRAM of a modern ARM Cortex-M4 and investigates its degree of vulnerability to

such leakages. We introduce a cipher-agnostic adversary that can make high-accuracy

inferences on the SRAM regions accessed during the execution of a cryptographic

algorithm. Our model allows countermeasure designers to gauge the amount of

experimental work an adversary would need to breach the device, as well as identify

certain security hazards and fine-tune their protection mechanisms. We find that

a sophisticated adversary can distinguish consecutive SRAM regions of varying

byte-length with high accuracy, which indicates that EM location-based leakages are

potent enough to compromise the security of AES implementations that use SRAM

lookup tables. While the adversary may not be always able to fully recover the secret

6.2. Threat Model 96

key, they can significantly reduce the number of key candidates.

6.2 Threat Model

We assume a secure chip that stores sensitive information or secrets in its memory and

an adversary who aims to extract as many bits, as possible. For example, for a device

that implements a key-dependent cipher operation using lookup tables [254, 255],

the adversary aims to infer which parts of the table were active and in which order, so

as to recover the key. Such lookup tables (LUTs) are commonly used to implement

the substitution-boxes for symmetric key algorithms (e.g., AES, DES).

The adversary has full physical access to the chip, and is capable of passive (e.g.,

measurements through microprobes) and semi-invasive (e.g., die etching) attacks

with an upper equipment cost of ∼$30,000. This cost is moderate as power analysis

attacks that exfiltrate information based on the chip’s power consumption (e.g., [256])

require up to ∼$5,000. We do not consider high-cost invasive attacks (e.g., Focused

Ion Beam) [257]. Such a scenario is relevant to various adversarial settings such as

key extraction attacks against cryptocurrency hardware wallets [258], Internet-of-

Things devices [259], embedded TLS deployments [260] and confiscated anonymity

network nodes.

Moreover, the adversary can execute instructions that involve memory accesses

but cannot use them to retrieve information through any channel other than the EM

emanations of the chip. Importantly, the adversary is able to calibrate their equipment

and optimize their attacks (e.g., build a leakage template) on the same chip they

intent to breach. This is a common assumption in the side-channel attacks literature

(e.g., [261]) as it considers the worst-case scenario for the defender (i.e., best-case

for the adversary).

In practice, most adversaries will not be able to build their profiles on the same

physical chip they aim to attack but will be able to obtain another instance of the

exact same chip model. It is thus likely that the accuracy of the adversary’s leakage

templates will be reduced due to the (minor) physical differences between the two

chips. However, from the defender’s perspective, these physical differences cannot

6.3. Experimental Setup & Dataset 97

provide reliable protection as they are mere artifacts of the fabrication process. As

a result, it is common practice to assume perfect template transferability between

chips of the same model, even if it is not always the case. The problem of template

transferability across different chips has been studied in other past works [262].

6.3 Experimental Setup & Dataset
Our measurement setup consists of a Riscure Pinata board 1 featuring a decapsulated

STM32F417IG System on Chip (SoC) by ST. The STM32F417IG embeds an ARM

32-bit Cortex-M4 CPU clocked at 168 MHz fabricated using 90 nm technology and

features 1,024 KB of Flash and 196 KB of RAM.

The Cortex-M4 core is commonly used in works investigating side-channel

attacks [263, 264, 265, 266] as well as implementation of classic and post-quantum

algorithms. For example, the official implementations of SIKE [267, 268] and

the pqm4 [269] post-quantum cryptography software library target this family

of micro-controllers. Besides these, Cortex-M4 has found application in various

other use cases involving key management such as a cryptocurrency hardware wal-

let [270, 258, 271], Internet of Things cryptography [259] and TLS deployments on

constrained ARM processors [260]. While our experiments are conducted only on

the STM32F417IG SoC, our findings likely transfer to other SoCs from the same

family or even SoCs from other manufacturers.

The decapsulated chip surface (roughly 6 mm2 ≈ 2.4 mm× 2.4 mm) is scanned

using an ICR HH 100-27 Langer microprobe with diameter of 100 µm (approxi-

mately 0.03 mm2). The decapsulated SoC on the Pinata board is shown in Figure 6.1

and the Langer microprobe in Figure 6.2.

The scan is performed on a rectangular grid of dimension 300, resulting in

300 × 300 measurement spots. The near-field probe is moved over the chip surface

with the assistance of an XYZ-table with positioning accuracy of 50 µm. At every

spot of the scan grid, a single measurement is performed, using a sampling rate of

1 Gsample/sec while traversing the memory sequentially. This process resulted in

1https://www.riscure.com/product/pinata-training-target

https://www.riscure.com/product/pinata-training-target

6.3. Experimental Setup & Dataset 98

Figure 6.1: The modified Riscure Pinata board with the decapsulated STM32F417IG SoC.

Figure 6.2: For our measurements, we used the ICR HH 100-27 Langer microprobe with a
diameter of 100 µm.

6.3. Experimental Setup & Dataset 99

Figure 6.3: The surface of the chip after removing the plastic layer. For comparison, the
approximate area of the microprobe we used for our measurements is illustrated
as a red circle (0.03 mm2).

approximately 170,000 samples per spot on the grid. Overall, a single measurement

on a specific spot of the grid produces a trace with 170,000. When probing the chip,

the adversary performs 300 × 300 measurements which produce as many traces.

Due to the complex and non-homogeneous nature of modern chips, several

types of EM emissions are present on the surface, most of which are unrelated to the

SRAM location. In this particular case study, the signals of interest were observed in

amplitudes of roughly 70 mV, so we set the oscilloscope voltage range accordingly.

In addition, several device peripherals (such as USB communication) have been

disabled in order to reduce interference. The decapsulated surface where the scan is

performed is visible in Figure 6.3 with the approximate microprobe area overlaid (in

red) for comparison.

We consider the spatial leakage emitted by the ARM Cortex-M4 SRAM, while

accessing an AES lookup table (LUT) of 256 bytes and excluding any data-based

leakages. The processor uses a 32-bit architecture, thus the 256-byte lookup table

uses 64 words (4 bytes each) which are stored consecutively in the SRAM. The

adversary aims to distinguish accesses to different LUT regions (consisting of one

or more words). Being able to infer which LUT/SRAM region was accessed can

substantially reduce the number of AES key candidates. For instance, an adversary

may template separately the leakage of all 64 words in order to reduce the possible

AES key candidates from 256 to 4. Alternatively, they can partition the LUT to two

regions (words 0 until 31 and words 32 until 63), profile both regions and recover

the activated 128-byte region and reduce the AES key candidates from 256 to 128.

6.4. Leakage Detection 100

We fix the data in all accessed memory positions to value zero in order to

prevent any data-dependent leakage, and perform sequential accesses to the SRAM.

We opt to access the SRAM using ARM assembly instead of a higher-level language

in order to avoid compiler-induced optimizations that could alter the side-channel

behavior.

In the rest of this chapter, we use the terms “location leakage” and “spatial

leakage” interchangeably. They include leakage from both the unit itself (e.g.,

accesses cause the memory to be activated) and the addressing mechanisms involved

(e.g. leakage from the control logic of a storage unit). The adversary is usually able

to measure both types of leakage but is unable distinguish between them.

6.4 Leakage Detection

Based on the dataset we compiled, we now investigate whether ARM Cortex-M4

exhibits leakage patterns. While the mere detection of EM leakages does not nec-

essarily imply that an adversary can launch a successful region inference attack, it

provides useful information to security auditors regarding the leakage characteristics

of the device.

For our analysis, we partition our samples into two classes: The first 85,000

samples collected for each spot on the grip are labelled as class 1 and the remaining

85,000 as class 2. Intuitively, class 1 correspond to accesses in the first 2047 words

in the SRAM, while class 2 to accesses from word 2048 until word 4096. In total,

each class corresponds to 8 KB of SRAM.

We average the leakage samples from class 1 and class 2 for every position

on the grid (x,y) by computing l̄class1 = 1
85k ∑

85k
j=1 l j

x,y and l̄class2 = 1
85k ∑

170k
j=85k l j

x,y

respectively, and compute the difference of means l̄class1− l̄class2. We, then, perform

a Welch t-test with significance level of 0.1% for every spot on the grid. The t-test

enables us to determine if location-based leakages are present.

The results are shown in Figure 6.4, which is cropped to show the specific part of

the chip surface that exhibits significant differences. We observe two regions at close

proximity (yellow and blue), where the yellow ones indicates positive difference

6.4. Leakage Detection 101

Figure 6.4: Distinguishing two 8 KB regions of the SRAM with the difference-of-means.
The yellow region indicates stronger leakage from class 1 while the blue region
from class 2.

between class 1 and 2, while the blue region negative difference between class 1 and

2. To investigate this further, we performed additional chemical etching on the chip

surface in order to remove the top metal layer (Figure 6.5).

The different regions (yellow, blue) shown in Figure 6.4 are observed directly

above the chip area enclosed by the red rectangle of Figure 6.5. Interestingly, after

the removal of the top metal layer, we see that the red rectangular region contains

large continuous chip components, possibly indicating that SRAM circuitry is present

at this location. This hypothesis is corroborated by the following fact: when we

perform the difference-of-means test for 4 KB regions, the yellow and blue regions

shrink, indicating that the leakage area is proportional to the memory size that is

being activated.

The expected surface area of an SRAM component can be approximated as

a =
m ·abit

e

where m is the number of bits in the memory region, abit is the area of a single-bit

memory cell and e is the array layout efficiency (usually around 70%) [272]. The

value of abit ranges from 600λ 2 to 1000λ 2, where λ is equal to half the feature

size, (i.e. for the current device-under-test λ = 0.5∗90 nm) thus the area of a 32-bit

6.5. Leakage Exploitation 102

Figure 6.5: Chip surface of the STM32F417IG after removing the top metal layer. The red
rectangular region corresponds to the difference-of-means plot of Figure 6.4, i.e.
it shows the location where the highest differences were observed.

word is between 55 and 92 µm2. Likewise, an 8 KB region of the ARM Cortex-M4

amounts to an area of between 0.12 and 0.19 mm2, depending on the fabrication

process. Notably, this area estimation is quite close to the area of the yellow or the

blue region of Figure 6.4 (approximately half of the red rectangle). Similar spatial

characteristics have been observed by Heyszl et al. [99] in the context of FPGA

registers.

Thus, our findings suggest that 1) there are leaky regions in close proximity,

and 2) the area of leaky regions is approximately proportional to the memory size

that we activate. In the following section, we follow up on these observations and

investigate whether classification models can be used to exploit spatial leakages and

infer the memory regions accessed.

6.5 Leakage Exploitation
In Section 6.4, we conducted a preliminary investigation that indicated the existence

of EM leakage in our decapsulated ARM Cortex M4 die. We now attempt to infer

the memory regions that were accessed so as to evaluate whether an adversary could

exploit the identified EM leakages to extract secrets from the SRAM.

6.5. Leakage Exploitation 103

Works on side-channel attacks often assume that EM leakages follow a multi-

variate normal distribution and build their inference templates accordingly. We follow

an alternative approach and employ distribution-agnostic techniques which have been

recently shown to produce very promising results [273, 274, 275, 276, 277, 278, 279].

We introduce two adversaries that use neural networks to analyse the spatial leakages

of the die, and we evaluate their performance under the security assumptions outlined

in Section 6.2. In both experiments, we attempt to determine whether accessing

different SRAM regions in a modern ARM-based device produces distinguishable

signals. In other words, we examine the device’s susceptibility to location-based

attacks during key-dependent memory lookups, similar to AES LUT (i.e., look-up

table). We formulate this as a classification task, where the adversary determines

which class (i.e., memory region) a given EM snapshot belongs to.

As outlined in Section 6.3, we collected ∼170,000 EM measurements for each

of the 300 × 300 spots on the chip. We treat this dataset as 170,000 snapshots of the

chip’s emanations captured while the adversary traversed all the memory positions

sequentially (similar to the datasets from Magnetic Resonance Imaging [280]). We,

then, get versions of our dataset with varying granularity by gradually splitting the

256 bytes of the AES LUT into classes. In particular, we prepare datasets with 2, 4,

8, 16, 32, 64, 128, and 256 partitions (of 128, 64, 32, 16, 8, 4, 2, and 1 bytes each,

respectively). Each dataset is then split into training, validation and test sets with a

40-30-30 ratio. The first two sets are used for configuring and training our models,

while the testing set is used for evaluating the actual performance of the adversary

on data they have not encountered during training.

6.5.1 Transfer Learning

Before developing and customizing our own model, we evaluate the performance

of existing, state-of-the-art pre-trained neural networks. Pre-trained models are

usually large networks that have been trained for several weeks over vast datasets.

As a result, their first layers tend to learn very good, generic discriminative features.

Transfer Learning [281] is a set of techniques that, given such a pre-trained network,

repurposes its last few layers for another similar (but not necessarily identical) task.

6.5. Leakage Exploitation 104

The objectives of our spacial identification task appear to be very close to

those of standard image classification, while our data is formulated as 300×300

grid snapshots, which makes them compatible with the input format of several

computer vision classification networks. We thus approach this as a contextual image

classification problem where the EM emanations of pixels in proximity are related.

For this first attempt at region inference, we use several state-of-the-art networks,

namely Oxford VGG16 and VGG19 [282], Microsoft ResNet50 [283], Google

InceptionV3 [284] and Google InceptionResNetV2 [285]. It should be noted that the

input format of these networks is often RGB images, while our 300×300 heatmaps

resemble single-channel, grayscale images. To address this and recreate the three

color channels that the original networks were trained for, we experiment with two

techniques; (1) we assemble triplets of randomly chosen heatmaps, and (2) we

recreate the three color channels by replicating the heatmaps of the samples three

times.

We first re-train the pretrained models for our specific tasks and then use them to

classify samples they have not encountered before. In accordance with the standard

transfer learning methodology, during the re-training we freeze the first few layers of

the networks to preserve the generic features these layers represent.

Despite various attempts and multiple hours of training, none of the aforemen-

tioned models achieved high classification accuracy. We attribute this to the nature

of our task that, despite our initial intuition, may require a substantially different set

of features. In particular, the features extracted by the pretrained models may not be

useful for our task as they were primarily generated for computer vision tasks.

6.5.2 Convolutional Neural Networks

We now evaluate the performance of a custom model that uses a convolutional

neural network (CNN) to infer the activated regions of a 256-byte, data-independent

lookup table on the ARM Cortex-M4. The architecture of our neural network and the

model’s hyperparameters were determined through trial and error on the training and

validation sets, while the test set was used to evaluate the accuracy of the final model

(Figure 6.6). Our network is relatively small and features only three convolutional

6.6. Conclusions 105

Parameter Value(s)

Input layer Convolutional layer: filters 8 and kernel size (3,3)

hidden convolutional layers 2 layers: filters 4 and kernel size (4,4)

hidden fully connected layers 2 layers: 1024 and 512 neurons

Activation for hidden layers ReLU [202]

Size of output layer # memory regions

Activation for output Softmax

Optimizer Adam Stochastic Optimizer [286]

Dropout 0.1

Learning rate 0.0001

Batch Size 512 pairs

Table 6.1: The hyperparameters (top half) and the training parameters (bottom half) of our
leakage-classification neural network.

layers, followed by three dense layers. After each layer, we use a Relu activation

unit with the exception of the final classification layer that uses softmax activation.

Table 6.1 lists the hyperparameters and the parameters of our model.

The attack success rates for the test traces for 2, 4, 8, 16, 32, 64, 128, and

256 partitions are presented in Figure 6.6; the accuracy values are 98%, 97%, 95%,

92%, 87%, 79%, 64%, and 35%, respectively. We observe that the accuracy of the

adversary is significantly higher than the success rate of a randomly choosing adver-

sary (i.e., 50%, 25%, 12.5%, 6.25%, 3.125%, 1.56%, 0.78%, 0.39%), even in the

high granularity scenario with 256 partitions. We conclude that the STM32F417IG

SoC (ARM Cortex-M4) is vulnerable to location-leakage attacks and that sophisti-

cated adversaries can substantially reduce the security level of LUT-based cipher

implementations unless appropriate countermeasures are deployed (e.g., address

randomization).

6.6 Conclusions
This chapter revisited the important, yet often overlooked, problem of location-based

leakages. Our findings demonstrate that modern STM32F417IG (ARM Cortex-M4)

dies are vulnerable to location-based attacks when operating on secrets and show

that an adversary can launch high-accuracy inference attacks using convolutional

6.6. Conclusions 106

Figure 6.6: The blue line illustrates the testing accuracy of our leakage exploitation model
and the orange line denotes the success rate of a randomly guessing adversary.

deep neural networks. Consequently, such attacks should be considered in the threat

model of systems (e.g., cryptocurrency hardware wallets, embedded TLS-enabled

servers) that rely on this core with sensitive tasks such as key management. Moreover,

the success of the deep neural network in this task is also in line with the results

of Chapter 4 where we used deep neural networks to exploit leakages in the TLS

protocol. In both cases, the attacks outperform past models, are low or moderate in

cost and do not require deep knowledge of the chip or the protocol to calibrate and

fine-tune.

From a defense perspective, our leakage modeling technique is suitable for

countermeasure designers and auditors who need to inexpensively gauge the amount

of experimental work an adversary would need to breach a device. Designers can

also use ML-based adversaries to fine-tune their protection mechanisms, provide

customized security, avoid lengthy design-evaluation cycles and capture certain

security hazards at an early stage. This allows for the time-consuming and expensive

leakage certification of the physical device to be performed at a later stage, once

any obvious defects have been already addressed. Chapter 7 further expands on

6.6. Conclusions 107

the space of possible defenses but opts for a less explored direction. Instead of

trying to detect or prevent leakages, we study designs that tolerate (i.e., retain their

security properties) leakages occurring due to vulnerable hardware components or

inter-component channels.

Chapter 7

Leakage-tolerant Systems

In the previous chapters, we discussed how adversaries can exploit intra- and inter-

device leakages to exfiltrate secrets and information. Chapters 4 and 6 revisited

known problem areas, while Chapter 5 studied leakages in an emerging communica-

tions channel. Our findings highlight the impact leakages can have on end-users and

the need for robust countermeasures.

Following up on these, this chapter discusses defenses and, more specifically,

leakage-resilient system designs. Such designs complement classic leakage preven-

tion and detection techniques and alleviate the requirement for all of the system’s

components to be leakage-free. Consequently, a system can retain its security prop-

erties even when some of its core components are intentionally or unintentionally

leaky. This is particularly relevant to complex systems where it is hard or expensive

to validate the security of all of their components.

7.1 Introduction
In this chapter, we introduce Myst, a novel approach to the problem of building

trustworthy cryptographic hardware. Instead of attempting to detect or prevent

hardware trojans and errors, our proposed architecture enables a critical system

comprised of untrusted hardware components to retain its security properties, as long

as at least one of them is not compromised, even if benign and malicious components

are indistinguishable.

Many critical systems rely on high-integrity hardware to carry out sensitive

7.1. Introduction 109

security tasks (e.g., key generation and storage, digital signature issuance, code

signing) and to provide a protection layer against leakages and security breaches.

Such systems typically handle data for banking, communications, military, space

and other applications. In most cases, they use Hardware Security Modules, Trusted

Platform Modules and/or Cryptographic Accelerators that are designed and fabricated

under strict specifications to ensure that the final system will be both secure and

reliable.

However, manufacturers are not always able to strictly oversee all parts of their

components’ supply chains [287, 288, 289]. For example, it is increasingly common

for components to be manufactured in overseas foundries as the constant reduction

in transistor size makes integrated circuit (IC) fabrication an expensive process for

many IC designers [290, 291, 292]. While vendors are still able to conduct some

quality control and audits of the outsourced manufacturing, those processes are not

as rigorous as those of in-house production lines. For this reason, vendors conduct

a wide array of post-fabrication tests on the finished components to find potential

faults before they are used in their products.

Post-fabrication tests are very effective in detecting common defects but do

not provide equally strong guarantees for security-related errors. For instance, in

past incidents, cryptoprocessors with defective RNG modules and hardware cipher

implementations have made it into production [293, 294], mainstream processors

were found vulnerable to memory leakages [295, 296, 296, 297, 298] and smart card

chips featured leaky cryptographic algorithm implementations [131]. Similarly, the

Intel Software Guard Extensions [299, 300, 301] failed to protect the contents of the

enclave’s memory, while critical security vulnerabilities have been also reported in

military [118, 119], networking [120, 121] and various other applications [122, 123,

124, 125].

Besides unintentional defects, parts of the IC’s supply chain could be also

exposed to attacks from malicious insiders [302, 303, 287, 304]. A large body of

research works has introduced various types of hardware trojans (HT) and back-

doors that demonstrate the extent of the problem and discuss potential countermea-

7.1. Introduction 110

sures [113, 114, 115, 116, 117, 111, 110, 109]. In particular, the relevant literature

spans across detection techniques and more proactive prevention measures against

leaky and/or malicious circuitry. Detection techniques aim to determine whether

any errors exist in a given circuit [132, 133, 134, 135], while prevention techniques

either impede the introduction of intentional errors or assist with their detection at a

later stage [305, 141, 142, 143, 146].

Unfortunately, fabrication-time countermeasures come at a high manufacturing

cost [306, 142, 141], which contradicts the motives of fabrication outsourcing and

cannot be used by vendors that rely on commercial off-the-shelf (COTS) components.

Furthermore, in the literature new hardware trojans have been repeatedly able to

circumvent state of the art countermeasures [142] triggering an arms race that

seems favorable to the attackers [307, 142]. For instance, ICs fabricated using split

manufacturing (one of the most promising and effective prevention techniques) can

be modified to include analog malicious components (e.g., capacitors) that allow for

remotely-controllable privilege escalation and evade all known defenses [112].

Our key insight is that by combining established privacy-enhancing technolo-

gies with mature fault-tolerant system architectures, we can distribute the trust

between multiple components originating from non-overlapping supply chains, thus

reducing the likelihood of compromises. To achieve this, we deploy distributed

cryptographic schemes on top of an N-variant system architecture and build a trusted

platform that supports a wide-range of commonly used cryptographic operations

(e.g., random number and key generation, decryption, signing). This design draws

from protective-redundancy and component diversification [150], and is built on the

premise that a single adversary could compromise several components (e.g., a state

actor compromising the processors and communication controllers fabricated in a

country). However, unlike N-variant systems, instead of replicating the computations

on all processing units, Myst uses multi-party cryptographic schemes to distribute

the secrets so that the individual components hold only shares of the secrets (and not

the secrets themselves), at all times. Thus, as long as one of the components remains

honest, the secret cannot be reconstructed or leaked.

7.2. Threat Model 111

Our proposed architecture is suitable for high-assurance system vendors who

design in-house but outsource the fabrication of some of their ICs and vendors who

rely exclusively on commercial components. The former category has increased

control over the IC design and could even combine our design with existing detec-

tion [136, 137, 138] and prevention techniques [141, 142, 143, 144]. On the other

hand, vendors that use only COTS components have limited control over the ICs

themselves but can mitigate the risks by diversifying their suppliers (i.e., multiple

non-overlapping supply chains).

Overall, this chapter outlines how cryptographic schemes can be combined with

N-variant system architectures to build high-assurance systems and introduce a novel

distributed signing scheme based on Schnorr blind signatures. We demonstrate the

practicality of the proposed architecture by building a custom board featuring 120

highly tamper-resistant ICs, featuring secure variants of random number and key

generation, public key decryption and signing. Through a series of experiments, we

find that diversified system designs can achieve strong resilience to breaches while

remaining competitive in terms of throughput and latency. Our implementation is

based on (n,n) secret-sharing but can be easily generalised to (t,n) schemes. Follow

up works have further enriched both the list of cryptographic schemes supported but

also expanded the concept of component diversification [308].

7.2 Threat Model

We assume an adversary who is capable of introducing intentional errors (e.g., a

hardware trojan, a backdoor) to hardware components (e.g., integrated circuits). To

do that, the adversary needs to be able to breach at least one point of the component’s

supply chain. Consequently, given several components with non-overlapping supply

chains (e.g., manufactured at different fabrication facilities, locations and by different

vendors), for the adversary to compromise all of them, they need to breach at least

one point in every one of the chains involved.

Upon introducing the malicious circuitry, the component is assumed to be fully

controlled by the adversary with full access to the memory contents (e.g., private

7.3. System Overview 112

keys), the execution stack and every other functionality available (e.g., the operation

of the random number generator). The adversary is also able to remotely connect and

transfer data to and from the component. This can be done through a side-channel

(e.g., RF [309], acoustic [310] or optical [311] channels) or other means. They are

also able to exfiltrate information from the device’s buses and the channel controller,

as well as interfere with the communication between the different components.

We also assume that any component compromised by the adversary is completely

indistinguishable from benign/non-faulty ones.

For the development and the provisioning of the system, we assume a trusted

software developer that builds and signs the applications to be run on the proces-

sors. The integrity of the source code can be ensured though standard high-integrity

software development practices (e.g., security audits, public code repository trees,

deterministic builds). The system operator is trusted to choose components and

initialize the device so as to minimize the likelihood of compromises (e.g., compu-

tation quorums from diverse components). Finally, the users’ computers may be

compromised by the adversary and may submit malicious service requests to the

device or leak secrets stored there.

7.3 System Overview
We now introduce our proposed system which draws from fault-tolerant designs

and N-variant systems [312, 150]. It is illustrated in Figure 7.1 and has three main

components: (1) the remote host, (2) the untrusted controller, and (3) the processing

integrated circuits. The design is based on the thesis that given a diverse set of k

components sourced from k untrusted suppliers, a trusted system can be built, as

long as at least one of them can be assumed to contain no errors. Alternatively, our

architecture can tolerate up to 100% compromised or defective components if it

holds that two or more non-colluding adversaries control them.

Processing ICs. The ICs form the core of Myst as they are collectively entrusted to

perform high-integrity computations and provide secure storage space. The ICs are

programmable processors or microprocessors. They have enough persistent memory

7.3. System Overview 113

Figure 7.1: Overview of Myst’s design, featuring all the integral components and commu-
nication buses. The gray area represents the cryptographic device, featuring
several untrusted cryptographic processors (ICs). During the provisioning phase,
the operator configures the individual ICs. Thereafter, the users (Host) interact
with the device through the controller who coordinates and exposes all the
available cryptographic operations.

to store keys and they feature a secure random number generator. Protection against

physical tampering or side-channels is also desirable in most cases and mandated by

the industry standards and best practices for cryptographic hardware. For this reason,

our prototype (Section 7.5.1) is comprised of components that verify to a high level

of tamper-resistance (i.e., FIPS140-2 Level 4) and expose a reliable random number

generator (i.e., FIPS140-2 Level 3). There must be two or more ICs, of which at

least one must be free of errors. We define this coalition of ICs as a quorum. The

exact number of ICs in a quorum is determined by the operator depending on the

degree of assurance needed (see also Subsections 7.3.2 and 7.6).

IC controller. The controller enables communication between the ICs and exposes

the device’s functionality to the users. It manages the bus used by the processing ICs

to communicate with each other and the interface that receives the users’ requests.

As a minimum, it should support the following communication modes:

v Unicast, IC-to-IC: an IC sends instructions to another IC (and receives its

response).

v Broadcast, IC-to-ICs: an IC broadcasts instructions to all other ICs (and

receives their responses).

7.3. System Overview 114

v Unicast, Host-to-IC: a remote client sends commands to a specific IC (and

receives its response).

v Broadcast, Host-to-ICs: a remote client broadcasts commands to all ICs (and

receive their responses).

The controller is also an IC and is also untrusted. Thus according to our threat

model (Section 7.2) it may drop, modify or forge packets, in order to breach the

device’s integrity. It may also collude with one or more of the processing ICs.

Operator. The operator is responsible for setting up the system and configuring it.

They source the ICs and make sure the quorums are as diverse as possible. Moreover,

the operator determines the size of the quorums and sets the security parameters of

the cryptosystem (Section 7.4). They are assumed to make a best effort to prevent

compromises and may also be the owner of the secrets stored in the device.

Remote Host. The remote host is controlled by the user(s) and is connected to the IC

controller. It allows users to submit requests and retrieve the results. The remote host

can be any kind of computer either in the local network or in a remote one. In order

for a request to be services by the processing ICs, the host must provide proof of its

authorization. For instance, the requests could be signed with a public key associated

with the user’s identity (e.g., certificate by a trusted CA). More specifically, each

request is comprised of the following information: 1) the operation requested, 2) any

input data, and 3) the authorization signature (see also Section 7.3.1). As, we will

discuss in Section 7.3.1), a compromised host may allow an adversary to use the

device to perform cryptographic operations but would not enable the extraction of

any secrets.

Communication Channels. At the physical level, the processing ICs, the controller

and the users’ hosts are connected through buses and network interfaces. As dis-

cussed in Section 7.2, the adversary is able to eavesdrop on the buses of the device

and tamper with their traffic (e.g., inject or modify packets). We use established cryp-

tographic mechanisms to ensure the integrity and confidentiality for the transmitted

data. All unicast and broadcast packets are signed using the sender IC’s certificate,

7.3. System Overview 115

so that their origin and integrity can be verified by the recipients. Moreover, in

cases where the confidentiality of the transmitted data needs to be protected, we use

end-to-end encryption between the communicating parties.

7.3.1 Access Control

Access Control (AC) is critical for all systems operating on confidential data. In

Myst, AC determines which hosts can submit service requests to the system, and

the quorums they can interact with. Despite the distributed architecture of Myst,

established AC techniques can be easily applied on a per-processor basis. Each IC

is provided with a list of public keys of the hosts/users who are allowed to submit

service requests. Optionally, this list may distinguish between hosts that have full

access to the system and hosts that may only perform a subset of the operations.

Once a request is received, the IC verifies the signature of the host and ensures that

the public key is in the AC’s list. The system’s operator is responsible for configuring

each quorum (i.e., size k, ICs participating) and initializing the processing ICs with

the AC list. For example, the list could be initialized and distributed during the

provisioning phase, and updated periodically when storing a secret or generating

a new key pair. This is a critical procedure, as if one of the hosts turns out to be

compromised, the device can be misused in order to either decrypt confidential

ciphertexts or sign statements chosen by the adversary. However, the private keys

stored in the quorum’s ICs will remain safe as there is no way for the adversary

to extract them (unless they use physical-tampering, which our prototype is also

resilient against, Section 7.5.1).

7.3.2 Reliability Estimation

In the case of cryptographic hardware, in order for the operator to decide on the

threshold k and the quorum composition, an estimation of the likelihood of hardware

errors is needed. For this purpose, we introduce k-tolerance, which, given ICs from

k supply chains, estimates the probability of their quorum being secure:

Pr[secure] = 1−
k

∏
i=1

Pr[error]i (7.1)

7.4. Secure distributed protocols 116

where, k denotes the number of ICs in the quorum and Pr[error]i the probability

that IC i is defective. It is important to note, that this metric assumes that the compo-

nents have non-overlapping supply chains and thus the probabilities of introducing

errors are independent.

As there is no commonly accepted way of evaluating the likelihood of errors

for a supply chain, the specific values largely depend on the information and testing

capabilities the device’s vendor has at their disposal. For instance, hardware design-

ers that use split manufacturing [141, 142, 143] can estimate the probability of a

backdoored component using the k-security metric [313].

On the other hand, COTS vendors cannot easily estimate the probability of a

compromised component, as the security level at the fabrication facility is not always

known. Despite that, it is still possible for them to achieve very high levels of error

and backdoor-tolerance by increasing the size of the quorums and sourcing ICs from

distinct facilities (i.e., minimizing the likelihood of overlapping supply chains).

7.4 Secure distributed protocols

In this section, we introduce a set of protocols that leverage the diversity of ICs

in Myst to realize standard cryptographic operations on sensitive keying material.

Our cryptosystem is comprised of a key generation operation (Section 7.4.1), the

ElGamal [314] encryption operation (Section 7.4.2), distributed ElGamal decryption

(Section 7.4.3) and distributed Schnorr [315] signature issuance (Section 7.4.5). For

operational purposes, we also introduce a key propagation protocol that enables

the distribution of secret shares between non-overlapping quorums (Section 7.4.6).

These operations are realized using interactive secret-sharing protocols that rely

on standard cryptographic assumptions over elliptic curve groups. The security

guarantees of the protocols are those of secret-sharing schemes and are presented in

detail in Section 7.6.4.

The ICs are initialized with the domain parameters T = (p,a,b,G,n,h) of the

elliptic curve to be used, where p is a prime specifying the finite field Fp, a and b

7.4. Secure distributed protocols 117

are the curve coefficients, G is the base point of the curve with order n, and h is the

curve’s cofactor. This initialization procedure is further discussed in the Section 7.6.7

and must be completed prior to the execution of any protocol.

7.4.1 Distributed Key Pair Generation

The distributed key pair generation operation enables multiple ICs to collectively

generate a shared public and private key pair with shares distributed between all

participating ICs. More formally, a quorum Q of k processing ICs can collectively

generate: 1) a random secret x which is an element of a finite field, and 2) a public

value Yagg = x ·G for a given elliptic curve point G. At the end of the protocol, each

IC in Q holds a share of the secret x, denoted as xi and the public value Yagg. In the

presence of leaky processing ICs, none of the ICs have access to the full private key

at any point. Given the produced public key, the remote host and anyone else can

encrypt plaintexts or verify signatures produced by the device.

We opt for a threshold scheme that offers the maximum level of confidentiality

(t-of-t, k = t), shown in Figure 7.2. However, there are numerous protocols that

allow for different thresholds, such as Pedersen’s VSS scheme [316, 317, 318]. The

importance of the security threshold is discussed in more detail in Section 7.6.4.

Algorithm 7.4.1: TripletGen: Generation of a pair xi – Yi along with the
corresponding zero-knowledge proof of knowledge (ki) of the discrete
logarithm xi of Yi.

Input :The domain parameters λ

Output :An element triplet (xi,Yi,ki)
1 xi← Rand(λ)
2 Yi← xi ·G
3 ki← Signxi

(Yi)

4 return (xi,Yi,ki)

The execution of the protocol is triggered when an authorized host sends a

service request (¶). Upon receiving the request, each member of Q runs Algo-

rithm 7.4.1 and generates a triplet consisting of: 1) a share xi, which is a randomly

sampled element from Zn, 2) an elliptic curve point Yi, and 3) a zero-knowledge

proof of knowledge for the discrete logarithm xi of Yi, denoted ki (·). The proof-of-

7.4. Secure distributed protocols 118

Figure 7.2: The interaction between the different participants during the execution of the
distributed key pair generation protocol.

knowledge component (ki) is necessary so as to prevent malicious processing ICs

from launching rogue key attacks [319].

Algorithm 7.4.2: ProofVerify: Checks Yi, against their respective proof-
of-knowledge ki.

Input :A list of the public key shares Y , and a list of the corresponding
proofs-of-knowledge K

Output :Bool: Success/Failure
1 for i ∈ {1, |Y |} do
2 if SignVerify(Yi,ki) 6= True then
3 return False
4 return True

Then, the members perform a pairwise exchange of their Yi shares and their

corresponding ki (¸). Once each member of the quorum receives shares from every

other member, it executes Algorithm 7.4.2 to verify the validity of the shares they

received (¹). If one or more proofs-of-knowledge fail the verification, then the

member infers that an error (either intentional or unintentional) occurred and the

protocol is terminated. Otherwise, if all proofs are successfully verified, the member

7.4. Secure distributed protocols 119

executes Algorithm 7.4.3 (º) and reports it to the remote host (»). The host accepts

Yagg as valid, if all the Yagg received by all the ICs match.

Algorithm 7.4.3: ShareAggr: Aggregates elements in a set of shares
(e.g., Elliptic Curve points, field elements).

Input :Set of shares Q
Output :The aggregate of the shares q

1 q← 0
2 for qi ∈ Q do
3 q← q+qi
4 return q

7.4.1.1 Replacing ZKP with Commitments

The above protocol (Figure 7.2) can be also realized using cryptographic commit-

ments instead of zero-knowledge proofs. In principle, the ZKP version is more

efficient as commitments require two rounds of communication i.e., one round where

everyone “commits” to their public key share and another where all the parties

“open” their commitments. In contrast, zero-knowledge proofs enable the members

to broadcast their share Yi and prove knowledge of its discrete logarithm within a

single communication round.

Interestingly, in practice, a commitment-based protocol may have a lower ex-

ecution time than a ZKP-based protocol, despite the fact that the former involves

an additional round of communication. This is due to the complexity of the cryp-

tographic operations required by the ZKP and the bit length of the information

transmitted. Section 7.6.2 details one such case and compares the runtimes and the

bit lengths of the two approaches.

To modify the protocol to use commitments (instead of zero-knowledge proofs),

we first need to adapt Algorithm 7.4.1 to generate a commitment ci to Yi. This

commitment replaces the zero-knowledge proof ki in the triplet generated (Algo-

rithm 7.4.4). Then, each member shares the commitment ci with the rest of the

quorum’s members, while keeping the private key share xi secret. Once all the

commitments have been exchanged, an additional pairwise exchange is performed

for members to “open” their commitments by sharing Yi. The rest of the protocol

7.4. Secure distributed protocols 120

remains the same.

Algorithm 7.4.4: TripletGen: Generation of a pair xi – Yi along with the
corresponding commitment (ci) to the share of the public key Yi.

Input :The domain parameters λ

Output :An element triplet (xi,Yi,ci)
1 xi← Rand(λ)
2 Yi← xi ·G
3 ci← Commit(Yi)
4 return (xi,Yi,ci)

For example, in the IC use case, the signature ki in Algorithm 7.4.1 could be

replaced by the SHA-256 digest of Yi. Once the triplet has been generated, the IC

broadcasts its commitment ci to the rest of the quorum. It is important, however, that

at this step the ICs exchange only their commitments without revealing their share

of public key. Once each IC has received commitments from all the other members

of the quorum, it then broadcasts its share of the public key. If the commitments

received verify correctly with the shares of the public key, the IC continues the

execution as above, otherwise it reports an error to the host and aborts.

7.4.2 Encryption

For encryption, we use the Elliptic Curve ElGamal scheme [314, 320] (Algo-

rithm 7.4.5). This operation does not use the private key and thus there is no

need to perform it in a distributed manner. It can be performed directly on the host

or remotely by any party holding the public key.

Algorithm 7.4.5: Encrypts a plaintext using the agreed common public
key.

Input :The domain parameters T , the plaintext m encoded as an element
of the group G, and the calculated public key Yagg.

Output :The ElGamal ciphertext tuple, (C1, C2).
1 r← Rand(T)
2 C1← r ·G
3 C2← m+ r ·Yagg
4 return (C1, C2)

7.4. Secure distributed protocols 121

Figure 7.3: The interaction between the different ICs during the execution of the distributed
decryption protocol.

7.4.3 Decryption

One of the fundamental cryptographic operations involving a private key is ciphertext

decryption. In settings where the key is held by a single authority, the decryption

process is straightforward but assumes that none of the components involved are

compromised. Myst alleviates this requirement by distributing the decryption process

between k distinct processing ICs that hold shares of the key (Figure 7.3).

The protocol runs as follows: Initially, the host broadcasts the decryption

instruction along with the part of the ElGamal ciphertext C1 to the processing ICs

(¶). Upon reception, the ICs first verify that the request is signed by an authorized

user (·), and then execute Algorithm 7.4.6 to generate their decryption shares Ai

(¸). Once the shares are generated, they are signed by their respective ICs, get

encrypted under the host’s public key and are sent back to the host (¹). Once the

host receives k decryption shares, executes Algorithm 7.4.7 to combine them and

retrieve the plaintext m (º).

It should be noted that during the decryption process, the plaintext is not revealed

to any other party except the host, and neither the secret key nor its shares ever leave

the honest ICs. An extension to the above protocol can also prevent malicious

7.4. Secure distributed protocols 122

Algorithm 7.4.6: DecShare: Returns the decryption share for a given
ciphertext.

Input :A part of the ElGamal ciphertext (C1) and the IC’s key share xi.
Output :The decryption share Ai, where i is the IC’s uid.

1 Ai←−xi ·C1
2 return Ai

Algorithm 7.4.7: AggrDec:Combines the decryption shares and returns
the plaintext for a given ciphertext.

Input :The ElGamal ciphertext C2 and a set of decryption shares A.
Output :The plaintext m.

1 D← 0
2 for Ai ∈ A do
3 D← D+Ai
4 m← (C2 +D)
5 return m

ICs from returning arbitrary decryption shares, by incorporating a non-interactive

zero-knowledge proof (ZKP) [321] in the operation output.

7.4.4 Random String Generation

Another important application of secure hardware is the generation of a random

fixed-length bit-strings in the presence of active adversaries. The key property of

such systems is that errors (e.g., a hardware backdoor) should not introduce bias in

the generated bitstring. The implementation of such an operation is straightforward.

The remote host submits a request for randomness to all the processing ICs of the

quorum. Subsequently, each IC independently generates a random share bi, encrypts

it with the public key of the host, and signs the ciphertext with its private key. The

host receives all the shares, combines them to retrieve b and then uses an one way

function (e.g., SHA3-512 [322]) to convert b to a fixed length string.

7.4.5 Signing

To issue digital signatures, we introduce a multi-signature variant of the Schnorr

signature scheme [323], which has also similarities with the construct in [324]. This

scheme enables a quorum to collectively sign a single message (the private key

remains distributed across the different processing ICs) and allows for easy signature

7.4. Secure distributed protocols 123

verification just with the aggregate public key (Yagg). The main difference of our

setup with the majority of the related works on multisignatures [325, 326, 327, 328,

324, 329] is that we can rely on the host to act as an aggregation and storage point

(although not a trusted one). This reduces the communication complexity of our

protocol as it enables us to replace rounds of pairwise communication between the

processing ICs with simple unicast transmissions from all the ICs towards the host.

As discussed in Sections 7.2 and 7.3.1, the host can be fully compromised by

the adversary. It is thus possible for an adversary to issue malicious service requests

(e.g., for decryption or document signing). Electronic authentication methods such

as multi-factor authentication could help reduce the risk of such breaches but this

goes beyond the scope of this chapter. In our current design the device has no way

of distinguishing between a honest host and a compromised one. However, even in

the case of a fully compromised host the adversary should not be able to extract any

secret shares from the processing ICs.

Algorithm 7.4.8: SigShare: Returns the signature share of the IC for a
given plaintext and index j.

Input :The digest of the plaintext to be signed H(m), the IC’s private key
of xi and secret s, an index j, and the aggregated random EC point
R j.

Output :The signature share tuple (σi j,ε j)
1 ε j← Hash(R j||Hash(m)|| j)
2 ri j← PRFs(j)
3 σi j← ri j− xi · ε j mod n
4 return (σi j,ε j)

Before the execution of the protocol, all k processing ICs cooperate to generate

a public key y (using the distributed key generation operation, Section 7.4.1) and

each store securely their own share xi. Let PRFs(j) be a pseudorandom function

with key s that takes j as input and instantiates it as Hash(s|| j). Each IC generates

a secret s for the PRF and stores it securely. Once these have been completed, the

signing protocol can be executed. The protocol is comprised of the caching and

signing phases.

In the caching phase (Figure 7.4), the host queries each of the processing ICs

7.4. Secure distributed protocols 124

for random group elements Ri j, where i is the id of the IC and j a monotonically

increasing request counter (¶). Upon receiving the request, each IC verifies that the

host is authorized and then applies the keyed pseudorandom function on the index

j to compute ri, j = PRFs(j) (·). The IC then uses ri, j to generate a group element

(i.e., an EC Point in our case) as such Ri j = ri, j ·G (¸), and returns it to the host.

The host uses Algorithm 7.4.3 to compute the aggregate of the group elements

(R j) and stores it for future use (¹). It should be noted that the storage cost for R j is

negligible: for each round the host stores only 65 Bytes or 129 Bytes depending on

the elliptic curve used (for R j) and the corresponding round index j. This allows the

host to run the caching phase multiple times in order to generate a list of random

elements that can be used later.

The signing phase (Figure 7.5) starts with the host sending a Sign request to

all processing ICs (¶). Such a request includes the hash of the plaintext Hash(m),

the index of the round j, and the random group element R j corresponding to the

round. Each IC first verifies that the host has the authorization to submit queries

(·) and that the specific j has not been already used (¸). The latter check on j is

to prevent attacks that aim to either leak the private key or to allow the adversary

to craft new signatures from existing ones. If these checks are successful, the IC

executes Algorithm 7.4.8 and generates its signature share (¹). The signature share

(σi j,ε j) is then sent to the host (º). The host can combine all the shares σi j for the

same j using Algorithm 7.4.3 to recover σ j, thus obtaining the aggregate signature

(σ j,ε j) (»).

The security proof of this protocol can be found in [13]. To verify the produced

signature, a recipient of 〈(m, j), σ ,ε〉 can check if it holds that

ε == Hash(R||Hash(m)|| j)

, where R = σ ·G+ ε ·Y .

7.4. Secure distributed protocols 125

Figure 7.4: The interaction between the different actors during the caching phase of the
distributed signing protocol.

Figure 7.5: The interaction between the different actors when issuing a multi-signature
based on cached randomness.

7.4.6 Key Propagation

In cases where more than one quorum is available, it is useful to enable them all to

handle requests for the same public key. This is of particular importance for both the

7.5. Implementation 126

system’s scalability and availability, as we further discuss in Sections 7.6.3 and 7.6.5

respectively.

Once a quorum Q1 has generated its public key Y (Section 7.4.1), the operator

can specify another quorum Q2 that is to be initialized with shares for Y . For this

purpose, each member qi of Q1 splits its secret xi in |Q2| shares and distributes

them to the individual members of Q2. To do that qi follows the secret sharing

method shown in Algorithm 7.4.9 but any t-of-t secret sharing scheme proposed in

the literature [330, 331, 316] would do.

Algorithm 7.4.9: SecretShare: Returns a vector of shares from a secret.
Input :The domain parameters T , a secret s which is to be shared, and

the number of shares k.
Output :A vector of shares~vs

1 for (i = 0 to k−2) do
2 ~vs[i]← Rand(T)
3 ~vs[k−1]← (s−~vs[1]−~vs[2]− ...−~vs[k−2])
4 return~vs

Once all members of Q2 receive |Q1| shares, each one of them individually

combines them to retrieve their share of the secret x′i. To obtain x′i, a member

simply aggregates the incoming shares modulo p (p was provided with the domain

parameters T). An additional benefit of such a scheme is that it enables a device to

support quorums of varying sizes (i.e., |Q1| 6= |Q2|).

It should be also noted that the straightforward approach of having each member

of q1 send their share of x to a member of q2 is insecure, as malicious members from

Q1 and Q2 could then collude to reconstruct the public key.

7.5 Implementation

We now provide the implementation details of our Myst prototype. We first examine

the components and capabilities of our custom hardware platform and subsequently

we focus on the software of the untrusted ICs and the remote host.

7.5. Implementation 127

Figure 7.6: Overview of the components of our custom high-assurance device.

7.5.1 Hardware Design & Implementation

For our prototype, we designed our own custom circuit board, which features 120

processing ICs (set to use 40 quorums of 3 smart cards from different manufacturers)

interconnected with dedicated buses with 1.2 Mbps bandwidth. The processing

ICs are JavaCards (version 3.0.1), loaded with a custom applet implementing the

protocols outlined in Section 7.4. JavaCard is a platform suitable for our purposes

as it provides good interoperability (i.e., applets are manufacturer-independent),

which contributes to IC-diversification and prevents lock-in to particular vendors.

Moreover, they are also resilient to leakages as:

v They are tamper-resistant (FIPS140-2 Level 4, CC EAL4) and can withstand

attacks from adversaries with physical access to them [332].

v They feature secure (FIPS140-2 compliant) on-card random number genera-

tors.

v They offer cryptographic capabilities (e.g., Elliptic curve addition, multiplica-

tion) through a dedicated co-processor.

v There are numerous independent fabrication facilities (see also Section 7.6).

In addition to these, they have secure and persistent on-card storage space, ideal

for storing key shares and protocol parameters.

The host is implemented using a computer that runs a python client application,

which submits the user requests (e.g., Ciphertext Decryption) to Myst using a

RESTful API exposed by the device. The incoming requests are handled by a Spring

server, which parses them, converts them to a sequence of low-level instructions and

then forwards these to the IC controller, through an 1Gbps TCP/UDP interface. The

7.5. Implementation 128

Figure 7.7: Myst’s smartcard board supports 120 ICs (60 on each side). Our configuration
splits them into 40 quorums of 3 diverse ICs each.

ICs controller is a programmable Artix-7 FPGA that listens for incoming instructions

and then routes them to the processing ICs, through separate physical connections.

We took special care that these buses offer high bandwidth (over 400kbps), to prevent

bottlenecks between the controller and the ICs even under extreme load. Once the

ICs return the results, the controller communicates them back to the server, that

subsequently forwards them to the host.

7.5.2 Software

We now implement the protocols of Section 7.4 and provide the necessary methods

for inter-component communication and system parameterization.

We develop and load the processing ICs with JavaCard applets realizing meth-

ods for card management, key generation, decryption, and signing. JavaCard is an

excellent platform for use cases that require high-integrity cryptographic computa-

tions. However, we still faced various challenges implementing the cryptographic

algorithms from Section 7.4. More specifically, the cards available in the market

do not support Big Integer or elliptic curve arithmetic operations, even though the

JavaCard API (as of version 2.2.2) specifies a BigNumber class. Moreover, the only

software-based BigInteger library available (i.e., BigNat1) is not maintained and

lacked essential operations. The only available option for developers that require

access to low-level primitives is to request access to the manufacturer-specific propri-

etary APIs that realize some of these operations (e.g., EC point addition). However,

1https://ovchip.cs.ru.nl/OV-chip 2.0

https://ovchip.cs.ru.nl/OV-chip_2.0

7.5. Implementation 129

gaining access to these APIs often requires signing a non-disclosure agreement and

breaks the interoperability of the applet as the produced code will work with the

products of a single manufacturer. In our case, this would prevent us from using

cards from different manufacturers, thus reducing the diversity in the final quorum.

To overcome these limitations, we built a library that realises classes for Integers,

Big Numbers and Elliptic curve points as well as the corresponding arithmetic opera-

tions. Our functionality is based solely on the public JavaCard API and incorporates

various optimizations to utilize the cryptographic coprocessor as much as possible.

The current implementation is based on the NIST P-256 [333, 334] curve that pro-

vides at least 128 bits of security. However, it can also be easily adapted to support

other curves too. More information on the optimizations used can be found in [30].

The source code of the library has been publicly released at https://OpenCryptoJC.org

and the applet for Myst at https://github.com/OpenCryptoProject/Myst.

7.5.3 Optimizations

Although JavaCard applets are compiled with a standard Java compiler, the computa-

tional limitations of the platform make common Java patterns (e.g., frequent array

reallocation due to resizing) prohibitively expensive. Instead, we use various other

optimization techniques to increase the speed and the side-channel attack resilience

of our applet [335]:

v Where possible, use hardware-accelerated cryptographic methods from the

JavaCard API instead of custom implementations interpreted by the JavaCard

virtual machine.

v Store the session data in the faster RAM-allocated arrays instead of the persis-

tent, but slower EEPROM/Flash.

v Use copy-free methods which minimize the transfer of data in memory, and

utilize native methods provided by the JCSystem class for array manipulation

like memory set, copy and erase.

v Pre-allocate all cryptographic engines and key objects during the applet instal-

lation. No further allocation during the rest of the applet lifetime is performed.

7.6. Evaluation 130

v Additional cryptographic engines and key objects are used so as to minimize

the number of key scheduling and engine initializations for a particular key, as

these operations impose non-trivial overhead [335].

7.5.4 System States

Initially, the system is in an non-operational state, where the processing ICs do not

respond to user requests. To make it operational, a secure initialization process

has to be carried out. During the initialization, the processing ICs and the other

components described in 7.3 are loaded with verified application packages and the

domain parameters for the distributed protocols. Moreover, the ICs are provided

with their certificates, which they will later use to sign their packets and establish

secure communication channels.

Once the initialization process has been completed, the system switches to

an operational state and is available to serve user requests. Depending on the

configuration, the system may be brought back to an uninitialized state, in order

to load new software or change the protocol parameters. We further discuss the

importance of the initialization process in Section 7.6.5.

7.6 Evaluation
In this section, we evaluate Myst by examining both its performance and its qualita-

tive properties.

7.6.1 Experimental Setup

All evaluations were performed using the setup illustrated in Figure 7.6. The host is

a single machine with CentOS 7 (3.10.0 Linux kernel), featuring a 3.00GHz Intel(R)

Core i5-4590S CPU and 16GB of RAM. It uses a python client script to submit

service requests to Myst, through a 1 Gbps Ethernet interface. Upon reception, the

server uses the Java Spring framework [336] to parse and forward them to the Artix-7

FPGA, which subsequently routes them to the individual smart cards. In all our

experiments, we collect response-time measurements from both the host and the

Spring server. On average the round-trip from the host to the server takes 5ms. In

7.6. Evaluation 131

the rest of this chapter, we report the measurements from the host.

7.6.2 Performance Impact

This subsection evaluates the performance of our protocols and compares the through-

put and latency of our multi-IC prototype with that of a single-IC system. Moreover,

we examines the effect of our optimizations on the overall performance of the system.

Methodology. To better understand the overhead that the use of a distributed ar-

chitecture entails, we run experiments that measure the latency as the size of the

processing quorum grows. We sequentially submit 1,000 requests for each of the

supported cryptographic operations in quorum with sizes from one to ten ICs, and

measure the response latency on a per-operation basis. Simultaneously, to gain a

more in-depth understanding of the causes of latency, we benchmark the execution

time of each operation. For key generation measurements, we use the commitment-

based version of the protocol (Section 7.4.1.1) as it is considerably faster than the

zero-knowledge proof version. This is because the ECDSA signature verification has

an average runtime of 262 ms with the signature being 512 bits long, while SHA-256

takes only 110 ms and the digest is 256 bits.

Results. Figure 7.8 shows the average response time for performing key generation,

decryption and signing using quorums of different sizes. Decryption is the fastest

operation with 119 ms runtime that does not increase with the size of the quorum.

This is because the protocol has only a single communication round and does not

require interaction between the processing ICs. This highlights that decryption is

only CPU-bound and that the capacity of the prototype’s buses and network interfaces

does not pose a bottleneck. High-throughput decryption is of high importance in

applications such as secure key derivation in mix-network infrastructures [337] that

heavily rely on decryption.

Similarly, the runtime for signature issuance (signing phase) remains constant

(∼517ms) regardless of the quorum size. This is because our multi-signature protocol

does not require interaction between the processing ICs. The caching phase is not

included in Figure 7.8 and takes on average 169ms without being affected by the

7.6. Evaluation 132

Figure 7.8: The average runtime of each distributed protocol, in relation to the quorum size
(i.e., a coalition of multiple ICs) size.

quorum size. In practice, the operator can execute thousands of caching rounds

when the device is idle (e.g., overnight) to pre-generate randomness for future

signatures. The runtime discrepancy between the decryption and signing protocols is

primarily due to the different operations required and the limited expressiveness of

the JavaCard API. In order to implement the signing protocol in JavaCards, we need

to make use of the general purpose processor of the card as certain operations are

not available natively.

The key generation protocol has a latency of ∼650 ms for a single processing

IC and each additional IC results in an runtime increase of approximately 90 ms.

To better understand the causes of this latency, Figure 7.9 illustrates the runtime of

the low-level operations involved in the protocol. For small quorums, the cost of

key generation is dominated by the “INS KEYGEN INIT” operation that generates

a secret share, derives a public key share and initializes the arrays for storing the

shares from the other quorum members (624 ms). However, as the size of the

quorum grows, the operations that involve pairwaise communication between the

7.6. Evaluation 133

Figure 7.9: Breakdown of the runtime for low-level instructions that comprise the key
generation operation, in relation to the quorum size. The horizontal reference
line represent the cost of using a single IC.

different ICs (i.e., “INS KEYGEN STORE PUBKEY” for public key shares and

“INS KEYGEN STORE HASH” for commitments) become significant. For instance,

in a quorum of 10 ICs the “INS KEYGEN STORE PUBKEY” operation accounts

for nearly 50% of the protocol’s runtime. However, for smaller quorums of 3, the

impact on the runtime is merely 303ms, when compared to a single IC. The rest of

the low-level operations have a negligible cost regardless of the quorum’s size.

7.6.3 Scalability & Extensibility

This section examines how the throughput of our prototype grows as more processing

power (i.e., quorums) is added. The absence of bottlenecks in the system is important

to be able to provide high availability in production environments.

Methodology. To determine how efficiently our design scales in practice, we run a

series of experiments that measure our prototype’s throughput, for varying numbers

of processing quorums. As described in Section 7.5.1, our board supports up to 120

7.6. Evaluation 134

processing ICs which can be divided into multiple quorums so as to serve requests

simultaneously. To benchmark the scalability of the system, on each instance of

the experiment, we submit 10,000 requests for each high-level operation supported

and measure the overall throughput. We fix the quorum size k to 3 and measure

the throughput of our prototype up to its maximum capacity of 40 quorums. For

simplicity, we assign each processing IC to only one quorum. However, it is also

technically possible for an IC to participate in more than one quorums and handle

shares from multiple keys.

Results. Figure 7.10 illustrates the throughput of the system (in operations per

second) for varying number of processing quorums. The maximum throughput is

315ops/sec for decryption and 77 ops/sec for signing when all 40 quorums are used.

As the number of quorums grows, the decryption performance increases linearly at a

rate of ∼9 ops/sec for every additional quorum. Similarly, every additional quorum

increases the throughput by ∼1.9 ops/seq for signature issuance. This indicates that

the system is CPU-bound and that the communication channels between the ICs

and the host are not a bottleneck. Consequently, a system with this design is also

applicable to high-throughput use cases.

In cases, where a lower threshold is used (i.e., k < t), we do not expect any

performance degradation as the communication complexity will remain the same.

However, this may result in some processing ICs being idle longer. This can be

alleviated by having processing ICs that server requests for more than one quorum.

7.6.4 Tolerance levels

Our proposed system design aims to prevent various forms of leakage by being

tolerant against both fabrication-time and design-time errors. In this section, we

examine the relationship between the system’s parameters and the tolerance levels

achieved depending on the error type (Table 7.1).

In practice, the threshold k and the size of the quorums t express the trade-off

between confidentiality and robustness for each particular quorum. The relationship

between these two parameters determines how many ICs can cease to function before

the quorum fails: When k equals the number of processing ICs t, the secrets are safe

7.6. Evaluation 135

Figure 7.10: The average system throughput in relation to the number of quorums (k = 3)
that serve requests simultaneously.

Parameters Leakage Denial-of-Service IC Failures

Single IC 0 0 0
k = t t−1 0 n−1
k < t k−1 t− k (t− k)∗n

Table 7.1: Number of defective processors that different setups can tolerate under three error
scenarios. The system is assumed to feature n identical quorums of size t with a
secret-sharing threshold k.

7.6. Evaluation 136

in the presence of t−1 compromised and colluding ICs. On the other hand, a more

“relaxed” threshold (i.e., k < t) enables the quorum to remain fully functional unless

more than t−k ICs fail (maliciously or through wear). Alternatively, (k = t)-systems

can withstand multiple ICs failing (due to wear) using the technique introduced in

Section 7.4.6. This technique enables several quorums to handle requests for the

same public key, and thus even if multiple ICs (and consequently the quorums they

belong to) fail, the remaining quorums can still handle incoming requests for those

public keys. It should be noted that this technique provides robustness only in the

presence of faulty and defective ICs, but does not mitigate denial of service attacks.

This is because, all n quorums are identical (same manufacturer diversity) and thus a

malicious IC from a breached supply chain will participate in all of them. In contrast,

defective ICs will fail with a probability less than 1 (post-fabrication tests detect

ICs that fail 100% of the times) and thus at least some of the quorums will remain

functional.

From all the above, the security guarantees of Myst are determined by the

threshold k, the IC diversity and the number of quorums. In our prototype, we chose

to maximize resistance to leakage in the presence of t−1 actively malicious ICs.

Malicious ICs launching denial-of-service attacks are easier to detect and replace,

compared to those subtly leaking secrets or weakening keys. In cases where increased

robustness and availability are paramount, the security level can be adjusted in favor

of redundancy using the appropriate threshold schemes [316].

7.6.5 Other Considerations

In this section, we discuss various qualitative properties of high-assurance systems.

7.6.6 Physical Security & Diversity

Smartcards form the core of our prototype and have multiple benefits that make them

a component suitable for leakage-tolerant systems. To begin with, they are designed

to operate in a hostile environment that is fully controlled by the adversary [332].

For this reason, they come with very high tamper-resistance (FIPS140-2, Level 4)

and secure storage capabilities that are constantly enhanced. Moreover, there are

7.7. Myst Prototype Extensions 137

numerous manufacturers owning foundries (e.g., NXP semiconductors, ST Micro-

electronics, Samsung, Infineon, Athena), as well as various independent fabrication

facilities [338, 339, 340, 341]. This allows the system operator or the manufacturer

to maintain a healthy fabrication and supply chain diversity for the quorums of their

device.

7.6.7 Code & Parameter Provisioning

Even if the hardware components have been perfectly diversified, the security of the

device can be compromised if the code deployed on the processing ICs during the

provisioning phase contain errors. This can occur if the code is faulty or backdoored,

and in cases where the party responsible for the provisioning suffers a security

breach.

We now discuss three approaches that can help alleviate this risk. First, we

can perform the provisioning step at the factory. This is a standard practice in the

telecommunications industry where sim cards are loaded with a predefined applet

before they are handed to the mobile network operator. This is in line with our

assumption that some of the foundries are honest and the adversary will have to

compromise all the fabrication facilities to successfully leak any secrets stored in

the device. Alternatively, we can use a trusted off-line provisioning facility that is

not under the control of an adversary. While this is a stronger assumption, such a

facility would need to only to guarantee high integrity, as no secrets are involved

in the provisioning step (secrets are generated within the ICs as part of protocols

executed later). Finally, the software development can be diversified too, with several

independent development vendors implementing and auditing the source code.

7.7 Myst Prototype Extensions

Our Myst prototype (as seen in Section 7.5.1) can also be extended to use multiple

ICs boards, if higher throughput is needed. Figure 7.11 depicts an instantiation with

240 ICs: two boards holding 120 ICs each (60 ICs on each side) and an Artix-7

FPGA to facilitate the inter-IC communication within each board.

7.8. Conclusions 138

Figure 7.11: Myst’s prototype with 240 JavaCards fitted into an 1U rack case.

7.8 Conclusions
This chapter introduced an alternative approach in system design, leveraging a

diverse set of untrusted hardware components to minimize the risk of leakages by

distributing trust between them. This design relaxes the common assumption that all

the components of high-assurance cryptographic hardware must be secure and free

from errors. For example, it can provide resilience to the location-based leakages

seen in Chapter 6. Additionally, die-level countermeasures remain applicable and

can be used in tandem to further increase the security of the final system. Overall,

while a single countermeasure cannot effectively protect from all possible types of

leakage, the diversification of a system’s components can help substantially in the

protection of the user’s information and secrets stored or processed in a device.

The HSM outlined in 7.5.1 is currently used in production by Enigmabridge [342,

343] with the Myst schemes being also available to customers on request. Fi-

nally, [308] further extends our design by diversifying also across cryptographic

schemes. The combined scheme will become applicable to cryptocurrency key

management once the Bitcoin blockchain [344] introduces the Taproot [345, 346]

consensus update.

Chapter 8

Conclusions & Future Work

In this thesis, we studied information leakages with an emphasis on their impact

on networked and interconnected systems. We investigated their causes in different

contexts and contributed to a better overall understanding of the problem. We found

that a common cause of leakages, that traverses various layers of the computing

stack, is the lack of a formal specification of the protocol and/or of its security

properties. Chapters 4, 5 and 6 demonstrated how this manifests into inaccurate

threat models that do not correctly represent all the information related to the security

of the protocol. Moreover, we found that even minor leakages can be easily exploited

by adversaries, thus making it very hard for complex, networked systems to remain

secure. Chapter 7 builds on this conclusion and proposes a leakage-resilient system

design that retains its security properties even in the presence of leakages.

We started our investigation from the TLS protocol, in chapter 4. Our examina-

tion of the specifications of the versions 1.2 and 1.3 [52, 50] uncovered that privacy

is not clearly defined, even though it is listed as one of the protocol’s primary goals.

This, coupled with generic claims for “privacy” on TLS by articles and technical

reports [174, 175, 176, 177, 178, 179, 52] has led to confusion as to the properties

TLS can reliably provide. To better evaluate the level of privacy that a user should

expect in real-life, we designed and implemented an adversary that exploits patterns

in the encrypted TLS traffic stream to extract sensitive information about the user’s

activities.

Our experiments showed that adversaries have greatly benefited from the ad-

140

vancements in machine learning and can successfully launch large-scale attacks even

under non-optimal conditions. Overall, the TLS protocol cannot reliably provide

privacy with regards to the users’ browsing habits. However, low-overhead coun-

termeasures could potentially thwart the problem, without imposing an impractical

overhead on bandwidth. A promising direction is countermeasures that guarantee

a minimum anonymity set size that can be adjusted by webserver administrators

depending on the sensitivity of the contents of their website.

Unlike adversaries targeting static targets, adaptive adversaries use models that

learn equivalences in the traffic patterns without necessarily memorizing the specific

patterns exhibited by each targeted webpage or website. As a result, they are more

robust to changes in the page contents. However, this could potentially make them

more sensitive to changes in the infrastructure of the operator hosting the page

(e.g., use of CDNs). An investigation in this aspect of fingerprinting would shed

light into how infrastructural changes affect an attacker but more importantly study

how the centralization of hosting services (e.g., on Amazon EC2) could potentially

enhance the transferability of a model across unrelated websites. Moreover, while

experiments in our and past works provide a good indication of the capabilities of

passive adversaries, there are very few works on active fingerprinting attacks against

anonymity networks/websites [347, 348] and none (that we are aware of) against

TLS/webpages. Such adversaries are potentially more capable as they have more

actions at their disposal (e.g., trigger packet re-transmissions). It is thus a promising

direction for future works to also study the performance and characteristics of such

adversaries so as to reliably inform the selection of defenses.

In Chapter 5, we studied the ultrasonic communications channel and identi-

fied various security and privacy shortcomings. Unlike the TLS protocol, which

had a specification but failed to define privacy, there was no commonly accepted

specification for ultrasonic communication in the context of mobile devices. This

led to various security issues that could be exploited to either directly breach the

privacy of end-users or launch side-channel attacks against other applications and

channels. Interestingly, one of our attacks deanonymizes anonymity network users,

141

even though such networks aim to provide greater privacy than standard Internet

protocols (e.g., TLS from Chapter 4). Looking into the underlying causes and the

evolution of the ecosystem over the years, we attribute the shortcomings primarily

to the vendors’ market competition in the early stages of the ecosystem that led to

hastly-designed and poorly-secured implementations. As an immediate remediation,

we introduced two user-applicable countermeasures and argued for finer-grained

permissions and a commonly-accepted specification for ultrasonic communications.

Recent changes in Android’s permission system and the introduction of the Nearby

Messages API helped on that front by 1) preventing apps from abusing user trust

(e.g., monitoring the ultrasonic spectrum on the background, and 2) enforcing good

practices.

In Chapter 6, we further expanded on how modern machine learning models

enhance the adversarial capabilities and showed how they can be used in a commer-

cial ARM core. Our experiments show that adversaries making use of convolutional

neural networks can attack implementations of AES LUT with high-accuracy, thus

reducing significantly the number of the key candidates. Such techniques provide a

straightforward and low-cost way for manufacturers and auditors to quickly gauge

the security of a given product. It is thus beneficial for the end customers as it reduces

the need for expensive manual experiments and allows vendors to: 1) identify certain

security hazards early on, and 2) better fine-tune their protection mechanisms.

Overall, based on the previous chapters and prior work, we argue that the

detection-evasion arms race in the context of leakages is significantly skewed against

the defender. Adversaries have access to very capable models that evolve rapidly,

while designers and operators have to go through expensive and cumbersome pro-

cesses to evaluate the security properties of a given system at a given time. Chapter 7

introduces an alternative that is orthogonal to existing approaches for the preven-

tion and the detection of leakages. The proposed design assumes that some of the

system’s components may be vulnerable and attempts to reduce the trust placed on

each component individually. This requires some replication of components which

results in an (reasonable) additional cost but significantly enhances the resilience of

142

the system to leakages and attacks overall. While prevention and detection measures

remain necessary, trust-distribution designs can serve as a final layer of protection

against leakages in cases where everything else fails.

A recurring theme in all our chapters is the need of system designers and

operators to reliably validate the security properties of their systems and products.

Currently, most systems and protocols come with a manually-derived proof or a

formal argument for their security. This practice is far from ideal as there have been

several cases where designs were found to be less secure than initially thought or even

completely flawed. Learning-based techniques could provide an alternative for the

estimation of the lower security bound of a system or protocol. For example, as seen

in Chapters 4 and 6, machine learning has significantly enhanced the capabilities

of adversaries allowing for sophisticated attacks at a low cost. Based on these

observations, we believe that learning-based models should be further studied for

their potential to serve as security approximators. A promising direction could

involve reinforcement learning techniques that (provably) converge to the optimal

adversarial strategy, thus approximating the worst-case adversary for a given system.

Such a tool could allow for quick iterations on product designs, validation of the

correctness of analytical security proofs, and security audits of deployments and

system implementations.

Bibliography

[1] David Kahn. The codebreakers-the story of secret writing. New York, NY:

Signet, 1973.

[2] Wes Freeman, Geoff Sullivan, and Frode Weierud. Purple revealed: Sim-

ulation and computer-aided cryptanalysis of angooki taipu b. Cryptologia,

27(1):1–43, 2003.

[3] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi.

The em side—channel (s). In International Workshop on Cryptographic

Hardware and Embedded Systems, pages 29–45. Springer, 2002.

[4] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis

with a leakage model. In International workshop on cryptographic hardware

and embedded systems, pages 16–29. Springer, 2004.

[5] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified frame-

work for the analysis of side-channel key recovery attacks. In Annual interna-

tional conference on the theory and applications of cryptographic techniques,

pages 443–461. Springer, 2009.

[6] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In

Theory of Cryptography Conference, pages 278–296. Springer, 2004.

[7] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to

differential power analysis. Journal of Cryptographic Engineering, 1(1):5–27,

2011.

Bibliography 144

[8] Markus Guenther Kuhn. Compromising emanations: eavesdropping risks of

computer displays. PhD thesis, Citeseer, 2002.

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. Technical report, DTIC Document, 2004.

[10] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Com-

munications of the ACM, 42(2):39–41, 1999.

[11] Michael G Reed, Paul F Syverson, and David M Goldschlag. Anonymous

connections and onion routing. IEEE Journal on Selected areas in Communi-

cations, 16(4):482–494, 1998.

[12] Christos Andrikos, Lejla Batina, Lukasz Chmielewski, Liran Lerman, Vasilios

Mavroudis, Kostas Papagiannopoulos, Guilherme Perin, Giorgos Rassias, and

Alberto Sonnino. Location, location, location: Revisiting modeling and ex-

ploitation for location-based side channel leakages. In Advances in Cryptology

- ASIACRYPT 2019 - 25th International Conference on the Theory and Appli-

cation of Cryptology and Information Security, Kobe, Japan, December 8-12,

2019, Proceedings, Part III, volume 11923 of Lecture Notes in Computer

Science, pages 285–314. Springer, 2019.

[13] Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek, Dusan Klinec,

and George Danezis. A Touch of Evil: High-Assurance Cryptographic Hard-

ware from Untrusted Components. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2017, Dallas,

TX, USA, pages 1583–1600, 2017.

[14] Vasilios Mavroudis and Jamie Hayes. Adaptive Traffic Fingerprinting: Large-

scale Inference under Realistic Assumptions. 2020.

[15] Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio, Federico Maggi,

Christopher Kruegel, and Giovanni Vigna. On the Privacy and Security of

the Ultrasound Ecosystem. Proceedings on Privacy Enhancing Technologies,

2017(2):95–112, 2017.

Bibliography 145

[16] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.

Effective attacks and provable defenses for website fingerprinting. In 23rd

USENIX Security Symposium (USENIX Security 14), pages 143–157, 2014.

[17] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas

Zinnen, Martin Henze, and Klaus Wehrle. Website fingerprinting at internet

scale. In 23rd Annual Network and Distributed System Security Symposium,

NDSS 2016, San Diego, California, USA, February 21-24, 2016. The Internet

Society, 2016.

[18] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep

fingerprinting: Undermining website fingerprinting defenses with deep learn-

ing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, pages 1928–1943. ACM, 2018.

[19] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable website

fingerprinting technique. In 25th USENIX Security Symposium, pages 1187–

1203, 2016.

[20] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. Var-cnn: A data-

efficient website fingerprinting attack based on deep learning. Proceedings on

Privacy Enhancing Technologies, 2019(4):292–310, 2019.

[21] Shailen Mistry and Bhaskaran Raman. Quantifying Traffic Analysis of En-

crypted Web-Browsing. In Project paper, University of Berkeley, 1998.

[22] George Dean Bissias, Marc Liberatore, David Jensen, and Brian Neil Levine.

Privacy vulnerabilities in encrypted http streams. In International Workshop

on Privacy Enhancing Technologies, pages 1–11. Springer, 2005.

[23] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from

a distance: Website fingerprinting attacks and defenses. In Proceedings of

the 2012 ACM conference on Computer and communications security, pages

605–616. ACM, 2012.

Bibliography 146

[24] Vasilios Mavroudis. Market manipulation as a security problem: Attacks and

defenses. In Proceedings of the 12th European Workshop on Systems Security,

pages 1–6, 2019.

[25] Vasilios Mavroudis and Hayden Melton. Libra: Fair Order-Matching for

Electronic Financial Exchanges. In Proceedings of the 1st ACM Conference

on Advances in Financial Technologies, AFT 2019, Zurich, Switzerland, pages

156–168. ACM, 2019.

[26] Vasilios Mavroudis. Bounded Temporal Fairness for FIFO Financial Markets.

In Proceedings of the 26th International Workshop on Security Protocols.

Springer, 2019.

[27] Markus K Brunnermeier. Information leakage and market efficiency. The

Review of Financial Studies, 18(2):417–457, 2005.

[28] Alexander Hicks, Vasilios Mavroudis, Mustafa Al-Bassam, Sarah Meiklejohn,

and Steven J. Murdoch. VAMS: Verifiable Auditing of Access to Confidential

Data. CoRR, abs/1805.04772, 2018.

[29] Vasilios Mavroudis, Karl Wüst, Aritra Dhar, Kari Kostiainen, and Srdjan

Capkun. Snappy: Fast On-chain Payments with Practical Collaterals. In 27th

Annual Network and Distributed System Security Symposium, NDSS 2020,

San Diego, California, USA. The Internet Society, 2020.

[30] Vasilios Mavroudis and Petr Svenda. JCMathLib:Wrapper Cryptographic

Library for Transparent and Certifiable JavaCard Applets. In Proceedings of

the 1st International Workshop on lightweight and Incremental Cybersecurity

Certification, CyberCert 2020, all-digital. IEEE, 2020.

[31] Vasilios Mavroudis and Michael Veale. Eavesdropping whilst you’re shopping:

Balancing personalisation and privacy in connected retail spaces. In Living in

the Internet of Things: Cybersecurity of the IoT, pages 1–10. IET, 2018.

Bibliography 147

[32] MITRE. Cwe-200: Exposure of sensitive information to an unauthorized

actor. https://cwe.mitre.org/data/definitions/200.html, 2020.

[33] Steven Euijong Whang and Hector Garcia-Molina. A model for quantifying

information leakage. In Workshop on Secure Data Management, pages 25–44.

Springer, 2012.

[34] Chugui Xu, Ju Ren, Deyu Zhang, Yaoxue Zhang, Zhan Qin, and Kui Ren.

Ganobfuscator: Mitigating information leakage under gan via differential pri-

vacy. IEEE Transactions on Information Forensics and Security, 14(9):2358–

2371, 2019.

[35] Monodeep Kar, Arvind Singh, Sanu K Mathew, Anand Rajan, Vivek De, and

Saibal Mukhopadhyay. Reducing power side-channel information leakage of

aes engines using fully integrated inductive voltage regulator. IEEE Journal

of Solid-State Circuits, 53(8):2399–2414, 2018.

[36] Lukasz Olejnik, Minh-Dung Tran, and Claude Castelluccia. Selling off user

privacy at auction. In 21st Annual Network and Distributed System Security

Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014.

The Internet Society, 2014.

[37] Yong Yuan, Feiyue Wang, Juanjuan Li, and Rui Qin. A survey on real time

bidding advertising. In Service Operations and Logistics, and Informatics

(SOLI), 2014 IEEE International Conference on, pages 418–423. IEEE, 2014.

[38] Terence Chen, Imdad Ullah, Mohamed Ali Kaafar, and Roksana Boreli. Infor-

mation leakage through mobile analytics services. In Proceedings of the 15th

Workshop on Mobile Computing Systems and Applications, page 15. ACM,

2014.

[39] Claude Castelluccia, Mohamed-Ali Kaafar, and Minh-Dung Tran. Betrayed

by your ads! In Privacy Enhancing Technologies Symposium, pages 1–17.

Springer, 2012.

https://cwe.mitre.org/data/definitions/200.html

Bibliography 148

[40] Signal360. http://www.signal360.com/, 2021.

[41] Audible magic. https://www.audiblemagic.com/, 2021.

[42] Copsonic. http://www.copsonic.com/, 2021.

[43] Tchirp. http://www.tchirp.com/, 2021.

[44] Lisnr. http://lisnr.com/platform, 2021.

[45] Simon Haykin. Communication systems. John Wiley & Sons, 2008.

[46] Simon Haykin. Digital Communication systems. John Wiley & Sons, 2013.

[47] Daniel Arp, Erwin Quiring, Christian Wressnegger, and Konrad Rieck. Privacy

threats through ultrasonic side channels on mobile devices. In 2017 IEEE

European Symposium on Security and Privacy (EuroS&P), pages 35–47.

IEEE, 2017.

[48] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,

and Parisa Tabriz. Measuring HTTPS adoption on the web. In 26th USENIX

Security Symposium, pages 1323–1338, 2017.

[49] Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Adina Nedelcu, and

Cristina Onete. The privacy of the tls 1.3 protocol. Proceedings on Privacy

Enhancing Technologies, 2019(4):190–210, 2019.

[50] Eric Rescorla. The transport layer security (tls) protocol version 1.3. 2018.

[51] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A

cryptographic analysis of the tls 1.3 draft-10 full and pre-shared key handshake

protocol. IACR Cryptology ePrint Archive, 2016:81, 2016.

[52] Eric Rescorla. The transport layer security (tls) protocol version 1.2. 2008.

[53] George Danezis. Traffic analysis of the http protocol over tls, 2009.

http://www.signal360.com/
https://www.audiblemagic.com/
http://www.copsonic.com/
http://www.tchirp.com/
http://lisnr.com/platform

Bibliography 149

[54] Brad Miller, Ling Huang, Anthony D Joseph, and J Doug Tygar. I know

why you went to the clinic: Risks and realization of https traffic analysis. In

International Symposium on Privacy Enhancing Technologies Symposium,

pages 143–163. Springer, 2014.

[55] James MacQueen. Some methods for classification and analysis of mul-

tivariate observations. In Proceedings of the fifth Berkeley symposium on

mathematical statistics and probability. Vol. 1. No. 14., 1967.

[56] Christopher M Bishop. Pattern recognition and machine learning. Springer,

2006.

[57] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-

based algorithm for discovering clusters in large spatial databases with noise.

[58] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep

embedded clustering with local structure preservation. In Carles Sierra, editor,

Proceedings of the Twenty-Sixth International Joint Conference on Artificial

Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages

1753–1759. ijcai.org, 2017.

[59] Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. Deep clustering

with convolutional autoencoders. In International Conference on Neural

Information Processing, pages 373–382. Springer, 2017.

[60] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep

representations for graph clustering. In Twenty-Eighth AAAI Conference on

Artificial Intelligence, 2014.

[61] Xi Peng, Shijie Xiao, Jiashi Feng, Wei-Yun Yau, and Zhang Yi. Deep subspace

clustering with sparsity prior. In Subbarao Kambhampati, editor, Proceed-

ings of the Twenty-Fifth International Joint Conference on Artificial Intelli-

gence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 1925–1931.

IJCAI/AAAI Press, 2016.

Bibliography 150

[62] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards

k-means-friendly spaces: Simultaneous deep learning and clustering. In

Proceedings of the 34th International Conference on Machine Learning-

Volume 70, pages 3861–3870. JMLR. org, 2017.

[63] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding

for clustering analysis. In International conference on machine learning,

pages 478–487, 2016.

[64] Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic autoencoder for

zero-shot learning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3174–3183, 2017.

[65] Md Zahangir Alom and Tarek M Taha. Network intrusion detection for cyber

security using unsupervised deep learning approaches. In 2017 IEEE National

Aerospace and Electronics Conference (NAECON), pages 63–69. IEEE, 2017.

[66] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient

descent as approximate bayesian inference. The Journal of Machine Learning

Research, 18(1):4873–4907, 2017.

[67] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks

of the trade, pages 421–436. Springer, 2012.

[68] Léon Bottou. Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[69] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy,

Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent

advances in convolutional neural networks. Pattern Recognition, 77:354–377,

2018.

[70] David Snyder, Daniel Garcia-Romero, Daniel Povey, and Sanjeev Khudanpur.

Deep neural network embeddings for text-independent speaker verification.

In Interspeech, pages 999–1003, 2017.

Bibliography 151

[71] Vladimir A Golovko, Leanid U Vaitsekhovich, Pavel A Kochurko, and Uladz-

imir S Rubanau. Dimensionality reduction and attack recognition using

neural network approaches. In 2007 International Joint Conference on Neural

Networks, pages 2734–2739. IEEE, 2007.

[72] R. P. W. Duin. Classifiers in almost empty spaces. In Proceedings 15th

International Conference on Pattern Recognition. ICPR-2000, volume 2,

pages 1–7 vol.2, 2000.

[73] Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. Dimension-

ality reduction: a comparative. J Mach Learn Res, 10(66-71):13, 2009.

[74] Tiago A Almeida, Jurandy Almeida, and Akebo Yamakami. Spam filter-

ing: how the dimensionality reduction affects the accuracy of naive bayes

classifiers. Journal of Internet Services and Applications, 1(3):183–200, 2011.

[75] Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal. Dimensionality

reduction as a defense against evasion attacks on machine learning classifiers.

arXiv preprint arXiv:1704.02654, 2, 2017.

[76] Martin Husák, Milan Čermák, Tomáš Jirsı́k, and Pavel Čeleda. Https traffic

analysis and client identification using passive ssl/tls fingerprinting. EURASIP

Journal on Information Security, 2016(1):6, 2016.

[77] Martin Husák, Milan Cermák, Tomá Jirsı́k, and Pavel Celeda. Network-

based https client identification using ssl/tls fingerprinting. In 2015 10th

International Conference on Availability, Reliability and Security, pages 389–

396. IEEE, 2015.

[78] Maciej Korczyński and Andrzej Duda. Markov chain fingerprinting to classify

encrypted traffic. In IEEE INFOCOM 2014-IEEE Conference on Computer

Communications, pages 781–789. IEEE, 2014.

[79] J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin, A. Dvir,

and O. Pele. Analyzing https encrypted traffic to identify user’s operating

Bibliography 152

system, browser and application. In 2017 14th IEEE Annual Consumer

Communications Networking Conference (CCNC), pages 1–6, 2017.

[80] Blake Anderson and David McGrew. Tls beyond the browser: Combining

end host and network data to understand application behavior. In Proceedings

of the Internet Measurement Conference, pages 379–392, 2019.

[81] Heyning Cheng and Ron Avnur. Traffic analysis of ssl encrypted web browsing.

URL citeseer. ist. psu. edu/656522. html, 1998.

[82] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russell, Venkata N Pad-

manabhan, and Lili Qiu. Statistical identification of encrypted web browsing

traffic. In Proceedings 2002 IEEE Symposium on Security and Privacy, pages

19–30. IEEE, 2002.

[83] Ran Dubin, Amit Dvir, Ofir Pele, and Ofer Hadar. I know what you saw last

minute—encrypted http adaptive video streaming title classification. IEEE

transactions on information forensics and security, 12(12):3039–3049, 2017.

[84] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and Matthew

Wright. Triplet fingerprinting: More practical and portable website finger-

printing with n-shot learning. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, pages 1131–1148.

ACM, 2019.

[85] Honda Electronics. Ultrasonic Aquatic Communication System. https://

archive.is/3Ab5N, 2015-12-23T06:30:49Z.

[86] Mostafa Kamal. minimodem - general-purpose software audio FSK modem.

http://www.whence.com/minimodem/, December 2011.

[87] Ultrasound Networking. https://www.anfractuosity.com/projects/ultrasound-

networking/, May 2013.

[88] Michael Hanspach and Michael Goetz. On Covert Acoustical Mesh Networks

in Air. 8(11):758–767, 2013.

https://archive.is/3Ab5N
https://archive.is/3Ab5N
http://www.whence.com/minimodem/
https://www.anfractuosity.com/projects/ultrasound-networking/
https://www.anfractuosity.com/projects/ultrasound-networking/

Bibliography 153

[89] Venkatachalam Subramanian, Selcuk Uluagac, Hasan Cam, and Raheem

Beyah. Examining the characteristics and implications of sensor side channels.

In Communications (ICC), 2013 IEEE International Conference on, pages

2205–2210. IEEE, 2013.

[90] Mordechai Guri, Yosef Solewicz, and Yuval Elovici. Speaker-to-speaker

covert ultrasonic communication. Journal of Information Security and Appli-

cations, 51:102458, 2020.

[91] Sebastian Zimmeck, Jie S Li, Hyungtae Kim, Steven M Bellovin, and Tony

Jebara. A privacy analysis of cross-device tracking. In 26th USENIX Security

Symposium (USENIX Security 17), pages 1391–1408, 2017.

[92] Mordechai Guri, Yosef Solewicz, and Yuval Elovici. Mosquito: Covert

ultrasonic transmissions between two air-gapped computers using speaker-

to-speaker communication. In 2018 IEEE Conference on Dependable and

Secure Computing (DSC), pages 1–8. IEEE, 2018.

[93] Nikolay Matyunin, Jakub Szefer, and Stefan Katzenbeisser. Zero-permission

acoustic cross-device tracking. In 2018 IEEE International Symposium on

Hardware Oriented Security and Trust (HOST), pages 25–32. IEEE, 2018.

[94] Luke Deshotels. Inaudible sound as a covert channel in mobile devices. In

Proc. 8th USENIX Conf. Offensive Technologies, page 16, 2015.

[95] Giuseppe Petracca, Yuqiong Sun, Trent Jaeger, and Ahmad Atamli. AuDroid:

Preventing Attacks on Audio Channels in Mobile Devices. In Annual Com-

puter Security Applications Conference. ACM Press, 2015-12-10T18:43:21Z.

[96] Intrasonics-Artificial Echo Modulation. http://www.intrasonics.com/, 2016.

[97] Takeshi Sugawara, Daisuke Suzuki, Minoru Saeki, Mitsuru Shiozaki, and

Takeshi Fujino. On measurable side-channel leaks inside ASIC design primi-

tives. J. Cryptographic Engineering, 4(1):59–73, 2014.

http://www.intrasonics.com/

Bibliography 154

[98] Christos Andrikos, Giorgos Rassias, Liran Lerman, Kostas Papagiannopoulos,

and Lejla Batina. Location-based leakages: New directions in modeling

and exploiting. In 2017 International Conference on Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS), pages 246–252,

July 2017.

[99] Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic Stumpf, and Georg

Sigl. Localized electromagnetic analysis of cryptographic implementations.

In Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the

RSA Conference 2012, San Francisco, CA, USA, February 27 - March 2, 2012.

Proceedings, pages 231–244, 2012.

[100] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic,

and Jean-Pierre Seifert. Simple Photonic Emission Analysis of AES, pages

41–57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[101] M. Nassar, Y. Souissi, S. Guilley, and J. L. Danger. Rsm: A small and fast

countermeasure for aes, secure against 1st and 2nd-order zero-offset scas.

In 2012 Design, Automation Test in Europe Conference Exhibition (DATE),

pages 1173–1178, March 2012.

[102] Florian Unterstein, Johann Heyszl, Fabrizio De Santis, and Robert Specht.

Dissecting leakage resilient prfs with multivariate localized EM attacks - A

practical security evaluation on FPGA. COSADE, 2017:272, 2017.

[103] Vincent Immler, Robert Specht, and Florian Unterstein. Your rails cannot

hide from localized EM: how dual-rail logic fails on fpgas. In Cryptographic

Hardware and Embedded Systems - CHES 2017 - 19th International Confer-

ence, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 403–424,

2017.

[104] Robert Specht, Johann Heyszl, and Georg Sigl. Investigating measurement

methods for high-resolution electromagnetic field side-channel analysis. In

Bibliography 155

2014 International Symposium on Integrated Circuits (ISIC), Singapore, De-

cember 10-12, 2014, pages 21–24, 2014.

[105] Robert Specht, Johann Heyszl, Martin Kleinsteuber, and Georg Sigl. Improv-

ing non-profiled attacks on exponentiations based on clustering and extracting

leakage from multi-channel high-resolution EM measurements. In Construc-

tive Side-Channel Analysis and Secure Design - 6th International Workshop,

COSADE 2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers,

pages 3–19, 2015.

[106] R. Specht, V. Immler, F. Unterstein, J. Heyszl, and G. Sig. Dividing the

threshold: Multi-probe localized em analysis on threshold implementations.

In 2018 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST), pages 33–40, April 2018.

[107] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. Address-bit differential

power analysis of cryptographic schemes ok-ecdh and ok-ecdsa. In Revised

Papers from the 4th International Workshop on Cryptographic Hardware

and Embedded Systems, CHES ’02, pages 129–143, London, UK, UK, 2003.

Springer-Verlag.

[108] Raghavan Kumar, Philipp Jovanovic, Wayne P Burleson, and Ilia Polian.

Parametric trojans for fault-injection attacks on cryptographic hardware. IACR

Cryptology ePrint Archive, 2014:783, 2014.

[109] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav

Knezevic, Lars R Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,

Christian Rechberger, et al. Prince–a low-latency block cipher for pervasive

computing applications. In International Conference on the Theory and

Application of Cryptology and Information Security, pages 208–225. Springer,

2012.

Bibliography 156

[110] Georg T Becker, Francesco Regazzoni, Christof Paar, and Wayne P Burleson.

Stealthy dopant-level hardware trojans. In International Workshop on Crypto-

graphic Hardware and Embedded Systems, pages 197–214. Springer, 2013.

[111] Andrea Pellegrini, Valeria Bertacco, and Todd Austin. Fault-based attack of rsa

authentication. In Proceedings of the conference on Design, automation and

test in Europe, pages 855–860. European Design and Automation Association,

2010.

[112] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis

Sylvester. A2: Analog malicious hardware, 2016.

[113] Xinmu Wang, Tatini Mal-Sarkar, Aswin Raghav Krishna, Seetharam

Narasimhan, and Swarup Bhunia. Software exploitable hardware trojans

in embedded processor. In 2012 IEEE International Symposium on Defect

and Fault Tolerance in VLSI and Nanotechnology Systems, DFT 2012, Austin,

TX, USA, October 3-5, 2012, pages 55–58, 2012.

[114] Xinmu Wang. Hardware trojan attacks: Threat analysis and low-cost counter-

measures through golden-free detection and secure design. PhD thesis, Case

Western Reserve University, 2014.

[115] Xinmu Wang, Seetharam Narasimhan, Aswin Krishna, Tatini Mal-Sarkar,

and Swarup Bhunia. Sequential hardware trojan: Side-channel aware design

and placement. In Computer Design (ICCD), 2011 IEEE 29th International

Conference on, pages 297–300. IEEE, 2011.

[116] Sebastian Kutzner, Axel York Poschmann, and Marc Stöttinger. Hardware

trojan design and detection: a practical evaluation. In Proceedings of the

Workshop on Embedded Systems Security, WESS 2013, Montreal, Quebec,

Canada, September 29 - October 4, 2013, pages 1:1–1:9, 2013.

[117] Swarup Bhunia, Michael S. Hsiao, Mainak Banga, and Seetharam Narasimhan.

Hardware trojan attacks: Threat analysis and countermeasures. Proceedings

of the IEEE, 102(8):1229–1247, 2014.

Bibliography 157

[118] Sergei Skorobogatov and Christopher Woods. Breakthrough silicon scanning

discovers backdoor in military chip. In Cryptographic Hardware and Embed-

ded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,

September 9-12, 2012. Proceedings, pages 23–40, 2012.

[119] Subhasish Mitra, H-S Philip Wong, and Simon Wong. The trojan-proof chip.

IEEE Spectrum, 52(2):46–51, 2015.

[120] Yier Jin and Yiorgos Makris. Hardware trojans in wireless cryptographic ics.

IEEE Design & Test of Computers, 27(1), 2010.

[121] Sean Gallagher. Photos of an nsa “upgrade” factory show cisco router getting

implant. Ars Technica, 14, 2014.

[122] S Skorobogatov. Hardware assurance and its importance to national security.

https://www.cl.cam.ac.uk/∼sps32/sec news.html, 2012.

[123] Sally Adee. The hunt for the kill switch. IEEE Spectrum, 45(5):34–39, 2008.

[124] John Markoff. Old trick threatens the newest weapons. The New York Times,

27, 2009.

[125] Thomas Shrimpton and R Seth Terashima. A provable-security analysis of

intel’s secure key rng. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 77–100. Springer, 2015.

[126] FreeBSD Security Working Group. Freebsd developer summit: Security

working group. https://wiki.freebsd.org/201309DevSummit/Security, 2013.

[127] RT. ’we cannot trust them anymore’: Engineers abandon encryption chips after

snowden leaks. https://www.rt.com/usa/snowden-leak-rng-randomness-019/,

2013.

[128] Dan Goodin. ’we cannot trust” intel and via’s chip-based crypto’, freebsd

developers say. http://arstechnica.com/security/2013/12/we-cannot-trust-intel-

and-vias-chip-based-crypto-freebsd-developers-say/, 2013.

https://www.cl.cam.ac.uk/~sps32/sec_news.html
https://wiki.freebsd.org/201309DevSummit/Security
https://www.rt.com/usa/snowden-leak-rng-randomness-019/

Bibliography 158

[129] Bruce Schneier. Surreptitiously tampering with computer chips. https://www.

schneier.com/blog/archives/2013/09/surreptitiously.html, 2013.

[130] Daniel J Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia

Heninger, Tanja Lange, and Nicko Van Someren. Factoring rsa keys from

certified smart cards: Coppersmith in the wild. In International Conference

on the Theory and Application of Cryptology and Information Security, pages

341–360. Springer, 2013.

[131] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sys. Minerva: The

curse of ecdsa nonces systematic analysis of lattice attacks on noisy leakage

of bit-length of ecdsa nonces. IACR Transactions on Cryptographic Hardware

and Embedded Systems, pages 281–308, 2020.

[132] Sheng Wei and Miodrag Potkonjak. Self-consistency and consistency-based

detection and diagnosis of malicious circuitry. IEEE Trans. VLSI Syst.,

22(9):1845–1853, 2014.

[133] S. Wei and M. Potkonjak. Scalable hardware trojan diagnosis. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, 20(6):1049–1057,

2012.

[134] Oliver Soll, Thomas Korak, Michael Muehlberghuber, and Michael Hutter.

Em-based detection of hardware trojans on fpgas. In Hardware-Oriented

Security and Trust (HOST), 2014 IEEE International Symposium on, pages

84–87. IEEE, 2014.

[135] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and

Berk Sunar. Trojan detection using ic fingerprinting. In Security and Privacy,

2007. SP’07. IEEE Symposium on, pages 296–310. IEEE, 2007.

[136] Rajat Subhra Chakraborty, Francis G. Wolff, Somnath Paul, Christos A. Pa-

pachristou, and Swarup Bhunia. MERO: A statistical approach for hardware

trojan detection. In Cryptographic Hardware and Embedded Systems - CHES

https://www.schneier.com/blog/archives/2013/09/surreptitiously.html
https://www.schneier.com/blog/archives/2013/09/surreptitiously.html

Bibliography 159

2009, 11th International Workshop, Lausanne, Switzerland, September 6-9,

2009, Proceedings, pages 396–410, 2009.

[137] Jeyavijayan JV Rajendran and Siddharth Garg. Logic encryption. In Hardware

Protection through Obfuscation, pages 71–88. Springer, 2017.

[138] Chongxi Bao, Yang Xie, and Ankur Srivastava. A security-aware design

scheme for better hardware trojan detection sensitivity. In IEEE Interna-

tional Symposium on Hardware Oriented Security and Trust, HOST 2015,

Washington, DC, USA, 5-7 May, 2015, pages 52–55, 2015.

[139] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. FANCI:

identification of stealthy malicious logic using boolean functional analysis. In

2013 ACM SIGSAC Conference on Computer and Communications Security,

CCS’13, Berlin, Germany, November 4-8, 2013, pages 697–708, 2013.

[140] Jie Zhang, Feng Yuan, Lingxiao Wei, Yannan Liu, and Qiang Xu. Veritrust:

Verification for hardware trust. IEEE Trans. on CAD of Integrated Circuits

and Systems, 34(7):1148–1161, 2015.

[141] Zhang Chen, Pingqiang Zhou, T. Y. Ho, and Y. Jin. How secure is split

manufacturing in preventing hardware trojan? In 2016 IEEE Asian Hardware-

Oriented Security and Trust (AsianHOST), pages 1–6, 2016.

[142] Yujie Wang, Pu Chen, Jiang Hu, and Jeyavijayan Rajendran. The cat and

mouse in split manufacturing. In Proceedings of the 53rd Annual Design

Automation Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016, pages

165:1–165:6, 2016.

[143] Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh Karri. Is split man-

ufacturing secure? In Proceedings of the Conference on Design, Automation

and Test in Europe, pages 1259–1264. EDA Consortium, 2013.

[144] Rajat Subhra Chakraborty and Swarup Bhunia. Security against hardware

trojan through a novel application of design obfuscation. In Proceedings of the

Bibliography 160

2009 International Conference on Computer-Aided Design, pages 113–116.

ACM, 2009.

[145] Matthew Hicks, Murph Finnicum, Samuel T. King, Milo M. K. Martin, and

Jonathan M. Smith. Overcoming an untrusted computing base: Detecting and

removing malicious hardware automatically. In 31st IEEE Symposium on

Security and Privacy, S&P 2010, Oakland, California, USA, pages 159–172,

2010.

[146] Adam Waksman and Simha Sethumadhavan. Tamper evident microprocessors.

In Security and Privacy (SP), 2010 IEEE Symposium on, pages 173–188.

IEEE, 2010.

[147] Riad S. Wahby, Max Howald, Siddharth Garg, abhi shelat, and Michael

Walfish. Verifiable asics. In IEEE Security and Privacy (Oakland) 2016,

eprint/2016/1243, 2016.

[148] Stefan Dziembowski, Sebastian Faust, and François-Xavier Standaert. Private

circuits iii: Hardware trojan-resilience via testing amplification. In Proceed-

ings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security, pages 142–153. ACM, 2016.

[149] Giuseppe Ateniese, Aggelos Kiayias, Bernardo Magri, Yiannis Tselekounis,

and Daniele Venturi. Secure outsourcing of circuit manufacturing. Cryptology

ePrint Archive, Report 2016/527, 2016. http://eprint.iacr.org/2016/527.

[150] Liming Chen and Algirdas Avizienis. N-version programming: A fault-

tolerance approach to reliability of software operation. In Digest of Papers

FTCS-8: Eighth Annual International Conference on Fault Tolerant Comput-

ing, pages 3–9, 1978.

[151] Ying C Yeh. Triple-triple redundant 777 primary flight computer. In Aerospace

Applications Conference, 1996. Proceedings., 1996 IEEE, volume 1, pages

293–307. IEEE, 1996.

http://eprint.iacr.org/2016/527

Bibliography 161

[152] Ying C Yeh. Design considerations in boeing 777 fly-by-wire computers. In

High-Assurance Systems Engineering Symposium, 1998. Proceedings. Third

IEEE International, pages 64–72. IEEE, 1998.

[153] Benjamin Cox and David Evans. N-variant systems: A secretless framework

for security through diversity. In Proceedings of the 15th USENIX Security

Symposium, Vancouver, BC, Canada, July 31 - August 4, 2006, 2006.

[154] Yousra Alkabani and Farinaz Koushanfar. N-variant IC design: methodology

and applications. In Proceedings of the 45th Design Automation Conference,

DAC 2008, Anaheim, CA, USA, June 8-13, 2008, pages 546–551, 2008.

[155] Mark Beaumont, Bradley Hopkins, and Tristan Newby. Safer path: Security

architecture using fragmented execution and replication for protection against

trojaned hardware. In Proceedings of the Conference on Design, Automation

and Test in Europe, pages 1000–1005. EDA Consortium, 2012.

[156] Mark Beaumont, Bradley Hopkins, and Tristan Newby. Hardware trojan

resistant computation using heterogeneous cots processors. In Proceedings

of the Thirty-Sixth Australasian Computer Science Conference-Volume 135,

pages 97–106. Australian Computer Society, Inc., 2013.

[157] Fred B Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[158] Fred B Schneider. The state machine approach: A tutorial. Fault-tolerant

distributed computing, pages 18–41, 1990.

[159] Alysson Bessani, Joao Sousa, and Eduardo EP Alchieri. State machine

replication for the masses with bft-smart. In 2014 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, pages 355–

362. IEEE, 2014.

[160] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. In Concurrency: the Works of Leslie Lamport, pages 179–196. 2019.

Bibliography 162

[161] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In

OSDI, volume 99, pages 173–186, 1999.

[162] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in

the presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[163] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals

problem. In Concurrency: the Works of Leslie Lamport, pages 203–226. 2019.

[164] Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and Dragos-Adrian

Seredinschi. State machine replication is more expensive than consensus.

Technical report, 2018.

[165] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the

presence of partial synchrony. Journal of the ACM (JACM), 35(2):288–323,

1988.

[166] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast

protocols. Journal of the ACM (JACM), 32(4):824–840, 1985.

[167] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of

distributed consensus with one faulty process. Journal of the ACM (JACM),

32(2):374–382, 1985.

[168] Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for

t-resilient asynchronous computations. In Proceedings of the twenty-fifth

annual ACM symposium on Theory of computing, pages 91–100, 1993.

[169] NetCraft. August 2020 web server survey. https://news.netcraft.com/archives/

category/web-server-survey/, 2020.

[170] Cisco and affiliates. Global - 2020 Forecast Highlights. https:

//www.cisco.com/c/dam/m/en us/solutions/service-provider/vni-forecast-

highlights/pdf/Global 2020 Forecast Highlights.pdf, 2016.

https://news.netcraft.com/archives/category/web-server-survey/
https://news.netcraft.com/archives/category/web-server-survey/
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2020_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2020_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2020_Forecast_Highlights.pdf

Bibliography 163

[171] Cisco and affiliates. Global - 2022 Forecast Highlights. https:

//www.cisco.com/c/dam/m/en us/solutions/service-provider/vni-forecast-

highlights/pdf/Global 2022 Forecast Highlights.pdf, 2018.

[172] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt.

A critical evaluation of website fingerprinting attacks. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security,

pages 263–274. ACM, 2014.

[173] Tao Wang and Ian Goldberg. On realistically attacking tor with website

fingerprinting. Proceedings on Privacy Enhancing Technologies, 2016(4):21–

36, 2016.

[174] WolfSSL. A Comparison of Differences in TLS 1.1 and TLS 1.2. https://

www.wolfssl.com/a-comparison-of-differences-in-tls-1-1-and-tls-1-2/, 2015.

[175] Nick Sullivan. A Detailed Look at RFC 8446 (a.k.a. TLS 1.3). https://blog.

cloudflare.com/rfc-8446-aka-tls-1-3/, 2018.

[176] Cloudflare. What is Transport Layer Security (TLS)? https://www.cloudflare.

com/learning/ssl/transport-layer-security-tls/, 2018.

[177] Babur Khan. TLS 1.3 - Status, Concerns & Impact. https://www.a10networks.

com/blog/tls-13-status-concerns-impact/, 2019.

[178] Christopher Wood Joseph Salowey, Sean Turner. IETF News: TLS 1.3.

https://ietf.org/blog/tls13/, 2018.

[179] Nick Naziridis. TLS 1.3 is here to stay. https://www.ssl.com/article/tls-1-3-

is-here-to-stay/, 2018.

[180] Dimitrios Schoinianakis, Norbert Goetze, and Gerald Lehmann. Mdiet: Mal-

ware detection in encrypted traffic. In 6th International Symposium for ICS &

SCADA Cyber Security Research 2019 6, pages 31–37, 2019.

https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2022_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2022_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2022_Forecast_Highlights.pdf
https://www.wolfssl.com/a-comparison-of-differences-in-tls-1-1-and-tls-1-2/
https://www.wolfssl.com/a-comparison-of-differences-in-tls-1-1-and-tls-1-2/
https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.a10networks.com/blog/tls-13-status-concerns-impact/
https://www.a10networks.com/blog/tls-13-status-concerns-impact/
https://ietf.org/blog/tls13/
https://www.ssl.com/article/tls-1-3-is-here-to-stay/
https://www.ssl.com/article/tls-1-3-is-here-to-stay/

Bibliography 164

[181] Blake Harrell Anderson, David McGrew, Subharthi Paul, Ivan Nikolaev, and

Martin Grill. Malware classification and attribution through server fingerprint-

ing using server certificate data, May 17 2018. US Patent App. 15/353,160.

[182] Blake Anderson, Subharthi Paul, and David McGrew. Deciphering malware’s

use of tls (without decryption). Journal of Computer Virology and Hacking

Techniques, 14(3):195–211, 2018.

[183] Nick Pantic and Mohammad I Husain. Covert botnet command and control

using twitter. In Proceedings of the 31st annual computer security applications

conference, pages 171–180. ACM, 2015.

[184] Yue Li, Lidong Zhai, Zhilei Wang, and Yunlong Ren. Control method of

twitter-and sms-based mobile botnet. In International Conference on Trust-

worthy Computing and Services, pages 644–650. Springer, 2012.

[185] Pieter Burghouwt, Marcel Spruit, and Henk Sips. Detection of covert bot-

net command and control channels by causal analysis of traffic flows. In

Cyberspace Safety and Security, pages 117–131. Springer, 2013.

[186] Pieter Burghouwt, Marcel Spruit, and Henk Sips. Towards detection of

botnet communication through social media by monitoring user activity. In

International Conference on Information Systems Security, pages 131–143.

Springer, 2011.

[187] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl.

Sampling matters in deep embedding learning. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2840–2848, 2017.

[188] Ben Harwood, BG Kumar, Gustavo Carneiro, Ian Reid, Tom Drummond,

et al. Smart mining for deep metric learning. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2821–2829, 2017.

Bibliography 165

[189] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified

embedding for face recognition and clustering. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 815–823, 2015.

[190] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by

learning an invariant mapping. In 2006 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages

1735–1742. IEEE, 2006.

[191] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric

discriminatively, with application to face verification. In 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05),

volume 1, pages 539–546. IEEE, 2005.

[192] Qingzhao Tan, Ziming Zhuang, Prasenjit Mitra, and C Lee Giles. Efficiently

detecting webpage updates using samples. In International Conference on

Web Engineering, pages 285–300. Springer, 2007.

[193] Marc Spaniol, Arturas Mazeika, Dimitar Denev, and Gerhard Weikum. “catch

me if you can”: Visual analysis of coherence defects in web archiving. In

The 9 th International Web Archiving Workshop (IWAW 2009) Corfu, Greece,

September/October, 2009 Workshop Proceedings, page 1, 2009.

[194] Konstantinos Solomos, John Kristoff, Chris Kanich, and Jason Polakis. Per-

sistent tracking in modern browsers. In 28th Annual Network and Distributed

System Security Symposium, NDSS 2021. The Internet Society, 2021.

[195] Felix Fuentes and Dulal C Kar. Ethereal vs. tcpdump: a comparative study on

packet sniffing tools for educational purpose. Journal of Computing Sciences

in Colleges, 20(4):169–176, 2005.

[196] Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd,

2017.

Bibliography 166

[197] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.

Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale

machine learning. In 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), pages 265–283, Savannah, GA, November

2016. USENIX Association.

[198] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,

2006.

[199] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren

Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental algorithms for

scientific computing in python. Nature methods, 17(3):261–272, 2020.

[200] James Bergstra and Yoshua Bengio. Random search for hyper-parameter

optimization. Journal of machine learning research, 13(Feb):281–305, 2012.

[201] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-

rithms for hyper-parameter optimization. In Advances in neural information

processing systems, pages 2546–2554, 2011.

[202] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807–814, 2010.

[203] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models.

[204] Alfredo Pironti and Nikos Mavrogiannopoulos. Length hiding padding for

the transport layer security protocol. tech. rep., Internet-Draft draft-pironti-

tls-length-hiding-00, IETF Secretariat, 2013.

Bibliography 167

[205] Alfredo Pironti, Pierre-Yves Strub, and Karthikeyan Bhargavan. Identifying

website users by tls traffic analysis: New attacks and effective countermea-

sures. 2012.

[206] Global Web Index. Digital consumers own 3.2 connected de-

vices. https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-

own-3-point-2-connected-devices/, November 2017.

[207] Sophos. Users weighed down by multiple gadgets and mobile devices, new

sophos survey reveals. https://www.sophos.com/en-us/press-office/press-

releases/2013/03/mobile-security-survey.aspx, March 2013.

[208] Google Cast 1.16.7 app on the Play Store. https://play.google.com/store/apps/

details?id=com.google.android.apps.chromecast.app, 2016.

[209] Shopkick. https://www.shopkick.com/, June 2016.

[210] Silverpush. https://www.silverpush.co/, 2015.

[211] Google Nearby Messages API. https://developers.google.com/nearby/

messages/android/get-beacon-messages, 2016.

[212] Google Proximity Beacon API. https://developers.google.com/beacons/

proximity/guides, 2016.

[213] Bluetooth Low Energy API Level 18. https://developer.android.com/guide/

topics/connectivity/bluetooth-le.html, 2016.

[214] Cueaudio. https://cueaudio.com/data-over-sound/, 2021.

[215] Google. Chromecast guest mode - guest mode faqs. https://support.google.

com/chromecast/answer/6109297?hl=en, August 2016.

[216] Indianapolis Colts Mobile 3.1.1 app on the Play Store. https://play.google.

com/store/apps/details?id=com.yinzcam.nfl.colts, 2016.

https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-own-3-point-2-connected-devices/
https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-own-3-point-2-connected-devices/
https://www.sophos.com/en-us/press-office/press-releases/2013/03/mobile-security-survey.aspx
https://www.sophos.com/en-us/press-office/press-releases/2013/03/mobile-security-survey.aspx
https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://www.shopkick.com/
https://www.silverpush.co/
https://developers.google.com/nearby/messages/android/get-beacon-messages
https://developers.google.com/nearby/messages/android/get-beacon-messages
https://developers.google.com/beacons/proximity/guides
https://developers.google.com/beacons/proximity/guides
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://cueaudio.com/data-over-sound/
https://support.google.com/chromecast/answer/6109297?hl=en
https://support.google.com/chromecast/answer/6109297?hl=en
https://play.google.com/store/apps/details?id=com.yinzcam.nfl.colts
https://play.google.com/store/apps/details?id=com.yinzcam.nfl.colts

Bibliography 168

[217] Alex Silverman. Colts to begin using lisnr technology to reach fans’ mobile

devices at games, events. http://www.sportsbusinessdaily.com/Daily/Issues/

2016/07/19/Franchises/Colts.aspx, July 2016.

[218] Made in America Festival 1.0.8 app on the Play Store. https://play.google.

com/store/apps/details?id=com.lisnr.festival.madeinamericaandroid, 2015.

[219] C. Roeding and A.T. Emigh. Method and system for location-triggered

rewards. https://www.google.com/patents/US8489112, 2013. US Patent

8,489,112.

[220] Dan Goodin. Beware of ads that use inaudible sound to link your phone, TV,

tablet, and PC. http://arstechnica.com/tech-policy/2015/11/beware-of-ads-

that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/, 2015.

[221] Chris Calabrese. Comments for November 2015 Workshop on Cross-

Device Tracking. https://cdt.org/files/2015/10/10.16.15-CDT-Cross-Device-

Comments.pdf, 2015-12-09T18:54:04Z.

[222] History GK 5.0 app on the Play Store. https://play.google.com/store/apps/

details?id=com.gktalk.history, 2016.

[223] Philipp Winter, Richard Köwer, Martin Mulazzani, Markus Huber, Sebastian

Schrittwieser, Stefan Lindskog, and Edgar Weippl. Spoiled Onions: Exposing

Malicious Tor Exit Relays. In Privacy Enhancing Technologies Symposium.

Springer, 2014.

[224] Moxie Marlinspike. New tricks for defeating ssl in practice. In Black Hat

USA 2009, 2009.

[225] Danny Palmer. Android security: Six more apps containing Joker malware

removed from the Google Play Store. https://www.zdnet.com/article/android-

security-six-more-apps-containing-joker-malware-removed-from-the-

google-play-store/, 2020.

http://www.sportsbusinessdaily.com/Daily/Issues/2016/07/19/Franchises/Colts.aspx
http://www.sportsbusinessdaily.com/Daily/Issues/2016/07/19/Franchises/Colts.aspx
https://play.google.com/store/apps/details?id=com.lisnr.festival.madeinamericaandroid
https://play.google.com/store/apps/details?id=com.lisnr.festival.madeinamericaandroid
https://www.google.com/patents/US8489112
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
https://cdt.org/files/2015/10/10.16.15-CDT-Cross-Device-Comments.pdf
https://cdt.org/files/2015/10/10.16.15-CDT-Cross-Device-Comments.pdf
https://play.google.com/store/apps/details?id=com.gktalk.history
https://play.google.com/store/apps/details?id=com.gktalk.history
https://www.zdnet.com/article/android-security-six-more-apps-containing-joker-malware-removed-from-the-google-play-store/
https://www.zdnet.com/article/android-security-six-more-apps-containing-joker-malware-removed-from-the-google-play-store/
https://www.zdnet.com/article/android-security-six-more-apps-containing-joker-malware-removed-from-the-google-play-store/

Bibliography 169

[226] Andy Greenberg. How Spies Snuck Malware Into the Google Play

Store—Again and Again. https://www.wired.com/story/phantomlance-google-

play-malware-apt32/, 2020.

[227] Kopo M Ramokapane, Anthony C Mazeli, and Awais Rashid. Skip, skip,

skip, accept!!!: A study on the usability of smartphone manufacturer pro-

vided default features and user privacy. Proceedings on Privacy Enhancing

Technologies, 2019(2):209–227, 2019.

[228] Alessandro Andreadis and Giovanni Giambene. The global system for mobile

communications. Protocols for High-Efficiency Wireless Networks, pages

17–44, 2002.

[229] 3GPP. 3rd generation partnership project, technical specification of inter-

national mobile station equipment identities (imei). http://www.3gpp.org/

DynaReport/22016.htm, 2015.

[230] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. Fake co-visitation injection

attacks to recommender systems. In NDSS, 2017.

[231] Joseph A Calandrino, Ann Kilzer, Arvind Narayanan, Edward W Felten,

and Vitaly Shmatikov. ” you might also like:” privacy risks of collaborative

filtering. In 2011 IEEE symposium on security and privacy, pages 231–246.

IEEE, 2011.

[232] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering

techniques. Advances in artificial intelligence, 2009:4, 2009.

[233] Jun Yan, Ning Liu, Gang Wang, Wen Zhang, Yun Jiang, and Zheng Chen.

How much can behavioral targeting help online advertising? In Proceedings

of the 18th international conference on World wide web, pages 261–270.

ACM, 2009.

https://www.wired.com/story/phantomlance-google-play-malware-apt32/
https://www.wired.com/story/phantomlance-google-play-malware-apt32/
http://www.3gpp.org/DynaReport/22016.htm
http://www.3gpp.org/DynaReport/22016.htm

Bibliography 170

[234] Weinan Zhang, Lingxi Chen, and Jun Wang. Implicit look-alike modelling in

display ads: Transfer collaborative filtering to ctr estimation. arXiv preprint

arXiv:1601.02377, 2016.

[235] Arik Friedman, Bart P Knijnenburg, Kris Vanhecke, Luc Martens, and Shlomo

Berkovsky. Privacy aspects of recommender systems. In Recommender

Systems Handbook, pages 649–688. Springer, 2015.

[236] Rui Chen, Min Xie, and Laks VS Lakshmanan. Thwarting passive privacy

attacks in collaborative filtering. In International Conference on Database

Systems for Advanced Applications, pages 218–233. Springer, 2014.

[237] Wei Meng, Xinyu Xing, Anmol Sheth, Udi Weinsberg, and Wenke Lee.

Your online interests: Pwned! a pollution attack against targeted advertising.

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, pages 129–140. ACM, 2014.

[238] Xinyu Xing, Wei Meng, Dan Doozan, Alex C Snoeren, Nick Feamster, and

Wenke Lee. Take this personally: Pollution attacks on personalized services.

In Proceedings of the 22nd USENIX Security Symposium, 2013.

[239] Real-time bidding and malvertising: A case study. https://blog.malwarebytes.

org/cybercrime/2015/04/real-time-bidding-and-malvertising-a-case-study/,

April 2015.

[240] Aditya K Sood and Richard J Enbody. Targeted cyberattacks: a superset of

advanced persistent threats. IEEE security & privacy, (1):54–61, 2013.

[241] Addons Detector. Silverpush android apps. https://public.addonsdetector.com/

silverpush-android-apps/, November 2015.

[242] McDo Philippines app on the Play Store. https://play.google.com/store/apps/

details?id=ph.mobext.mcdelivery, 2016.

[243] Ftc public discussion on cross-device tracking. https://www.ftc.gov/news-

events/audio-video/video/cross-device-tracking-part-1, November 2015.

https://blog.malwarebytes.org/cybercrime/2015/04/real-time-bidding-and-malvertising-a-case-study/
https://blog.malwarebytes.org/cybercrime/2015/04/real-time-bidding-and-malvertising-a-case-study/
https://public.addonsdetector.com/silverpush-android-apps/
https://public.addonsdetector.com/silverpush-android-apps/
https://play.google.com/store/apps/details?id=ph.mobext.mcdelivery
https://play.google.com/store/apps/details?id=ph.mobext.mcdelivery
https://www.ftc.gov/news-events/audio-video/video/cross-device-tracking-part-1
https://www.ftc.gov/news-events/audio-video/video/cross-device-tracking-part-1

Bibliography 171

[244] Edith Ramirez. Transcript - Part 1. In FTC Cross-Device Tracking Workshop,

2015.

[245] Edith Ramirez. Transcript - Part 2. In FTC Cross-Device Tracking Workshop,

2015.

[246] Android Help. Change app permissions on your Android phone. https:

//support.google.com/android/answer/9431959?hl=en-GB, 2020.

[247] City Frequencies. PilferShush. https://www.cityfreqs.com.au/pilfer.php, 2021.

[248] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analy-

sis. In Advances in Cryptology - CRYPTO ’99, 19th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,

Proceedings, pages 388–397, 1999.

[249] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic

analysis: Concrete results. In Çetin K. Koç, David Naccache, and Christof

Paar, editors, Cryptographic Hardware and Embedded Systems — CHES

2001, pages 251–261, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[250] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Stan-

daert. Univariate side channel attacks and leakage modeling. J. Cryptographic

Engineering, 1(2):123–144, 2011.

[251] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework

for the analysis of side-channel key recovery attacks. In Advances in Cryp-

tology - EUROCRYPT 2009, 28th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Cologne, Germany,

April 26-30, 2009. Proceedings, pages 443–461, 2009.

[252] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking

of aes. In Stefan Mangard and François-Xavier Standaert, editors, Cryp-

tographic Hardware and Embedded Systems, CHES 2010, pages 413–427,

Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

https://support.google.com/android/answer/9431959?hl=en-GB
https://support.google.com/android/answer/9431959?hl=en-GB
https://www.cityfreqs.com.au/pilfer.php

Bibliography 172

[253] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-

plementations against side-channel attacks and glitches. In Information and

Communications Security, 8th International Conference, ICICS 2006, Raleigh,

NC, USA, December 4-7, 2006, Proceedings, pages 529–545, 2006.

[254] Tetsuya Ichikawa, Tomomi Kasuya, and Mitsuru Matsui. Hardware evaluation

of the aes finalists. In AES Candidate Conference, volume 2000, pages 279–

285. Citeseer, 2000.

[255] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant aes-

gcm. In International Workshop on Cryptographic Hardware and Embedded

Systems, pages 1–17. Springer, 2009.

[256] Takeshi Sugawara, Daisuke Suzuki, Minoru Saeki, Mitsuru Shiozaki, and

Takeshi Fujino. On measurable side-channel leaks inside asic design primi-

tives. In International Conference on Cryptographic Hardware and Embedded

Systems, pages 159–178. Springer, 2013.

[257] Assia Tria and Hamid Choukri. Invasive attacks. In Henk C. A. van Tilborg

and Sushil Jajodia, editors, Encyclopedia of Cryptography and Security, pages

623–629, Boston, MA, 2011. Springer US.

[258] Jochen Hoenicke. Extracting the private key from a TREZOR. https://jochen-

hoenicke.de/crypto/trezor-power-analysis/, 2015.

[259] Tim Güneysu and Tobias Oder. Towards lightweight identity-based encryption

for the post-quantum-secure internet of things. In 2017 18th International

Symposium on Quality Electronic Design (ISQED), pages 319–324, 2017.

[260] Hwajeong Seo and Reza Azarderakhsh. Curve448 on 32-bit arm cortex-m4.

In International Conference on Information Security and Cryptology, pages

125–139. Springer, 2020.

[261] Niels Roelofs, Niels Samwel, Lejla Batina, and Joan Daemen. Online template

attack on ecdsa:. In Abderrahmane Nitaj and Amr Youssef, editors, Progress

https://jochen-hoenicke.de/crypto/trezor-power-analysis/
https://jochen-hoenicke.de/crypto/trezor-power-analysis/

Bibliography 173

in Cryptology - AFRICACRYPT 2020, pages 323–336, Cham, 2020. Springer

International Publishing.

[262] Marios O Choudary and Markus G Kuhn. Efficient, portable template attacks.

IEEE Transactions on Information Forensics and Security, 13(2):490–501,

2017.

[263] Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluderović. Full

key recovery side-channel attack against ephemeral sike on the cortex-m4.

In Constructive Side-Channel Analysis and Secure Design, pages 228–254,

Cham, 2021. Springer International Publishing.

[264] Melissa Azouaoui, Kostas Papagiannopoulos, and Dominik Zürner. Blind

side-channel sifa. In 2021 Design, Automation & Test in Europe Conference

& Exhibition (DATE), pages 555–560. IEEE, 2021.

[265] Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh.

A power side-channel attack on the cca2-secure hqc kem. In International

Conference on Smart Card Research and Advanced Applications, pages 119–

134. Springer, 2020.

[266] Philip Sperl and Konstantin Böttinger. Side-channel aware fuzzing. In

European Symposium on Research in Computer Security, pages 259–278.

Springer, 2019.

[267] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh. Super-

singular isogeny key encapsulation (sike) round 2 on arm cortex-m4. IEEE

Transactions on Computers, 2020.

[268] Reza Azarderakhsh, Matthew Campagna, Craig Costello, LD Feo, Basil

Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa,

et al. Supersingular isogeny key encapsulation. Submission to the NIST

Post-Quantum Standardization project, 152:154–155, 2017.

Bibliography 174

[269] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.

PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.

com/mupq/pqm4.

[270] Ellen Gunnarsdóttir, Lejla Batina, and Lukasz Chmielewski. Trezor one

side-channel analysis setup. 2020.

[271] Lejla Batina, Lukasz Chmielewski, Björn Haase, Niels Samwel, and Peter

Schwabe. Sca-secure ECC in software - mission impossible? IACR Cryptol.

ePrint Arch., page 1003, 2021.

[272] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems

Perspective. Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[273] Liran Lerman, Romain Poussier, Olivier Markowitch, and François-Xavier

Standaert. Template attacks versus machine learning revisited and the curse

of dimensionality in side-channel analysis: extended version. Journal of

Cryptographic Engineering, 8(4):301–313, Nov 2018.

[274] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural

networks with data augmentation against jitter-based countermeasures. In

International Conference on Cryptographic Hardware and Embedded Systems,

pages 45–68. Springer, 2017.

[275] Zdenek Martinasek and Vaclav Zeman. Innovative method of the power

analysis. Radioengineering, 22(2):586–594, 2013.

[276] Zdenek Martinasek, Jan Hajny, and Lukas Malina. Optimization of power

analysis using neural network. In International Conference on Smart Card

Research and Advanced Applications, pages 94–107. Springer, 2013.

[277] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking

cryptographic implementations using deep learning techniques. In Interna-

tional Conference on Security, Privacy, and Applied Cryptography Engineer-

ing, pages 3–26. Springer, 2016.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

Bibliography 175

[278] Shuguo Yang, Yongbin Zhou, Jiye Liu, and Danyang Chen. Back propagation

neural network based leakage characterization for practical security analysis of

cryptographic implementations. In International Conference on Information

Security and Cryptology, pages 169–185. Springer, 2011.

[279] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile

Dumas. Study of deep learning techniques for side-channel analysis and

introduction to ASCAD database. IACR Cryptology ePrint Archive, 2018:53,

2018.

[280] Shaine A Morris and Timothy C Slesnick. Magnetic resonance imaging.

Visual Guide to Neonatal Cardiology, pages 104–108, 2018.

[281] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE

Transactions on knowledge and data engineering, 22(10):1345–1359, 2010.

[282] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[283] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[284] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-

niew Wojna. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, pages 2818–2826, 2016.

[285] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.

Inception-v4, inception-resnet and the impact of residual connections on

learning. In AAAI, volume 4, page 12, 2017.

[286] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

Bibliography 176

[287] United States. Defense Science Board. Defense science board task force on

high performance microchip supply. Office of the Under Secretary of Defense

for Acquisition, Technology and Logistics, 2005.

[288] Inez Miyamoto, Thomas H Holzer, and Shahryar Sarkani. Why a counterfeit

risk avoidance strategy fails. Computers & Security, 2017.

[289] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang,

and Yuanyuan Zhou. Designing and implementing malicious hardware. In

First USENIX Workshop on Large-Scale Exploits and Emergent Threats, LEET

’08, San Francisco, CA, USA, April 15, 2008, Proceedings, 2008.

[290] Don Edenfeld, Andrew B. Kahng, Mike Rodgers, and Yervant Zorian. 2003

technology roadmap for semiconductors. IEEE Computer, 37(1):47–56, 2004.

[291] Stefan Heck, Sri Kaza, and Dickon Pinner. Creating value in the semiconduc-

tor industry. McKinsey & Company, 2011.

[292] Age Yeh. Trends in the global IC design service market. DIGITIMES research,

2012.

[293] Bastian Fredriksson. A case study in smartcard security analysing mifare

classic rev. 2016.

[294] Nicolas T Courtois. The dark side of security by obscurity and cloning mifare

classic rail and building passes, anywhere, anytime. 2009.

[295] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.

Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium

on Security and Privacy (SP), pages 1–19. IEEE, 2019.

[296] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. Meltdown: Reading Kernel Memory from User

Bibliography 177

Space. In William Enck and Adrienne Porter Felt, editors, 27th USENIX

Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August

15-17, 2018, pages 973–990. USENIX Association, 2018.

[297] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin

Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel

Gruss. A systematic evaluation of transient execution attacks and defenses.

In 28th USENIX Security Symposium (USENIX Security 19), pages 249–266,

2019.

[298] Intel Inc. About the intel manageability firmware critical vulnerabil-

ity. http://www.intel.com/content/www/us/en/architecture-and-technology/

intel-amt-vulnerability-announcement.html, 2017.

[299] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin,

and Ten H Lai. SgxPectre: Stealing Intel secrets from SGX enclaves via

speculative execution. In 2019 IEEE European Symposium on Security and

Privacy (EuroS&P), pages 142–157. IEEE, 2019.

[300] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and

Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX kingdom

with transient out-of-order execution. In 27th USENIX Security Symposium

(USENIX Security 18), pages 991–1008, 2018.

[301] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom.

SGAxe: How sgx fails in practice, 2020.

[302] Mohammad Tehranipoor and Cliff Wang. Introduction to hardware security

and trust. Springer Science & Business Media, 2011.

[303] Miodrag Potkonjak, Ani Nahapetian, Michael Nelson, and Tammara Massey.

Hardware trojan horse detection using gate-level characterization. In Proceed-

ings of the 46th Design Automation Conference, DAC 2009, San Francisco,

CA, USA, July 26-31, 2009, pages 688–693, 2009.

http://www.intel.com/content/www/us/en/architecture-and-technology/intel-amt-vulnerability-announcement.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-amt-vulnerability-announcement.html

Bibliography 178

[304] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson.

Stealthy dopant-level hardware trojans: extended version. J. Cryptographic

Engineering, 4(1):19–31, 2014.

[305] Adam Waksman and Simha Sethumadhavan. Silencing hardware backdoors.

In 32nd IEEE Symposium on Security and Privacy, S&P 2011, Oakland,

California, USA, pages 49–63. IEEE, 2011.

[306] Swarup Bhunia, Michael S Hsiao, Mainak Banga, and Seetharam Narasimhan.

Hardware trojan attacks: threat analysis and countermeasures. Proceedings of

the IEEE, 102(8):1229–1247, 2014.

[307] Sheng Wei and Miodrag Potkonjak. The undetectable and unprovable hard-

ware trojan horse. In Proceedings of the 50th Annual Design Automation

Conference, page 144. ACM, 2013.

[308] Petr Svenda. Resilience via practical interoperability of multiparty schnorr

signature schemes. In 43rd IEEE Symposium on Security and Privacy, S&P

2022, Oakland, California, USA. IEEE, 2022.

[309] Jacob Appelbaum, Judith Horchert, and Christian Stöcker. Shopping for spy

gear: Catalog advertises nsa toolbox. Der Spiegel, 29, 2013.

[310] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-

bandwidth acoustic cryptanalysis. In International Cryptology Conference,

pages 444–461. Springer, 2014.

[311] Michael Backes, Markus Dürmuth, and Dominique Unruh. Compromising

reflections-or-how to read lcd monitors around the corner. In Security and

Privacy, 2008. SP 2008. IEEE Symposium on, pages 158–169. IEEE, 2008.

[312] Lorenzo Strigini. Fault tolerance against design faults. 2005.

[313] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V Tripunitara.

Securing computer hardware using 3d integrated circuit (ic) technology and

split manufacturing for obfuscation.

Bibliography 179

[314] Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE transactions on information theory, 31(4):469–472,

1985.

[315] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to

identification and signature problems. In Conference on the Theory and

Application of Cryptographic Techniques, pages 186–194. Springer, 1986.

[316] Torben P. Pedersen. Non-interactive and information-theoretic secure verifi-

able secret sharing. In Advances in Cryptology - CRYPTO ’91, 11th Annual

International Cryptology Conference, Santa Barbara, California, USA, August

11-15, 1991, Proceedings, pages 129–140, 1991.

[317] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure

distributed key generation for discrete-log based cryptosystems. J. Cryptology,

20(1):51–83, 2007.

[318] Douglas R. Stinson and Reto Strobl. Provably secure distributed schnorr

signatures and a (t, n) threshold scheme for implicit certificates. In Information

Security and Privacy, 6th Australasian Conference, ACISP 2001, Sydney,

Australia, July 11-13, 2001, Proceedings, pages 417–434, 2001.

[319] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Secur-

ing multiparty signatures against rogue-key attacks. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques,

pages 228–245. Springer, 2007.

[320] Felix Brandt. Efficient cryptographic protocol design based on distributed

el gamal encryption. In Information Security and Cryptology - ICISC 2005,

8th International Conference, Seoul, Korea, December 1-2, 2005, Revised

Selected Papers, pages 32–47, 2005.

[321] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-

knowledge and its applications. In Proceedings of the twentieth annual

ACM symposium on Theory of computing, pages 103–112. ACM, 1988.

Bibliography 180

[322] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak

sponge function family main document. Submission to NIST (Round 2), 3:30,

2009.

[323] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal

of cryptology, 4(3):161–174, 1991.

[324] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key

model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and

Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM Con-

ference on Computer and Communications Security, CCS 2006, Alexandria,

VA, USA, Ioctober 30 - November 3, 2006, pages 390–399. ACM, 2006.

[325] Kazuo Ohta and Tatsuaki Okamoto. A digital multisignature scheme based on

the fiat-shamir scheme. In Advances in Cryptology - ASIACRYPT ’91, pages

139–148, 1991.

[326] Markus Michels and Patrick Horster. On the risk of disruption in several

multiparty signature schemes. In Advances in Cryptology - ASIACRYPT ’96,

International Conference on the Theory and Applications of Cryptology and

Information Security, Kyongju, Korea, November 3-7, 1996, Proceedings,

pages 334–345, 1996.

[327] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup mul-

tisignatures: extended abstract. In CCS 2001, Proceedings of the 8th ACM

Conference on Computer and Communications Security, pages 245–254,

2001.

[328] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signa-

tures based on the gap-diffie-hellman-group signature scheme. In Public Key

Cryptography - PKC 2003, pages 31–46, 2003.

[329] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.

Sequential aggregate signatures, multisignatures, and verifiably encrypted

Bibliography 181

signatures without random oracles. Journal of cryptology, 26(2):340–373,

2013.

[330] George Robert Blakley. Safeguarding cryptographic keys. Proc. of the

National Computer Conference1979, 48:313–317, 1979.

[331] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–

613, 1979.

[332] Wolfgang Rankl and Wolfgang Effing. Smart card handbook. John Wiley &

Sons, 2004.

[333] Sean Turner, Russ Housley, Tim Polk, Daniel RL Brown, and Kelvin Yiu.

Elliptic curve cryptography subject public key information. 2009.

[334] Mehmet Adalier. Efficient and secure elliptic curve cryptography implemen-

tation of curve p-256. 2015.

[335] Petr Svenda. Nuances of the javacard api on the cryptographic smart cards–

jcalgtest project. 2014.

[336] Rod Johnson et al. Introduction to the spring framework. TheServerSide. com,

21:22, 2005.

[337] George Danezis, Claudia Diaz, and Paul Syverson. Systems for anonymous

communication. Handbook of Financial Cryptography and Security, Cryptog-

raphy and Network Security Series, pages 341–389, 2009.

[338] Hua Hong Semiconductor. Hua hong semiconductor limited. http://www.

huahonggrace.com/html/about.php, 2017.

[339] Semiconductor Manufacturing International Corporation. Embedded non-

volatile memory for smart card & mcu. http://www.smics.com/eng/foundry/

technology/tec envm.php, 2017.

http://www.huahonggrace.com/html/about.php
http://www.huahonggrace.com/html/about.php
http://www.smics.com/eng/foundry/technology/tec_envm.php
http://www.smics.com/eng/foundry/technology/tec_envm.php

Bibliography 182

[340] Taiwan Semiconductor Manufacturing Company Limited TSMC. Value

chain aggregator - km211. http://www.tsmc.com/english/dedicatedFoundry/

services/value chain aggregator km211.htm, 2017.

[341] StarChip. Smart card ics. http://www.starchip-ic.com/en/smart-card-chips/,

2017.

[342] City Frequencies. EnigmaBridge HSM. https://enigmabridge.com/hsm.html,

2021.

[343] City Frequencies. EnigmaBridge MPC. https://enigmabridge.com/mpc.html,

2021.

[344] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decen-

tralized Business Review, page 21260, 2008.

[345] Pieter Wuille, Jonas Nick, and Anthony Towns. Taproot: SegWit Ver-

sion 1 Spending Rules. https://github.com/bitcoin/bips/blob/master/bip-

0341.mediawiki, 2020.

[346] Pieter Wuille, Jonas Nick, and Anthony Towns. Validation of Taproot scripts.

https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki, 2020.

[347] G. He, M. Yang, X. Gu, J. Luo, and Y. Ma. A novel active website fingerprint-

ing attack against tor anonymous system. In Proceedings of the 2014 IEEE

18th International Conference on Computer Supported Cooperative Work in

Design (CSCWD), pages 112–117, 2014.

[348] M. Yang, X. Gu, Z. Ling, C. Yin, and J. Luo. An active de-anonymizing attack

against tor web traffic. Tsinghua Science and Technology, 22(6):702–713,

2017.

http://www.tsmc.com/english/dedicatedFoundry/services/value_chain_aggregator_km211.htm
http://www.tsmc.com/english/dedicatedFoundry/services/value_chain_aggregator_km211.htm
http://www.starchip-ic.com/en/smart-card-chips/
https://enigmabridge.com/hsm.html
https://enigmabridge.com/mpc.html
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki

	Introduction
	Thesis Organization
	Publications & Works done in collaboration
	Other works
	Responsible Disclosure & Ethics

	Definitions & Preliminaries
	User Tracking
	Profiling
	Ultrasound Tracking Frameworks

	Ultrasonic Beacons
	Internet Communications
	The Transport Layer Security Protocol
	Fingerprinting Attacks

	Dimensionality Reduction
	Neural Networks
	Convolutional Networks
	Low-dimensional Embeddings

	Related Works
	Traffic Fingerprinting
	Audio Channels
	Hardware Side-channels
	Malicious circuitry
	Fault-Tolerant Systems

	Internet Communications
	Introduction
	Adversarial Setup
	Threat Model
	Realistic Fingerprinting Scenarios
	Practicality Considerations

	Adaptive Fingerprinting
	Provisioning
	Fingerprinting
	Adaptation

	Datasets
	Experimental Evaluation
	Implementation & Parameterization
	Experiment 1: Static Webpage Classification
	Experiment 2: Adaptability & Cross-class Transferability
	Experiment 3: Sensitivity to Website themes and TLS versions
	Operational & Adaptation Costs
	Limitations & Open Challenges

	Defenses
	Conclusions

	Ultrasonic Communications
	Introduction
	Ecosystem Overview
	Proximity Tracking
	Cross-device Tracking

	Vulnerabilities & Attacks
	Unauthorized Audio Monitoring
	Deanonymization
	Profile Inference
	Profile Confluence
	Profile Corruption

	Information Flow Control Mechanisms
	Ultrasound-filtering Browser Extension
	Android Ultrasound Permission
	Standardization & uBeacon API

	Tracking the Ecosystem
	Conclusions

	Hardware Side-Channels
	Introduction
	Threat Model
	Experimental Setup & Dataset
	Leakage Detection
	Leakage Exploitation
	Transfer Learning
	Convolutional Neural Networks

	Conclusions

	Leakage-tolerant Systems
	Introduction
	Threat Model
	System Overview
	Access Control
	Reliability Estimation

	Secure distributed protocols
	Distributed Key Pair Generation
	Encryption
	Decryption
	Random String Generation
	Signing
	Key Propagation

	Implementation
	Hardware Design & Implementation
	Software
	Optimizations
	System States

	Evaluation
	Experimental Setup
	Performance Impact
	Scalability & Extensibility
	Tolerance levels
	Other Considerations
	Physical Security & Diversity
	Code & Parameter Provisioning

	Myst Prototype Extensions
	Conclusions

	Conclusions & Future Work
	Bibliography
	Appendices

