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Abstract. Knowledge graph representation is an important embedding
technology that supports a variety of machine learning related appli-
cations. By learning the distributed representation of multi-relational
data, knowledge embedding models are supposed to efficiently deal with
the semantic relatedness of their constituents. However, failing in the
fundamental task of creating an appropriate form to represent knowl-
edge harms any attempt of designing subsequent machine learning tasks.
Several knowledge embedding methods have been proposed in the last
decade. Although there is a consensus on the idea that enhanced ap-
proaches are more efficient, more complex projections in the hyperspace
that indeed favor link prediction (or knowledge graph completion) can
result in a loss of semantic similarity. We propose a new evaluation task
that aims at performing risk assessment on domain-specific categorized
multi-relational datasets, designed as a classification problem based on
the resulting embeddings. We assess the quality of embedding representa-
tions based on the synergy of the resulting clusters of target subjects. We
show that more sophisticated embedding approaches do not necessarily
favor embedding quality, and the traditional link prediction validation
protocol is a weak metric to measure the quality of embedding represen-
tation. Finally, we present insights about using the synergy analysis to
provide risk assessment explainability based on the probability distribu-
tion of feature-value pairs within embedded clusters.

Keywords: Knowledge graphs · Link prediction · Risk assessment.

1 Introduction

Decision support system applications based on knowledge graphs (KGs) have
been reported in different scenarios, such as entity linking [20], drug-to-drug sim-
ilarity measurements [22], and recommender systems [32]. Graph-based knowl-
edge representation uses a set of symbolic (head, relation, tail) triplets (or facts)
to represent the various entities (nodes) and their relationships (edges) from a
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multi-relational dataset. Each entity represents one of various types of an ab-
stract concept of the world and each relation is a predicate that represents a fact
involving two entities. There is a consensus that the heterogeneous nature of the
data sources, where facts are usually extracted from to create a KG, makes the
later typically inaccurate. Although containing a huge number of triplets, most
open-domain KGs are usually taken as incomplete, covering only a small subset
of the true domain knowledge they are supposed to represent.

Knowledge embedding representation (KER) approaches have been proposed
as an effective way to map the symbolic entities and relations into a continuous
vector space, enforcing the embedding compatibility while preserving semantic
information. Embedding vectors are easier to manipulate than the original sym-
bolic entities and relations, and their popularity has led to the development of
refined techniques to increase their quality [2]. KER aims to efficiently measure
semantic correlations in knowledge bases by projecting entities and relations into
a dense low-dimensional space, significantly improving performance on knowl-
edge inference and alleviating sparsity issues, and it is usually presented as an
efficient tool to complete knowledge bases (Link Prediction – LP) without re-
quiring extra knowledge [33]. LP aims at predicting new relationships between
entities by automatically recovering missing facts based on the observed ones.
However, to our knowledge, there has been not much effort on evaluating the
embedding representation quality resulting from KG embedding approaches. A
preliminary study aims to contrast the effectiveness of hyperparameter choices
when using the resulting embedding representation in subsequent machine learn-
ing classification tasks, instead of just relying on KG completion [5].

In this work, we propose a new evaluation task that aims at performing
risk assessment on domain-specific categorized multi-relational datasets. We re-
design the KER evaluation as a risk assessment task to validate the ability of
knowledge embedding approaches to retain the semantic relatedness of KG con-
stituents, i.e., quantifying the degree to which two components are associated
with each other. We measure the synergy of feature-value pairs within clusters
of resulting embeddings in order evaluate the ability of KER approaches on cap-
turing the semantic similarity among target subjects. We provide evidence that
simpler approaches perform better than more sophisticated embedding formula-
tions when targeting embedding quality rather than trying to improve knowledge
completion. Finally, we present insights on how to use the synergy analysis over
the resulting embeddings to provide risk assessment explainability based on the
probability distribution of feature-value pairs within the resulting embeddings.

2 Knowledge Embedding Representation

Multi-relational data is usually presented in the form of a KG. Entities (nodes)
and relations (edges) provide a structured representation of the knowledge about
a specific domain, and a reasoning ability that can be used for inference. In a
KG, structured information is encoded in the form of triples (h, r, t) (also
known as subject, predicate, object), where h and t are the head and tail enti-



Novel Perspectives and Applications of Knowledge Graph Embeddings 3

ties and r represents the relation between h and t. Although containing a huge
number of triplets, most open-domain KGs are taken as incomplete, covering
only a small subset of the true knowledge that they are supposed to represent,
whereas in domain-specific KGs, incompleteness results from missing values and
cardinality-related inconsistencies that are usually produced by automatic infor-
mation extraction processes from unstructured data sources (e.g., clinical notes).

Learning knowledge embedding representation enables a range of tasks in-
cluding KG completion [4, 26], entity classification [19] and relation extrac-
tion [27]. Within this technique, entities and relations are embedded onto a low-
dimensional vector space to capture the semantic relatedness behind observed
facts and operate on the latent feature representation of the triple constituents.
However, embedding quality is an aspect that has not been much explored along-
side the KER evaluation process.

Translational embedding approaches use relatively simple assumptions to
achieve accurate and scalable results on embedding KGs. Overall, these models
try to learn vectors for each constituent (h, r, t), so that every relation r is a
translation between h and t in the embedding space, and the pair of embedded
entities h and t can be approximately connected by r with low error. Embedding
methods operate on the latent feature representation of the constituents and on
their semantic relatedness, by defining a distinct relation-based scoring function
fr(h, t) to measure the plausibility of the triplet (h, r, t). fr(h, t) implies a
transformation on the pair of entities which characterizes the relation r. The
final embedding representation is learned using an algorithm that optimizes a
margin-based objective function or ranking criterion over a training set.

TransE [4] is a baseline translational embedding approach known by its flaws
at dealing with one-to-many, many-to-one and many-to-many relations when
applied to open-domain data [31]. Other methods extended TransE by vary-
ing the way they assign different representations to each entity and each re-
lation to achieve better link prediction performance. For example, TransH [26],
TransR [15], and TransD [11] use projection matrices to pre-project each h into a
relation-specific vector space. Therefore, they use separate distinct vector spaces
to embed entities and relations, each entity can have distinct distributed rep-
resentations when involved in different relations, which allows entities to play
different roles in different relations. However, this makes it hard to compare the
similarity of two distinct entities without taking relations into account.

Other KER approaches have been proposed, with a common goal to improve
low-dimensional KG representation targeting specific evaluation tasks. However,
they differ in the theoretical problem concerned or the solution approach as re-
flected in their scoring functions, including adapted scoring functions to allow
more flexible translations (e.g., TransM [7] and TransA [28]), Gaussian embed-
dings to model semantic uncertainty (e.g., KG2E [10] and TransG [29]), tensor
factorization (RESCAL [18]), compositional vector representation (HolE [17]),
complex spaces (ComplEx [25]), transitive relation embeddings (TRE [34]), and
neural neighborhood-aware embeddings (LENA [12]). Although these models
achieve great results on the benchmark open-domain datasets, their implemen-
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tations are scattered and unsystematic, and their codes for model validation and
reproducibility are often time-consuming, making them difficulty to be used in
further development, and adopting them for real-world applications [9].

In domain-specific KGs, multi-relational data can be categorized, i.e., each
entity is presented with its corresponding type and relations are also restricted
by domain and range. Type-based constraints can support latent variable mod-
els, by integrating prior knowledge about entity and relation types, significantly
improving these models in the link prediction tasks, especially when a low
model complexity is enforced [13]. In categorized KGs, each entity e is asso-
ciated with a category (or type) c ∈ T , and each triple is presented in the form
(ch:h, r, ct:t), where ch and ct represent the types of h and t. For example, in
the triple (Patient:P01, hasGender, Gender:male), the relation hasGender
is constrained by the domain Patient and the range Gender.

There are multiple suggested ways to apply type-based constraints in train-
ing latent variable models: (a) entities belonging to the same semantic type can
be placed close together in the embedding space with the use of geometric con-
straints such as manifold regularization [8]; (b) entities can be projected onto
type-specific vector spaces, analogous to the relation-specific projections [30];
(c) type information can also be used to measure semantic similarity, which has
been used to calculate prior probabilities in a Bayesian learning process, along-
side creating a set of multiple semantic vectors for each entity [16]; and (d)
type-independent hyperspaces can be used to accommodate entities that belong
to the same type, constraining the selection of negative samples and favoring LP
accuracy by restricting the set of entities ranked during evaluation [24].

The LP evaluation task has originally emerged from the idea that KGs are
usually incomplete. Several embedding approaches have been proposed for pre-
dicting the missing links in the KGs [32]. During the evaluation process, a typical
question answering task aims at completing a triple (h, r, t) with h or t missing,
by predicting t given (h, r, ?) or predicting h given (?, r, t), where ‘?’ denotes the
missing element. Rather than giving the best answer, LP mimics a recommen-
dation system by ranking the plausibility of a set of candidate entities based on
a similarity score. Overall results are usually presented by reporting: a) Mean
Rank (MR); b) Mean Reciprocal Rank (MRR) of correct entities; and c) the
proportion of correct entities in top-N ranked entities (Hits@N, with N usually
equals 10). A LP model should achieve lower MR or higher MRR and Hits@N.
MRR calculates the average reciprocal rank of all the entities (relations), and it
is less sensitive to outliers comparatively with MR.

3 Materials and Methods

In opposite to a general open-domain KG that contains common sense infor-
mation, a vertical KG is based on more complex domain-specific categorized
multi-relational data, mostly suitable for specific industry applications. Whereas
open-domain KGs are wider in terms of breadth, deeper and sparser, domain-
specific graphs usually have low level of granularity (higher level of detail) and
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they are more dense [14]. In addition, the former can be composed of multiple
independent sub-graphs, whereas this is usually hard to observe in the latter due
to the intra-relational structured data sources they are extracted from.

We aim to use KER learned for categorized multi-relational data in a decision
support pipeline. Therefore, instead of trying to complete a KG, we look at the
risk assessment task, targeting the probability of a given entity h having (r) a
label t that makes a triple in form (h,r,t) true when the resulting probability
exceeds a threshold l (P (h, r, t) > l), where l is a tuning hyperparameter. Thus,
to evaluate the quality of embedding representation, we designed risk prediction
as a classification task based on the distribution probability of nearby neighbors
in the entity vector space having the target label.

3.1 Datasets

Focused on domain-specific data, we conducted experiments on three publicly
available datasets (Mushroom, Epilepsy and CHSI) and on private dataset (Preg-
nancy) from the clinical domain – data controllers have granted us permission to
use and perform analysis on a de-identified version of this dataset. A description
for each dataset and the corresponding pre-processing tasks are given below.1

Overall dataset statistics are shown in Table 1.

Table 1: Benchmark datasets statistics. ‘Classes’ represents the number of target
classification labels (independent target labels are used in Pregnancy, whereas
target labels are mutually exclusive in Epilepsy and CHSI. ‘Subjects’ is the
number of entities in the target type (in all datasets consistently represented by
the type of head entity). ‘Triples’ in the test set are given by randomly selecting
subjects (not triples) from the original KG, except for Pregnancy, in which test
set was split based on the year each pregnancy started (2010-2014 for training,
and 2015 for test); subjects in the test set are never seen in the training set.

# Subjects # Triples
Datasets Classes Train Test # Entities # Relations Train Test

Mushroom 1 7,537 879 8,485 22 163,593 19,079
Epilepsy 5 10,354 1,146 27,473 178 1,843,012 203,988
CHSI 10 2,828 313 7,034 679 1,059,838 117,720
Pregnancy 3 20,200 4,676 31,472 99 1,270,529 288,270

Mushroom2 is a publicly available dataset deposited on the UCI Machine
Learning Repository that classifies hypothetical samples corresponding to dis-
tinct species of mushrooms into edible or poisonous based on 22 categorical
attributes describing shape, surface, color, odor, gill, stalk, veil, ring, population
and habitat characteristics. This dataset was originally used to perform logical

1 https://github.com/hextrato/KRAL-benchmark
2 https://archive.ics.uci.edu/ml/datasets/mushroom
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rules and further considered as a relatively easy task for machine learning ap-
proaches, some reaching accuracy of 100%. Triples are presented in the form of
many-to-one relations only, and it was used in previous LP evaluation tasks for
categorized multi-relational data [24, 5].

Epilepsy3 (Epileptic Seizure Recognition) is also available on the UCI Ma-
chine Learning Repository. It presents 178 continuous variables collected for a
recording of brain activity for 23.6 seconds, aiming to assign each of the 11,500
instances (500 individuals × 23 seconds) to one of five possible classes (1–5),
in which subjects in class 1 are taken as having epileptic seizure, and subjects
falling in classes 2, 3, 4, and 5 are those who did not have epileptic seizure. Al-
though most authors have done binary classification, namely class 1 (Epileptic
seizure) against the others, we kept the risk assessment task focused on all the
five independent target classes. All continuous variables have values varying from
-1885 to +2047 and they were heuristically normalized into positive and negative
ranges of 30 values ([−30, 0[, [0, 30[, [30, 60[, [60, 90[, ...) in order to simplify the
KG symbolic representation.

CHSI (Community Health Status Indicators)4 is a dataset designed to sup-
port combating obesity, heart disease, and cancer as a component of the Com-
munity Health Data Initiative. It provides key health indicators, comprising over
200 measures for 3141 United States counties that enable a more comprehen-
sive understanding on the behavioral factors such as obesity, tobacco use, diet,
physical activity, alcohol and drug use, sexual behavior and others substantially
contribute to deaths, like the ones due to heart disease and cancer. There is not
any specific target label in this dataset. Thereat, for evaluation purposes only,
in the context of this work, we designed the evaluation task as a prediction of
average life expectancy (ALE) in each county, with target labels varying from
70 to 79+-years-old (10 possible classes).

Pregnancy combines structured and unstructured data extracted from an
Electronic Health Record (EHR) system regarding 24,876 pregnancies occurring
from 2010 to 2015, comprising demographic and clinical history before (e.g.,
history of medication, allergies, infections, and other clinical conditions) and
during pregnancy (e.g., prescriptions, procedures, and diagnoses). Although the
dataset was originally created to perform risk assessment of miscarriage, we
added two additional target risk labels: Hyperemesis gravidarum, and high risk
pregnancy. This is a dataset predominantly composed of many-to-many relations
(83.7%), expect for the one-to-many demographic relations. Data from 2010
to 2014 was used to learn the embedding representation, and risk analysis is
performed ever the 2015’s patient set (test set).

3.2 Method Outline

Although embedding representation approaches are traditionally evaluated using
the LP task, we believe LP does not directly impact quality of entity embed-

3 https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
4 https://healthdata.gov/dataset/community-health-status-indicators-chsi-combat-

obesity-heart-disease-and-cancer
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dings, and result models are biased, only favoring the LP task accuracy instead.
Therefore, our evaluation protocol was designed accordingly to the following
phases (further implementation details are given in the subsequent subsection):

1. Firstly, we learn embedding representation for the training set. Triples cor-
responding to the target classification labels are NOT used during the em-
bedding process to avoid biasing further clustering analysis. MRR score was
initially used during training to select the best model.

2. Alternatively, we added a cluster synergy score (KSyn, see ‘Implementation
Details’ section), performed when evaluation embedding representation in
conjunction with MRR. KSyn aims to evaluate the ability of each model to
capture entity similarities among subjects in each target cluster. We used
K-Nearest Neighbor (KNN) algorithm [1] and we tested multiple numbers of
clusters (K) to find the best radius to be taken into account when performing
synergy analysis.

3. Resulting entity and relation embeddings from the training set are frozen
and the test triples are appended to the KG. A second short embedding
round is performed to properly accommodate the test subjects in the vector
space (only entities from the test set not yet seen during training have their
embedding representation learned during this phase).

4. Finally, we extract the vector representation of each subject entity (split into
training and test subjects). For each subject in the test set, we calculate the
probability distribution of its neighbors (training subjects) regarding each
target classification labels. The probability of each test subject belonging
to any of the target classes is recorded and subsequently used to perform
accuracy analysis, looking for the best threshold to optimize ROC (AUPRC
due the unbalanced nature of target labels) and F scores.

3.3 Implementation Details

We used an embedding approach proposed for domain-specific categorized multi-
relational datasets [24] that utilizes type-dependent vector spaces as a basis for
all our experiments. Additionally, we added a feature to activate a relation-based
projection that mimics other enhanced translational approaches, such as TransH
and TransR.5

Type-dependent vector spaces restrict domain and range for each relation
and are effective to optimize the selection of negative samples during training
instead of random sampling from the whole set of possible entities, lessening
the probability of constructing a poor-quality negative triple, and being more
efficient and sped up, with reduced impact from uninformative constituents. In
addition, only entities belonging to the same type are scored for comparison in
the loss function during the validation step.

Formally, given a training set S of categorized triples (ch:h, r, ct:t), em-
bedding vectors for entities and relations are learned, so that each categorized

5 https://github.com/hextrato/KRAL
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entity c:e is represented by an embedding vector ec ∈ RK , and each relation r is
represented by an embedding vector r ∈ RK . A score function fr (Equation 1)
represents a L2-norm dissimilarity, such that the score fr(hch , tct) of a plausible
typed triple (ch:h,r,ct:t) is smaller than the score fr(h′ch , t

′
ct) of an implausible

typed triple (ch:h
′,r,ct:t

′). Then, the optimal KER is learned by minimizing a
margin-based (γ) loss function L (Equation 2) adapted from TransE, where γ
is the margin parameter, S is the set of correct triples, S ′ is the set of incorrect
triples (ch:h

′,r,ct:t) ∪ (ch:h,r,ct:t
′), and [x]+ = max(0, x).

fr(hch , tct) = ‖hch + r − tct‖l2 (1)

L =
∑

(ch:h,r,ct:t)∈S
(ch:h

′,r,ct:t
′)∈S′

[γ + fr(hch , tct)− fr(h′ch , t
′
ct)]+ (2)

Alternatively, we used a relation-based projection matrix Mr ∈ RK×K to
mimic translational approaches that attempt to enhance TransE (Equation 3).

f ′r(hch , tct) = ‖Mr × hch + r − tct‖l2 (3)

A regularization constraint is used during training to restrict the magnitude
of embedding vectors and prevent loss-minimization by inappropriately increas-
ing the embedding norms for each entity e, usually given by |e| ≤ q, where q is
given by Equation 4 [24]. Although there is no proven evidence that q improves
embedding performance over a fixed magnitude threshold (|e| ≤ 1), we found
this adaptive constraint favors the embedding vectors to spread the range of
latent values in [−1,+1] for each dimension.

q = max(1,

√
k

2
) (4)

The primordial assumption when dealing with any kind of ML model is the
ability of such resulting model on generalizing. Embedding models are weak
regarding to this aspect. Previous KER approaches usually perform a single
learning round, including training, validation, and test sets simultaneously, the
latter ones supposedly for testing the generalization ability. However, validation
and test sets are required to be designed with entities and relations that appear
at least once in the training set.

Instead, we consider the test set should not be seen during the initial training
to avoid biasing the resulting model. Therefore, our training protocol introduces
substantial changes comparatively to the usual routine for learning KER. We
start by using triples from the KG training set only to perform up to 500 train-
ing cycles when learning the initial vector representation for entities and relations
– during initial experiments we consistently observed models achieved best per-
formance in early training cycles (≈200-300) for categorized datasets. We tested
multiple number of dimensions k ∈ {8, 16, 32, 64, 128, 256} and we used an adap-
tive adjustable learning rate (η) and learning margin (γ) to monitor performance.
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η is made smaller (from 0.1 to 0.01) once the performance of the model plateaus,
whereas γ is made bigger ( q

8 to 2×q
3 ). We tuned hyperparameter by selecting the

best performance on a 10-folder cross validation performance based on a combi-
nation of MRR and KSyn (see below), and we report the results of each model
on the corresponding test set.6 Subsequently, we mimic TransE-like enhanced
models. We pick-up the best model during training and we perform additional
500 training steps, now using a relation-based projection matrix (Equation 3).

Cluster Synergy (KSyn) When learning KER, we performed a validation step
every 20 training cycles looking at simultaneously improving of two metrics: (a)
MRR and cluster synergy (KSyn). From the latter we expect to capture the
ability of a given embedding representation to approximate similar entities. The
resulting embedding representation for the subject entities are clustered using
KNN algorithm with multiple variations of K ∈ {16, 32, 48, 64, 96, 128} – the
bigger K is, the smaller the average cluster radius become. For each cluster, we
look at each pair (r, ct:t) that correspond to a feature value for a given subject
ch:h. If the probability of (r, ct:t) occurring in a cluster u (i.e. Pu(r, ct:t)) is
bigger than the overall probability of the same feature-value pair occurring in
the entire training dataset P (r, ct:t), we consider the difference Pu(r, ct:t) -
P (r, ct:t) as the contribution of the feature-value pair to synergy of cluster u.
KSyn of a given cluster u is the average of all positive contributions from each
possible feature-value pair within that cluster, whereas KSyn of the resulting
embedding model is the average KSyn of all clusters. The average radius m from
the best cluster setup is saved to be further used in the final classification task.

Differently from previous KER approaches that use training and test triples
simultaneously during training, we consider our approach is more realistic when
adding the test set only in a subsequent learning step. In addition, subjects from
the test set are totally distinct from those used during training. We perform a
second embedding training round aiming to accommodate the test subjects in
the vector space. Only entities from the test set not yet seen during training have
their embedding representation learned during this phase, whereas embedding
representation for entities used during the first training phase are kept frozen.

Finally, we use the embedding representation from all training and test sub-
jects to perform risk assessment as a classification task. The best average cluster
radius m learned from the KSyn validation is used as a radius threshold when
calculating the probabilistic distribution of target labels in each embedding clus-
ter (each one centered by a test subject). For each target label l, we calculate the
probability of l for each test subject s. Thus, each test subject is taken as the
center of a cluster us with radius m. Then we use the resulting embeddings from
the training subject neighbors within a maximum L2-norm distance m from s,
and we calculate the probability of label l happening in cluster us. The prob-
ability scores in the range [0,1] of each label l for each test subjects are then
analyzed regarding AUPRC and F-score to find the best classification threshold.

6 We used a Linux x86 64-bits Intel® Xeon® CPU E5-2630 v4 @ 2.20GHz as a
computing infrastructure for our experiments.
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4 Results and Discussion

We presents our results in four distinct perspectives: (a) we contrast low- vs.
high-dimensional spaces and we show how the number of dimensions can influ-
ence the ability of embedding approaches to capture the semantic relatedness of
graph constituents; (b) we present our findings on how LP and cluster quality
metrics can be complementary when simultaneously used to both model general-
ization and embedding quality; (c) we provide evidence that simpler approaches
perform better than more sophisticated embedding formulations when targeting
embedding quality rather than trying to improve link prediction; and (d) we
demonstrate how cluster synergy analysis can be used to provide explainability
for a resulting embedding model.

Low- vs. high-dimensional spaces In higher dimensional spaces, a density
estimator can misbehave when there is no smooth low-dimensional manifold
capturing the distribution [3]. Although higher dimensional spaces can provide
more space to accommodate entities, this does not necessarily favor the similarity
of nearby entities, as evidenced in [5]. We tested the effect of both lower and
higher k-dimensional spaces (8 ≤ k ≤ 256), and we present the final classification
results (AUPRC) on the test set for each dataset in each k-dimensional space
in Table 2. None of the datasets was able to consistently improve classification
performance alongside increasing the number of dimensions in the vector space.
Oppositely, the number of required k dimensions that best fit the embedding
representation seems to be somehow related to the complexity (shape and size)
of the dataset and classification tasks. For example, ‘Mushroom’ and ‘Epilepsy’
are the datasets devoid of any many-to-many relations, thus requiring lower
embedding dimensionality.

Table 2: Average AUPRC scores for each dataset on each k-dimensional space
on the risk assessment task - average of scores resulting from each classification
label - best score in bold for each dataset.

Datasets
k-dim Mushroom Epilepsy CHSI Pregnancy

8 0.9991 0.5475 0.3592 0.1506
16 0.9993 0.5254 0.3799 0.1628
32 0.9979 0.5195 0.3852 0.1492
64 0.9984 0.4911 0.3844 0.1651
128 0.9993 0.4499 0.4019 0.1586
256 0.9992 0.4100 0.3978 0.1575

Link prediction vs. embedding quality MRR and Hits@N are correlated
metrics traditionally used as embedding evaluation scores. However, the more
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MRR can be improved the better embedding quality it is not necessarily entailed.
This becomes more evident when we look at the way embedding approaches try
to improve overall model accuracy by adding relation-based projections and
how they are affected by hyperparameters (learning rate η and learning margin
γ). Figure 1 shows how MRR and the proposed KSyn scores evolve along the
training process. Each chart presents the two-phase 500-cycle learning process,
each phase following Equations 1 and 3 (in Section 3.3) respectively:

(1) In the first learning phase, η varies from 0.1 to 0.01 in the first 300
cycles, and it is kept fixed at 0.01 so on, whereas γ is fixed at (q/8) along the
first 200 learning cycles, when it is then progressively increased up to (q × 1.5)
in the cycle 500 (see Equation 4). Although embedding quality (KSyn) is not
necessarily worsen during the last 200 learning cycles, higher values for γ can
negatively affect MRR, which seems consistent to results found in [6].

(2) In the second learning phase, a relation-based projection matrix is added
to the best model (chosen by selecting the best combination of MRR and KSyn)
for additional 500 learning cycles. There is a considerable improvement in the
MRR metric in the first cycles (< 50), when no further improvement is shown,
and models become stable regarding MRR. However, the MRR improvement
implies decay in the KSyn score. We believe relation-based projection matrices
do not favor embedding quality and make embedding approaches biased by the
traditional LP evaluation protocol. One possible reason for this outcome is that
non-similar entities separated by opposite hyper-hemispheres (opposite sides of
any dimension within the hyperspace), even if they are very close to each other,
can be pre-projected to opposite directions by the relation matrix before having
the relation vector added to their latent composition.

(a) Epilepsy (b) CHSI

Fig. 1: MRR vs KSyn on two benchmark datasets – although MRR slightly
improves when a relation-base projection matrix is added in the second learning
phase, there is a decay in the KSyn score indicating loss of embedding quality.
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Simple vs. complex embedding approaches In Table 3, we present the
F1-scores for the risk assessment problem designed as a classification task. We
compare three distinct learning approaches: (a) firstly, embedding models are
learned based on the MRR metric only; (b) then we used a combination of
MRR and KSyn metrics to perform evaluation and select the best model during
training; (c) finally, we added a relation-based projection matrix on the top of
the best model. Although MRR does not directly reflect the resulting embedding
quality and synergy for similar clustered entities, it is still a good evaluation
metric to be used alongside the process of learning KER. However, when we
pairwise MRR with a way of enforcing embedding synergy (MRR+KSyn Linear),
the resulting models are more suitable for a classification tasks that directly
relying on the embedding representation and the probabilistic distribution of
target labels within the entity neighbors in the vector space. Finally, although
previous approaches have been exploring more complex ways of learning KER
(MRR+KSyn Matrix), we found strong evidence that the LP diverts attention
from the fact the overall embedding representation model is expected to carry
on a semantically relatedness among similar entities, favoring the knowledge
completion task only, thus badly performing when evaluated on tasks the rely
on the embedding quality, such as risk assessment.

Table 3: Resulting F1-scores for the risk assessment task regarding each embed-
ding learning validation strategy.

Learning Validation Strategy
MRR (only) MRR + KSyn MRR + KSyn

Dataset (Linear) (Linear) (Matrix)

Mushroom 0.9986 0.9988 0.8679
Epilepsy 0.5799 0.5828 0.4973
CHSI 0.3718 0.4794 0.3644

Pregnancy 0.2964 0.3053 0.2293

Model explainability Decision trees are known by its capability to efficiently
deal with large, complicated datasets without imposing a complicated paramet-
ric structure, and break down a complex classification process into a collection
of simpler decisions, facilitating feature selection, and thus providing a solution
that is easier to interpret [21, 23]. However, they are model-oriented and target
specific classification labels. We used the cluster synergy analysis to provide ex-
plainability for a resulting embedding model: (a) first, we can provide a feature-
relevance analysis that is performed based on the resulting model regarding a
specific test set, i.e., the way features are ranked is sensible to the test subjects
(Figure 2); and (b) to each test subject we can perform feature-relevance analy-
sis and provide the individual explainability to each test case. Figure 3 compares
feature-value relevance from two samples of mushroom (poisonous vs. edible) in
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the test set. Relevant feature-value pairs differ between each other sample, and
also differ comparatively to the resulting feature relevance regarding the overall
test set, when comparing Figures 2 and 3.

(a) Mushroom (b) Pregnancy

Fig. 2: Feature relevance analysis for the resulting embedding model regarding
the test set over the training set.

5 Conclusions

While deep learning methods have led to many breakthroughs in practical ML
applications, there is still a lack on how to develop systems that can ‘understand’
and ‘explain’ the decisions they make. A critical step in achieving ML explain-
ability is to design knowledge meaning representations, and KG embeddings are
a potential approach towards that direction. We introduce novel perspectives of
using KG embeddings techniques to support subsequent ML applications in this
sense and we review some hyperparameter tuning effects: (a) higher dimensional
spaces do not necessarily improve embedding performance and quality, but they
are affected by learning rate and margin; (b) traditional KER evaluation proto-
col is biased by the LP task, i.e., embedding approaches are expected to provide
representation models that express the semantically similarity among similar
nearby entities; instead, whereas trying to improve LP accuracy, enhanced mod-
els fail on satisfying the intra-cluster semantic similarity of entity vectors; and
finally, (c) we introduce a cluster synergy analysis to support model explain-
ability that enables tracking input entities back into the training gold standard
sets and understanding the relations between these entities – from the result-
ing knowledge embedding representation, cluster synergy analysis provides the
overall feature-relevance for a test set regarding the training samples, and the
ability to individually perform feature-value relevance to each test subject.

We plan to expand current experiments by looking at alternative ways of
dealing with test cases, evaluating further embedding constraints (e.g., regular-
ization, disjoint sets, and taxonomies), and using temporal-based datasets to
draw the high-level picture on how risk changes and how it is timely affected.
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Fig. 3: Risk assessment explainability analysis – KSyn of each pair (feature,
value) for two mushroom samples; relevant feature-values pair are different com-
paring two mushroom samples (poisonous vs. edible).
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