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Abstract—In the past decade, there is an increasing interest
in the deployment of unmanned surface vehicles (USVs) for
undertaking ocean missions in dynamic, complex maritime envi-
ronments. The success of these missions largely relies on motion
planning algorithms that can generate optimal navigational tra-
jectories to guide a USV. Apart from minimising the distance of
a path, when deployed a USVs’ motion planning algorithms also
need to consider other constraints such as energy consumption,
the affected of ocean currents as well as the fast collision
avoidance capability. In this paper, we propose a new algorithm
named anisotropic GPMP2 to revolutionise motion planning for
USVs based upon the fundamentals of GP (Gaussian process)
motion planning (GPMP, or its updated version GPMP2). Firstly,
we integrated the anisotropy into GPMP2 to make the generated
trajectories follow ocean currents where necessary to reduce
energy consumption on resisting ocean currents. Secondly, to
further improve the computational speed and trajectory quality,
a dynamic fast GP interpolation is integrated in the algorithm.
Finally, the new algorithm has been validated on a WAM-V
20 USV in a ROS environment to show the practicability of
anisotropic GPMP2.

Note to Practitioners: Abstract—The work reported in this ar-
ticle will be significant for USVs to conduct missions in complex,
dynamic maritime environments where various obstacles and
time-varying ocean currents exit. We develop this novel motion
planning algorithm based on Gaussian process and optimise
the trajectory using probabilistic inferences. The new algorithm
can generate collision free trajectories that also minimise the
influences caused by adverse ocean currents in a highly effi-
cient way. In addition, the planning has been undertaken in a
continuous-time domain making the generated trajectory have
a guaranteed smoothness and readily feasible for autopilots
to track. We use a coastal area with time-varying vortexes
to present a challenging practical maritime environment. The
presented algorithm integrates the available information about
a fluid field regarding energy consumption and hazard level,
along with the density of obstacles to plan a navigational route
efficiently. To increase the practical performance of the proposed
method, diverse models for generating ocean currents need to be
developed in the future to tackle unpredictable situations.
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Fig. 1.
WAM-V platform at the left bottom side is carrying a parcel to perform a
transportation mission.

Demonstration of the Gazebo simulation environment in ROS:

I. INTRODUCTION

Path planning is a computational problem to find a sequence
of valid configurations that moves a robot from the source
to destination [1]. Such a capability is essential for USVs
as they are normally deployed in ocean environments, where
obstacles avoidance and energy consumption minimisation are
important [2], [3]. Available planning algorithms such as A*,
rapidly-exploring random tree (RRT), fast marching method
and evolutionary algorithms can, to some extent, be used for
USVs. However, limited capacity in solving multi-objective
planning problems in an efficient way has largely made these
algorithms unsuitable for a practical deployment [4].

In recent years, GP (Gaussian process) motion planning
(GPMP, or its updated version GPMP2) has been proposed
to deal with the motion planning problem in continuous-time
space with a very high computational speed and can generate
a path that is both short and smooth in large-scale or high-
dimensional spaces [5], [6]. Such a feature undoubtedly makes
the GP based motion planning a promising solution for USVs
motion planning. However, improvements are still needed to
enhance these algorithms with the required capability to deal
with ocean currents.

Another consideration is previous research related to motion
planning for USVs usually utilises tests in simplified simula-
tion environment under platforms such as Matlab, treating the
vehicle as an infinitely small point, operating in the configu-



ration space. A lack of data from operational USVs can give
rise to unintended assumptions built into the algorithms that in
turn result in simulations giving erroneous or oversimplified
interpretations. This might not be ideal when transferring the
simulation results as a prediction tool to help determine the
general performance of a USV when applied to an actual USV
in a practical environment.

In this paper, we will propose a new motion planning
method based on continuous-time GP, named anisotropic
GPMP2, which can deal with time-varying ocean currents and
obstacles such as islands, reefs, buoys in marine environments
simultaneously and highly efficiently. The proposed method
is evolved initially from the maximum a posterior (MAP)
estimation of the Bayes theorem with the main contributions
can be summarised as:

e A new energy consumption likelihood model subject
to ocean currents is introduced. Ocean currents are ex-
pressed as local anisotropy to mathematically indicate
the preferred travelling direction at each location in a
planning space. Then, an energy consumption likelihood
is calculated using the anisotropic fast marching (AFM)
based upon the anisotropy and further integrated into
the GPMP2, named as anisotropic GPMP2. Generated
trajectories are proven to be able to adaptively follow
ocean currents.

¢ A new dynamic fast GP interpolation method is proposed
to better deal with obstacle avoidance and further improve
the computational speed. Unlike the uniform interpola-
tion process in GPMP2, a dynamic interpolation process
according to obstacles’ locations has been developed to
better optimise the trajectory.

o The developed algorithms are thoroughly tested in both
self-constructed simulation environments, and a Gazebo-
based simulation environments under ROS. A demon-
stration of the Gazebo simulation environment in ROS
is shown in Fig. 1. Augmented practicability has been
achieved by fully considering the actual dynamics of a
USV and practical obstacle configurations. Such a valida-
tion can effectively reduce the testing cost, in comparison
with the high cost of building a full-size physical USV.

In simulations, we compared anisotropic GPMP2 with mo-
tion planning algorithm benchmarks in a number of situations.
The results demonstrate the following:

o The proposed method can minimise the effect of ocean
currents in marine environments compared with state-of-
the-art GP motion planning planning algorithm, namely
the Gaussian process motion planner 2 (GPMP2).

o The proposed method requires a shorter execution time
to generate a feasible path compared with another motion
planning algorithm designed for marine environments,
namely the anisotropic fast marching method (AFM).

o The proposed method has the ability to efficiently tackle
large-scale motion planning problems with or without
ocean currents.

The rest of the paper is organised as follows. Section II
details other related works and further articulates the motiva-
tion for this research. Section III describes the mathematical

model of GP motion planning in detail. Section IV presents the
proposed method in detail. Section V presents the optimisation
tool used in the research while at the same time analysing
its structure. Section VI presents the proposed path planner’s
simulation results and then compares it with several existing
motion planning methods. Section VII demonstrates the im-
plementation of the proposed path planning method in ROS,
followed by the conclusion in Section VIII.

II. RELATED WORKS

The aim of path planning is to find an optimal path between
the start point and goal point while avoiding obstacles. Pre-
vious researchers have different perspectives on the definition
of optimality. Some indicate that the optimal trajectory should
be the one with the shortest length; whereas, others emphasise
that the optimality is subject to multiple criteria including the
path’s smoothness and dynamic constraints such as velocity
or acceleration [7], [8], [9]. Because of the inclusion of
dynamics, path planning can also be referred to as motion
planning and herein we do not explicitly distinguish these two
terminologies. In this paper, the main focus is to develop a
motion planning algorithm that can not only optimise its path
length, execution time and path smoothness, but also consider
other important factors or constraints related to the dynamic
environment, such as wind and ocean currents, simultaneously.

Previously, researchers have attempted to develop a variety
of methods to solve the path planning problem including
geometry-based methods such as Dijkstra [10], A* [11], D*
[12], FM [13] and LSM [14], intelligent methods such as PSO
[15], ACO [16], GA [17] and WPA [18], and probabilistic
sampling-based methods such as PRM [19] and RRT* [20] ac-
cording to the classifications in [21]. Geometry-based methods
[10], [11], [12], [13], [14] require a relatively strict geometry-
based or graph-based model of the map. Therefore, this type
of method always needs a relatively long execution time to
determine the path, especially for high dimensional planning
spaces. Due to the long execution time, performing re-planning
problems using such methods is difficult. Similar to geometry-
based methods, intelligent methods [16], [17], [15], [18] also
need a long execution time to determine a feasible path
making them unsuitable for re-planning. Furthermore, almost
all intelligent methods are prone to the local minima problem,
where a locally optimal solution can generated leading to a
failure in finding the global optimum upon which the final
trajectory should be calculated. The probabilistic sampling-
based method [19], [20], [22], [23], [24], [25] successfully
solves the problem of long execution time by abandoning the
concept of explicitly characterising the configuration space,
simultaneously using a sampling connection rule to replace
it. The randomness of this approach is conducive to provide
fast solutions for path planning problems in high-dimensional
configuration spaces and is suitable for re-planning problems.
However, it might also be vulnerable to the local minima
problem, although the optimal path can be found when there
is no limitation on execution time. Additionally, paths gen-
erated by probabilistic methods are not smooth and could
be sinuous, which require additional smoothing process for



practical applications. Hence the challenges in the previous
stage of path planning research can be summarised as: 1)
improving path quality, 2) shortening execution time, and 3)
enabling an efficient re-planning capability in large-scale or
high-dimensional configuration spaces.

In recent years, another category of path planning methods,
denoted path optimisation, have attracted an increasing atten-
tion in path planning research as they are appropriate for path
planning in high-dimensional configuration spaces with paths
encoded as a sequence of states and controls. Specifically,
path optimisation is the process of designing a path that
can minimise/maximise some measure of performance while
satisfying a series of constraints [26]. Compared with the other
methods mentioned above, path optimisation methods provide
several benefits including: 1) the capability of smoothing and
shortening the path in a coupled way during the planning
process and 2) superiority in computational speed making
it suitable for online planning in environments with rapidly
changing factors [27].

Because of these two promising benefits, several popular
optimisation based path planning methods have been proposed
and developed. For example, the CHOMP [28], [9] is a seminal
work of this type, which showcased its effectiveness on a vari-
ety of robotic platforms. To be more specific, the CHOMP uses
a pre-computed signed distance field to detect collision and a
covariant gradient descent to reduce the probability of collision
and subsequently improve the smoothness of the path. Then,
the STOMP [7] is proposed based on CHOMP, which samples
several paths with noises to explore the configuration space
around an initial path. By combining all the paths that have
explored the space, an updated and better optimised path with
lower cost can be generated. The critical improvement of the
STOMP is that it is capable of dealing with non-differentiable
constraints. However, both CHOMP and STOMP are not well
suited to dealing with path planning problems with multiple
constraints. To address this problem, TrajOpt [29], [8] is
proposed to solve complex motion planning problems with few
states designed as swept volumes to ensure trajectory safety in
continuous time space. However, TrajOpt always needs post-
processing on the path’s smoothness, which could significantly
extend the execution time.

Although the above-mentioned shortcomings present con-
cerns on the development potential of path optimization meth-
ods, Gaussian Process (GP) based motion planning (GPMP)
algorithms [5], [6], [30], [31] have been developed in recent
years to successfully address these issues. First, instead of rep-
resenting trajectories as a set of planned states in configuration
space that has been unanimously used by conventional motion
planning algorithms, GPMP algorithms regard trajectories as
functions having a direct mapping from time to states in
the continuous-time space, and functions can be sampled
using a Gaussian process. Such a strategy can guarantee the
smoothness of the generated trajectory. Second, based upon the
feature of efficient structure-exploiting GP regression, GPMP
can implement a fast GP interpolation, which ensures the
feasibility of adjusting path smoothness during the planning
process. Last but not the least, trajectory optimisation based
upon the GP can be regarded as a probabilistic interference,

where an initial knowledge of a trajectory can be used as
a prior and, by considering optimisation constraints, such as
collision avoidance, as likelihood functions, the trajectory will
be optimised following maximum a posterior.

The probabilistic inference based GPMP, also named as
GPMP2, has been successfully implemented on several prac-
tical platforms including robotic arms and mobile robots
[32], [33], [34], [35]. However, no current studies report
any implementation of GPMP2 on USV platforms due to
following challenges. First, the current version of GPMP2
can only optimise a trajectory with regards to short distance
and collision avoidance. Further constraints, especially ocean
currents, should be fully taken into account for USVs when
GPMP?2 is employed. The trajectory should be encouraged to
largely follow the direction of ocean currents to minimise
the energy consumption. Second, planning a trajectory for
a robotic arm is different from planning for a USV. The
former focuses on planning in a high-dimensional space but
with in a small work space; whereas the latter normally
performs on a large-scale space (e.g. a USV can be required
to travel for several kilometers) mostly in a 2D or 3D domain.
Therefore, proper modifications are required to address these
two differences to make GPMP2 more suitable for USVs.

In the following sections, we will first introduce the fun-
damental preliminaries of GPMP2 and our proposed new
algorithm, anisotropic GPMP2. The results, including the
comparative studies, are then provided to demonstrate the
capability of our newly proposed algorithm.

III. GPMP2

In this section, we explain GPMP2 algorithm in detail.
Overall, GPMP2 considers a motion planning problem as a
MAP estimation, which views the information relevant to the
start and goal points as a prior and the information relevant
to various conditional constraints such as collision and energy
consumption as likelihoods. Then GPMP2 would maximise the
posterior of the MAP estimation to obtain an optimal solution.

A. Problem formulation and GP prior

GPMP?2 algorithm can be formulated as a trajectory optimi-
sation problem, and further, it applies Gaussian Processes to
optimise trajectories in an efficient manner. Formally, the tra-
jectory optimisation aims to determine the optimal trajectory
from all feasible trajectories while satisfying any user defined
constraints and minimising any user prioritised costs [23],
[36]. By considering a trajectory as a function of continuous
time ¢, such an optimisation process can be written as the
standard form of an optimisation problem with continuous
variables as:

minimise  F[0(¢)]
subject to  G;[0(t)] <0, i=1,...
Hy]

( y Mieq (1)
o) =0,i=1,...
where 6(t) is a continuous-time trajectory function mapping
a specific moment ¢ to a specific robot state 6. F[0(t)]
is an objective function to find the optimal trajectory by
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Fig. 2. Continues-time trajectories sampled by GP prior: Green point
represents the start point; Red point represents the goal point; 61, 62 and
03 are three continues-time trajectory samples; Dashed line represents the
mean trajectory p(t) and shaded area represents the covariance K (,t').

minimising the higher-order derivatives of robot states, such
as velocity and acceleration, and collision costs. G;[0(¢)] is a
task-dependent inequality constraint function and H;[6(t)] is
a task-dependent equality constraint function that contains the
desired start and goal states with specified configurations.

As stated in [5], by properly allocating the parameters of
low-resolution states (defined as support states) and interpolat-
ing high-resolution states (defined as interpolated states), the
computational cost of Gaussian Processes can be efficiently re-
duced and, as illustrated in Fig. 2, a continuous-time trajectory
function represented by a Gaussian Process can be formulated
as:

0(t) ~ GP(u(t), K(t,1)), 2

where p(t) is a vector-valued mean function (the dashed line
in Fig. 2) and K (¢,t') is a matrix-valued covariance function
(the shaded area in Fig. 2) that indicates the approximate area
of the trajectory samples from the Gaussian Process:

p=[prepn]” 3)
K = [K(ti,t;)]|0<ij<n) “)

Then we consider this vector-valued GP as generated by
a linear time-varying stochastic differential equation (LTV-
SDE). The LTV-SDE is used to describe a system dynamics
model of a robot, which, in our case, is a USV. The LTV-SDE
is stated in the following equation:

0(t) = At)0(t) +u(t) + F(t)w(t), (5)

where u(t) is a known system control input, A(t) and F(t)
are the time-varying matrices of the selected system dynamics
model, and w(t) represents the white process noises. w(t) is
stated in the following equation:

w(t) ~ GP(Oa Qcé(t - t/))a (6)

where Q. is the power-spectral density matrix and 6(¢t —t') is
the Dirac delta function.

Based on the LTV-SDE stated in Eq. 5, the solution of
the GP can be calculated based on the vector-valued mean
function and matrix-valued covariance function by the process
described in [37] as:

u(0) = Bt toha + [ (¢ s)us)ds )

to
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Fig. 3. Signed distance field of a coastal environment: (a) is the pixel map
and (b) is the signed distance field of the map. In the signed distance field, the
point with a larger RGB value is more secure than the point with a smaller
RGB value. The value of o5 is inversely proportional to the weight of the
behaviour (staying inside safe region). The point with a larger value on the
color bar is relatively safe; on the other hand, the point with a smaller value
on the color bar is relatively dangerous.

K(t,t') = ®(t,t0) Ko® (', 1) T +
min(t,t") (8)
/ ®(t,s)F(s)Q.F(s)T®(t,s)"ds,
to
where ug and K are initial mean and covariance of the first
state, respectively. ®(¢,s) is the state transition matrix from
time ¢ to time s.

Thus, GP prior distribution is given in terms of the mean u
and covariance K:

1
p(0) o< exp{= |16 - ul[7} ©)

Based on the proof in [5], we know the inverse matrix-
valued covariance function K ~! is exactly sparse (or block-
tridiagonal). Such a property is extremely important as it
significantly reduces the computational complexity of solving
the inverse of a matrix and enables a fast GP interpolation.
The detailed information about fast GP interpolation will be
presented in Section III-D.

B. Collision likelihood function

First, a binary event c; is defined as a distribution: ¢; = 0
(if there is no collision risk in a trajectory) or ¢; = 1 (if there
is any collision risk in a trajectory). In this solution, we are
only interested in the collision-free event (c; = 0).

Then a likelihood function is defined as a distribution in
the exponential family that can indicate the likelihood of a
collision-free trajectory:

1
[(0;0: = 0) = eap{=|IP(O)[%,,, (10)
where the hyperparameter matrix X, is defined as:
Oobs
obs = ) (11)

Oobs

where 0,5 is the “obstacle cost weight” corresponds to a
specific covariance matrix and h(#) is a vector-valued obstacle
cost function:

(12)
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Fig. 4. The relationship between At and At in fast GP interpolation: At
is the low-resolution sample interval and A7 is the high-resolution sample
interval. A low-resolution sample interval is more suitable in free space
whereas a high-resolution is better used in areas with cluttered obstacles.

where c is the hinge loss function defined by the following
equation:

| —d+e ifd<e
C(d)_{ 0, ifd>e’

where d is the signed distance of a point and e is the
safety distance. To be more specific, e indicates the obstacle
boundaries in the signed distance field. ¢ is defined in Eq. 13
where ¢; = 1 indicates a collision event. Fig. 3 demonstrates
the signed distance field of a coastal environment and effects
of different signed distance field parameter o5 in the same
motion planning problem. Specifically, the value of o
adjusts the weight of the behaviour (staying inside the safe
region) in the motion planning problem.

(13)

C. MAP estimation

Based on the information in Section III-A and Section III-B,
now we are able to conduct a Bayesian inference to obtain a
locally optimised trajectory. To be specific, we have a GP prior
p(6) that contains sample trajectories from a start point to a
goal point and a collision likelihood function [(6; ¢; = 0) that
helps in selecting collision-free sample trajectories. Further,
the collision likelihood function can also be written as p(¢; =
0]6). Thus, the Bayesian inference of this problem can be
defined as:

0" = argmax p(f|c; = 0) = argmax p(0)p(c; = 0]0) (14)
9 9

After the optimisation process of Eq. 14 is completed, a
locally optimised trajectory 8* can be found. Generally, the
MAP estimation of a GP can be converted into a least squares
problem, which has been thoroughly studied for many years.
In this paper, we use Levenberg—Marquardt algorithm to solve
the least squares problem [38].

D. Fast GP Interpolation

Based on the inference in [37], [5], [36], the posterior mean
of the trajectory at any moment 7 can be approximated by
the Laplace method. It can then be expressed in terms of the
current trajectory at moment ¢:

0(7) = fi(r) + K(r,)K (0 - i), (15)

where i and K are the mean function and covariance matrix
corresponds to the Gaussian process of the generated trajec-
tory. In general, the computational complexity of the above
equation is O(N), which increases the difficulty considerably.
Nevertheless, the computational complexity of Eq. 15 is O(1)

Start

=
v v ¥
energy i signed distance

field based on ocean current field based on obstacle cost
cost funtion funtion

Initialise factor graph

'

Obstacle inside sub-search
region?

\res*l

| Interpolate collision likelihood
NO factor and energy consumption

# factor
Get locally optimal
trajectory through MAP <&

estimation

.

End

Generate GP prior based
on start and goal points

Fig. 5. Flow diagram of the overall algorithm.

in this case because the system dynamics model is a LTV-SDE
and K—! is exactly sparse (or block-tridiagonal). The proof
for the computational complexity in this case is stated in [5].
Thus, we can derive the following equation as:

0(r) = i(7) + A(7)(0; — i) + Y (T)(Oig1 — fiix1), (16)
where
A(T) = ®(7, ;) — W(T)D(tiy1, 1),
( )=Q ‘I)( i+1, T )TQ;}H (17
is derived by substituting
K(r)K~' =1[0...0 A(r) ¥(r) 0...0] (18)

The expression of (), is defined by the following equation:

ty
Qap = / (b, s)F(s)Q.F(s) T ®(b,s)Tds  (19)
t

a

and through this we prove the feasibility of using fast GP in-
terpolation with changeable intervals under this circumstance.
In order to provide a more intuitive understanding of fast GP
interpolation, an example detailing the relationship between
At and AT is shown in Fig. 4. In GPMP2, At specifies the
intermediate step sizes that constitute the trajectory segment
associated to the time interval At. However, such a sampling
strategy leads to unnecessary redundancy on the generated
path, especially in open regions such as an ocean surface with
no obstacle.

IV. ANISOTROPIC GPMP2

In this section, we present the anisotropic GPMP2 algo-
rithm, in detail, which includes two new parts: 1) energy
consumption likelihood function and 2) dynamic fast GP inter-
polation. Also, the anisotropic fast marching (AFM), which is
used to construct the energy consumption likelihood function
is first introduced. The flow diagram of the overall algorithm
is demonstrated in Fig. 5.



p; North  y N ~
t

Local

i

}_j pf
(a) (b)

Fig. 6. Important definitions in AFM: (a) the FM method updating scheme
and (b) the schematic of calculating arrival time using AFM at neighbour
point [41].

A. Anisotropic fast marching method

In order to plan a trajectory to largely exploit ocean currents
and subsequently save energy, an appropriate metric needs
to be established to evaluate the impact of currents in an
environment. In this paper, we adopt the concept of anisotropy,
which is the existence of preferred directions in a domain,
to construct this new energy metric. Local ocean current
direction will be mathematically expressed as an anisotropy
in each place, and the energy metric will be calculated such
that in any area the direction that follows the ocean current
will be given the highest priority. This will consequently pro-
vide an energy consumption likelihood that enables GPMP2
to fast search for a trajectory that can largely exploit the
ocean current, and because of the adoption of anisotropy,
this new motion planning algorithm will be denoted as the
anisotropic GPMP2. The energy metric is calculated in this
paper using anisotropic fast marching method (AFM), which
is an updated version of the fast marching method (FM).
To give a holistic introduction of the construction of energy
metric, the mathematical fundamentals of FM and AFM will
be introduced in following subsections. Detailed algorithm
development including pseudocode can be referred to [39],
[40].

1) Fast marching method (FM): The FM method is a level-
set method introduced in image processing [39]. It aims to
generate an arrival time map U in order to satisfy the Eikonal
equation, which describes a wave front propagation scenario.
The Eikonal equation can be expressed in the form of:

v UP)II(P) =1,

where 7(7/) is the wave propagation speed that is related to
position ' = (z,y). The solution U(7) is the wave arrival
time at 7. Note that U(7) can be interpreted as the distance
cost from the start point to 7, if the wave propagation speed
is constant.

As shown in Fig. 6 (a), if the 0ptim_>al path to 7 arrives
from northeast and mtersects pl pj at M, the arrival time at
7 can be computed from p; and p;, denoted as u—;—;(?),
and expressed as:

(20)

VTR )
)

K D

1£1 ( tluﬁ =+ tQ'LL:lT]), —+

where ugz; and ug> are the arrival time at pl and p; D; respec-
tively. ¢; and 5 satisfy the following conditions: ¢; + t5 = 1
and tq, to > 0.

2) Anisotropic fast marching method (AFM): From Eq. 21,
it can be observed that the conventional FM method only takes
the distance cost into account. To integrate the orientation
information, the conventional FM method was improved in
[42], to a new algorithm denoted as the ‘anisotropic fast
marching algorithm’ (AFM) and the Eikonal equation can be
rewritten as:

Uz (

piy () = min (tuzy + (1= gy + LZOL 17l

te[0,1] (9 ()

). @)

Here ?(t) =7 — (tp; + (1 —t)p}) is a vector that indicates
the direction of the cost/speed profile. || € (¢)|| is the distance
between 7 and the intersection point between ﬁ and p;. The
wave propagation speed is now dependent on, orientation as
dengged as 7( 6 (t)). To simplify the notation, 6 (t) is replaced
by 6 in the following sections. In contrast to the conventional
FM method, the local cost/speed characteristic of the AFM
method is no longer circular.

In [42], an elliptical shape was used to represent the local
cost/speed model as conversion to a circle is a simple process
(conventional FM case). The direction of each vector (direction
of ocean current in our case) is defined along the major axis of
the ellipse; while its minor axis is perpendicular to the vector’s
direction. In this case, the wave front travels along the major
axis as the propagation’s preferred direction. Generally, the
ellipse speed profile is described as:

2 2
! 23)
Ta Tb

where r, and r, are the major and minor radii along the X
and Y axes of the local ellipse frame. If the ellipse is along
a direction of 77 (as shown in Fig. 6 (b)), then the radius r
along 6, satisfies:

— P . — P
2 ( (cosé(rg 7)) n (szné(rg 7)) ) —1,

(24)

— —
where /(6 ,77) is the angle between 9_>and T, r is used
as the wave propagation speed along the 6 direction; hence,

7( ) in Eq. 22 can now be written as:

(@) .
’r =
\/(cosz(?,ﬁ)ﬁ n (sins(@,7))2
%
0
- (0gcos ‘)|2 || (0, sinp)? (25)
\/ x T?L » + Yy Tg P

where ¢ is the angle between 7 and X axis. 6, and 6, are
the components of 6 along the X and Y axes. Therefore,
“173175(?) in Eq. 22 can be rewritten as,

( tuz + (1 — tup + \/ Cocopel | Cusipel ) .
(26)
Fig. 7 represents the energy consumption map created by the
AFM. In four different scenarios each with different number of

min
te(0,1]
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Fig. 7. Anisotropic GPMP2 with added energy consumption function like-
lihood works in marine environments with a variety of vortexes. The energy
consumption rate at the point in the bright yellow region close to the vortex
is relatively high; on the other hand, the energy consumption rate at the point
in the dark blue region away from the vortex is relatively low. To demonstrate
the optimal performance of anisotropic GPMP2 on tracking ocean currents,
we empirically minimised o in (a), (b), (c) and (d).
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Fig. 8. The effect of o in anisotropic GPMP2 motion planner. The energy
consumption rate at the point in the bright yellow region close to the vortex
is relatively high; on the other hand, the energy consumption rate at the point
in the dark blue region away from the vortex is relatively low.

vortexes and taking the start and goal points into consideration,
different areas have been assigned with different likelihood
levels to indicate the difficulties of following currents locally.
In Fig. 7, lower valley regions in the map, indicated with
darker colours, correspond to regions where the direction of
water currents is more uniform and consistent and where a
USV would tend to follow.

B. Anisotropic energy consumption likelihood function

The offset angle between the ocean current and the ideal di-
rection of a path can lead to additional energy consumption to

g
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Fig. 9. The energy consumption rate at each waypoint of trajectory when
using different parameters o. on energy consumption field. The energy
consumption rate is defined by the RGB value at the point in energy
consumption field generated by AFM. In Fig. 8, the energy consumption rate
at the point in the bright yellow region close to the vortex is relatively high;
on the other hand, the energy consumption rate at the point in the dark blue
region away from the vortex is relatively low.

resist the ocean current disturbances. Hence we add an energy
consumption likelihood function to minimise this consumption
as well as avoid hazardous regions such as vortexes, which is
defined as:

1
1(0;e) = emp{—§llg(9)llzze}7 (27)
where the definition of matrix ¥, is the same as X, and g(6)
is a vector-valued ocean current cost function:

(28)

where e is an energy consumption function that can obtain the
energy consumption rate at a point based on the energy matrix
defined by AFM in Section IV-A.

Based on this energy consumption likelihood function, the
Bayesian inference of anisotropic GPMP2 is defined as:

0* = arg;nax p(8)[p(c; = 0]6) p(e|f)] (29)

To gain a more intuitive understanding of the feasibility
of the proposed energy consumption likelihood function, the
example in Fig. 7 demonstrates the influence of energy con-
sumption likelihood function in marine environments with
various vortexes. Based on the observation and measurement
of ocean currents in [43], it is clear that ocean currents within
a specific area comprise of a constant magnitude and variant
directions. We thereby decide to use vortexes to generate
ocean currents in the following simulations due to vortexes
also comprise of a constant magnitude and variant directions.
As shown in Fig. 7, the high energy consumption regions are
represented in yellow with the low energy consumption regions
in blue. The path generated by anisotropic GPMP2 with the
energy consumption likelihood function follows ocean currents
to minimise the energy consumption in blue regions and avoids
vortexes in yellow regions to maintain safety. To demonstrate
the adjustable capability of the proposed likelihood function,
Fig. 8 and Fig. 9 demonstrate the results with different values
of parameter o., the value of which is inversely proportional
to the proposed likelihood function’s weight in the entire path
planning process.



Algorithm 1: Dynamic Fast GP Interpolation

Input: Start state 6, goal state 6, maximum
sampling time ?,,,, and search radius r
Precompute Continuous-time trajectory samples with
mean 4 and covariance K
Compute the low-resolution sample interval At by
using Eq. 30
fori=1,2,...,N do
Compute total sample number 7; in the
corresponding sub-search region by using by Eq.
32
Compute high-resolution sample interval A7; by
using Eq. 31
for j =1,2,...,n; do
Perform fast GP interpolation with
high-resolution sample interval A7; by using
Eq. 33

end
end
Output: optimal path 6*

C. Dynamic fast GP interpolation

GPMP?2 uses uniformly distributed fast GP interpolation to
generate paths. Nevertheless, such an approach leads to a par-
ticular drawback, where the execution time would be relatively
long when the interpolation interval is relatively small. On the
contrary, increasing the interpolation interval would impair the
obstacle avoidance performances as well as compromise path
smoothness. To solve such a problem, we propose dynamic
fast GP interpolation as shown in Algorithm 1. This algorithm
determines the distribution of obstacles when initialising the
GP prior, and an adaptive A7 can be defined according to
the locations of obstacles for fast GP interpolation. By using
the proposed dynamic fast GP interpolation algorithm, dense
points can be sampled in areas with obstacles; while redundant
sampling points are removed from intervals in free spaces.
Such a strategy can further optimise the execution time as well
as the path length by removing redundant sampling points.

At the beginning of Algorithm 1, start state 6y, goal state
0, maximum sampling time t,,,, and search radius r are
required as inputs. Based on this information, the GP prior can
be computed using Eq. 9. Then the low-resolution sampling
interval At in the global search region is computed by the
following equation:

(30)

where NN is the total number of sub-searching regions. In
each local sub-searching region, the high-resolution sampling
interval A7 is computed using the following equation:
At
1373 = —,

nj

€2y

where n; is the total number of sample points inside each
corresponding sub-searching region and is defined as:

nj =\ f(—

) (32)

Ssub

where A is the self-defined proportionality coefficient, f is
a function used to round-up to the nearest integer, s; is the
total area of obstacles inside the corresponding sub-searching
region and S, i the area of the corresponding sub-searching
region with its dimension equal to 7r2. Hence Eq. 16 can be
written as:

0(7;) = () + A(75)(0s — 15) + W (7) (011 — fHiv1), (33)
where
A(ry) = @(7j,t:) — U(75) P (ti1, i),

z 34
(r;) = Qi,Tj(D(ti+1vTj)TQi7il+1 34

is derived by substituting
K(rj)K~' =10..0 A(r;) ¥(r;) 0..0] (35)

In the following simulations, we demonstrate that a trajec-
tory with higher smoothness can be generated in obstacle-
free areas by using the dynamic GP interpolation without
compromising any collision avoidance performances.

V. FACTOR GRAPH

In the anisotropic GPMP2, a factor graph is used to deal
with MAP estimation as it offers the following advantages
[44]:

o It can simplify the modelling problem and provide better

clarity;

¢ It can improve computational performance.

To be more specific, a factor graph G is defined as:

G={0,7¢}, (36)

where © = {0y, ..., 0N} is a set of variable nodes (in our case
is a set of USV’s states), F = { fo,..., far} is a set of factor
nodes and £ are edges that connect the variable nodes and
factor nodes. The factorisation of the posterior in our problem
can be formulated as:

M
pOle,e) < [T fm(Om),

m=1

(37

where f,,, are factors on variable subset ©,,,. A comprehensive
structure illustrating how these different factors are integrated
for anisotropic GPMP2 is shown in Fig. 10 with each factor
explained in following subsections.

A. Prior factor
The GP prior in our problem can be factored as:

N-1

p(6) o< f3(60) f (On) T £77(6i, 6i0),

=0

(38)

where f'(6y) as shown in Fig. 10 (a) defines the prior
distribution on the start point and fX (6x) defines the prior
distribution on the goal point. Based on Eq. 9, we can further
derive the expression of fF(6;):

1 .
VHCD! :e:cp{—§||9i—ui\|%(i},z:00r N. (39

Here K is the covariance matrix and p; is the mean vector.
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Fig. 10. The structure of the factor graph of anisotropic GPMP2: (a)
demonstrates the prior factor, (b) demonstrates the GP prior factor, (c)
demonstrates the obstacle factor, (d) demonstrates the interpolated obstacle
factor (e) demonstrates the ocean current factor and (f) demonstrates the
interpolated ocean current factor.

To connect the start node and goal node by fast GP
interpolation, GP prior factor f”(6;,6,+1) as shown in Fig.
10 (b) is formulated as:

FEP(0i,0i41) = €Ip{*%||‘1’(tz‘+1’ti)91*9i+1+ui,i+1||{égi,i+1}a

(40)
where u,, = Li“ D(b, s)u(s)ds, ®(tir1,t;) is the state tran-
sition matrix and the deﬁmtlon of Q; i+1 can be found in Eq.
19.

B. Collision likelihood factor

The collision likelihood [(;¢) can be factored by two
categories of obstacle cost factors which include: (1) a regular

obstacle factor ffbs and (2) an interpolated obstacle factor

obs.
Ti

H{ obs H

where n; represents the number of interpolated obstacle factor
within each low-resolution sampling interval At.

The regular obstacle factor f** as shown in Fig. 10 (c)
is a unary factor connected with each variable node (or each
USV’s state) and is defined as:

722 60) = eap{—5 IO, ),

where h(6;) is an M-dimensional vector-valued obstacle cost
function for each state defined in Eq. 12 and 0,5 is a MxXM
hyperparameter matrix.

The interpolated obstacle factor f?f’s as shown in Fig. 10
(d) is a binary factor connected with each of the two variable
nodes representing the obstacle cost at each interpolated
variable node ¢, within each low-resolution interval At. And
it is defined as:

2 (0:,0:41) —6fcp{—*||h( (TDlz. 3

S 01,701-‘1-1 } (41)

(42)

(43)

where h(6(7;)) can also be viewed as h,, (6;,0;11) and this
is achieved by dynamic fast GP 1nterpolat10n introduced in
Section IV-C.

C. Energy consumption likelihood factor

Similar to the previous factor, energy consumption likeli-
hood can also be factored by two categories of energy cost
factors which include: (1) a regular energy consumption factor
J{ and (2) an interpolated energy consumption factor f7 :

H{f@

where n; represents the number of interpolated energy con-
sumption factor within each low-resolution sampling interval
At.

The regular energy consumption factor f; as shown in Fig.
10 (e) is a unary factor connected with each variable node (or
each USV’s state). It is defined as:

e(6:) = et~ la6I, )

where ¢(0;) is an M-dimensional vector-valued energy cost
function for each state defined in Eq. 28 and o, is a MxM
hyperparameter matrix.

The interpolated energy consumption factor fﬁj as shown in
Fig. 10 (f) is a binary factor connected with each two variable
nodes. It represents the energy cost at each interpolated
variable node 6., within each low-resolution interval At and
is defined as:

f73(91,9z+1)—6xp{— lg(@(r))IIZ.

where g(0(7;)) can also be viewed as g, (0;,0;11) and this
is also achieved by dynamic fast GP interpolation in Section
IV-C.

n;

17

j=1

7 (0,0i41)}, (44)

(45)

(46)

VI. SIMULATIONS AND DISCUSSIONS

In this section, we demonstrate the performance of
anisotropic GPMP2 in detail.

A. Simulation details

Three categories of simulations have been conducted to
evaluate the proposed method, namely the anisotropic GPMP2.
Specifically, the proposed method was quantitatively tested
against two simulation benchmarks and compared with the
state-of-the-art motion planning algorithms including GPMP2
[6], AFM [13], A* [11] and RRT* [20]. We also demonstrate
the capabilities of the proposed method in qualitative tests.
In all the simulations, GP-based methods such as GPMP2,
GPMP2-dyn-intep and anisotropic GPMP2 were always ini-
tialised with a constant-velocity straight-line trajectory. Table
I describes the realisations of the comparison motion planning
algorithms. Table II details the specifications of the parameters
used in all the motion planning algorithms. The specific
parameters of GP-based motion planning, A* and RRT* in the
following simulations in various resolutions are clarified. In
Table II, € indicates the safety distance [pixel], o5 indicates



TABLE I
DESCRIPTION OF THE COMPARISON MOTION PLANNING ALGORITHMS.

Name Description of the motion planning algorithm

Based on a precomputed grid-map, it aims to find the path
with smallest cost f(n) = g(n) + h(n) from the start node
A% to the end node, where g(n) is the cost of the path from the
start node to n and h(n) is a heuristic function that estimates
the cost of the cheapest path from n to the goal.

Within the configuration space, it grows a tree rooted at the
start node until reaching the end node. A series of tree branc-
-hes connecting the start and end nodes constructs a planned
path. Also, it keeps re-wiring the tree branches to shorten the
length of the planned path.

RRT*

FM produces the potential field by simulating the propagation
of an electromagnetic wave. Then it performs gradient descent
to find an optimal path. AFM is an improved version of the
FM method which can consider tidal currents and has higher
computational efficiency than the level set method.

AFM

A series of particles are moved around in the configuration
space according to a pre-defined function. The movements of
the particles are guided by their own best-known position in
the configuration space and the entire swarm’s best-known
position. Improved positions will further guide the movements
of the swarm once they are discovered. By repeating this step
several times, a global / local optimal path can be found.

PSO

TABLE I
SPECIFICATION OF THE PARAMETERS USED IN THE MOTION PLANNING
ALGORITHMS.

Map [pixel] GP-based Motion Planning A* RRT*
€ Oobs Oe Tmaz N l l
500x500 20 0.05 0.005 2.0 5 10.0 10.0
1000x1000 20 0.05 0.005 4.0 10 | 10.0 10.0
2000x2000 20 0.05 0.005 8.0 20 | 10.0 10.0
5000x5000 20 0.05 0.005 20.0 50 | 10.0 10.0
TABLE III
SPECIFICATION OF THE USED HARDWARE PLATFORM.
Name of the Device Description Quantity
Processor 2.6-GHz Intel Core 17-6700HQ 8
RAM 8 GB 1

the obstacle cost weight, o, indicates the energy cost weight,
Tinaz indicates the total sampling time [s], N indicates the
low-resolution region number in Algorithm 1 and [ indicates
the step size [pixel]. In the following simulations, one pixel
in the map equals one meter in the corresponding motion
planning problem. Table III is a specification of the hardware
platform used. In this section, the optimal path indicates the
path generated by a motion planning algorithm based on a
series of certain parameters and constraints.

B. System dynamics model

A constant-velocity motion model is selected in this work to
represent the system dynamics model of the USV. On an actual
voyage, a USV usually adjust its angular velocity to change
orientation, while in the meantime, maintaining its linear
velocity to maintain stability. The constant-velocity motion
model can generate an initial trajectory with constant linear
velocity on each point. Then offset would occur on each point
on initial trajectory based on the effect of factor graph. During
the deviating process, the linear velocity attribute on each point
would remain constant. After this process, a new trajectory

- A
-

Fig. 11. Coastal Environment used in simulations: (a) is the map of Roadford
Lake, Devon, UK and (b) is the binary image of it. Furthermore, (a) is a
500x500 resolution map in the simulation and a 2500x2500 [m?2] area in
the real-word. This means 1 [pixel] is approximately equal to 5 [m] in the
simulation.

(b)

Fig. 12. A comparison of different-resolution no-obstacle environments with
time-invariant ocean currents: (a) demonstrates the 500x500 resolution map
(an area about 2500x2500 [m?2] in the real-world) with time-invariant ocean
currents and (b) demonstrates the 2000x2000 resolution map (an area about
10000x10000 [m2] in the real-world) with time-invariant ocean currents. A
high resolution map would potential require an increased computation time.

would be constructed by connecting the new points. Each point
on the new trajectory has the same linear velocity compared
with the corresponding point on the initial trajectory and the
position of each point has already been changed. To guarantee
the consistency of the new trajectory when constructing it, the
angular velocity of each point on the new trajectory would
then be inconsistent. Hence we finally obtain a new trajectory
with constant linear velocity and time-varying angular velocity,
which is consistent with an actual voyage dynamics of a
USV. This prior will minimise acceleration in motion planning,
thus reducing energy consumption and giving the physical
generated path an increased degree of smoothness. To be
more specific, the dynamics of USVs are represented with the
double integrator linear system with additional white noise on
acceleration. Hence the trajectory is generated by the LTV-
SDE in Eq. 5 with parameters:

C. Benchmark without ocean currents

0 I
A= [0 o] L a(t) (47)
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TABLE IV

A COMPARISON OF GPMP2-DYN-INTEP (GPMP2 WITH DYNAMIC FAST GP INTERPOLATION), A* AND RRT* ON AVERAGE EXECUTION TIME (T"), PATH

LENGTH (L) AND SAMPLE NUMBER K IN 20 PATH PLANNING PROBLEMS WITHOUT OCEAN CURRENTS. EACH EXPERIMENT WAS TESTED 5 TIME TO

CALCULATE THE AVERAGE VALUE.

Map [pixel] Problem GPMP2-dyn-intp A* RRT*
T [ms] L [pixel] K T [ms] L [pixel] K T [ms] L [pixel] K
1 122.6 560.8 20 2410.9 565.7 41 2939.2 624.8 61
2 137.7 688.5 37 29786.6 688.7 62 6358.2 735.6 73
500x500 3 125.3 729.2 25 16217.5 688.7 49 5095.6 683.3 67
4 102.2 783.8 26 14628.1 618.4 50 9913.1 684.2 64
5 123.2 419.5 23 8137.3 4414 41 2251.5 451.9 44
6 2724 1177 40 4310.5 11314 81 7995.4 1265.1 125
7 286.7 1405 79 110974.6 1359.8 120 9189.1 1419.3 140
1000x1000 8 276.2 1231.6 51 300677.9 1213.3 95 8410.1 1290.1 127
9 233.2 1246.9 49 42185.4 1207.5 94 76804.7 1341.5 132
10 242.6 1014.5 49 37621.2 882.8 81 5545.2 970.7 96
11 386.5 2275.9 80 5721.8 2262.3 161 15732.7 2548.7 246
12 478.5 2935.1 163 - - - 52749.1 2947.7 289
2000x2000 13 492.2 2403.3 103 - - - 49727.5 2762.9 270
14 471.9 2709 95 - - - 72163.3 2849.2 282
15 420.7 1908.7 98 - - - 8137.8 1966.2 208
16 1730.8 6655.8 200 28613.4 5656.9 401 80052.2 6296.2 609
17 1715.6 7636.2 411 - - - 157234.2 7193.5 705
5000x5000 18 1681.7 7144.4 265 - - - 71707.1 6137.1 601
19 1638.2 6547.7 240 - - - 159036.7 6692.9 652
20 1700.1 5920.5 244 - - - 74032.8 4550.8 442

Notes: GPMP2-dyn-intp only uses the proposed interpolation method (fast GP interpolation) without using anisotropy to deal with ocean currents due to

the limited working performances of RRT* and A* in ocean environments.

where 7 = (z,y)7 is the position vector, v = (v,,v,) is the

velocity vector and given At; = t;11 — t;,

1 @-s)I _ [3A8Qc  3AEQc
q)(tys) = |:O I :| 7Qi,i+1 — |:2At72QC QAtiQC )
(48)

Analogously, this prior is centered around a zero-acceleration
trajectory.

In this subsection, we demonstrate the improvement of
GPMP2 with only dynamic fast GP interpolation (GPMP2-
dyn-intp) over A*, RRT* in various 2D environments in-
cluding no-obstacle environment, single-obstacle environment,
multi-obstacle environment, narrow-passage environment and
coastal environment without the effect of ocean currents. All
the aforementioned motion planning methods would stop once
a feasible path has been found. The detailed information
regarding the comparison between GPMP2-dyn-intp, A* and
RRT#* is shown in Table. IV. The aim of this simulation
is to show the benefits of dynamic fast GP interpolation in
various 2D environments, and that it has the shortest execution
time, highest smoothness, near-optimal path length and good
performance on avoiding obstacles compared with A* and
RRT#*. The smoothness is measured by the number and degree
of the jags on path. To be more specific, a path with a small
number of jags would be considered as being smooth. In
addition, a jag with an obtuse angle would be considered as
being smooth compared with an acute angle.

Against this benchmark, GPMP2-dyn-intp has a significant
advantage on the average execution time compared with A*
and RRT* in all simulations, especially in large-scale motion
planning problems as shown in Table. IV. Based on the
results, with the increase of problem complexity, i.e. resolution
difference, GPMP2-dyn-intp has the slowest growth in its
average execution time, compared with A* and RRT*. For
instance, the average execution time of GPMP2-dyn-intp in

Fig. 13. Comparisons about the paths generated by various motion planning
algorithms: (a) compares the paths generated by GPMP2-dyn-intp, A* and
RRT* in coastal environment without the effect of ocean currents, (b)
compares the paths generated by anisotropic GPMP2 and AFM in coastal
environment with the effect of ocean currents and (c) compares the paths
generated by GPMP2-dyn-intp and PSO in multi-obstacle environment with-
out the effect of ocean currents.

the 500 x 500 resolution map is 122 ms and in the 5000 x 5000
resolution map is just 1693.1 ms. This is because GPMP2-dyn-
intp has the prior distributions of obstacles and ocean currents,
which can save lots of time by reducing the randomness of the
motion planning problem. A* was not able to deliver a feasible
solution in most of the large-scale motion planning problems
only being able to deliver a feasible solution in different-
resolution no-obstacle environments with the start and goal
points initialised on the diagonal. This is because A* always
needs to search possibles path in configuration space to obtain
the optimal path which has high dependence on the heuristic
function defined with a preferred search direction. However,
this path searching strategy led to a significant growth of
the complexity of A* when dealing with large-scale motion
planning problems. RRT* could find a feasible solution in all
2D environments with various resolutions. However, the aver-
age execution time of RRT* increase exponentially in large-
scale motion planning problems due to the randomness of



TABLE V
A COMPARISON OF GPMP2-DYN-INTEP AND PSO ON AVERAGE
EXECUTION TIME (T"), PATH LENGTH (L) AND SAMPLE NUMBER K IN
VARIOUS PATH PLANNING SCENARIOS WITHOUT OCEAN CURRENTS. IN
EACH SCENARIO, EXPERIMENT WAS TESTED 5 TIME TO CALCULATE THE
AVERAGE VALUE.

Map [pixel] GPMP2-dyn-intp PSO
T L T L
[ms] [pixel] [ms] [pixel]
500x500 111.3  590.8 30 669.3 727.8 100

Notes: Similarly, GPMP2-dyn-intp only uses the proposed interpolation
method (fast GP interpolation) without using anisotropy to deal with
ocean currents due to the limited working performance of PSO in ocean
environments.

RRT#* increases exponentially in large-scale motion planning
problems. To be more specific, the step length of RRT* is
constant in maps with various resolutions and the probability
of the sample point locating on a random position becomes
smaller in large-scale maps. As a result, the performance
of RRT* would be highly unsuitable for large-scale motion
planning problems.

Overall, A* could only find a valid path with a reasonable
search space size; while GPMP2-dyn-intp and RRT* were
only able to find locally optimal paths without conducting re-
planning. Although the paths generated by GPMP2-dyn-intp
and RRT* have a similar length at the different resolutions as
shown in Table. IV, GPMP2-dyn-intp has an obvious advan-
tage on path smoothness compared with RRT*. The random-
ness and uniform sampling strategy of RRT* create a number
of sparse and loose branches, which leads to redundancy on the
path. In Table. IV, the relatively large sample number of RRT*
can reflect the redundancy on the path generated by RRT*.
So the paths generated by RRT* were comparatively sinuous
and not consistent with robot motion constraints. In narrow-
passage simulation, RRT* took a very long time to locate
the position of the narrow passage due to the randomness
and uniform sampling strategy. However, GPMP2-dyn-intp can
quickly locate the position of the narrow passage because the
GP prior has determined its search direction so it only needs
to check if the narrow passage is located inside the shaded
area of GP prior.

In addition, a comparative study between the GPMP2-dyn-
intp and an evolutionary algorithm, i.e. particle swarm optimi-
sation (PSO), was conducted in a 2D environment. PSO has
been successfully applied for intelligent marine vehicles for
task allocation and motion planning [45], [46]. Herein, based
upon the work in [47], PSO is initialised with a swarm size
of 150, an inertia weight of 1, a personal learning coefficient
of 1.5, a global learning coefficient of 1.5 and a maximum
velocity of 200 as the predefined parameters.

Detailed information regarding the comparison between
GPMP2-dyn-intp and PSO is shown in Table. V. We notice
that GPMP2-dyn-intp could generate a shorter path with a
much faster speed compared with PSO. Moreover, the smooth-
ness of the path generated by PSO is not always satisfactory
in the conducted simulations. This might be caused by a
relatively small value of the maximum number of iteration.
Nevertheless, increasing the maximum number of iteration will
increase the time cost. An example that compares the paths

generated by GPMP2-dyn-intp and PSO in a multi-obstacle
environment is shown in Fig. 13 (c).

D. Benchmark with ocean currents

In this subsection, we demonstrate the improvement of
the proposed method, anisotropic GPMP2, over GPMP2 and
AFM in various 2D environments including no-obstacle envi-
ronment, single-obstacle environment, multi-obstacle environ-
ment, narrow-passage environment and coastal environment
with the presence of ocean currents. The detailed information
about the comparison between anisotropic GPMP2, GPMP2
and AFM is shown in Table. VI. This simulation attests to
the benefits of anisotropic GPMP2 by metrics such as energy
consumption rate, execution time, solution time, path length
and number of sample points. More specifically, solution time
represents the computational time used for determining the
path; on the other hand, execution time represents the total
computational time of the method including the solution time
and the computational time used for constructing various fields
such as a signed distance field and an energy consumption
field. We only compared them in maps with resolution ranges
from 500 x 500 to 2000 x 2000. Because the time cost for
generating energy consumption field is relatively long (> 60
s) when the map resolution changes into 5000 x 5000.

First of all, we qualitatively compared GPMP2, anisotropic
GPMP2 without dynamic fast GP interpolation and anisotropic
GPMP2 with dynamic fast GP interpolation in the same
motion planning problem in coastal environment based on
different perspectives as shown in Fig. 14. We notice that
the path generated by GPMP2 only avoids obstacles and
barely follows ocean currents in Fig. 14 (a) and (b). However,
the paths generated by anisotropic GPMP2 without dynamic
fast GP interpolation and anisotropic GPMP2 follow ocean
currents and attempt to stay in low-consumption region (dark
blue region) in Fig. 14 (d), (e), (g) and (h). This demonstrates
that the proposed anisotropic energy consumption likelihood
function is effective. On the other hand, anisotropic GPMP2
with dynamic fast GP interpolation generated path with fewer
sample points, which further optimises the path. This demon-
strates that the proposed dynamic fast GP interpolation works
effectively. Moreover, the paths generated these three methods
are all inside the safe regions (purple regions) of the signed
distance field in Fig. 14 (c¢), (f) and (i), which demonstrate the
effectiveness of the collision likelihood function.

We then quantitatively compared anisotropic GPMP2,
GPMP2 and AFM on the average energy consumption rate,
average execution time, average solution time, average path
length and average sample point number in Table. VI and Fig.
15. As shown in Table. VI, anisotropic GPMP2 has the shortest
execution time compared with GPMP2 and AFM. This is a
result of the following reasons:

e GP-based algorithms (anisotropic GPMP2 and GPMP2)
have faster speeds compared with AFM due to solution
cost of them are smaller compared with AFM as shown in
Fig. 15. To be specific, it would seem the MAP estimation
process of GP-based algorithm has a faster convergence
speed compared with the gradient descent process of
AFM;



TABLE VI
A COMPARISON OF ANISOTROPIC GPMP2, GPMP2 AND AFM ON AVERAGE ENERGY CONSUMPTION RATE (P.), EXECUTION TIME (7"), PATH LENGTH
(L) AND SAMPLE NUMBER K IN 20 PATH PLANNING PROBLEMS WITH OCEAN CURRENTS. EACH EXPERIMENT WAS TESTED 5 TIME TO CALCULATE THE
AVERAGE VALUE.

Map [pixel] | Problem Anisotropic GPMP2 GPMP2 AFM
Pe [%] T [ms] L [pixel] K Pe [%] T [ms] L [pixel] K P [%] T [ms] L [pixel] K
1 14.2 506.4 354.4 20 20.6 633.4 306.3 30 10.5 641.8 364.6 3093
2 12.4 542 503.1 21 19.3 605.2 393.8 30 11.6 653.9 541.7 4875
500x500 3 8.2 538.7 630.7 26 17.9 615.2 486.5 30 9.3 657.5 682.4 5629
4 12.7 546.2 711.2 37 17.2 558.1 724.8 45 - - - -
5 7.5 572.7 362.7 27 11.2 604.5 414.1 30 5.9 643.7 394.3 3558
6 16.4 2037.8 651.2 40 21.3 2150.4 604.7 60 10.1 2221.2 684.5 6158
7 13.7 2059.5 829.5 41 17.8 2143 781.6 60 12.8 2393.5 853.8 9574
1000x1000 8 12.5 2077.7 1522.4 42 18.5 2167.6 1108.6 60 9.2 2422.8 1567.4 11221
9 15.2 2112.2 929.7 40 16.2 21744 880.2 70 - - - -
10 5.1 1961 656.2 43 8.9 2024.2 521.7 60 4.3 2274.8 697.8 6337
11 7.7 9938.3 1810.9 80 10.6 9964.5 1701.9 120 6.5 10019.6 1886.4 12263
12 12.8 8823.9 2060.3 116 21.5 9031.7 1812.3 120 11.7 9673.9 2075.1 19452
2000x2000 13 14.5 10364.5 2459.4 110 23.5 10211 2726.1 120 9.1 10213.2 2511.5 22411
14 12.1 8041.1 2534.7 100 16.2 8253.6 2359.5 130 - - - -
15 4.2 8175.1 1667.2 82 9.6 8260.3 1315.4 120 3.7 9203.2 1705.3 11483
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Fig. 14. A comparison between GPMP2 and anisotropic GPMP2 in the
same motion planning problem in coastal environment based on different
perspectives: (a) demonstrates GPMP2 in binary map; (b) demonstrates
GPMP2 in energy consumption field; (c) demonstrates GPMP2 in signed
distance field; (d) demonstrates anisotropic GPMP2 without dynamic fast GP
interpolation in binary map; (e) demonstrates anisotropic GPMP2 without
dynamic fast GP interpolation in energy consumption field; (f) demonstrates
anisotropic GPMP2 without dynamic fast GP interpolation in signed distance
field; (g) demonstrates anisotropic GPMP2 with dynamic fast GP interpolation
in binary map; (h) demonstrates anisotropic GPMP2 with dynamic fast GP
interpolation in energy consumption field and (i) demonstrates anisotropic
GPMP2 with dynamic fast GP interpolation in signed distance field.

e Dynamic fast GP interpolation decreased the number of
sample points, requiring the factor graph of anisotropic
GPMP?2 to have fewer nodes and calculation steps com-
pared with the factor graph of GPMP2.
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Fig. 15. A comparison of the average solution time cost of anisotropic GPMP2
(MAP estimation), GPMP2 (MAP estimation) and AFM (Gradient descent)
in 2D environments with different resolutions. The solution time cost specific
refers to the time cost to find an optimal solution after constructing all the
necessary fields such as signed distance field and energy consumption field.
The solution time of AFM does not exist in problem 4, 9 and 14, because it
cannot find a feasible path in narrow-passage environment with ocean currents.

As we can see in Fig. 15, with the scale of the motion plan-
ning problem increases, the advantage of GP-based algorithms
on solution cost would become more noticeable compared
with AFM. This is because the computational complexity of
gradient descent dramatically increases in large-scale or high-
dimensional motion planning problems.

In Table. VI, the path length of GPMP?2 is shorter compared
with anisotropic GPMP2 and AFM. This is because the path
generated by GPMP2 does not follow ocean currents. Usually,
the path would be more sinuous and the average energy
consumption rate would be lower when the path attempts to
track ocean currents. Compared with anisotropic GPMP2, the
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Fig. 16. Re-planning for static platform with time-varying ocean currents:
From (a) to (d), the vortex moves from a position close to the platform start
point to a position close to its platform goal point. In 10 repeated tests, the
execution time of re-planning processes from (a) to (d) were 681.9 ms, 565.1
ms, 532.6 ms and 505 ms respectively.

path generated by AFM has the lower energy consumption
rate as shown in Table. VI, which means the path generated
by AFM was better at tracking ocean currents. So the path
of AFM would be more sinuous and the path length would
be longer as shown in Table. VI. In Table. VI, the number
of sample points of AFM is greater than the number of
sample points of GP-based algorithms. This is because the
paths generated by GP-based algorithms are continuous-time
functions. We can simply query a reduced number of sample
points on the path at specific moments and then use straight
lines to connect these sample points to reconstruct the path.
In Fig. 13, the path generated by AFM advantageously tracks
ocean currents at each waypoint; however, the path generated
by anisotropic GPMP2 does not track ocean currents at the
waypoints around the start and goal points. This is because
anisotropic GPMP2 has an initialised straight-line GP prior,
which locks the direction of the path at start and goal points
as shown in Fig. 2. Hence the path generated by anisotropic
GPMP2 would always be narrow on both ends and wide in
the central portion. Compared with AFM, the most significant
advantage of anisotropic GPMP2 is the influence of ocean cur-
rents on the path that can be adjusted by adjusting parameter
oe. Specifically, we can encourage the path to keep tracking
ocean currents in such a way as to reduce energy consumption
when necessary; on the other hand, we can also decrease the
influence of ocean currents so that the path can diverge from
the trend of ocean currents if the path has entered into a local
minimum. In narrow-passage simulations as detailed in Table.

Fig. 17. Re-planning for dynamic platform with time-varying ocean currents:
From (a) to (f), the vortex moves from a position close to the platform start
point to a position close to the platform goal point, at the mean time, the
platform continuously moves towards the goal point. In 10 repeated tests, the
execution time of re-planning processes from (a) to (f) were 717.6 ms, 626.1
ms, 636.5 ms, 523 ms, 554.2 ms and 491.1 ms respectively. In this simulation,
the generated path varies according to the slight variation of ocean currents
at each step; thereby the adaptivity of the proposed method is proved.

VI (problem 4, 9 and 14), the path generated by AFM cannot
find a feasible path as the trend of ocean currents did not
align with the narrow passage. However, the path generated by
anisotropic GPMP2 can pass the narrow passage based on the
guidance of the straight-line GP prior, and, in the meantime,
track ocean currents as far as possible with a suitable value
for parameter o..

E. Re-planning with time-varying ocean currents

This subsection qualitatively demonstrates the capability of
the proposed method in re-planning problems in the coastal
environment with time-varying ocean currents. This simulation
aims to show how quickly the proposed method would react to
changes of ocean currents. Furthermore, the reaction time of
each re-planning was recorded to demonstrate the efficiency.
We used anisotropic GPMP2 to implement two types of re-
planning problems including (i) re-planning for static USV
with time-varying ocean currents and (ii) re-planning for
dynamic USV with time-varying ocean currents.

1) Re-planning for a static platform: In this re-planning
problem, the start and goal points as well as the current
position of the platform are static. The time-varying ocean
currents generate a vortex that has influence from a position
close to the platform start point to a position close to the
platform goal point as shown in Fig. 16. Once the variation
of the ocean currents is detected, anisotropic GPMP2 would
perform re-planning for the static platform so that a feasible
path is generated to adapt to the updated ocean currents. The
average execution time of this re-planning problem across 10
repeated tests was 571.2 ms, which means anisotropic GPMP2
demonstrates a relatively good performance in re-planning for
static platforms.

2) Re-planning for dynamic platform: In the re-planning
problem for dynamic platform, the start and goal points of
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Fig. 18. A comparison of the average execution time of anisotropic GPMP2
in different re-planning problems.

the platform are static, but the current position of the plat-
form would keep updating. The time-varying ocean currents
generated a vortex that has influence from a position close
to the platform start point to a position close to the platform
goal point while the platform continuously moves towards the
goal point as shown in Fig. 17. Once the variation of the
ocean currents is detected, anisotropic GPMP2 would perform
re-planning for the dynamic platform so that a feasible path
is generated to adapt to the updated ocean currents. The
average execution time of this re-planning problem across 10
repeated tests was 591.4 ms as shown in Fig. 18, which means
anisotropic GPMP2 has a relatively good performance in re-
planning for dynamic platforms.

As summarised in our previous work on testing a USV in
practical environments [48], to ensure a real-time performance,
the minimum control signal updating (trajectory replanning)
frequency for a high-speed (> 40 knots) USVs is 2 Hz.
Based on this, we can also infer that the minimum frequency
requirements for medium-speed (10 - 40 knots) and low-
speed (< 10 knots) USVs should be more than 2 Hz. In
both re-plannings for static and dynamic platforms, the average
execution times of re-planning processes of AGPMP2, with the
PC configuration listed in Table III, were less than 600 ms,
indicating that the updating frequency of the proposed method
is about 1.7 Hz. This updating frequency can evidently meet
the real-time requirement of the selected USV (WAM-V 20).

VII. IMPLEMENTATION IN ROS

This section demonstrates the proposed method in the ROS
environment to simulate autonomous transportation mission
and autonomous inspection mission in the real world. We
use these two different practical scenarios to demonstrate the
versatility of the proposed method.

The system structure of the proposed method with the
Gazebo simulation is shown in Fig. 19. The proposed method
was run on MATLAB and connected with Gazebo through
ROS nodes.

A. Autonomous transportation mission

In Gazebo, an almost real simulation world with sunlight,
wind, ocean currents, gravity and buoyancy was created and
a series of islands with different sizes and shapes as well as
WAM-V 20 USV were placed inside the simulation world.
The locations of the islands are shown in Fig. 20 (a); on the
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Fig. 19. Structure of the proposed motion planning system that combines
anisotropic GPMP2 and WAM-V platform in marine environment. 8 is the
start pose, 6 is the goal pose, [(6,e) is energy consumption likelihood
function, (6, c; = 0) is collision likelihood function, 6* is the optimal path,
vy is the rotation speed of the left thruster, v, is the rotation speed of the right
thruster, «; is the rotation angle of the left thruster and «, is the rotation
angle of the right thruster.

other hand, the start point and goal point of WAM-V 20 USV
and the dangerous region on the terrain are shown in Fig.
20 (b). Furthermore, a camera was mounted at the front of
the WAM-V 20 USV to detect obstacles and record videos.
The video stream from the front camera was transmitted
to and displayed on the Rviz interface through the WAM-
V Camera node (/wam-v/sensors/cameras/front-camera/image-
raw) as shown in the bottom right corner of Fig. 19.

In the transportation mission in Gazebo, the WAM-V 20
USV transported a parcel from the start point (50, 50) marked
by a green buoy to the goal point (250, 450) marked by a red
buoy. During this process, the USV moved along the big island
boundary and made a detour at the dangerous region (blue
region) in Fig. 20 (b) to avoid collision with the big island. Fig.
21 demonstrates the storyboards of the transportation mission
from both the first-person and third-person perspectives.

B. Autonomous inspection mission

Similarly, a high-fidelity offshore wind farm inspection
scenario was selected. Practical aspects including sunlight,
wind, ocean currents, gravity and buoyancy were incorporated
together with several wind turbines. Fig. 22 (a) details the
locations of the turbines, while Fig. 22 (b) details the start
point and goal point of WAM-V 20 USV. Again, a camera
was mounted at the front of the WAM-V 20 USV to detect
obstacles and record videos.

During the inspection mission in Gazebo, by following the
trajectory generated by AGPMP2, the WAM-V 20 USV moved
from the start point (50, 50) marked by a green buoy to the
goal point (450, 450) marked by a red buoy. As the USV
navigates, the vessel can undertake an inspection of the wind
turbine areas and monitor any damages to the turbines. Fig. 23
demonstrates the storyboards of the inspection mission from
both the first-person and third-person perspectives.

VIII. CONCLUSION

The potential impact of the work in this paper is successfully
extending GP-based motion planning into fluid environments
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Fig. 20. Transportation mission map in Gazebo: (a) demonstrates the top
view of the map and (b) demonstrates the binary image of this map, which
indicates the start point (green), goal point (red) and dangerous region (blue).
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Fig. 21. The storyboards of the transportation mission based on the first-
person perspective (at the lower part of each figure) and third-person (at
the upper part of each figure) synchronously: From (a) to (f), the images
demonstrate the locations of the USV at time equals to 1's, 6's, 11 s, 165,
21 s and 26 s, respectively. To better indicate the start and goal positions,
a green buoy was placed at the start point of the USV and a red buoy was
placed at the goal point of the USV.

such as ocean surfaces. Specifically, this paper presents a
motion planning algorithm based on continuous-time GP,
which can deal with time-varying ocean currents and obsta-
cles simultaneously. By introducing (i) energy consumption
likelihood function and (ii) dynamic fast GP interpolation, we
were able to generate trajectories to avoid vortexes and follow
ocean currents while at the same time removing redundant
sample points to improve execution time and more effectively
avoid obstacles. We derived the energy consumption field by
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Fig. 22. Inspection mission map in Gazebo: (a) demonstrates the top view of
the map and (b) demonstrates the binary image of this map, which indicates
the start point (green), goal point (red) and turbines (black).

Fig. 23. The storyboards of the inspection mission based on the first-person
perspective (at the lower part of each figure) and third-person (at the upper
part of each figure) synchronously: From (a) to (f), the images demonstrate
the locations of the USV at time equals to 15,5, 10s, 155,20 s and 25 s,
respectively. To better indicate the start and goal positions, a green buoy was
placed at the start point of the USV and a red buoy was placed at the goal
point of the USV.

measuring ocean current dynamics, so it can reduce energy
consumption caused by ocean currents and assist USVs in
avoiding hazardous areas, such as vortexes. We employed the
dynamic fast GP interpolation method by taking benefits of
GPs that can be parameterised by only a sparse set of support
states, while the generated trajectory can be still queried at
any moment of interest. By adjusting the sampling interval
in each sub-search region, the proposed method can avoid
obstacles by generating smoother paths for course correction,
while reducing its execution time and path length.

The subjects of future research are: (i) further optimising
and enriching our ROS environment to enable USVs to
perform different tasks in the environment; (ii) designing a
controller to simulate the path tracking process of real USVs.



To be specific, we aim to combine the motion planning and
control of USVs in the next step. Hence, the experimental
results of the proposed motion planning method would be
more practical and can be used in the real-world environment.
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