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Canonical Correlation Analysis (CCA) and its regularised versions have been widely used in the neuroimaging
community to uncover multivariate associations between two data modalities (e.g., brain imaging and behaviour).
However, these methods have inherent limitations: (1) statistical inferences about the associations are often not
robust; (2) the associations within each data modality are not modelled; (3) missing values need to be imputed or
removed. Group Factor Analysis (GFA) is a hierarchical model that addresses the first two limitations by provid-
ing Bayesian inference and modelling modality-specific associations. Here, we propose an extension of GFA that
handles missing data, and highlight that GFA can be used as a predictive model. We applied GFA to synthetic
and real data consisting of brain connectivity and non-imaging measures from the Human Connectome Project
(HCP). In synthetic data, GFA uncovered the underlying shared and specific factors and predicted correctly the
non-observed data modalities in complete and incomplete data sets. In the HCP data, we identified four relevant
shared factors, capturing associations between mood, alcohol and drug use, cognition, demographics and psy-
chopathological measures and the default mode, frontoparietal control, dorsal and ventral networks and insula,
as well as two factors describing associations within brain connectivity. In addition, GFA predicted a set of non-
imaging measures from brain connectivity. These findings were consistent in complete and incomplete data sets,
and replicated previous findings in the literature. GFA is a promising tool that can be used to uncover associations
between and within multiple data modalities in benchmark datasets (such as, HCP), and easily extended to more
complex models to solve more challenging tasks.

CCA and regularised variants of CCA, such as sparse CCA (Lé Cao
et al., 2009; Waaijenborg et al., 2008; Witten et al., 2009), have been

1. Introduction

In the past few years, there has been a substantial increase in the ap-
plication of multivariate methods, such as Canonical Correlation Anal-
ysis (CCA) (Hotelling, 1936), to identify associations between two data
modalities (e.g., brain imaging and behaviour). CCA uncovers underly-
ing associations between two sets of variables by finding linear combi-
nations of variables from each modality that maximise the correlation
between them. This is particularly relevant in brain imaging research,
where different types of data (e.g., brain structural/functional data, be-
havioural and cognitive assessments) are collected from the same in-
dividuals to investigate the population variability. Moreover, the unsu-
pervised nature of CCA has made it increasingly popular in fields such
as psychiatric neuroscience, where there is a lack of objective biomark-
ers of illness and the diagnostic categories are not reliable (Bzdok and
Meyer-Lindenberg, 2017; Insel et al., 2010).

used to identify associations, for instance, between brain connectivity
and cognitive/psychopathology measures (Drysdale et al., 2017; Miha-
lik et al., 2019; Xia et al., 2018), brain connectivity and general lifestyle,
demographic and behavioural measures (Alnas et al., 2020; Bijsterbosch
et al., 2018; Lee et al., 2019; Li et al., 2019; Smith et al., 2015), brain
structure, demographic and behavioural measures (Mihalik et al., 2020;
Monteiro et al., 2016) and between different brain imaging modalities
(Sui et al., 2012).

Nonetheless, these methods have some limitations. First, they do not
provide an inherent robust inference approach to infer the relevant as-
sociations. This is usually done by assessing the statistical significance
of the associations using permutation inference (Winkler et al., 2020) or
hold-out sets (Mihalik et al., 2020; Monteiro et al., 2016). Second, the
associations within data modalities, which might explain important vari-
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ance in the data, are not modelled. Finally, CCA assumes data pairing
between data modalities, which is problematic when values are missing
in one or both data modalities. This is a common issue in clinical and
neuroimaging datasets, in which the missing values usually need to be
imputed or removed before applying the models.

One potential way to address the limitations mentioned above is to
solve the CCA problem within a probabilistic framework. Bach and Jor-
dan (2006) proposed a probabilistic interpretation of CCA, but showed
that the maximum likelihood estimates are equivalent to the solution
that standard CCA finds. Nevertheless, probabilistic CCA provided an
initial step towards robust inference by allowing estimation of the un-
certainty of the parameters and it could be used as building block for
more complex models, such as Bayesian CCA proposed by Klami and
Kaski (2007) and Chong Wang (2007). In both papers, the authors in-
troduced a hierarchical Bayesian extension of CCA by adding suitable
prior distributions over the model parameters to automatically infer the
number of relevant latent components (i.e., relevant associations) using
Bayesian inference.

Bayesian CCA has some limitations, however: it is not able to uncover
associations within data modalities and, in high dimensional data sets, it
can be computationally infeasible (Klami et al., 2013). Virtanen and col-
leagues (Klami et al., 2013; Virtanen et al., 2011) proposed an extension
of Bayesian CCA to solve these two limitations, whilst removing irrel-
evant latent components (i.e., components that explain little variance).
This model was further extended to include more than two data modal-
ities (termed “groups”) and was named Group Factor Analysis (GFA)
(Klami et al., 2015; Virtanen et al., 2012). Examples of GFA applica-
tions are still scarce: it has mostly been used on genomics data (Klami
et al., 2013; Suvitaival et al., 2014; Zhao et al., 2016), drug response
data (Khan et al., 2014; Klami et al., 2015) and task-based fMRI (Klami
et al., 2015; Virtanen et al., 2011; 2012). To the best of our knowledge,
GFA has not been applied to uncover associations between brain con-
nectivity and behaviour, especially using high dimensional data.

The original GFA implementation still does not address the third lim-
itation mentioned above, i.e., it cannot be applied to data modalities
with missing data. Therefore, we propose an extension of GFA that can
handle missing data and allows more flexible assumptions about noise.
We first applied our GFA extension to synthetic data to assess whether
it can find known associations among data modalities. We then applied
it to data from the Human Connectome Project (HCP) to uncover associ-
ations between brain connectivity and non-imaging measures (e.g., de-
mographics, psychometrics and other behavioural measures). We eval-
uated the consistency of the findings across different experiments with
complete and incomplete data sets. Finally, even though the GFA model
was proposed for unsupervised tasks, it can also be used as a predictive
model: we applied our GFA implementation to synthetic and HCP data
to assess whether it was able to predict missing data and non-observed
data modalities from those observed, in incomplete data sets.

To illustrate the differences between GFA and CCA, we also applied
CCA to both datasets. First, we hypothesised that GFA would replicate
previous CCA findings using broadly the same HCP dataset, where pre-
vious investigators identified a single mode of population covariation
representing a “positive-negative” factor linking lifestyle, demographic
and psychometric measures to specific patterns of brain connectivity
(Smith et al., 2015). Second, we expected CCA to show poorer perfor-
mance when data was missing, whereas GFA results would be consistent
across experiments with complete and incomplete data sets. Due to its
flexibility and robustness, the proposed extension of GFA provides an
integrative framework that can be used to uncover associations among
multiple data modalities in benchmark neuroimaging datasets.

2. Materials and methods
We first describe the link between CCA and GFA (Section 2.1), then

we explain how we modified the GFA model to accommodate missing
data (Section 2.2) and used it to make predictions (Section 2.3). These
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subsections are followed by descriptions of experiments where we assess
the effectiveness of the model on synthetic data (Section 2.4.1), as well
as on HCP data (Section 2.4.2).

2.1. From CCA to GFA

In this section, we show that the probabilistic extension of CCA
serves as a building block for GFA. We begin by describing CCA
(Section 2.1.1), which is followed by the descriptions of probabilistic
(Section 2.1.2) and Bayesian CCA (Section 2.1.3). We finish this section
by describing the GFA model and its inference (Section 2.1.4).

2.1.1. CCA

Canonical  Correlation  Analysis  was introduced by
Hotelling (1936) and is a classical method for seeking maximal
correlations between linear combinations of two multivariate data sets,
which can be seen as two different data modalities from the same
observations or individuals. This can be illustrated using the follow-
ing notation: X) € RP1*N and X® e RP>*N are two data matrices
containing multivariate data from the same N observations, where D,
and D, denote the number of variables of X(' and X®, respectively.
CCA finds pairs of weight vectors u, € RP1*! and v, € RP2X! that
maximise the correlation between the corresponding projections ul XV
and sz(z) (also known as canonical scores), k =1, ... , K (where K is
the number of canonical directions, also called CCA modes). This is
achieved by solving:

maxy, y, ul XOXATy, |

subject to uf XWXy = 1 and v XPXPTy, =1,

(€]

where the variables (i.e., rows of X and X?®) are considered to be
standardised to zero mean and unit variance. The optimisation prob-
lem in Eq. (1) can be solved using a standard eigenvalue solution
(Hotelling, 1936), singular value decomposition (SVD) (Uurtio et al.,
2017), alternating least squares (ALS) (Golub and Zha, 1994) or non-
linear iterative partial least squares (NIPALS) (Wegelin, 2000).

As mentioned above, CCA lacks robust inference methods and does
not model the associations within data modalities. Probabilistic ap-
proaches, such as probabilistic CCA, might be used to overcome these
limitations, in which the generative nature of the models offers straight-
forward extensions to novel models through simple changes of the gen-
erative description, and more robust inference methods (e.g., Bayesian
inference).

2.1.2. Probabilistic CCA

The probabilistic interpretation of CCA (Bach and Jordan, 2006) as-
sumes that N observations of X(!) and X® (similarly defined as above)
are generated by the same latent variables Z € R¥*N capturing the as-
sociations between data modalities (Fig. 1a), where K corresponds to
the number of components (which are equivalent to the CCA modes de-
scribed in Section 2.1.1):

z, ~ -/‘/(0» Ix),
D o NADz, + O, p), @
X ~ N APz, + u® ¥2),

where N'(-) represents the multivariate normal distribution, A €
RP1XK and A® € RP2XK are the projection matrices (also known as
loading matrices) that represent the transformations of the latent vari-
ables z, € RXX! (which corresponds to a column vector of Z) into the
input space. The projection matrices are equivalent to the (horizontal)
concatenation of all pairs of weight vectors u, and v, that CCA finds
(see Section 2.1.1). ¥ € RP1*D1 P2 ¢ RP2XD: denote the noise co-
variance matrices.

Bach and Jordan proved that the maximum likelihood estimates of
the parameters in Eq. (2) lead to the same canonical directions as stan-
dard CCA up to a rotation (Bach and Jordan, 2006), i.e., the posterior
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(a) Probabilistic CCA

= N
o) /W)

(c) GFA

Fig. 1. Graphical representation of (a) Probabilistic CCA, (b) Bayesian CCA and
(c) GFA. A separate mean parameter is not included for GFA, but it assumes
zero-mean data without loss of generality (Section 2.1.4).

expectations E(Z|X(D) and E(Z|X®) lie in the same subspace that stan-
dard CCA finds, where the subspace is represented by the canonical
scores UTX®D and VI'X®, where U € RP1*K and V € RP2*K, Moreover,
an equivalent representation of the latent variables Z can be obtained
- for CCA - by averaging the canonical scores obtained for each data
modality (Klami et al., 2013).

Although probabilistic CCA does not provide an explicit inference
approach to infer the number of relevant components, it was used as a
building block for Bayesian CCA that - as described in the next section -
provides a solution for this limitation.

2.1.3. Bayesian CCA

Klami and Kaski (2007) and Chong Wang (2007) proposed a hier-
archical Bayesian extension of CCA by giving full Bayesian treatment
to the probabilistic CCA model, introducing suitable prior distributions
over the model parameters, which can be inferred using Bayesian infer-
ence.

The goal of Bayesian inference is to provide a procedure for incorpo-
rating our prior beliefs with any evidence (i.e., data) that we can collect
to obtain an updated posterior belief. This is done using the Bayes’ the-
orem: p(@|X) = p(X|O)p(®)/p(X), where p(0) represents the prior dis-
tributions over the model parameters @ (here, ® denotes the model
parameters {A, «, ¥, u} and latent variables Z), p(X|®) represents the
likelihood and p(®|X) represents the joint posterior distribution that ex-
presses the uncertainty about the model parameters after accounting
for the prior knowledge and data. p(X) represents the model evidence,
or marginal likelihood, which is usually considered a normalising con-
stant. In this way, Bayes’ theorem is formulated as: p(0|X) «x p(X|0®)p(0®),
which means that the posterior distribution is proportional to the like-
lihood times the prior.

In the Bayesian CCA model (represented in Fig. 1b), the observations
X are assumed to be generated by Eq. (2). The joint probabilistic dis-
tribution of the model is given by Chong Wang (2007):

P(X.Z,A, &, W, ) = [V, [p(x<'">|z, A )y
©)
p<A<m>|a<m>)p<a<'">>p<‘1'<m>)p(u<m>)] p(2),

where M is the number of data modalities, A®™ and Z are defined as in
Eq. (2) and a™ € R'X, The prior distributions are chosen to be conju-
gate (i.e., the posterior distribution has the same functional form as the
prior distribution) which simplifies the inference:

D, —
PA™ ™) =TT TIE, N@10.@™) ™). pa™) = [T, Ta”la

P(™) = N (™10, (57D, p(¥) = W (B, VM),

(m)

a

“)

by
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where Sg") is a symmetric positive definite matrix, v(()’") denotes the
degrees of freedom for the inverse Wishart distribution (W~!(-)) and
I'(-) represents the Gamma distribution. The prior over the projection
matrices A" is the Automatic Relevance Determination (ARD) prior
(Mackay, 1995), which is used to find the relevant latent components
(i.e., rows of Z). This is done by allowing some ™ to be pushed to-
wards infinity, which consequently drives the loadings (i.e., elements of
the projection/loading matrices) of the k columns of A®™ close to zero
and the corresponding irrelevant latent components k to be pruned out
during inference.

For learning the Bayesian CCA model, we need to infer the model
parameters and latent variables from data, which can be done by es-
timating the posterior distribution p(Z, A, @, ¥, u|X) and marginalising
out uninteresting variables. However, these marginalisations are often
analytically intractable, and therefore the posterior distribution needs to
be approximated. This can be done using mean-field variational Bayes
(Chong Wang, 2007) or Gibbs sampling (Klami and Kaski, 2007), since
all conditional distributions are conjugate. However, the inference of
the Bayesian CCA model is difficult for high dimensional data as the
posterior distribution needs to be estimated over large covariance ma-
trices ¥ (Klami et al., 2013). The inference algorithms usually need to
invert those matrices in every step, which results in O(Dfn) complexity,
leading to long computational times. Moreover, Bayesian CCA does not
account for the modality-specific associations.

Virtanen et al. (2011) proposed an extension of Bayesian CCA to
impose modality-wise sparsity to separate associations between data
modalities from those within data modalities. Moreover, this model as-
sumes spherical noise covariance matrices (¥ = ™1, where ¢’
corresponds to the noise variance of data modality m) for more effi-
cient inference. The same authors proposed a further extension of the
model to uncover associations between more than two groups (e.g., data
modalities), called Group Factor Analysis (GFA) (Klami et al., 2015; Vir-
tanen et al., 2012).

2.1.4. Group factor analysis

In the GFA problem, we assume that a collection of N observations,
stored in X € RP*N | have disjoint M partitions of variables D,, called
groups. In this and the following two sections (Sections 2.2 and 2.3),
we refer to a given data modality as a group of variables of X (X &
RP»*N for the m-th group), in accordance with the GFA nomenclature.
Moreover, we introduce the concept “factor” that corresponds to the
loadings in a given column k of the loading matrices (represented as
W in Fig. 1c). The latent factors correspond to the rows of the latent
variables Z € RK*N (equivalent to a latent component in probabilistic
and Bayesian CCA).

GFA finds the set of K latent factors that can separate the associ-
ations between groups (i.e., shared factors) from those within groups
(i.e., group-specific factors) by considering a joint factor model (Fig.
1c), where each m-th group is generated as follows Klami et al. (2015);
Virtanen et al. (2012):

z, ~ N'(0,I),

Xflm) ~ N(W(m)ln, T(m)fl )’ (5)
where T is a diagonal covariance matrix (T = diag(z(™), where
7™ represents the noise precision, i.e., inverse noise variance of the m-
th group), W € RP»*K is the loading matrix of the m-th group and
z, € RK*! is the latent variable for a given observation x™ (i.e., col-
umn of X). The model assumes zero-mean data without loss of gen-
erality. Alternatively, a separate mean parameter could have been in-
cluded; however, its estimate would converge close to the empirical
mean, which can be subtracted from the data before estimating the
model parameters (Klami et al., 2013).

2 If we consider M = 2 (also known as Bayesian CCA via group spar-
sity (Virtanen et al., 2011) or Bayesian inter-battery factor analysis
(Klami et al., 2013)), the noise covariance matrix is given by T =
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T 0 A BMD 0
( 0 T(z)) A® 0 B®
sent the loading matrices containing the shared factors and B and
B® correspond to the loading matrices containing the group-specific
factors. The structure of W and the corresponding latent structure (rep-
resented by Z) is learned automatically by imposing group-wise spar-
sity on the factors, i.e., the matrices A and B are not explicitly specified
(Klami et al., 2013). This is achieved by assuming independent ARD pri-
ors to encourage sparsity over the groups (Klami et al., 2013; Virtanen
et al., 2011):

M D, M K
p(Wla) = HHHN(w“"Ho @™, p@=[][]re

m=1 j=1 k= m=1 k=1

and W = , where AV and A® repre-

6

which is a simple extension of the single ARD prior used by
Chong Wang (2007). Here, a separate ARD prior is used for each W,
which are chosen to be uninformative to enable the automatic prun-
ing of irrelevant latent factors. I'(-) represents a gamma distribution
with shape parameter a ) and rate parameter b, . These separate
priors cause groups of variables to be pushed close to zero for some
factors k (w(”’) — 0) by driving the corresponding ai"’) towards infin-
ity. If the loadings of certain factors are pushed towards zero for all
groups, the underlying latent factor is deemed inactive and pruned out.
Klami et al. (2013). Finally, the prior distributions over the noise and
latent variables Z are:

M D, K N
p(r) = ]'[] H1 L@@y, by, P(Z) = H1 ]'[1 N (24,10, 1), @)
m=1 j= =] n=

where I'(-) represents a gamma distribution with shape parameter a
and rate parameter b, . The hyperparameters aym, byom, azm, bym can
be set to a very small number (e.g., 10~'4), resulting in uninformative
priors. The joint distribution p(X,Z, W, «, 7) is hence given by:

X, Z,W, a,7) = pX|Z, W, 7)p(Z)p(W|a)p(a)p(T). 3)

As mentioned in Section 2.1.3, the calculations needed to infer the
model parameters and latent variables from data are often analytically
intractable. Therefore, the posterior distribution needs to be approxi-
mated by applying, for instance, mean field variational approximation
(similarly to Bayesian CCA (Chong Wang, 2007)). This involves approxi-
mating the true posterior p(6|X) by a suitable factorized distribution ¢(6)
(Bishop, 1999). The marginal log-likelihood (In p(X)) can be decomposed
as follows Bishop (2006):

In p(X) = L(q) + Dk, (ql|p),
£(q) = [ 4(0)In 23246, )
Dy (allp) = [ a(6)In K246,

where D (q]|p) is the Kullback-Leibler divergence between ¢(6) and
p(6]X) and L(q) is the lower bound of the marginal log-likelihood. Since
In p(X) is constant, maximising the lower bound L(q) is equivalent to
minimising the KL divergence D (¢||p), which means ¢(6) can be used
to approximate the true posterior distribution p(0|X) (Bishop, 1999). As-
suming that ¢(6) can be factorised such that ¢(0) = [], ¢;(,), the £(g) can
be maximised with respect to all possible distributions ¢;(6;) as follows
Bishop (1999, 2006):

Ing;(6;) = (In p(X, 9))#,- + const, (10)

where (-);; denotes the expectation taken with respect to ], ¢;(6;)
for all j # i. In GFA, the full posterior is approximated by:

M
40) = 4@ [ [aW™)a@™)q(z™).

m=1

an

where 6 denotes the model parameters and latent variables (0 =
{Z,W,a,t}). As conjugate priors are used, the free-form optimisation

>|aatm>, bam)s
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of ¢(0) (using Eq. (10)) results in the following analytically tractable
distributions:

a2 =TI, N@,lu, .2, ).
g(@™) = [T, T4

G(Wm) = H m N(W(”’ “‘w“'”’ <m>)
L g = 2 T, 59 ),

2m P pom)

12)

7k
alm s ba(”’)

where z,, is the n-th column of Z and W(’") denotes the j-th row of W™,
The optimisation is done using var1at1ona1 Expectation-Maximization
(EM), where the parameters in Eq. (12) are updated sequentially un-
til convergence, which is achieved when a relative change of the ev-
idence lower bound (ELBO) L(g) falls below an arbitrary low number
(e.g., 107%). The recommended choice for the maximal number of latent
factors is K = min(D,, D,), but in some settings this leads to large K and
consequently long computational times (Klami et al., 2013). In practice,
a K value that leads to the removal of some irrelevant latent factors
should be a reasonable choice (Klami et al., 2013). In our experiments
with synthetic data, we initialised the model with different values of K
and the results were consistent across the different experiments (Sup-
plementary Fig. 1).

2.2. Our proposed GFA extension

Here, we propose an extension of the GFA model to handle missing
data by modifying the inference algorithm of variational factor analysis
proposed by Luttinen and Ilin (2010). The extended GFA model assumes
independent n01se for each variable (i.e., diagonal noise) within a group
(p(r) = Hm ) H F(T(”’ [azm,bym)). This assumption enables a more
flexible model because a noise variance parameter can be computed for
each variable (which is useful to inform us about the uncertainty of each
variable). Furthermore, we use only the noise parameters of non-missing
variables when updating the parameters of the posterior distribution.

In summary, the proposed inference algorithm (Algorithm 1) starts
by updating the parameters of the distribution over each latent vari-
able (¢(z,)) using the loadings and noise parameters of the non-missing
variables of the n-th sample/subject (j € O™, where 0 is the set of
indices in the n-th column of X that are not missing). After that, the
parameters of the distribution over each row of the loading matrices are
computed using the updated latent variables of the non-missing sam-
ples of the j-th variable (n € O;.'"), where O;.'") is the set of indices in
the j-th row of X" that are not missing). The parameters of the dis-
tribution over a™ and t(™ are then updated using the updated latent
variables and loading matrices. Finally, the ELBO is calculated with the
updated parameters. These update steps are repeated until convergence,
i.e., when a relative change of the ELBO falls below an arbitrarily low
number (10-% in our implementation). The derivations of the variational
update rules and ELBO calculations can be found in Appendix A and
Appendix B, respectively.

Although we just show here examples of our GFA extension being
applied to two data modalities, our Python implementation (Section 2.5)
can be used for more than two data modalities.

2.3. Multi-output and missing data prediction

As mentioned above, GFA can be used as a predictive model. As
the groups are generated by the same latent variables, the unobserved
group of new (test) observations (X™™*) can be predicted from the ob-
served ones on the test set (X~") using the predictive distribution
p(XM™* |X~(m™) (Klami et al., 2015). This distribution is analytically in-
tractable, but its expectation can be approximated using the parameters
learned during the variational approximation (Appendix B) as follows
Klami et al. (2015):

*IxX—m*y = )
|E[X(m) |X (m ] - (W(m Z>q(W("‘)), q(Z|X—(m)*)s

= (WYE* (W=(mTyprx—m*, =
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Algorithm 1 Pseudocode of the variational updates of GFA to handle
missing data.
repeat

> Update ¢(Z)
forn=1...N do
M B
m T -1
Ezn - [IK + Zm=1 Zjeof{") E(Tj) ”W('")”W(,m) +Zw(_ln) ]
(m) TR I
=)

M e T _(m)
.
Hz, = Zg, | Lpe Zjeofj") 30 Hyomin

7(m) Jox

end for

form=1...M do
> Update g(W™)
H™  diag ( e )

(M)
for j=1...J do
0)

Ielm) T -1
Zwim*) «— [H(m) + £ ZnEO;m) (Ilzn ”Zn + Ez")

7()
b,(M)
ﬁ(]) -
7(m) m) T
i = 52 (B 420, o
; Z(m i

end for
> Update g(a™)

D”l
Cim Z]:l <”;(m)”w(v"') + Ew(m)>
G i J

~ 1
Ao(m) < Aum) + ED'"

7(k) 1 (m)
ba('”) — by + 3%k

> Update g(z(™)
for j=1...J do

~ 15y (m)
Ay < Arm + 3 Nj

7() 1 (m)2 (m)
b < b 3 Zneoim) <xj.n =2 Hwom "zn>+

1
2 ZnEO(.m) Tr |:<”€V(M) ”W(.m + Zw(f")) <”z” ﬂzﬂ + Zzn )]
J e A Jix

end for
end for
until convergence

T
where (-) denotes expectations, X% =Ix + 3., Zjl.)’ ('rj(.” )(W;.g Wilz),
T
(WE.{L W;'l) =X o+ ﬂzv“) My (B and pen are the variational pa-
Jj o Ji* J* Jo*

rameters obtained for g(W™) in Eq. A.11) and T* = {diag((z""})},,,. In
all experiments, E[X" |X~(™"] was used for prediction.

Additionally, the missing data can be predicted using Eq. (13) where,
in this case, the observed groups X="" correspond to the training ob-

servations in group m and the missing data is represented as X" =
(m)*

nj EOfg) ’
2.4. Experiments

We begin this section by detailing the experiments that we ran on
synthetic data (Section 2.4.1), which is followed by the description of
the experiments on the HCP dataset (Section 2.4.2).

2.4.1. Synthetic data

We validated the extended GFA model on synthetic data drawn from
Eq. (5). We generated N =500 observations for two data modalities
with D, = 50 (X € R>300) and D, = 30 (X® e R30%300) respectively.
The data modalities were generated from two shared and two modality-
specific latent factors, which were manually specified, similarly to the
examples generated in Klami et al. (2013) (Fig. 2). The shared factors
correspond to latent factor 1 and 2, the latent factor specific to XV is
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represented in latent factor 4 and the latent factor specific to X® is rep-
resented in latent factor 3. The a™ parameters were set to 1 for the
active factors and 10° for the inactive ones. The loading matrices W
were drawn from the prior (Eq. (6)) and diagonal noise with fixed pre-
cisions (7; = 5Ip, and 7, = 10I,) was added to the observations.

We ran experiments with the proposed extension of GFA on the fol-
lowing selections of synthetic data:

1. Complete data. In this experiment, we compared the extended GFA
model to the vanilla GFA implementation of Klami et al. (2015).
2. Incomplete data:
(a) 20% of the elements of X® were randomly removed.
(b) 20% of the observations (i.e., rows) in X() were randomly re-
moved.

In all experiments, the model was initialised with K = 15 (number of la-
tent factors) to assess whether it can learn the true latent factors while
automatically removing the irrelevant ones. We ran additional experi-
ments with complete data where the model was initialised with K = 30
to assess whether it could still converge to a good solution when the
number of latent factors were overestimated in low and high dimen-
sional data (Supplementary Fig. 1).

As the variational approximations for GFA are deterministic, and the
model converges to a local optimum that depends on the initialisation,
all experiments were randomly initialised 10 times. The initialisation
with the largest variational lower bound was considered to be the best
one. For visualization purposes, we matched the true and inferred la-
tent factors by calculating the maximum similarity (using Pearson’s cor-
relation) between them, in all experiments. If a correlation value was
negative, the corresponding inferred factor was multiplied by —1. The
inferred factors with correlations greater than 0.70 were visually com-
pared with the true ones.

For each random initialisation, in all experiments, the data was split
into training (80%) and test (20%) sets. The model performance was as-
sessed by predicting one data modality from the other on the test set
(e.g., predict X® from X(V) using Eq. (13). The mean and standard de-
viation of the mean squared error (MSE) (calculated between the true
and predicted values of the non-observed data modality on the test set)
was calculated across the different initialisations. The chance level of
each experiment was obtained by calculating the MSE between the ob-
servations on the test set and the means of the corresponding variables
on the training set.

In the incomplete data experiments, the missing data was predicted
using Eq. (13). We calculated the mean and standard deviation (across
initialisations) of the Pearson’s correlations between the true and pre-
dicted missing values to assess the ability of the model to predict missing
data. To compare our results with a common strategy for data imputa-
tion in the incomplete data experiments, we ran GFA with complete
data, after imputing the missing values using the median of the respec-
tive variable. We ran additional experiments with missing data (see Sup-
plementary Materials and Methods), including when values from the
tails of the distribution of X® were randomly removed (Supplementary
Fig. 2a) and when values in X\’ and X® were missing for low (Supple-
mentary Fig. 2b) and high dimensional data (Supplementary Fig. 2c).
Furthermore, the performance of the proposed extension of GFA was as-
sessed with increasing percentages of missing data when values of X®
were missing from the tails of the distribution (Supplementary Fig. 5a)
or randomly (Supplementary Fig. 5b). For each of these settings, we ran
experiments with no missing data in X" and 20% missing rows in XV
(blue and orange lines in Supplementary Fig.5, respectively). Finally,
we also ran experiments applying CCA to complete and incomplete data
(Supplementary Fig. 4).

2.4.2. HCP Data

We applied our GFA extension to the publicly available resting-state
functional MRI (rs-fMRI) and non-imaging measures (e.g., demograph-
ics, psychometrics and other behavioural measures) obtained from 1003



F.S. Ferreira, A. Mihalik, R.A. Adams et al.

True parameters
Latent factors

b Extended GFA C

Latent factors

a

Neurolmage 249 (2022) 118854

Fig. 2. Complete data experiment: (a) true la-
tent factors and model parameters; (b) inferred
latent factors and model parameters obtained

Vanilla GFA

Latent factors

with our GFA extension; (c) inferred latent fac-
tors and model parameters obtained with the
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vanilla GFA implementation of Klami et al.
(2015). The latent factors and parameters used

to generate the data are plotted on the left-hand
side, and the ones inferred by the model are

3 3 I 3 AT
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plotted on the right-hand side. The four rows

on the top represent the four latent factors. The
loading matrices of the first and second data

modality are represented on the left and right-
hand side of the red line in W7, respectively.

factors, respectively.

subjects (only these had rs-fMRI data available) of the 1200-subject data
release of the HCP (https://www.humanconnectome.org/study/hcp-
young-adult/data-releases). Two subjects were missing the family struc-
ture information that we needed to perform the restricted permutations
in the CCA analysis, so were excluded.

In particular, we used the brain connectivity features of the ex-
tensively processed rs-fMRI data using pairwise partial correlations
between 200 brain regions from a parcellation estimated by in-
dependent component analysis. The data processing was identical to
Smith et al. (2015), yielding 19,900 brain variables for each subject (i.e.,
the lower triangular part of the brain connectivity matrix containing
pair-wise connectivity among all 200 regions). The vectors were con-
catenated across subjects to form X(1) € R19900x1001 ‘e ysed 145 items
of the non-imaging measures used in Smith et al. (2015) as the remain-
ing measures (SR_Aggr_Pct, ASR _Attn_Pct, ASR_Intr Pct, ASR_Rule_Pct,
ASR_Soma_Pct, ASR_Thot_Pct, ASR_Witd_Pct, DSM_Adh_Pct,
DSM_Antis Pct, DSM_Anxi_Pct, DSM_Avoid_Pct, DSM_Depr_Pct,
DSM_Somp_Pct) were not available in the 1200-subject data re-
lease. The non-imaging matrix contained 145 variables from 1001
subjects (X g R14x1001y,

Similarly to Smith et al. (2015), nine confounding variables (acqui-
sition reconstruction software version, summary statistic quantifying
average subject head motion during acquisition, weight, height, blood
pressure systolic, blood pressure diastolic, hemoglobin A1C measured
in blood, the cube-root of total brain and intracranial volumes esti-
mated by FreeSurfer) were regressed out from both data modalities.
Finally, each variable was standardised to have zero mean and unit vari-
ance. For additional details of the data acquisition and processing, see
Smith et al. (2015).

We ran GFA experiments on the following selections of HCP data:

1. Complete data.

2. Incomplete data:
(a) 20% of the elements of X® were randomly removed.
(b) 20% of the subjects were randomly removed from X,

In all experiments, the model was initialised with K = 80 latent factors.
As in the experiments with synthetic data, all experiments were ran-
domly initialised 10 times and the data was randomly split into training
(80%) and test (20%) sets. The initialisation with the largest variational
lower bound was considered to be the best one.

As a considerable number of relevant factors might remain after au-
tomatically pruning out the noisy ones, showing all factors is not possi-
ble due to space constraints. Furthermore, as the number of brain con-
nectivity variables is much greater than non-imaging measures (~100
times more brain connectivity variables than non-imaging measures),

The alphas of the first and second data modal-
ity are shown in the form of a Hinton diagram
in the first and second columns of a”, respec-
tively, where the alphas are proportional to the
area of the squares. The small black dots and
big black squares represent active and inactive

using the percentage of variance explained by each factor is not a good
criterion, because the factors explaining most variance in the data are
most likely brain-specific (Supplementary Fig. 6a). Therefore, we pro-
pose a criterion to identify the most relevant factors by calculating the
relative variance explained (rvar) by each factor k within each data
modality m (i.e., k-th column of W):

(m)"
(m) _ k
kT Tr(WmwenTy’

w wi’")

rvar (14)
where Tr(-) represents the trace of the matrix. The factors explaining
more than 7.5% variance within any data modality were considered most
relevant. Then, in order to decide whether a given most relevant fac-
tor was modality-specific or shared, the ratio between the variance ex-
plained (var) by the non-imaging and brain loadings of the k-th factor
was computed:

(2)

var;
ry = T, (15)
var,
) wmT L m) .
where var" = ——~ 2t and T™" is the diagonal covariance
TrWmwm! L)

matrix in Eq. (5). A factor was considered shared if 0.001 < r, < 300,
non-imaging specific if r, > 300 or brain-specific if r, < 0.001 (Sup-
plementary Fig. 6b illustrates how many factors would be considered
shared or specific in the complete HCP data using these thresholds).
These values were selected taking into account that there was an imbal-
ance in the total number of variables across the data modalities. These
thresholds were validated in high dimensional synthetic data (Supple-
mentary Table 1).

To assess whether the missing data affected the estimation of the
most relevant factors, we calculated the Pearson’s correlations between
the factors obtained in the complete data experiment and the incomplete
data experiments. In the multi-output prediction task, all non-imaging
measures were predicted from brain connectivity on the test set. The
model performance was assessed by calculating the mean and standard
deviation of the relative MSE (rMSE) between the true and predicted
values of each non-imaging measure on the test set, across the different
initialisations:

1 N (2) @*\2
N Zn:l (xn j )2

(16)

where N is the number of subjects, xffj) and xf.)* are the true and pre-
dicted non-imaging measure j on the test set. The chance level was ob-
tained by calculating the relative MSE between each non-imaging mea-
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Table 1

Most relevant shared and modality-specific factors obtained with complete data
according to the proposed criteria. Factors explaining more than 7.5% variance
within any data modality were considered most relevant. A factor was consid-
ered shared if 0.001 < r, <300, non-imaging (NI) specific if r, > 300 or brain-
specific if r, < 0.001. rvar - relative variance explained; var - variance explained;
r, - ratio between the variance explained by the non-imaging and brain loadings
in factor k.

rvar (%) var (%) Iy

Factors  Brain NI Brain NI varyy/Varyg,i
Shared  0.096 8.103 0.007 0.028 4.03

b 0.032 17.627 0.002 0.061 26.22

c 0.011 9.869 7.65x107*  0.034 44.32

d 0.008 33.336 5.46 x 10~ 0.114 209.65
Braim 14.267  2.311 x 107° 1.028 7.93x10712  7.72x 10712

b 11.407  0.036 0.822 1.23x107* 1.50 x 10~*

sure in the test set and the mean of the corresponding non-imaging mea-
sure in the training data.

Similarly to the incomplete data experiments on synthetic data, the
missing data was predicted using Eq. (13) and the mean and standard
deviation (across initialisations) of the Pearson’s correlations between
the true and predicted missing values were calculated.

2.5. Data and code availability

downloaded
website

The data used in this study was

from the Human Connectome Project
(https://www.humanconnectome.org/study/hcp-young-
adult/document/extensively-processed-fmri-data-documentation).
The GFA models and experiments were implemented in Python 3.9.1
and are available here: https://github.com/ferreirafabio80/gfa. The
CCA experiments (Supplementary Materials and Methods) were run in a
MATLAB toolkit that will be made publicly available in an open-access
platform soon.

2.6. Ethics statement

All authors involved in data curation and analysis agreed to the HCP
open and restricted access data use terms and were granted access. The
study was approved by the UCL Research Ethics Committee (Project No.
4356/003).

3. Results

In this section, we present the results of the experiments on synthetic
data (Section 3.1) and real data from the Human Connectome Project
(Section 3.2).

3.1. Synthetic data

In this section, we applied the proposed extension of GFA to the
synthetic data described in Section 2.4.1. We ran separate experiments
using three different selections of synthetic data: no missing data (com-
plete data experiment), when data was missing randomly (20% of the
elements of X® missing) and one group/modality was missing for some
observations (20% of the rows of X() missing). Fig. 2 shows the results
of the extended GFA model applied to complete data. The model cor-
rectly inferred the factors, identifying two of them as shared and the
other two as modality-specific. These factors were all considered most
relevant based on the rvar metric (Eq. (14)) and were all correctly as-
signed as shared or modality-specific based on the ratio r, (Eq. (15)).
The structure of the inferred latent factors was similar to those used for
generating the data (Fig. 2). The results were robust to initialisation, i.e.,
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the model converged to similar solutions across the different initialisa-
tions. Furthermore, the irrelevant latent factors were correctly pruned
out during inference. The noise parameters were also inferred correctly
(i.e., the average values of rs were close to the real ones (r; = 5I, and
7, = 10Ip,): M ~ 5.08 and #® = 10.07). Furthermore, our GFA exten-
sion showed very similar results to the vanilla GFA implementation of
Klami et al. (2015) (Fig. 2c).

Fig. 3 and 4 display the results of the incomplete data experiments
when data was missing randomly (20% of the elements of X® missing),
and one group was missing for some observations (20% of the rows of
XM missing), respectively. The parameters inferred using our GFA ex-
tension (middle column) were compared to those obtained using the
median imputation approach (right column). The results were compa-
rable when the amount of missing data was small (Fig. 3), i.e., both
approaches were able to infer the model parameters fairly well. Even
so, the model misses completely the true value of the noise parame-
ter of X® () x~ 5.14 and #® % 5.22) when the median imputation ap-
proach is used. Whereas, the noise parameters were correctly recovered
(2™ &~ 5.15 and #@ ~ 10.17) when the proposed extension of GFA was
applied. The parameters were not inferred correctly by the median im-
putation approach (although the noise parameters were recovered fairly
well, 7 ~ 6.24 and #® =~ 10.20), when the number of missing observa-
tions was considerable (Fig. 4). This was not observed when our GFA
extension was applied (7)) ~ 5.04 and ¢@® = 10.24).

The extended GFA model predicted missing data consistently well in
both incomplete data experiments. The averaged Pearson’s correlation
obtained between the missing and predicted values across initialisations
was p = 0.868 + 0.016 when data was missing randomly, and p = 0.680 +
0.039 when one group was missing for some observations.

In the multi-output prediction task, we showed that the model could
make reasonable predictions when the data was missing randomly or
one modality was missing for some observations, i.e., the MSEs were
similar across experiments and below chance level (Fig. 5). Moreover,
there seems to be no improvement in prediction between using the pro-
posed extension of GFA or imputing the median before training the
model.

In additional experiments (presented in the Supplementary Materials
and Methods), we showed that the extended GFA model outperforms the
median imputation approach (in inferring the model parameters and
predicting one unobserved data modality from the other), when values
from the tails of the data distribution are missing (Supplementary Fig.
2a and 3). The proposed extension of GFA also outperformed the median
imputation approach, when both data modalities were generated with
missing values in low (Supplementary Fig. 2b) and high dimensional
(Supplementary Fig. 2c) data.

3.2. HCP Data

In this section, we applied the proposed extension of GFA to the
HCP data described in Section 2.4.2. We ran separate experiments using
three different selections of HCP data: no missing data (complete data
experiment), when data was missing randomly (20% of the elements
of the non-imaging matrix missing) and when one data modality was
missing for some subjects (20% of the subjects missing from the brain
connectivity matrix). In the complete data experiment, the model con-
verged to a solution comprising 75 latent factors, i.e., five factors were
inactive for both data modalities (the loadings were close to zero) and
were consequently pruned out. The model converged to similar solu-
tions across different initialisations, i.e., the number of inferred latent
factors was consistent across initialisations. The total percentage of vari-
ance explained by the latent factors (anzl ZZSZI var;('")) corresponded
to ~ 7.55%, leaving 92.45% of the variance captured by residual error.
Within the variance explained, six factors were considered most rele-
vant (rvari(m) > 7.5%), which captured ~ 27.8% of the variance explained
by the total number of factors (Table 1). Based on the ratio between the
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Fig. 3. True and inferred latent factors and

model parameters obtained when data is miss-
Latent factors P

ing randomly (20% of the elements of X® miss-
ing). (Left column) latent factors and parame-

ters used to generate the data. (Middle column)
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Latent factors and parameters inferred using
the proposed extension of GFA. (Right column)

Latent factors and parameters inferred using
the median imputation approach. The loading

matrices (W”) and alphas (a”) can be inter-
preted as in Fig. 2.
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B P TS
e

S rows of X were randomly removed). (Left col-

o .
/\/\/\ N0 N N
N N

umn) latent factors and parameters used to gen-
erate the data. (Middle column) latent factors

~ A, =
ANVAVAN IRV AVAN

and parameters inferred using the proposed ex-

tension of GFA. (Right column) latent factors

it

and parameters inferred using the median im-
putation approach (the latent factors were not

ordered because the model did not converge to

the right solution). The loading matrices (W')
and alphas (a”) can be interpreted as in Fig. 2.

Fig. 5. Prediction errors of the multi-output
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variance explained by the non-imaging and brain factors r, (Eq. (15)),
we identified four shared factors (displayed in Fig. 6) and two brain-
specific factors (displayed in Fig. 7), ordered from the highest to the
lowest ratio r, (Table 1). Using the variance explained as a criterion to
select the most relevant factors leads to the selection of mostly brain-
specific factors due to the imbalance in the number of brain connectivity
features and non-imaging measures (see Supplementary Fig. 6a-b).

In Fig. 6, we display the loadings of the shared GFA factors ob-
tained with complete data. To aid interpretation, the loadings of the
brain factors were multiplied by the sign of the population mean corre-
lation to obtain a measure of edge strength increase or decrease (as in
Smith et al. (2015)). The first factor (Fig. 6a) relates cognitive perfor-

Incomplete data exp. 1 Incomplete data exp. 2

mance (loading positively), smoking and drug use (loading negatively)
to the default mode and frontoparietal control networks (loading posi-
tively) and insula (loading negatively). The second shared factor (Fig.
6b) relates negative mood, long-term frequency of alcohol use (load-
ing negatively) and short-term alcohol consumption (loading positively)
to the default mode and dorsal and ventral attentional networks (load-
ing negatively), and frontoparietal networks loading in the opposite di-
rection. The third shared factor (Fig. 6¢) is dominated by smoking be-
haviour (loading negatively) and, with much lower loadings, externalis-
ing in the opposite direction, which are related to the somatomotor and
frontotemporal networks (loading positively). The fourth shared factor
(Fig. 6d) seems to relate emotional functioning, with strong negative
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Fig. 6. Non-imaging measures and brain networks de-

scribed by the first (a), second (b), third (c) and fourth

(d) shared GFA factors obtained in the complete data ex-

periment. For illustrative purposes, the top and bottom 15

nonimaging measures of each factor are shown. The brain

] surface plots represent maps of brain connection strength

- increases/decreases, which were obtained by weighting

each node’s parcel map with the GFA edge-strengths

summed across the edges connected to the node (for de-

tails, see the Supplementary Materials and Methods). Sep-

arate thresholded maps of brain connection strength in-

creases and decreases can be found in Supplementary Fig.
10.
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loadings on a variety of psychopathological aspects (including both in-
ternalising and externalising symptoms), and positive loadings on traits
such as conscientiousness and agreeableness and other aspects of well-
being to cingulo-opercular network (loading negatively), and the left
sided default mode network (loading positively).

Fig. 7 shows the loadings of the brain-specific factors obtained with
complete data. The first factor (Fig. 7a) contains positive loadings on
many areas within the frontoparietal control network, including dorso-
lateral prefrontal areas and inferior frontal gyrus, supramarginal gyrus,
posterior inferior temporal lobe and parts of the cingulate and superior
frontal gyrus. The second factor (Fig. 7b) includes positive loadings on
many default mode network areas, such as medial prefrontal, posterior
cingulate and lateral temporal cortices, and parts of angular and inferior
frontal gyri. These factors show that there is great variability in these

networks across the sample, however this variability was not linked to
the non-imaging measures included in the model.

The model converged to a similar solution when data was missing
randomly (20% of the elements of the non-imaging matrix were ran-
domly removed), which included 73 factors and the total percentage
of variance explained by these was ~ 7.60%. The number of most rele-
vant factors, based on the rvar metric (Eq. (14)), was six, and they were
similar to those obtained in the complete data experiment (Table 2),
capturing ~ 28.2% of the variance explained by all factors (Supplemen-
tary Table 2). Four of these were considered shared factors (Supplemen-
tary Fig. 7) and two were considered brain-specific (Supplementary Fig.
9a,c). When one modality was missing for some subjects (20% of the sub-
jects were randomly removed from the brain connectivity matrix), the
model converged to a solution containing 63 factors and that explained



F.S. Ferreira, A. Mihalik, R.A. Adams et al.

Fig. 7. Brain networks associated with the brain-specific GFA factors obtained
in the complete data experiment. The brain surface plots represent maps of
brain connection strength increases/decreases, which were obtained by weight-
ing each node’s parcel map with the GFA edge-strengths summed across the
edges connected to the node (for details, see the Supplementary Materials and
Methods).

Table 2

Similarity (measured by Pearsons correlation) between the most relevant fac-
tors obtained in the complete and the most relevant factors obtained when
data was missing randomly (incomplete data exp. 1) and one modality was
missing for some subjects (incomplete data exp. 2) (first and second row, re-
spectively). The shared factors obtained with complete data are displayed in
Fig. 6. and those obtained with incomplete data are shown in Supplementary
Fig. 7-8. The brain-specific factors obtained with complete data are presented
in Fig. 7 and those identified with incomplete data are shown in Supplemen-
tary Fig. 9.

Shared factors Brain factors

a b c d a b
Incomplete data exp. 1 0.896 0.964 0.954 0.989 0.974 0.974
Incomplete data exp. 2 0.907 0.973 0.954 0.995 0.941 0.942

~ 5.21% of the total variance. Although more factors were removed and
a loss of variance explained was noticeable, the most relevant factors
were similar to those obtained in the other experiments (Table 2, Sup-
plementary Fig. 8 and Supplementary Fig. 9b,d), capturing ~ 33.2% of
the variance explained by all factors (Supplementary Table 3).

In the multi-output prediction task, the extended GFA model pre-
dicted several non-imaging measures better than chance (Fig. 8) using
complete data. The top 10 predicted variables corresponded to those
with the highest loadings obtained mainly in the first shared factor (Fig.
6a) and were consistent across the incomplete data experiments (Sup-
plementary Fig. 11). Finally, our GFA extension failed to predict the
missing values in both incomplete data experiments: p = 0.112 +0.011
(experiment 1, 20% of the elements of the non-imaging matrix missing);
p =0.003 + 0.007 (experiment 2, 20% of the subjects missing in the brain
connectivity matrix).

4. Discussion

In this study, we proposed an extension of the Group Factor Analysis
(GFA) model that can uncover multivariate associations among multi-
ple data modalities, even when these modalities have missing data. We
showed that our proposed GFA extension can: (1) find associations be-
tween high dimensional brain connectivity data and non-imaging mea-
sures (e.g., demographics, psychometrics, and other behavioural mea-
sures) and (2) predict non-imaging measures from brain connectivity
when either data is missing at random or one modality is missing for
some subjects. Moreover, we replicated previous findings obtained in a
subset of the HCP dataset using CCA (Smith et al., 2015).

We showed, using synthetic data, that our GFA extension can cor-
rectly learn the underlying latent structure, i.e., it separates the shared
factors from the modality-specific ones, when data is missing. In addi-
tion, it obtained very similar results to those obtained by the vanilla
GFA (Klami et al., 2015) (Fig. 2). Moreover, the proposed extension of
GFA inferred the model parameters better than the median imputation
approach in different incomplete data scenarios. Whereas, CCA was only
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able to recover the shared latent factors and identified spurious latent
factors when the values of the tails of the data distribution were miss-
ing (Supplementary Fig. 4). These findings underline the importance of
using approaches that can handle missing data and model the modality-
specific associations. Interestingly, in the multi-output prediction task,
our GFA extension only outperformed the median imputation approach
when the most informative values of the data (i.e., the values on the tails
of the data distribution) were missing (Supplementary Fig. 3). This indi-
cates that these values might be driving the predictions, and the model
fails to predict one data modality from the other when these values are
not carefully imputed. The proposed GFA extension performed worse
when the percentage of missing values in the tails of the distribution in-
creased (especially when it was greater than 32%, Supplementary Fig.
5a), whereas the performance remained constant when the percentage
of random missing values increased (Supplementary Fig. 5b). Finally,
our GFA extension was able to predict the missing values in different
incomplete data scenarios.

In applying the proposed GFA extension to the HCP dataset, we iden-
tified 75 relevant factors. Although all factors are relevant (i.e., the high-
est ELBO is obtained when all factors are included in the model, see Sup-
plementary Fig. 6¢), it is challenging to interpret all of them, especially
when most of them are brain-specific (Supplementary Fig. 6b). In addi-
tion, the variance explained by each factor alone is not an informative
criterion to select the most relevant factors, because there is a consider-
able imbalance between the number of brain connectivity features and
non-imaging features, and it is expected that variability within the func-
tional brain connectivity is not necessarily related to the non-imaging
measures included in this study. Therefore, if the most relevant fac-
tors were based on the variance explained by each factor, most of them
would probably be considered brain-specific. As can be seen in Supple-
mentary Figs. 6a-b, the top 14 factors that explained most variance were
brain-specific. Based on the criteria proposed to overcome this issue, we
obtained six most relevant factors: four describing associations between
brain connectivity and non-imaging measures and two describing as-
sociations within brain connectivity. Importantly, these were consistent
across the experiments with complete and incomplete data sets. Of note,
only a small proportion of the variance was captured by the GFA latent
structure, which may be explained by two main reasons: the brain con-
nectivity data is noisy and/or the shared variance between the included
non-imaging measures and the brain connectivity measures is relatively
small with respect to the overall variance in brain connectivity.

Interestingly, most of the featured domains of non-imaging measures
were not unique to particular factors, but appeared in different arrange-
ments across the four factors. For instance, alcohol use appeared in three
out of four factors: in the first, it loads in the opposite direction to cog-
nitive performance, in the second, its frequency loads in the same di-
rection as low mood and internalising, and in the third, its total amount
loads in the same direction as externalising. For a more detailed discus-
sion about the alcohol use loadings, see Supplementary Results. The first
GFA factor was almost identical to the first CCA mode (Supplementary
Fig. 12 and Supplementary Table 4), which resembled the CCA mode
obtained using a subset of this data set (Smith et al., 2015). The sec-
ond and third CCA modes presented similar most positive and negative
non-imaging measures to the first GFA factor (for a more detailed de-
scription of the CCA modes, see the Supplementary Results). A possible
explanation of the differences observed between the CCA and GFA re-
sults is that we had to apply principal component analysis to reduce
the dimensionality of the data before applying CCA. This extra prepro-
cessing step makes the CCA approach less flexible because the model
cannot explore all variance in the data, whereas in GFA this does not
happen because no dimensionality reduction technique is needed. For
more details about the HCP experiments using CCA, see Supplementary
Materials and Methods.

The brain-specific factors were difficult to interpret - as would be ex-
pected due to the inherent complexity of this data modality. Their par-
tial similarity to known functional connectivity networks (frontopari-
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Fig. 8. Multi-output predictions of the non-
imaging measures using complete data. The top 10
predicted variables are described on the right-hand
side. For each non-imaging measure, the mean and
standard deviation of the relative MSE (Eq. (16))
between the true and predicted values on the test
set was calculated across different random initial-
isations of the experiments.

Non-imaging subject measures

etal and default mode) indicates, unsurprisingly, that there are aspects
of these networks that are not related to the non-imaging measures in-
cluded here. Interestingly, the second brain factor (Fig. 7b) showed a
few similarities (p ~ 0.39, Supplementary Table 4) with the fifth CCA
mode (Supplementary Fig. 12e), which indicates that this mode could
be either a spurious association or a brain-specific factor that CCA is
not able to explicitly identify. This finding indicates the importance of
separating the shared factors from the modality-specific ones and the
use of more robust inference methods. Furthermore, the relevance of
the modality-specific associations would have been more evident if we
had included more than two data modalities, where associations within
subsets of data modalities could be identified.

Finally, our GFA extension was able to predict a few non-imaging
measures from brain connectivity in incomplete data sets. Even though
the relative MSE values were modest, the model could predict several
measures better than chance. Importantly, the best predicted measures
corresponded to the loadings most informative in the shared factors (i.e.,
the highest absolute loadings), which demonstrates the potential of GFA
as a predictive model.

Although the findings from both synthetic and real datasets were
robust, there are still a few inherent limitations in our GFA extension.
Firstly, the number of initial latent factors K needs to be chosen; how-
ever, we have shown in synthetic data that the model can still converge
to a good solution even if the number of latent factors is overestimated
(Supplementary Fig. 1). Secondly, although the criteria used to select
the most relevant factors were validated on synthetic data, these can be
further improved, e.g., by including the stability of the factors across
multiple initialisations. Thirdly, our GFA extension is computationally
demanding to run experiments with incomplete data sets (e.g., the CPU
time was approximately 50 hours per initialisation in the HCP experi-
ments).

Future work should investigate GFA with more data modalities,
which could potentially uncover other interesting multivariate associ-
ations and improve the predictions of the non-observed data modalities
and missing data. Moreover, strategies to improve the interpretability
of the factor loadings (e.g., adding additional priors to impose sparsity
simultaneously on the group and variable-level) could be implemented.
Additionally, automatic inference methods such as Hamiltonian Monte
Carlo or Automatic Differentiation Variational Inference could be imple-
mented, as these would provide a more flexible framework, permitting
new extensions of the model without the need to derive new inference
equations. Finally, further extensions of the generative description of
GFA could be investigated to improve its predictive accuracy.
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5. Conclusions

In this study, we have shown that GFA provides an integrative and
robust framework that can be used to explore associations among mul-
tiple data modalities (in benchmark datasets, such as HCP) and/or pre-
dict non-observed data modalities from the observed ones, even if data
is missing in one or more data modalities. Due to its Bayesian nature,
GFA provides great flexibility to be extended to more complex models
to solve more complex tasks, for instance, in neuroscience.
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Appendix A. Variational updates of GFA

The variational updates of the model parameters are derived by writing the log of the joint distribution p(X, 6) with respect to all other variational
posteriors (Eq. (10)). Considering Eq. (8), the log of the joint distribution is defined as follows:
InpX,Z, W, a, 7) = In[p(X|Z, W, 7)p(Z)p(W|a)p(a)p(t)] + const, (A.1)

where the individual log-densities (considering the priors in Eq. (6) and Eq. (7)) are given by:

M D, N
Inp(X|Z,W,7) = ) [% D (n 7™ —In2x)) - % D& — Wz, )T x(m — W(’")zn)],
Jj=1 n=1

-
M=

In p(Z) = 22, - XX 1w,
n=1 2
M K K
D D,K
Inp(Wla) = ) [Tm Y e - % 2w W == ln(27r)],
m=1 k=1 k=1
M K
=3 Y [aa(m 0 b — N T(@gm) + (agon — D™ = by af!")] ,
m=1 k=1
M D,
npr) =Y Y [ar(m by = INT(@gm) + @gom = DI = b )T“")] (A2)

3
I
-
I

where T = diag(r‘™), z, is the n-th column of Z, x"™ is the n-th column of X, wj{”') is a column vector representing the k-th column of W and
Qgm), bgom» aym, by are the hyperparameters of the Gamma distributions in Egs. 6-7.

Al. ¢(Z) Distribution

The optimal log-density for ¢(Z), given the other variational distributions is calculated using Eq. (10):

Ing(Z) = E,qw, q(1>[1np(X|Z, W. 1)+ In p(Z)],
N

—_
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where () = E, ) 4[] T€Presents expectations, W;'ff denotes the j-th row of W, (r;'")) = (l()'" ) (6%) and b(” are the variational parameters

T(m)

r
obtained for ¢(r) in Eq. (A.17)) and (W(."l) W(.”’*)) = Zw(m +pu’ (m)yw(,,,) (Ew“”) and ”W(”’) are the variational parameters obtained for (W) in

Eq. (A.11)). O('") is the set of indices in the n-th column of X(™ (xE”’) )) that are not missing. In Eq. (A.3) omits constant terms that do not depend on
Z. Taking the exponential of the log density, the optimal ¢(Z) is a multivariate normal distribution:

N N
a@ =[] a@) = [[ N @lns,. Z,)- (A4)

n=1 n=1

The updates equations for g(Z) are:

%, = [IK + Z z <f(’")><W(”)TW<"’>>]

= eO(m)

Ha, (Z 3w ("’)>. (A5)

m=1 je O(m)

A2. q(W'™) Distribution

The optimal log-density for g(W), given the other variational distributions, is obtained by calculating:

Ing(W™) = E 7 g(atm gzt [0 pX ™| Z, W, 20D 4 In p(W ™)),

N
1
-3 Z«X” _ W(m)zn)TT(m)(Xn _ W('")Zn)) Z( (m) (m>ngcm)>’ (A.6)
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where () = E,@).q(atm) g1 The constant term was omitted. The first term of Eq. (A.6) can be expanded as follows:

N
—% Z((xn - W('")z,,)TT('"> (x,1 - W("’>z,,)) =

— Z<T(M)> 2 x(m)<ZT> W(m) + 2 W(m) <TJ(M)> 2 <an,7,"> W;"Q , (A7)
neol™ neo!™
where (z, zT) =X, +u, ,uz (£, and u,, are the variational parameters of ¢(Z) in Eq. A.5) and O('"> is the set of indices in the j-th row of X (x('") )
that are not m1ssmg The second term of Eq. (A.6) is given by:
| X D,
T
_5 Z (m) (m) (m)> 2 W(m)<H()n)>W(m) (AS)

J=1

where (H™) = diag((a™)) and (a'™) = "('") (@, and by are the variational parameters of g(a™) in Eq. (A.14)). Putting both terms together
b m)

we get:
D, .
ma(W) = RN X ) (Wi
j=1 neo™
J
w<'”> HD)+(2") Y (z,2]) W<'”> . (A.9)

nEO(m)

Taking the exponential of the log density, the optimal g(W") is a multivariate normal distribution:

D, D,
W) = JTaWi) = [T A W] g Zom). (A.10)
j=1 Jj=1

Then the updates equations for (W) are:
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A3. ga™ distribution
The optimal log-density for g(a™), given the other variational distributions is obtained by calculating:

Ing(@™) = E ) p(W™|a™) +In p(a™)],

K
D T
3 [7 ™ — Lo W W) + g — DI - bawaw],

k=1
K D K
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where (-) = E ) [-]. Constant terms that do not depend on a are omitted. Taking the exponential of the log density, the optimal g(a'™) is a Gamma
distribution:

K K
a@™) = [Ta@™) = [ r@" 1dgum. 55, (A13)
k=1 k=1

And the update equations for g(a™) are:
1
3 P

b(()m)—ba(m)+ <w<m> W), (A.14)

Agm) = Agm) +

Jo*

.
where <w('") ('")> Z (/4 (m)MW("') +Ew<m)> .
(k.k)

13



F.S. Ferreira, A. Mihalik, R.A. Adams et al. Neurolmage 249 (2022) 118854
A4. g™ distribution
The optimal log-density for (™), given the other variational distributions is obtained in the following way:

Ing(z™) = Eyez) gwom)[In pX™ 2, W, ) + In p(z™)]
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where N;.'") is the number of non-missing observations in the j-th row of X and (-) = E «(Z).qowy[-]. Constant terms that do not depend on r are
omitted. Taking the exponential of the log density, the optimal ¢(t(™) is a Gamma distribution:

q(z™) = H g = H v a5, (A.16)

z(m
Jj=
where the variational parameters are calculated by:
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Finally, to solve the rotation and scaling ambiguity known to be present in factor analysis models, we used a similar approach previously proposed
by Virtanen and colleagues (Klami et al., 2013; Virtanen et al., 2011; 2012), which consists of maximising the variational lower bound with respect
to a linear transformation R of the latent space, after each round of variational EM updates. This also improves convergence and speeds up the
learning.

Appendix B. Evidence lower bound of GFA

Considering Eq. (9), the lower bound of In p(X) is given by:

L(q) Elln pX,Z, W, o, 7)] — E[In g(Z, W, at, T)]
E[ln p(X|Z, W, )] + E[In p(Z)] + E[In p(W]|ea)] + E[In p(a)] + E[In p()]

—E[ng(Z)] + E[In ¢(W)] + E[In g(a)] + E[In g(7)], (B.1)

where the expectations of the In p(-) terms are given by (see Eq. (A.2)):
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where q(0) = q(Z)g(W)q(z), (In7\") = y(@”) )~ b , (Ina™) = y(agm) - b’ and () is a digamma function. ("), (z,2]), (") and

(m) (m)? am
(wﬁ(’")Twi’")) are calculated as in Eq. (A.3), Eq. (A.7), Eq. (A.8) and Eq. (A.14), respectively.
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The terms involving expectations of the logs of the ¢(-) distributions simply represent the negative entropies of those distributions (Bishop, 2006):

N
E[ln¢(Z)] = —% [ Y iz, [+ KA+ ln(27r))] , (B.7)
n=1
E[ln g(W)] = 2 - [ Z In |zw<m)| +K(+ ln(27r))] (B.8)
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m=1 k=1
D,
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m=1 j=1
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