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SUMMARY
The topological organization of the cerebral cortex provides hierarchical axes, namely gradients, which
reveal systematic variations of brain structure and function. However, the hierarchical organization of macro-
scopic brain morphology and how it constrains cortical function along the organizing axes remains unclear.
We map the gradient of cortical morphometric similarity (MS) connectome, combining multiple features
conceptualized as a ‘‘fingerprint’’ of an individual’s brain. The principal MS gradient is anchored by motor
and sensory cortices at two extreme ends, which are reliable and reproducible. Notably, divergences be-
tween motor and sensory hierarchies are consistent with the laminar histological thickness gradient but con-
trary to the canonical functional connectivity (FC) gradient.Moreover, theMSdissociateswith FC gradients in
the higher-order association cortices. TheMS gradient recapitulates fundamental properties of cortical orga-
nization, from gene expression and cyto- and myeloarchitecture to evolutionary expansion. Collectively, our
findings provide a heuristic hierarchical organization of cortical morphological neuromarkers.
INTRODUCTION

The human cerebral cortex exhibits patterns of areas with struc-

tural variations and functional specialization that can be traced to

development in ontogeny and evolution (Garcı́a-Cabezas et al.,

2019; Puelles et al., 2019). Cortical areas are differentiated by

their gene expressions, cellular compositions, connection fea-

tures, and positions in cortical hierarchies (Huntenburg et al.,

2018). The structure of the cerebral cortex has been examined

by Nissl-stained sections in the post-mortem brain via two ap-

proaches (Garcı́a-Cabezas et al., 2020; Sanides and Sas, 1970).

The first, common approach identified cortical areas based on

particular cytoarchitectonic features present in some brain areas

and absent in others (Amunts et al., 2013; Brodmann, 1909). The

second approach described cortical types according to gradual

and systematic laminar elaborations. The latter allowed for pre-

dictions of laminar patterns of interareal connections based on

the structural model (Barbas and Rempel-Clower, 1997; Gar-

cı́a-Cabezas et al., 2019) and the complexity of sensory repre-

sentations in each cortical area (Mesulam, 1985, 1998). In visual,

somatosensory, and auditory cortices (Grill-Spector and Mal-

ach, 2004; Iwamura, 1998; Okada et al., 2010), the primary areas

with complex laminar elaboration process particular features of
This is an open access article under the CC BY-N
the incoming sensory stimulus, and high-level areas with simple

laminar elaboration have increasingly specific and complex re-

sponses. In motor-frontal cortices, low-level posterior areas

receive signals from high-level frontal, anterior regions, suggest-

ing a rostrocaudal organization for goal-directed behavior and

reflecting the gradual variation in structural features, myelination,

and cell body density (Badre and D’Esposito, 2009; Thiebaut de

Schotten et al., 2017). An essential and fundamental principle in

the cortical organization has been proposed to link the gradient

of laminar elaboration from limbic areas to primary sensory areas

(Sanides and Sas, 1970) with the physiological gradient from pri-

mary sensory to multimodal areas (Hubel and Wiesel, 1962),

which has been described as a ‘‘sensory-fugal’’ axis (Mesulam,

1985, 1998). Ordering cortical areas along the axis provides a

framework to help us understand the relationship among laminar

features, cortical connectivity, and the spatial distribution of hier-

archical organization.

In addition to histological techniques, magnetic resonance im-

aging (MRI) facilitates systematic gradient analysis of macro-

structural and functional brain measures in vivo across the entire

human cortex. This entire cortical gradient represents hierarchi-

cal organizing axes that describe gradual transitions of

structural features and how they constrain cognitive processes
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(Margulies et al., 2016; Paquola et al., 2019b). Specifically, the

cortex structural gradients derive from a single measurement

in various modalities, including MRI thickness covariance (Valk

et al., 2020), diffusion MRI tractography (Paquola et al., 2020b;

Park et al., 2021b), and cortical-intensity profile covariance (Pa-

quola et al., 2019a, 2019b).These studies have revealed the rela-

tionships between cortical structure, cortical connections, and

cortical hierarchies in the human brain and have contributed to

the understanding of potential mechanisms of neurodevelop-

ment (Burt et al., 2018; Huntenburg et al., 2018; Scholtens

et al., 2018; van den Heuvel et al., 2015; van den Heuvel and

Yeo, 2017; Wei et al., 2018). However, fiber tractography sys-

tematically under-recovers long-distance projections (Dauguet

et al., 2007), and structural covariance analysis measures a sin-

gle morphological feature for a proxy of regional similarities at a

group-level (Alexander-Bloch et al., 2013), limiting the ability to

characterize morphological gradients at the individual-subject

level.

A recently proposed morphometric similarity (MS) connec-

tome, which combines multiple individual morphological fea-

tures from structural MRIs, elucidates regional morphometric

similarities (Seidlitz et al., 2018). The edges of the MS network

are highly consistent with regional gene co-expression in the hu-

man brain and the axon trajectories of rhesus monkeys (Seidlitz

et al., 2018). In addition, the MS connectome predicts a 40%

variation in human intelligence (Seidlitz et al., 2018) and provides

a alternative neuroimaging phenotype linking brain structural

variation to neurogenetic-related gene expressions (Li et al.,

2021; Morgan et al., 2019; Seidlitz et al., 2020). However,

whether the hierarchical organization of themacroscale MS con-

nectome supports a common ‘‘sensory-fugal’’ axis, such as the

gradient of laminar elaboration and physiological representa-

tions, is not known. Furthermore, it remains to be established

how the MS gradient is related to micro-architectural properties

directly measured from histology or indirectly inferred from other

measurements, such as microarray gene expression and the

similarity of microstructure profiles.

In the current study to map the systematic topological organi-

zation of cortical morphological features, we constructed the

cortical MS by estimating individual brainmorphometric features

in a cohort of healthy subjects (n = 116); we, then, mapped

cortical MS gradients using diffusion map embedding (Vos de

Wael et al., 2020), which described gradual transitions at the

whole-cortex level and allowed local and long-distance connec-

tions to be projected into a common gradient space (Margulies

et al., 2016). Next, we assessed the robustness of the MS

gradient patterns to variations in the number of morphometric

features and spatial resolutions and, then, tested the reproduc-

ibility in four independent cohorts. Having characterized the to-

pological pattern of the principal MS gradient, we sought to eval-

uate the hierarchical organization of the MS gradient. To that

end, we calculated cortical geodesic distances from primary

areas. We then compared them with the spatial correlations be-

tween distance and MS gradients at the whole-cortex level and

at four local hierarchies: somatosensory, visual, auditory, and

motor hierarchies. Motivated by the finding that the histological

thickness gradient diverged in motor and sensory hierarchies

(Wagstyl et al., 2020), we combined a six-layered laminar atlas
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into amultiple linear-regression model to identify themeso-scale

histological drivers of the MS gradient. Furthermore, to charac-

terize the structural interpretation of the MS gradient, we

analyzed the links between the MS gradient and multiple struc-

tural attributes, including brain-specific gene expressions pro-

vided by the Allen Human Brain Atlas (Hawrylycz et al., 2012),

by cytoarchitectural profiles derived from a post-mortem three-

dimensional histological brain sample, by myeloarchitectural

features based on the T1-weighted/T2-weighted (T1w/T2w)

MRI scans (Paquola et al., 2019b), and by cortical evolutionary

expansion (Hill et al., 2010). Moreover, to examine the interplay

between the MS gradient and macroscale functional organiza-

tion, we generated resting-state functional connectome (FC)

gradients and directly compared the spatial distribution of the

MS/FC gradient correspondence within functional communities

and cytoarchitectural classes.

RESULTS

The pattern of the MS gradient
We first divided the entire cortical cortex into 1,533 approxi-

mately equally sized subregions (~1 cm2) based on the Desi-

kan-Killiany (DK) atlas. We extracted fivemorphometric features,

including the gray matter (GM) volume, the surface area (SA), the

cortical thickness (CT), the Gaussian curvature (GC), and the

mean curvature (MC) for 1,533 regions from structural MRI

(T1w) data. To generate individual MS connectomes, we first

calculated the regional morphometric features (z-scored) of

each pair of regions for each subject. We then evaluated the to-

pological organization of cortical MS connectomes using the

diffusion map-embedding technique (Figure 1, see also STAR

Methods). In this embedding space, the positions of each parcel-

lation and its neighbors reflected their similarity of morphological

profiles. The first component (principal gradient) of the cortical

MS accounted for 34% of the variance, with a higher gradient

value in the frontal and temporal cortices and a lower value in

the occipital and orbital frontal cortices. Rather than considering

a singlemorphometric feature, theMS gradients combined char-

acteristics across multiple morphological measures to estimate

intrinsic axes that are more stable as a ‘‘fingerprint’’ of an individ-

ual’s brain. TheMS gradients represented an aggregate descrip-

tion of all five features, which reflected variability of every single

measure to a varying degree (Figure S1) and was used for explo-

ration in subsequent analysis.

This gradient was anchored at two extreme ends bymotor and

sensory cortices, with the association cortex in the middle (Fig-

ure 2A). Compared with cytoarchitectural classes, the principal

gradient described a gradual transition between motor and in-

sula to sensory areas (Figure 2B). Additional gradients explained

gradually less-morphological profile variance (Figure S2).

We next assessed the stability and reproducibility of the MS

gradients. Using the leave-one-feature-out approach, we veri-

fied that the MS gradient is stable for calculating the interareal

similarity by calculating the correlation between the full five-

feature gradient and the gradient with one measure removed

(Figure S3A; see also STAR Methods). To estimate whether the

gradients were robust to variations in the numbers of features

and spatial resolutions of cortical parcellations, we re-analyzed
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Figure 1. Pipeline for the morphometric

similarity (MS) gradients processing

(A) Cortical parcellations were defined using the

Desikan-Killiany (DK) atlas with 1,533 sub-regions,

which had approximately equal surface areas

(�1 cm2). The template was mapped onto an in-

dividual surface to extract the morphological fea-

tures in each parcellation.

(B) Each region was characterized by a five-

feature vector including averaged normalized

values of surface area (SA), cortical thickness (CT),

gray matter (GM), Gaussian curvature (GC), and

mean curvature (MC). The morphometric similarity

between each pair of regions was estimated using

Pearson’s correlation between their feature vec-

tor. The matrix was transformed to an affinity

matrix, and the diffusion embedding map was

used to capture the explained variance.
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the MS connectomes derived from seven indices, which

included the five features based on T1w data used in the explor-

atory analyses and another two features derived from diffusion-

weight-imaging data, the fractional anisotropy (FA), and an

apparent diffusion coefficient (ADC). Regions in the DK-1533

were too small for interpolating values in lower-resolution diffu-

sion tensor imaging (DTI) volumes, so the MS gradient con-

structed from seven features wasmapped onto the DK-308 atlas

(the parcel size was approximately 5 cm2). We noted that the

spatial pattern of the MS gradient constructed from seven

morphological features was similar to the exploratory findings

based on five features (Figure S3B).

In addition, we repeated the gradient analysis using the avail-

able cortical features provided by another study (Morgan et al.,

2019) and the minimal preprocessing data provided by the Mas-

sachusetts General Hospital-University of Southern California

(MGH-USC) HumanConnectomeProject (HCP) dataset (Glasser

et al., 2013). When we spatially correlated the MS gradient

pattern, significantly positive correlations (all r R 0.87, pspin <

0.001) demonstrated excellent reproducibility of theMS gradient

(Figure S3C). Taken together, these findings confirmed that the
C

MS gradient was robust to variations in

the number of features and individual dif-

ferences. We used the five-feature MS

gradient for the following analysis.

Divergent trends in motor-sensory
hierarchies
We found that theprimarymotor cortexdid

not occupy a similar position along theMS

gradient as sensory areas (Figure 2). To

furtherdetermine the topological organiza-

tion of the MS gradient with respect to

these primary areas, we first computed

the geodesic distance from the primary

cortices (Wagstyl et al., 2015) and

measuredhowthemorphometricsimilarity

gradients varied with geodesic distance

(related to STAR Methods). We assessed
the relation between MS gradient and geodesic distance in four

local areas, including primary motor, somatosensory, visual, and

auditory areas (Figure S4A). In the sensory hierarchies, the MS

gradient was positively correlated with the geodesic distance in

the somatosensory (r = 0.43, pspin < 0.001), visual (r = 0.80, pspin <

0.001), and auditory cortex (r = 0.20, pspin = 0.03), whereas, in the

motor cortex, the MS gradient negatively correlated with distance

(r =�0.56, pspin < 0.001) (Figure 3). This divergence inmotor-sen-

sory corticeswas reproduced in theHCPdataset (Figure S4B; see

also STARMethods).

Motivated by a recent finding that the histological thickness

gradient diverged between motor and sensory areas (Wagstyl

et al., 2020), we determined whether that histological laminar

gradient would provide a meso-scale correlate for the MS

gradient. Using the laminar histological atlas (Wagstyl et al.,

2020), we linked the MS gradient with mesoscale layering and

macroscopic cortical thickness. Furthermore, we estimated

whether the cortical layers identifiable by characteristic distribu-

tions of different neurons uniformly correlated to the MS

gradient. First, we found that the MS gradient positively

correlated with the total histological thickness (r = 0.73,
ell Reports 36, 109582, August 24, 2021 3



A B Figure 2. The spatial pattern of the principal

MS gradient

(A) The first component in the gradient analysis

was mapped onto the DK-1533 atlas.

(B) The average gradient scores within each of the

cortical classes of von Economo and Koskinas

(1925): sec sens, secondary sensory cortex; prim

sens, primary sensory cortex; asso 2, association

cortex; asso 1, association cortex; limbic, limbic

regions; motor, primary motor; insula, insular

cortex.
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pspin < 0.001) (Figure 4A). Next, we sought to determine each

laminar contribution to the MS gradient by constructing a multi-

ple linear-regression model using the relaimpo (relative impor-

tance of regressors in linear models) R package (Grömping,

2006) (Figure 4B). The model explained 59% of the variance in

the MS gradient (Figure 4C; F(6, 1,526) = 361.4; p < 0.05; adjusted

R2 = 0.59), and layers I, III, IV, and V significantly predicted the

MS gradient (Figure 4D; Table S1). Notably, layer V had the high-

est relative importance for the MS gradient in this model, and an

inverse contribution was found in layer IV, when compared with

other layers. Together, these results suggested that the motor

cortex showed a divergence from the sensory cortices in the to-

pological organization of morphometric similarity.

Correspondence of the MS gradient in functional
organization
To examine the role of the MS gradient in functional organiza-

tions, we compared the spatial correspondence of the cortical

morphometric gradients to the functional gradient (Margulies

et al., 2016) that was derived from the resting-state functional

MRI (rs-fMRI) connectome. To that end, we computed the indi-
A

B

Figure 3. The correlation between the principal MS and distance in loc

(A) The geodesic distance from the primary areas was used as an index for hiera

(B) In a motor hierarchy, the principal MS gradient negatively correlated with the g

(r = 0.43 for somatosensory cortices, r = 0.80 for visual cortices, r = 0.20 for au

geodesic distance.
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vidual FC matrix, based on the individual DK-1533 template,

and then, calculated FC gradients using diffusion map embed-

ding with the same parameters as the MS gradients (related to

STAR Methods). Consistent with previous findings (Hong et al.,

2019; Margulies et al., 2016; Meng et al., 2021), spatially distrib-

uted primary areas, such as visual, somatosensory, and motor

cortices, occupied similar positions at one end of the FC

gradient. A distributed association cortex occupied the other

end (Figure S5A). We noted that the somatosensory and motor

areas occupied similar positions along the FC gradient, in

contrast to the MS gradient. To study topological features of

the morphometric and functional gradients in hierarchical orga-

nizations, we first compared both gradients to geodesic distance

from primary areas. The FC gradient positively correlated with

geodesic distance from primary areas (r = 0.64, pspin < 0.001)

(Figure S5C), whereas the MS gradient did not show spatial cor-

respondence. The cortical structure and function may not be

organized in the same way across the whole brain (Vázquez-Ro-

drı́guez et al., 2019). We also found that the FC gradient posi-

tively correlated with the four structural hierarchies (r = 0.75

for motor cortex, r = 0.67 for somatosensory cortex, r = 0.44
al hierarchies

rchical levels in four local hierarchies.

eodesic distance (r =�0.56, pspin < 0.001), whereas in the sensory hierarchies

ditory cortices, all pspin < 0.05), the principal MS positively correlated with the
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Figure 4. Associations between the prin-

cipal MS gradient and the laminar histolog-

ical thickness

(A) The principal MS gradient was positively

correlated with the total histological thickness (r =

0.73, pspin < 0.001).

(B) Amultiple linear-regressionmodel was used to

determine the relationship between the MS

gradient and the laminar histological atlas.

(C) The predictedMS gradient values and a plot of

the predicted versus observed gradients

(adjusted R2 = 0.59, p < 0.05).

(D) The relative importance of each laminar

regression contributing to the multiple linear

regression model was assessed using the re-

laimpo R package. Error bar, 95% bootstrap

confidence intervals.
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for visual cortex, and r = 0.85 for auditory cortex, all pspin < 0.001)

(Figure S5D), whereas the MS gradient showed an inverse corre-

lation in motor-frontal cortices. We then directly calculated the

differences in the MS and FC gradients by comparing region

ranks across the entire cortex and within functional commu-

nities/cytoarchitectural classes. Cortex-wise region-rank com-

parisons revealed shifts in motor areas to the MS gradient and

a converse shift in high-level association cortices to the FC

gradient (Figure 5A). Although some functional networks were

distributed across the morphometric gradient, they were located

at a similar level in the functional gradient, such as somatosen-

sory andmotor areas in one end and the default mode fronto-pa-

rietal networks in another end. When comparing node ranks

within functional communities, we found a dissociation of the

MS gradient from function in sensorimotor areas and a converse

dissociation of FC gradient frommorphology in the frontoparietal

and default mode network (Figure 5B). Consistent findings were

found in comparisons of cytoarchitectural classes, which

showed that differences of two gradients were exhibited in the

primary motor and association areas (Figure 5C). The statistical

results of a paired t test across individuals in gradients between

structure and function are listed in Table S2. Conducting a meta-

analysis using the NeuroSynth database (Yarkoni et al., 2011),

we observed a functional variation of the MS gradient at one

end, related to ‘‘visuospatial’’ and ‘‘reading,’’ with the other

end related to ‘‘reward’’ and ‘‘emotion’’ (Figure S6).
C

Relation to the hierarchical
organization of microstructures
Having examined the hierarchical organi-

zation of the MS gradient, we next

sought to understand its relationship to

fundamental properties of brain organi-

zation (related to STAR Methods).

Morphometric similarity measured by

an MRI is a well-known indication of his-

tological similarity (Barbas and Rempel-

Clower, 1997; Seidlitz et al., 2018; Wei

et al., 2018). We next compared the MS

gradient with multiple microstructural

profiles, including gene expression, cell
density, and myelin content, to reveal the systematic spatial re-

lationships of cortical properties at different scales (Figures 6A–

6C). At the microscale and mesoscale levels, parcel-wise ana-

lyses showed strong spatial correlations of the MS gradient

with the first component of gene expression (r = –0.73, pspin <

0.001), cytoarchitectural similarity profile (r = 0.47, pspin <

0.001), as well as a moderate correlation with myeloarchitectural

similarity (r = 0.41, pspin = 0.02).

Furthermore, cortical expansion had nonuniform distributions,

reflecting regional morphological differences in evolution. The

high expansion was related to the dorsal frontal, lateral temporal,

and lateral parietal cortices, and low expansion to the occipital

and medial temporal cortices. To understand how evolutionary

properties constrained the interregional morphological similarity,

we also compared the MS gradient with maps of evolutionary

cortical expansions. We also observed a positive spatial correla-

tion between the MS gradient and cortical expansion (r = 0.35,

pspin = 0.03) (Figure 6D). Thus, the topological organization of

cortical morphology varied along the microscale underpins and

was constrained by the cortical hierarchies of evolutionary

expansion.

DISCUSSION

Cortical regions along the embedding axis capture the gradual

variation in morphometric similarity, reflecting their gene
ell Reports 36, 109582, August 24, 2021 5
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Figure 5. Correspondence of the principal

MS gradient to the functional organization

(A) Node rank difference between the principal MS

gradient and the FC gradient.

(B and C) The principal MS gradient and FC

gradient were discretized into 50 equally sized

bins, and stacked bar plots depict the proportion

of each bin accounted for within each functional

community (B) and cytoarchitecture class (C). A

radar plot shows the difference of mean node

ranks corresponding to the community/class be-

tween the two gradients. VN, visual network;

SMN, somato-motor network; DAN, dorsal

attention network; VAN, ventral attention network;

LN, limbic network; FPN, fronto-parietal network;

DMN, default mode network.
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expression, cellular density, and myelin content (Garcı́a-Cabe-

zas et al., 2020; Huntenburg et al., 2018). In this study, leveraging

the diffusion map embedding technology, we investigated the

low-dimension representations (gradients) of cortical morpho-

metric similarity. The MS gradients showed robust stability in

the variation of the numbers of morphological features and

spatial resolutions of the cortical parcellations and reproduc-

ibility in independent datasets. The principal gradient showed

diverged patterns in sensory and motor areas, placing them at

a different level in cytoarchitectural classes. Specifically, the

spatial layout of cortical areas across visual, somatosensory,
6 Cell Reports 36, 109582, August 24, 2021
and auditory hierarchies from primary

sensory areas to high-level areas paral-

leled the distribution of those areas

across the MS gradient, showing a tran-

sition of increasing MS gradient; howev-

er, the motor-frontal cortices showed a

decreasing MS gradient from the primary

motor to high-level cortices. Further-

more, we also observed a dissociation

between the morphometric and func-

tional gradients in motor and default

mode networks, indicating distinctive

structural complexity in motor areas, as

well as functional flexibility in high-level

association areas. Taken together, the

hierarchical organization of the macro-

scopic morphometric profiles provided

insight into understanding cortical struc-

ture-function correspondence.

The morphometric similarity connec-

tome has a complex topology (Seidlitz

et al., 2018), and gradient approaches

have, instead, found the principal axes

of variance in this connectome through

manifold-learning techniques, which offer

a valuable perspective to bridge low-

dimensional representations of cortical

organization and human cognition (Mar-

gulies et al., 2016). Previous studies

have characterized the topological prop-
erties of the MS network, including the degree distribution, the

small-worldness, the community structure, and a rich club (Galdi

et al., 2020; Li et al., 2017, 2021;Morgan et al., 2019; Seidlitz et al.,

2018, 2020). Importantly, the network phenotype of the morpho-

metric similarity changes was associated with disease-related al-

terations of specific genes, providing a biological combination

analysis of neuroimaging and transcriptional data (Morgan et al.,

2019). Directly analyzing the embedded spaces derived from

the MS connectome, the MS gradient, revealed that gradients

could serve as cortical coordinates describing the relationship be-

tween interconnected areas. Recently, similar algorithms have
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Figure 6. Relation to cortical microstruc-

ture and expansion

The principal MS gradient correlated with the

principal component of brain-specific gene

expression (r = –0.73, pspin < 0.001) (A), interre-

gional similarity in cell density (r = 0.47, pspin <

0.001) (B) and myelin content (r = 0.41, pspin =

0.02) (C), as well as the evolutionary expansion

(r = 0.35, pspin = 0.03) (D).
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been used to identify structural gradients constructed using

various approaches. For example, the main gradients of interre-

gional cortical-thickness correlations supported the important

role of genetic influence in the macroscale organization of the

human cortex (Valk et al., 2020). Other studies provided low-

dimensional representations of diffusion MRI tractography,

which suggested distinct structural constraints on functional dy-
C

namics between low-level regions and

the transmodal cortex (Park et al.,

2021b). They constructed the cortical wir-

ing to examine macroscopic changes in

structural connectivity in autismspectrum

disorders (Park et al., 2021a). Many

studies have shown the spatial layout of

cortical hierarchies in multiple gradients

of different cortical structure along the

‘‘sensory-fugal’’ axis, such as cytoarchi-

tectural and myeloarchitectural profiles

(Paquola et al., 2019b), excitatory/inhibi-

tory receptor ratios (Goulas et al., 2021),

and anatomical centrality of diffusion

tractography (Zhang et al., 2020). Our

study added to a growing understanding

of the relationship between cortical struc-

tures, cortical connections, and cortical

hierarchies in humans, by combiningmul-

tiple structural features that were not pre-

viously studied.

In contrast to the ‘‘canonical’’ func-

tional gradient, the primary motor did

not localize to the same position in the

MS gradient as in the sensory areas.

This interesting finding may be caused

by distinctive histological properties in

the motor cortex. Unlike sensory areas,

the primary motor area has a lower

neuronal density (Rockel et al., 1980),

lower neurotransmitter receptor density

(Zilles and Palomero-Gallagher, 2017),

greater thickness (Wagstyl et al., 2020),

and distinct laminar characteristics (von

Economo and Koskinas, 1925). Signifi-

cantly, we found that these divergent

characteristics of the MS gradient were

consistent with patterns of histological

cortical thickness. We found positive

contributions in layers I, III, and V, with
an inverse contribution in layer IV. Among the six layers, this cor-

respondence was strongest in pyramidal neuron layers III and V

and could be driven by changes in pyramidal neuronal arboriza-

tions. Layer IV consisted mostly of stellate cells and a

smaller portion of the pyramidal cells. Granular cells, as the

dominant cellular component, contributed to the formation of

specific sensory cortical areas. This layer was the main target
ell Reports 36, 109582, August 24, 2021 7
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of cortical-afferent connections, and for that reason, it was espe-

cially developed within the sensory areas. Unlike layers III, V, and

VI, the average thickness of layer IV was relatively thin, but it was

significantly thicker in the visual area than it was in the other

cortical areas. By volume, the cortex is 90% neuropil, to which

dendrites and synapses are major contributors (Braitenberg

and Sch€uz, 1991). Thus, changes in the size of neuronal arbors

could directly affect our in vivomorphometric measures (volume,

surface area, and curvature) through changes in cortical surface

expansion. Furthermore, the genetic topography of the cortex is

known to follow a similar hierarchical topography (Zilles and

Amunts, 2012), which is likely to underpin the gradient pattern

of cortical morphological features. We noted that the insula cor-

tex occupied one extreme in the MS gradient, similar to the mo-

tor cortex. This may be due to the heterogeneous structure in the

insula characterized by less-differentiated cortical layers (Nieu-

wenhuys, 2012), yet differ from the sensory cortices with clear

laminar differentiation. However, the insula is also a highly folded

and buried cortex, where precise identification of the inner and

outer contours is difficult to obtain using MRI. These factors

often lead to over-estimated MRI thickness values for insular

and peri-insular regions (Wagstyl et al., 2020). We also noted a

distinct transition of the MS gradient within the limbic cortex

and a relatively wide distribution of data in the violin plot in this

cytoarchitectural class (Figure 2). Convergent evidence has sug-

gested that a sequential progression of cortical architectonic dif-

ferentiation arises from the mesocortical limbic area (Goulas

et al., 2019; Paquola et al., 2020a; Puelles et al., 2019; Sanides,

1969; Valk et al., 2020), forming transition zones between the iso-

cortex and allocortex and resulting in a ‘‘sensory-fugal’’

organization.

We observed common and specific hierarchical organization

between the structural and functional gradients. Geodesic dis-

tance from the primary areas was used as an alternative index

for the hierarchical level (Wagstyl et al., 2015), and increased

distance reflectedmore-specialized functions. In sensory hierar-

chies, regions are situated a long distance from the primary sen-

sory areas, along with upward morphometric and functional gra-

dients. Unlike the principal functional gradient, the motor-frontal

cortices showed an inverse transition compared with sensory hi-

erarchies in the MS gradient. Histologically, the trends of varia-

tion in the MS gradient from the motor to frontal areas were

consistent with changes in cellular density and cortical thick-

ness, which diverged from the pattern in other cortical regions

(Collins et al., 2010; Wagstyl et al., 2020). Functionally, the motor

cortex was located on the frontal lobe, which had a more-vari-

able structure during the development and had a crucial role in

cognitive controls.

Moreover, motor processing and sensory processing

possessed the reverse direction of information flow. The motor

areas received signals from the anterior frontal cortices, which

supported a hierarchy of action controls along the rostrocaudal

axis (Badre and D’Esposito, 2009), whereas, in sensory-pro-

cessing hierarchies, primary cortices responded to the most

basic stimuli, and then, the higher areas selectively responded

to certain types of sensory stimuli (Grill-Spector and Malach,

2004; Okada et al., 2010). In addition to these distributed, local

hierarchies, the comparison between morphometric and func-
8 Cell Reports 36, 109582, August 24, 2021
tional gradients at the whole-cortex scale suggested a flexible

functional role in cortices of high-level association. A medial po-

sition of the association cortices in the MS axis showed dissim-

ilarity to both extreme ends. It made it different than primary

areas, which had distinctive cytoarchitectonic and functional

grounds. This morphometric axis resembled a natural axis of

excitatory/inhibitory receptor ratios, which revealed a progres-

sive transition from the sensory to the association and primary

motor areas (Goulas et al., 2021).

Limitations
This study had several limitations. First, different spatial scales

determined by cortical parcellations affected gradient identifica-

tion and analysis. Finer spatial resolution contributed to more-

marked transitions in the overall shape of the gradients. However,

the high spatial resolution reduced the registration results from in-

dividual surface space into the volume space.We, therefore, used

five morphometric features (not including the diffusion index) to

construct the MS gradient during exploratory analyses to capture

the stability gradient pattern. Although we demonstrated consis-

tency between theMSgradient derived fromdifferent cortical fea-

tures, the balance of the spatial scale and the regional features is

still worth considering. Second, the cerebral cortex has a laminar

structure, and each layer exhibits different anatomical properties;

the resolution of the MRI was not sufficient to identify finer

laminar-scale morphological features. Recent studies of layer-

specific interarea variations extended our understanding of the

structure and function in the human cortex (Garcı́a-Cabezas

et al., 2020; Goulas et al., 2021; Nieuwenhuys and Broere,

2020; Paquola et al., 2019b). We can also determine the relation-

ship between MS gradients and more layer-specific properties,

such as gene expression and transmitter receptors, etc. In

the present study, we mainly focused on the principal MS

gradient, so extended representations could be meaningful to

complete the framework for describing the cortical hierarchical

organization.

Conclusion
The MS gradient describing the interregional morphological sim-

ilarity is anchored at the two extreme ends by motor and sensory

cortices. Moreover, with increased hierarchical distance from the

primary cortices, the association cortices, situated between the

two ends in the MS gradient, conduced to their flexible functions.

Notably, the morphological gradient diverged in the motor-frontal

and sensory cortices, identifying novel nuances in the relation-

ships between cortical structure and function. Together, our

findings provide insight into understanding the coordination of

structure and function in a hierarchical organization.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Processed neuroimage data from Jinling

Hospital

This paper https://figshare.com/articles/dataset/

MS_Gradient/14977899

Code and data used This paper https://zenodo.org/record/5144162

Neuroimaging data from HCP Human Connectome Project https://db.humanconnectome.org/

Gene expression data from human brain Allen Human Brain Atlas (AHBA) http://human.brain-map.org

Histological atlas BigBrain Project https://bigbrain.loris.ca

T1w/T2w gradient and MPC gradient (Paquola et al., 2019b) https://github.com/MICA-MNI/

micaopen/tree/master/MPC

Evolutionary expansion map (Hill et al., 2010) http://brainvis.wustl.edu/wiki/

index.php/Sums:About

Software and algorithms

FreeSurfer (v6.0) (Fischl, 2012) https://surfer.nmr.mgh.harvard.edu/

FSL (v5.0.9) (Jenkinson et al., 2012) https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

MATLAB N/A

wb_view Connectome Workbench https://www.humanconnectome.org/

software/get-connectome-workbench

BrainSpace toolbox (Vos de Wael et al., 2020) https://brainspace.readthedocs.io

Abagen toolbox (Markello et al., 2021) https://github.com/netneurolab/abagen

relaimpo R package (v.2.2.3) (Grömping, 2006) http://prof.beuth-hochschule.de/

groemping/software/relaimpo/

NeuroSynth (Yarkoni et al., 2011) https://neurosynth.org/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Wei Liao (weiliao.wl@

gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d Processed data have been deposited at Figshare, and are publicly available as of the date of publication. DOIs are listed in the

Key resources table. This paper also analyzes existing, publicly available data. These accession numbers for the datasets are

listed in the Key resources table.

d All original code has been deposited at Zendo and is publicly available as of the date of publication. DOIs are listed in the Key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

This work included a sample of healthy adults (n = 119, mean age ± standard error of themean (SEM) = 25.77 ± 0.61 years, 58 females)

at JinlingHospital, NanjingUniversity. This studywas performed according to theHelsinki Declaration of 1975 andwas approvedby the

localmedical ethics committee at JinlingHospital, School ofMedicine, Nanjing University.Written informed consent was obtained from

all subjects. All subjects had no history of neurological disorder or psychiatric illness and no gross abnormalities on brain MRI images.
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METHOD DETAILS

Data acquisition
Multi-contrast MRI data were acquired using a Trio 3.0-Tesla MRI scanner (Siemens,Washington, DC, USA) at Jinling Hospital, Nanj-

ing, China. Foam padding was used to minimize head motion. All subjects were required to keep their eyes closed and to keep their

head still. The structural MRI (T1w) data were acquired in a sagittal orientation using a magnetization-prepared rapid gradient-echo

sequence (repetition time (TR)/echo time (TE) = 2,300/2.98 ms, flip angle = 9�, field of view (FOV) = 256 3 256 mm2, matrix size =

256 3 256, slice thickness = 1 mm, no interslice gap, and 176 slices).

Resting-state functionalMRI (rs-fMRI) were acquired using an echo-planar imaging sequence (TR/TE = 2,000ms/30ms, flip angle =

90�). Thirty transverse slices (FOV = 240 3 240 mm2, matrix size = 64 3 64, slice thickness = 4 mm, interslice gap = 0.4 mm) that

aligned along the anterior commissure-posterior commissure line were acquired with a total of 250 volumes.

The diffusion weighted images (DWI) were obtained in parts of the subjects (n = 99) using spin an echo-based echo planar imaging

sequence, including 30 volumes with diffusion gradients applied along 30 non-collinear directions (b = 1,000 s/mm2) and one volume

without diffusion weighting (b = 0 s/mm2). Each volume consisted of 45 contiguous axial slices (TR/TE = 6,100 ms/93 ms, flip angle =

90, FOV = 240 3 240 mm2, matrix size = 256 3 256).

MRI data preprocessing
Structural image processing pipeline was built using FreeSurfer version 6.0 software (https://surfer.nmr.mgh.harvard.edu/) (Fischl

et al., 2001; Ségonne et al., 2007) and FSL (v5.0.9) (Jenkinson et al., 2002; Smith et al., 2004). Anatomical surfaces were generated

from the individual T1w image in native space using the recon-all processing in FreeSurfer. Briefly, processing of the T1w image

included skull stripping, cortical extraction and segmentation of cortical white and gray matter, separation of the hemispheres

and subcortical structures (Fischl et al., 2004), and surface reconstruction of the gray/white interface and the pial surface.

Preprocessing of functional data included removing the first four frames, slice timing, motion correction using rigid body translation

and rotation, and boundary-based registration to the T1w images (Greve and Fischl, 2009). The nuisance was then regressed,

including the white matter, ventricular signal, global signal, six head motion parameters, and their temporal derivatives (Kong

et al., 2019). The volume was defined as an outlier if the framewise displacement was > 0.5mm or the voxel-wise differentiated signal

variance was > 50 when computed using FSL (Jenkinson et al., 2002; Smith et al., 2004). The data were interpolated across censored

volumes, which was defined as i) one volume before and two volumes after these outliers, and ii) images are lasting fewer than five

contiguous volumes (Gordon et al., 2016). Finally, the images were band-pass filtered (0.01–0.08 Hz). In the following exploratory

analysis, three subjects were excluded due to non-ideal registration from the fMRI to T1w images.

The DWI images were corrected using a non-diffusion-weighted B0 image and a filed map for accounting for the eddy-current-

induced distortions and reduced head movements. Diffusion tensor models were estimated using the Diffusion Toolkit by the

least-squares fitting (Wang et al., 2007). Diffusion maps were registered to individual T1w images using FSL’s (FLIRT) (https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/). All functional and DWI images were visually inspected for motion artifacts and low quality of processed

registration.

MS gradients analysis
The cortical surface was initially parcellated into spatially continuous and equal-sized cortical parcellations derived from the DK-68

atlas (Desikan et al., 2006). Considering that increased spatial resolution of the gradients became more pronounced (Vos de Wael

et al., 2020), the size of each region was defined using approximately 1 cm2, which resulted in 1,533 parcellations in the surface,

referred to as the DK-1533 atlas (Romero-Garcia et al., 2012). This standard anatomical template was transformed to each subject’s

surface and was then interpolated to their volume space. Based on the individual surface and volume templates, five structural fea-

tures were extracted from the individual’s T1w data, including the GM, SA, CT, GC, andMC. Due to the lack of the DWI in some sub-

jects (n = 20), and the non-ideal registration effect in other subjects (n = 21), the exploratory analyses were estimated using five

morphometric features obtained from T1w data.

To characterize the topographic organization ofMSconnectomes, weperformeddiffusionmap embedding (Margulies et al., 2016) to

identify spatial axes of interareal structural variations. This nonlinear reduction technique allowed local and long-distance connections

of the structural connectome to project into a common space. In this space, referred to as the ‘‘gradient’’, brain regions with more

similar connections to others occupied similar positions. A set of gradients explaining spatial variations in the structural connectome

were evaluated using the BrainSpace toolbox (Vos de Wael et al., 2020). According to previous studies (Hong et al., 2019; Margulies

et al., 2016; Paquola et al., 2019b; Yang et al., 2020), we used the top 10% of connections per row to compute a cosine matrix which

captured similarities in the profiles of structural connectomes. Themanifold parameters followed recommendations and set a = 0.5 and

t = 0, which retained global relations between data points in the embedded space. After estimating the component template that was

generated from the averageMSmatrix based on all subjects, each individual’sMSgradient was aligned to this template. Finally, group-

level MS gradients were generated across these aligned individual gradients. Evidence from nonhuman primates and human brains

showed that anatomical connectivity is stronger betweenmicrostructurally similar areas than between cytoarchitecturally distinct areas

(Barbas and Rempel-Clower, 1997; Wei et al., 2018). We, therefore, compared the anatomical distributions of the MS gradient within

cytoarchitectural classes based on the Von Economo atlas (von Economo and Koskinas, 1925).
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We next tested the different contributions of single cortical features to the stability of the MS gradient with the exclusion of one

morphometric measure before MS connectome construction. To test the robustness of the MS gradient to the number of features

and spatial resolution of cortical parcellations, we re-mapped the MS gradient with seven features (CT, GM, SA, GC, MC, FA, and

ADC) to construct individual MS connectomes from the subjects who had an ideal registration of diffusion MRI to T1w images. These

seven structural features were extracted from DK-308, with each of the parcels having a larger area, because some parcels would be

missing from a smaller area when the diffusion MRI was registered to the T1 space.

Hierarchical organization analysis
To understand the hierarchical organization of the principal MS gradient, we investigated whether it was related to the intrinsic ge-

ometry of the cortex, a proxy of cortical hierarchical organization. We calculated the spatial correlation between the gradients and

geodesic distance from primary areas in four local hierarchies, including the somatosensory, visual, auditory, and motor hierarchies.

To do so, we selected the primary areas created from the labels in the Destrieux et al. (2010) atlas, including the calcarine sulcus,

temporal transverse sulcus, and central sulcus, which demarcated the cortical landmarks of the primary cortex. For each primary

cortex, a pre-defined large area containing associated cortical regions was identified based on the Brodmann atlas according to

the sensory-fugal processing hierarchy proposed by Mesulam (1998) and a recent study (Wagstyl et al., 2020). To define the primary

associated cortices in the DK-1533 atlas, we calculated the overlap of each parcellation in the DK-1533 with pre-defined areas. If

more than half of the vertices in the parcellation were contained in the pre-defined area, this parcellation was identified into associ-

ated regions. The geodesic distance was measured as the shortest path across mid-surface between the vertex nearest to the

centroid of each parcellation and the corresponding seed primary region (Oligschläger et al., 2017). A distance value was assigned

to each parcellation based on the minimum distance to any of the seed parcellations (Margulies et al., 2016). We used the laminar

histological atlas to understand the link between the MS gradient and mesoscale cortical layering and macroscopic cortical feature,

which quantifies cortical and laminar thickness with high precision based on a 3D reconstructed BigBrain (Amunts et al., 2013;Wags-

tyl et al., 2020).We further performed amultiple linear regressionmodel combining each of the six laminar atlases, and the dependent

variable for the model was the MS gradient within each parcel. The relative importance of each laminar regression contribution to the

bootstrapping regressor model was assessed using the relaimpo R package, v.2.2.3 (Grömping, 2006). Specifically, the relative

contribution of each variable to the variation in the predicted MS gradient was assessed using the pmvd metric of the relaimpo R

package.

Relation to cortical microstructure
To reveal the potential biological interpretation of theMS gradient in different biological scales, we analyzed its relation to the cortical

microstructural profiles and evolutionary properties. First, we quantified the concordance between the MS gradient and systematic

spatial variation of brain-wide gene expression. Parcel-wise microarray expression data were obtained from six post-mortem brains

provided by the Allen Human Brain Atlas (AHBA; http://human.brain-map.org/) (Hawrylycz et al., 2012). We processed and mapped

the data onto the DK-1533 atlas through the abagen toolbox (https://github.com/netneurolab/abagen). Briefly, probes were reanno-

tated with information (Arnatkeviciute et al., 2019) and filtered with an intensity-based threshold of 0.5. After this procedure, 15,633

probes survived. Brain tissue samples were mirrored across the right and left hemispheres and then matched to parcels for each

donor. For each parcel, samples assigned to the same area were separately averaged for each donor. Next, gene expressions

were normalized across regions and finally averaged across donors to result in a matrix (1,533 regions 3 15,632 gene expression

levels). We used 1,899 brain-specific genes for the following analysis (https://github.com/weiliao81/MS-Gradient) (Burt et al.,

2018). Principal component analysis was performed to identify the dominant spatial variation of brain-specific gene expressions

in the human cortex. First, the spatial covariance matrix was constructed, and eigen decomposition was used to obtain the matrix

principal components. We chose the first component, which captured variance in cortical gene expression profiles.

We then quantify the spatial concordance between the MS gradient and large-scale cytoarchitecture and myeloarchitecture of

cortical organizations. One approach, known as microstructure profile covariance (MPC), described cortical interregional similarity

in cortical microstructures (Paquola et al., 2019a, 2019b). TheMPC gradients captured cellular density andmyelin content changes in

a cortical organization based on a 3D histological brain (BigBrain; https://bigbrain.loris.ca/main.php) (Amunts et al., 2013) and T1w/

T2wMRI. These gradients delineated system-level spatial representations of microstructural similarity and captured a sensory-fugal

gradient in cortical organizations. We download the MPC gradient maps (Paquola et al., 2019b) from https://github.com/MICA-MNI/

micaopen/tree/master/MPC. Because the MPC gradient was constructed on a cortical surface with 1,012 spatial nodes of approx-

imately 1.5 cm2, we extracted themeanMPC gradient value within each region based on the DK-68 atlas to minimize the spatial bias.

We then evaluated the spatial correspondence of the principal MS gradient to the cyto- and myeloarchitectural gradients. Moreover,

to understand how evolutionary properties constrained the interregional morphological similarity, we also compared theMS gradient

to maps of evolutionary cortical expansion. We download the evolutionary expansionmap (Hill et al., 2010) from http://brainvis.wustl.

edu/wiki/index.php/Sums:About.

Relation to functional gradients
To examine the role of the MS gradient in functional organizations, we compared the spatial correspondence of the cortical morpho-

metric gradients to canonical functional gradients. To this end, we computed the individual functional connectivity (FC) matrix based
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on the individual DK-1533 template, and the mean time series within each parcellation was extracted to construct the FC matrix by

computing the pairwise Pearson’s correlation coefficient. The top 10% of connectivity per row of the FCmatrix remained to generate

a cosine matrix. The individual FC gradients were generated using diffusion map embedding with the same parameters as the MS

gradients. Each individual’s gradient was aligned to the group template component, which was generated from an average functional

connectivity matrix based on all subjects. Finally, a group-level FC gradient was mapped onto the DK-1533 atlas. We also assessed

the relationships between the FC gradient and the geodesic distance from primary areas from the whole cortex and four local

hierarchies.

To study topological features of themorphometric and functional gradients in hierarchical organizations, we directly calculated the

differences in the MS and FC gradients by comparing region ranks across the whole cortex. To further localize the differences in the

gradients, we compared node ranks within functional communities and cytoarchitectural classes. According to its underlying

vertices, each parcellation in the DK-1533 atlas was assigned to one functional community/cytoarchitectural class. The MS and

FC gradients were discretized into 50 equally sized bins. We calculated the proportion of each bin accounted for by each functional

community/cytoarchitecture class and performed paired t tests to compare the region rank within the community/class between the

MS and FC gradients across individuals. We also conducted a meta-analytical functional decoding analysis (Yang et al., 2020) using

the Neurosynth database and examined the associations between nodes of interest created from 20 bins of the principal MS gradient

with a list of terms that were similar to Margulies et al. (2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Reproducibility analysis
To evaluate the reproducibility ofMSgradients, we repeated the gradient analyses across healthy control subjects in three independent

datasets provided in theMorganet al. study (Morganet al., 2019). Details about the datasets havebeenpreviously published.Wedown-

loaded the morphometric features data from https://figshare.com/articles/Data_for_Cortical_patterning_of_abnormal_morphometric_

similarity_in_psychosis_is_associated_with_brain_expression_of_schizophrenia-related_genes_/7908488/1. We also studied data

from 339 unrelated healthy adults from the minimally preprocessed S900 release of the HCP (https://wiki.humanconnectome.org/

display/PublicData/S900+Unrelated+Subjects+CSV) and extracted five cortical features to construct the MS gradient map. We esti-

mated thespatial correlationof theprincipalMSgradient fromtheexploratorydataand retesteddata. TheHCPdatawereacquiredusing

protocols approved by theWashingtonUniversity institutional review board and shared on the ConnectomeDBdatabase (Hodge et al.,

2016). Full details for the HCP dataset have been previously published (Glasser et al., 2013).

Statistical analysis
In the current study, measures were related to each other across parcels. Spatial correspondences analyses were estimated via

Spearman’s correlation with 1,000 spin test permutations to control spatial autocorrelations (Alexander-Bloch et al., 2018; Vá�sa

et al., 2018). The spin test generated a set of null correlations by randomly rotating the spherical projection of the spatial maps.

Thus, each correlating analysis is reported with the empirical Spearman’s Rho and the spherical permutation Pspin. We performed

paired t tests to compare the region rank within the community/class between the MS and FC gradients across individuals. The sta-

tistical outcome of paired t tests were listed in Table S2.
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