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ABSTRACT We explore online inductive transfer learning, with a feature representation transfer from a
radial basis function network formed of Gaussianmixturemodel hidden processing units to a direct, recurrent
reinforcement learning agent. This agent is put to work in an experiment, trading the major spot market
currency pairs, where we accurately account for transaction and funding costs. These sources of profit and
loss, including the price trends that occur in the currency markets, are made available to the agent via a
quadratic utility, who learns to target a position directly. We improve upon earlier work by targeting a risk
position in an online transfer learning context. Our agent achieves an annualised portfolio information ratio of
0.52 with a compound return of 9.3%, net of execution and funding cost, over a 7-year test set; this is despite
forcing the model to trade at the close of the trading day at 5 pm EST when trading costs are statistically the
most expensive.

INDEX TERMS Policy gradients, recurrent reinforcement learning, online learning, transfer learning,
financial time series.

I. INTRODUCTION
Forecasters of financial time series commonly make use of
supervised learning. For example, Tsay and Chen [1] apply
both parametric approaches such as nonlinear state-space
models and non-parametric approaches such as local learning
to nonlinear time series analysis. Bengio [2] applies learning
algorithms to decision making with financial time series.
He notes that the traditional approach in this domain is to
train a model using a prediction criterion, such as minimising
mean-square prediction error or maximising the likelihood of
a conditional model of the dependent variable. He finds that
with noisy time series, better results are obtained when the
model is trained directly to maximise the financial criterion
of interest, here gains and losses (including those due to
transactions) incurred during trading.

In this spirit, we extend the earlier work of Moody and
Wu [3] and Gold [4], where direct, recurrent reinforcement
learning agents are put to work in financial trading strategies.
Rather than optimising for an intermediate performance
measure such as maximal forecast accuracy or minimal
forecast error, which is still the traditional approach in this
domain, we maximise a more direct performance measure
such as quadratic economic utility. An advantage of the
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approach is that we can use the risk-adjusted returns of the
trading strategy, execution cost and funding cost to influence
the learning of the model and update model parameters
accordingly.

Whereas the focus of Moody and Wu [3] was on the use
of the differential Sharpe ratio as a performance measure,
we adopt the quadratic utility of Sharpe [5]. This utility
ameliorates the undesirable property of the Sharpe ratio
in that it penalises a model that produces returns larger
than E[r2t ]

E[rt ] , that is, the ratio of the expectation of squared
returns to the expectation of returns [6]. For this reason,
along with the use of relatively weak features and shared
backtest hyper-parameters, Gold [4] obtained mixed results
when experimenting with cash currency pairs. In contrast,
our experiment with the major cash currency pairs sees our
recurrent reinforcement learning trader achieve an annualised
portfolio information ratio of 0.52 with a compound return of
9.3%, net of execution and funding cost, over a seven-year
test set. This return is achieved despite forcing the model to
trade at the close of the trading day at 5 pm EST when trading
costs are statistically the most expensive.

Aside from the different utility functions, we put these
improved experiment results down to a combination of
several factors. Firstly, we use more powerful feature
engineering in the shape of radial basis function networks.
For example, the hidden processing units of these networks
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have means, covariances and structures that are determined
by an unsupervised learning procedure for finite Gaussian
mixture models [7]. The approach is a form of continual
learning, explicitly inductive, feature representation transfer
learning [8], where the knowledge of the mixture model
is transferred to upstream models. Secondly, when opti-
mising our utility function with respect to the recurrent
reinforcement learner’s parameters, we do so sequentially
online during the test set, using an extended Kalman filter
optimisation procedure [9]. In contrast, the earlier work uses
less powerful offline batch gradient ascent methods that cope
less well with non-stationary financial time series.

Merton [10] modelled the dynamics of financial assets
as a jump-diffusion process, which is commonly used in
financial econometrics. The jump-diffusion process implies
that financial time series should observe small changes over
time, so-called continuous changes, as well as occasional
jumps. A sensible approach for coping with nonstationarity
is to allow models to learn continuously.

We finish this section with a description of the layout
of this paper. Section II provides preliminary introductions
to transfer learning and reinforcement learning via policy
gradients and ends with an overview of trading in the foreign
exchange market. Section III introduces the experiment
methods of this paper, including the targeting of financial
risk positions with direct recurrent reinforcement and feature
representation transfer via radial basis function networks. The
section also describes the baseline models used to compare
the results of the marquis model. Finally, the section ends
by describing the marquis model of this paper, which is a
feature representation transfer from a radial basis function
network to a direct recurrent reinforcement learning agent;
this meta-model is shown visually in figure 3.
Section IV details the design of the experiment that we

conduct on daily sampled foreign exchange pairs. The data
is obtained from Refinitiv. We evaluate performance using
the annualised information ratio, which is computed on daily
returns that are net of transaction and funding costs. The
section completes a brief description of the hyper-parameters
set for the various models. The final sections describe the
experiment results in section V, provide a discussion thereof
in section VI and conclude with remarks in section VII.

II. PRELIMINARIES
This section introduces the policy gradient form of reinforce-
ment learning and how it has been put to work empirically
in quantitative finance, particularly with automated trading
strategies. Finally, we finish the section with a short review
of more recent work.

A. TRANSFER LEARNING
Transfer learning refers to the machine learning paradigm
in which an algorithm extracts knowledge from one or
more application scenarios to help boost the learning
performance in a target scenario [11]. Typically, traditional
machine learning requires significant amounts of training

data. Transfer learning copes better with data sparsity by
looking at related learning domains where data is sufficient.
Even in a big data scenario such as with streaming high-
frequency data, transfer learning benefits by learning the
adaptive statistical relationship of the predictors and the
response. An increasing number of papers focus on online
transfer learning [12]–[14]. Following Pan and Yang [15],
we define transfer learning as:
Definition 1 (Transfer Learning): Given a source domain

DS and learning task TS , a target domainDT and learning task
TT , transfer learning aims to help improve the learning of the
target predictive function fT (.) in DT using the knowledge in
DS and TS , where DS 6= DT , or TS 6= TT .

In the context of this paper, the source domain DS
represents the feature space, which consists of the daily
returns of the 36 currency pairs that are used in our
experiment. The source learning task TS is the unsupervised
compression of this feature space into a clustered form
that learns its intrinsic nature. The clusters are formed via
Gaussian mixture models, and we transfer their output via
radial basis function networks to currency pairs that we
wish to trade in the target domain DT . The target learning
task TT is to take financial risk positions in these currency
pairs for economic utility maximisation via direct recurrent
reinforcement learning.

B. POLICY GRADIENT REINFORCEMENT LEARNING
Williams [16] was one of the first to introduce policy gradient
methods in a reinforcement learning context. Whereas most
reinforcement learning algorithms focus on action-value
estimation, learning the value of actions and selecting them
based on their estimated values, policy gradient methods
learn a parameterised policy that can select actions without
using a value function. Williams also introduced his reinforce
algorithm

1θ ij = ηij(r − bij) ln(∂πi/∂θ ij),

where θ ij is the model weight going from the j′th input to
the i′th output, and θ i is the weight vector for the i′th hidden
processing unit of a network of such units, whose goal it is
to adapt in such a way as to maximise the scalar reward r .
For the moment, we exclude the dependence on the time of
the weight update to make the notation clearer. Furthermore,
ηij is a learning rate, typically applied with gradient ascent, bij
is a reinforcement baseline, conditionally independent of the
model outputs yi, given the network parameters θ and inputs
xi. ln(∂πi/∂θ ij) is known as the characteristic eligibility of
θ ij, where πi(yi = c, θ i, xi), is a probability mass function
determining the value of yi as a function of the parameters
of the unit and its input. Baseline subtraction r − bij plays
a vital role in reducing the variance of gradient estimators.
Sugiyama [17] shows that the optimal baseline is given as

b∗ =
Ep(r|θ )

[
rt‖
∑T

t=1 ∇ lnπ (at |st , θ)‖2
]

Ep(r|θ )
[
‖
∑T

t=1 ∇ lnπ (at |st , θ )‖2
] ,
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where the policy function π (at |st , θ ) denotes the probability
of taking action at at time t given state st , parameterised by θ .
The expectation Ep(r|θ ), is distributed over the probability of
rewards given the model parameterisation.

The main result of Williams’ paper is
Theorem 1: For any reinforce algorithm, the inner product

of E[1θ |θ ] and ∇E[r|θ ] is non-negative, and if ηij > 0, then
this inner product is zero if and only if ∇E[r|θ ] = 0. If ηij is
independent of i and j, then E[1θ |θ ] = η∇E[r|θ ].
This result relates ∇E[r|θ ], the gradient in weight space

of the performance measure E[r|θ ], to E[1θ |θ ], the average
update vector in weight space. Thus for any reinforce
algorithm, the average update vector in weight space lies in
a direction for which this performance measure is increasing,
and the quantity (r − bij) ln(∂πi/∂θ ij) represents an unbiased
estimate of ∂E[r|θ ]/∂θ ij.
Sutton and Barto [18] demonstrate an actor-critic version

of a policy gradient model, where the actor references the
learned policy and the critic refers to the learned value
function, usually a state-value function. Denote the scalar
performance measure as J (θ ); the gradient ascent update
takes the form

θ t+1 = θ t + η∇J (θ ).

With the one-step actor-critic policy gradient algorithm,
one inserts a differentiable policy parameterisation π (a|s, θ ),
a differentiable state-value function parameterisation v̂(s,w)
and then one draws an action

at ∼ π(.|st , θ ),

taking action at and observing a transition to state st+1 with
reward rt+1. Define

δt = rt+1 + γ v̂(st+1,wt)− v̂(st ,wt),

where 0 � γ ≤ 1 is discount factor. The critic’s weight
vector is updated as follows

wt = wt−1 + ηwδt∇wv̂(st ,wt),

and finally, the actor’s weight vector is updated as

θ t = θ t−1 + ηθδt∇ lnπ (at |st , θ ).

The actor-critic architecture uses temporal-difference learn-
ing combined with trial-and-error learning to improve the
learned policy sequentially.

1) POLICY GRADIENT METHODS IN FINANCIAL TRADING
Moody et al. [6] propose to train trading systems and portfo-
lios by optimising objective functions that directly measure
trading and investment performance. Rather than basing a
trading system on forecasts or training via a supervised
learning algorithm using labelled trading data, they train
their systems using a direct, recurrent reinforcement learning
algorithm, an example of the policy gradient method. The
direct part refers to the fact that the model tries to target a
position directly, and the model’s weights are adapted such

that the performancemeasure ismaximised. The performance
function that they primarily consider is the differential Sharpe
ratio. Denote the annualised Sharpe ratio [19] as

srk = 2520.5 ×
rk − rf
sk

,

where rk is the return of the k ′th strategy, with standard
deviation sk and rf is the risk-free rate. For ease of
explanation, we now remove the strategy index k and replace
it with a time index t . The differential Sharpe ratio is defined
as

dsrt
dτ
=
bt−11at − 0.5 at−11bt

(at−1 − a2t−1)
3/2

, (1)

where the quantities at and bt are exponentially weighted
estimates of the first and second moments of the reward rt

at = at−1 + τ1at = at−1 + τ (rt − at−1)

bt = bt−1 + τ1bt = bt−1 + τ (r2t − bt−1).

The exponential decay constant is τ ∈ (0, 1]. They consider
a batch gradient ascent update for model parameters θ

1θT = η
dsrT
dθ

,

where

dsrT
dθ
=

T∑
t=1

dsrT
drt

drt
dθ

=

T∑
t=1

{
bT − aT rt

(bT − a2T )
3/2

}{
drt
dft

dft
dθ
+

drt
dft−1

dft−1
dθ

}
.

The reward

rt = 1pt ft−1 − δt |1ft |

depends on the change in reference price pt from which a
gross profit and loss are computed, transaction cost δt and
a differentiable position function of the model inputs and
parameters ft , f (xt , θ t ) which is in the range −1 ≤ ft ≤ 1.

Trading and portfolio management systems require prior
decisions as input to properly consider the effect of transac-
tion costs, market impact, and taxes. This temporal depen-
dence on the system state requires reinforcement versions
of standard recurrent learning algorithms. Moody et al. [6]
present empirical results in controlled experiments that
demonstrate the efficacy of some of their methods for
optimising trading systems and portfolios. For a long/short
trader, they find that maximising the differential Sharpe ratio
yields more consistent results than maximising profits. Both
methods outperform a trading system based on forecasts
that minimise mean-square error. They find that portfolio
trading agents trained to maximise the differential Sharpe
ratio achieve better risk-adjusted returns than those trained
to maximise profit. However, an undesirable property of the
Sharpe ratio is that it penalises a model that produces returns
larger than E[r2]

E[r] ≈
bt
at
, that is, the ratio of the expectation
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of squared returns to the expectation of returns, which is
counter-intuitive to investors’ notion of risk and reward.

Gold [4] extends Moody et al.’s [6] work and investi-
gates high-frequency currency trading with neural networks
trained via recurrent reinforcement learning. He compares
the performance of linear networks with neural networks
containing a single hidden layer and examines the impact of
shared system hyper-parameters on performance. In general,
he concludes that the trading systems may be effective but
that the performance varies widely for different currency
markets, and simple statistics of the markets cannot explain
this variability.

He also finds that the linear recurrent reinforcement learn-
ers outperform the neural recurrent reinforcement learners
in this application. Here, we suspect that the choice of
inputs (past returns of the target) results in features with
weak predictive power. As a result, the neural reinforcement
learner struggles to make meaningful forecasts. In com-
parison, the linear recurrent reinforcement learner does
better coping with both noisy inputs and outputs, generating
biased yet stable predictions. Gold also used shared hyper-
parameters. Many of the currency pairs behave differently
in terms of their price action. For example, US dollar
crosses are usually momentum-driven. Cross-currencies,
such as the Australian dollar versus the New Zealand dollar,
tend to be mean-reverting in nature. Therefore, sharing
hyper-parameters probably negatively impacts the ex-post
performance here.

2) MORE RECENT WORK
In terms of more recent work involving policy gradient
methods in finance, Tamar et al. [20] discuss risk-sensitive
policy gradient methods that augment the standard expected
cost minimisation problem with a measure of variability
in cost. They consider static and time-consistent dynamic
risk measures that combine a standard sampling approach
with convex programming. Their approach is actor-critic for
dynamic risk measures and involves explicit approximation
of value functions.

Luo et al. [21] build a novel reinforcement learning frame-
work trader. They adopt an actor-critic algorithm called deep
deterministic policy gradient to find the optimal policy. Their
proposed algorithm uses convolutional neural networks and
outperforms some baseline methods when experimenting
with stock index futures. They also discuss the generalisation
and implications of the proposed method for finance.

Zhang et al. [22] use deep reinforcement learning algo-
rithms such as deep q-learning networks [23], neural policy
gradients [24] and advantage actor-critic [25] to design
trading strategies for continuous futures contracts. They use
long short-termmemory neural networks [26] to train both the
actor and critic networks. Both discrete and continuous action
spaces are considered, and volatility scaling is incorporated
to create reward functions that scale trade positions based on
market volatility. They show that their method outperforms
various baseline models, delivering positive profits despite

high transaction costs. Their experiments show that the
proposed algorithms can follow prominent market trends
without changing positions and scale down or hold through
consolidation periods.

Azhikodan et al. [27] propose automated trading systems
that use deep reinforcement learning, specifically a deep
deterministic policy gradient-based neural network model
that trades stocks to maximise the gain in asset value.
They determine the need for an additional system for
trend-following to work alongside the reinforcement learning
algorithm. Thus they implement a sentiment analysis model
using a recurrent convolutional neural network to predict the
stock trend from financial news.

Ye et al. [28] address an optimal trade execution problem
that involves limit order books. Here, the model must
learn how best to execute a given block of shares at
minimal cost or maximal return. To this end, they propose
a deep reinforcement learning-based solution that uses a
deterministic policy gradient framework. Experiments on
three real market datasets show that the proposed approach
significantly outperforms other methods such as a submit
and leave policy, a q-learning algorithm [29] and a hybrid
method that combines the Almgren-Chriss model [30] with
reinforcement learning.

Aboussalah and Lee [31] explore policy gradient tech-
niques for continuous action and multi-dimensional state
spaces, applying a stacked deep dynamic recurrent reinforce-
ment learning architecture to construct an optimal real-time
portfolio. The algorithm adopts the Sharpe ratio as a utility
function to learn the market conditions and rebalance the
portfolio accordingly.

Betancourt and Chen [32] propose a novel portfolio
management method using deep reinforcement learning on
markets with a dynamic number of assets. Their model
endeavours to learn the optimal inventory to hold whilst
minimising transaction costs.

Lei et al. [33] acknowledge that algorithmic trading is an
ongoing decision making problem, where the environment
requires agents to learn feature representation from highly
non-stationary and noisy financial time series, and decision
making requires that agents explore the environment and
simultaneously make correct decisions in an online manner
without any supervised information. Instead, they propose to
tackle both problems via a time-driven feature-aware deep
reinforcement learning model to improve the financial signal
representation learning and decision making.

C. FOREIGN EXCHANGE TRADING
This section describes the foreign exchange market and the
mechanics of the foreign exchange derivatives, which are
central to the experimentation that we conduct in section IV.
The global foreign exchange market sees transactions above
6 trillion US dollars traded daily. Figure 1 shows this
breakdown by instrument type and is extracted from the
Bank of International Settlements Triennial Central Bank
Survey, 2019.
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FIGURE 1. Average daily global foreign exchange market turnover in
millions of U.S. dollars, source: Bank of International Settlements.

FX transactions implicitly involve two currencies: the
dominant or base currency is quoted conventionally on the
left-hand side and the secondary or counter currency on
the right-hand side. If foreign exchange positions are held
overnight, the trader will earn the interest rate of the currency
bought and pay the interest rate of the currency sold. The
interest rates for specific maturities are determined in the
inter-bank currency market and are heavily influenced by the
base rates typically set by central banks. Foreign exchange
trades settle two business days after the trade date by market
convention unless otherwise specified.

Clients fund their positions by rolling them forward via
tomorrow/next (tomnext) swaps. Tomnext is a short-term
foreign exchange transaction where a currency pair is
simultaneously bought and sold over two business days:
tomorrow (in one business day) and the following day (two
business days from today). The tomnext transaction allows
traders to maintain their position without being forced to
take physical delivery and is the convention applied by prime
brokers to their clients on the inter-bank foreign exchange
market. In order to determine this funding cost, one needs to
compute the forward rates (prices). Forwards are agreements
between two counterparties to exchange currencies at a
predetermined rate on some future date.

Forward rates are calculated by adding forward points to
a spot rate. These points reflect the interest rate differential
between the two currencies being traded and the maturity
of the trade. Forward points do not represent an expectation
of the direction of a currency but rather the interest rate
differential. Let bid spott denote the spot/cash currency pair
rate at which price takers can sell at time t . Similarly, let
askspott denote the spot/cash currency pair rate at which price
takers can buy at time t . The spot mid-rate is

mid spott = 0.5× (bid spott + askspott ). (2)

Forward points are computed as follows

mid fptst = mid spott (e2 − e1)
T

360φ
,

where e2 is the secondary interest rate, e1 is the dominant
interest rate, T is the number of days till maturity, and

FIGURE 2. Refinitiv GBPUSD forward rates.

φ is the tick size or pip value for the associated currency
pair. Example forward points for GBPUSD are shown in
figure 2. GBP = is the Refinitiv information code (ric)
for cash GBPUSD and GBPTND = is the ric for tomnext
GBPUSD forward points. Note that the forward points are
quoted as a bid/ask pair, reflecting the appropriate interest
differential applied to sellers and buyers and the additional
cost (spread) quoted by the foreign exchange forwardsmarket
maker to compensate them for their quoting risk. The tomnext
outrights are computed as

bid tnt = bid spott + ask fptst φ

ask tnt = askspott + bid fptst φ.

As an example of rolling a long GBPUSD position forward,
the tomnext swap would involve selling GBPUSD at bid spott
and repurchasing it at ask tnt . The cost of this roll is thus
notional × (bid spott − ask tnt ), where notional denotes the
size of the position taken by the trader. If a trader is short
GBPUSD, then to roll the position forward, she would buy
askspott and sell forward bid tnt , with the funding cost being
notional × (bid tnt − ask

spot
t ). This funding may be a loss but

also a profit. In addition, many currency market participants
hold foreign exchange deliberately to capture the favourable
interest rate differential between two currency pairs. This
approach is known as the carry trade and is extremely popular
with the retail public in Japan, where the Yen interest rates
have been historically low relative to other countries for quite
some time.

III. EXPERIMENT METHODS
This section describes how our recurrent reinforcement
learner targets a position directly. In addition, we also
describe the baseline models that are used for comparison
and contrast. Next, we explore online inductive transfer
learning, with feature representation transfer from a radial
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basis function network to a direct, recurrent reinforcement
learning agent. The radial basis function network consists of
hidden processing units of the Gaussian mixture model. The
recurrent reinforcement learning agent learns the desired risk
position via the policy gradient paradigm. Finally, the agent
is put to work trading the major spot market currency pairs.

A. TARGETING A POSITION WITH DIRECT RECURRENT
REINFORCEMENT
Sharpe [5] discusses asset allocation as a function of expected
utility maximisation, where the utility function may be more
complex than that associated with mean-variance analysis.
Denote the expected utility at time t for a single portfolio
constituent as

υt = µt −
λ

2
σ 2
t , (3)

where the expected return µt = E[rt ] and variance of returns
σt = E[r2t ] − E[rt ]2 may be estimated in an online fashion
with exponential decay, where as before τ is an exponential
decay constant

µt = τµt−1 + (1− τ )rt , (4)

σ 2
t = τσ

2
t−1 + (1− τ )(rt − µt )2. (5)

The risk appetite constant λ > 0 can be set as a function
of an investor’s desired risk-adjusted return, as demonstrated
by Grinold and Kahn [34]. The information ratio is a
risk-adjusted differential reward measure, where the differ-
ence is taken between the model or strategy being evaluated
and a baseline or benchmark strategy with expected returns
bt = E

[
r (b)t

]
:

irt = 2520.5 ×
µt − bt
σt

. (6)

The similarity to the Sharpe ratio is apparent. Setting bt =
0 and substituting the non-annualised information ratio into
the quadratic utility and differentiating with respect to the
risk, we obtain a suitable value for the risk appetite parameter:

irt =
µt

σt

υt = irt × σt −
λ

2
σ 2
t

dυt
dσt
= irt − λσt = 0

λ =
irt
σt
. (7)

The net returns whose expectation and variance we seek to
learn are decomposed as

rt = 1pt ft−1 − δt |1ft | + κt ft , (8)

where 1pt is the change in reference price, typically a mid-
price

1pt = 0.5× (bidt + askt − bidt−1 − askt−1),

δt represents the execution cost for a price taker

δt = max[0.5× (askt − bidt ), 0],

κt is the profit or loss of rolling the overnight foreign
exchange position, the so-called ’carry’ (see section II-C) and
ft is the desired position learnt by the recurrent reinforcement
learner

ft = tanh
(
θTt xt

)
. (9)

The model is maximally short when ft = −1 and maximally
long when ft = 1. The recurrent nature of the model occurs
in the input feature space where the previous position is fed
to the model input

xt = [1, φ1(ut ), . . . , φm(ut ), ft−1]T ∈ Rm+2, (10)

and φj(.) denotes a radial basis function hidden processing
unit, in a network of m such units, which takes as input a
feature vector ut , see section III-B. The goal of our recurrent
reinforcement learner is to maximise the utility in equation 3
by targeting a position in equation 9. To do this, one may
apply an online stochastic gradient ascent update

θ t = θ t−1 + η∇υt ≡ 1θ t + η
dυt
dθ t

.

Instead of a static learning rate η, one may consider the Adam
optimiser of Kingma and Ba [35], where an adaptive learning
rate is applied. This adaptive learning rate is a function of the
gradient expectation and variance. The weight update then
takes the form

mt = β1mt−1 + (1− β1)∇υt
vt = β2vt−1 + (1− β2)(∇υt )2

θ t = θ t−1 + η
m̂t

v̂0.5t + ε
,

with m̂t = mt/(1 − β1) and v̂t = vt/(1 − β2)
denoting bias-corrected versions of the expected gradient and
gradient variance, respectively. β1 and β2 are exponential
decay constants. In earlier work, Bottou [36] had considered
approximating the Hessian of the performance measure with
respect to the model weights as a function of gradient only
information. In practice, we find that Adam takes many
iterations of model fitting to get the weights large enough
to take a meaningful position via function 9; this is not
necessarily an Adam problem, but a result of the tanh
position function taking a while to saturate. If the weights are
too small, then the average position taken by the recurrent
reinforcement learner will be small as well. Therefore,
we settle on an extended Kalman filter [9], [37] gradient-
based weight update, albeit modified for reinforcement
learning in this context.

In algorithm 1, Pt is an approximation to [∇2υt ]−1, the
inverse Hessian of the utility function υt with respect to the
model weights θ t .
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Algorithm 1: Extended Kalman Filter
Require: α, τ // α ≥ 0 is a Ridge penalty.
// 0� τ ≤ 1 is an exponential decay factor.
Initialise: θ = 0d , P = Id/α // 0d is a zero vector

in Rd.
// P is the precision matrix in Rd×d.
Input: ∇υt
Output: θ t

1 z = 1+∇υTt Pt−1∇υt/τ
2 k = Pt−1∇υt/(zτ )
3 θ t = θ t−1 + k
4 Pt = Pt−1/τ − kkT z

We decompose the gradient of the utility function with
respect to the recurrent reinforcement learner’s parameters as
follows:

∇υt =
dυt
drt

{
drt
dft

dft
dθ t
+

drt
dft−1

dft−1
dθ t−1

}
=

dυt
drt

{
drt
dft

{
∂ft
∂θ t
+

∂ft
∂ft−1

∂ft−1
∂θ t−1

}
+

drt
dft−1

{
∂ft−1
∂θ t−1

+
∂ft−1
∂ft−2

∂ft−2
∂θ t−2

}}
. (11)

The constituent derivatives for the left half of equation 11 are:

dυt
drt
= (1− η)[1− λ(rt − µt )]

drt
dft
= −δt × sign(1ft )+ κt × sign(ft )

dft
dθ t
= xt [1− tanh2 (θTt xt )]

+ θ t,m+2[1− tanh2 (θTt xt )]

×xt−1[1− tanh2 (θTt−1xt−1)].

B. RADIAL BASIS FUNCTION NETWORKS
In Borrageiro et al. [38], the authors show that online transfer
learning via radial basis function networks provides a
residual benefit in forecasting non-stationary time series.
The residual benefit stems from the feature representation
transfer of clustering algorithms. These algorithms are
adapted sequentially, as are the supervised learners, which
map the clustered feature space to the targets. The feature
engineering that we use in this paper uses clusters formed
of Gaussian mixture models. The network size is determined
by the unsupervised learning procedure of finite mixture
models described by Figueiredo and Jain [7]. Finally,
we briefly describe the key ingredients of this meta-algorithm
here.

The radial basis function network is a network of m > 0
Gaussian basis functions

φj(u) = exp
(
−
1
2
(u− µj)

T6−1j (u− µj)
)
.

Here we learn the j′th mean µj and covariance 6j through
a Gaussian mixture model fitting procedure. Denote the

probability density function of a k component mixture as

p(u|θ ) =
k∑
j=1

πjp(u|θ j) =
k∑
j=1

πjN (u|µj, 6j),

where

N (u|µ, 6) =
1

(2π )d/2|6|1/2

× exp
[
−

1
2
(u− µ)T6|−1(u− µ)

]
, (12)

and the mixing weights satisfy 0 ≤ πj ≤ 1,
∑k

j=1 πj = 1.
The maximum likelihood estimate

θML = argmax
θ

ln p(u|θ),

and the Bayesian maximum a posteriori criterion

θMAP = argmax
θ

ln p(u|θ)+ ln p(θ ),

cannot be found analytically. The standard way of estimating
θML or θMAP is the expectation-maximisation algorithm [39].
This iterative procedure is based on the interpretation of u as
incomplete data. The missing part for finite mixtures is the
set of labels Z = z0, . . . , zn, which accompany the training
data u0, . . . ,un, indicating which component produced each
training vector. Following Murphy [40], let us define the
complete data log-likelihood to be

`c(θ ) =
n∑
i=1

ln p(ui, zi|θ ),

which cannot be computed since zi is unknown. Thus, let us
define an auxiliary function

Q(θ , θ t−1) = E[`c(θ )|u, θ t−1],

where t is the current time step. The expectation is taken with
respect to the old parameters θ t−1 and the observed data u.
Denote as ric = p(zi = c|ui, θ t−1), cluster c’s responsibility
for datum i. The expectation step has the following form

ric =
πcp(ui|θc,t−1)∑k
j=1 πjp(ui|θ j,t−1)

.

The maximisation step optimises the auxiliary function Q
with respect to θ

θ t = argmax
θ

Q(θ , θ t−1).

The c′th mixing weight is estimated as

πc =
1
n

n∑
i=1

ric =
rc
n
.

The parameter set θc = {µc,6c} is then

µc =

∑n
i=1 ricui
rc

6c =

∑n
i=1 ric(ui − µc)(ui − µc)

T

rc
.
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As discussed by Figueiredo and Jain [7], expectation-
maximisation is highly dependent on initialisation. They
highlight several strategies to ameliorate this problem, such as
multiple random starts, final selection based on the maximum
likelihood of the mixture, or k-means based initialisation.
However, the distinction between model-class selection and
model estimation inmixturemodels is unclear. For example, a
3 component mixture in which one of themixing probabilities
is zero is indistinguishable for a 2 component mixture.
They propose an unsupervised algorithm for learning a
finite mixture model from multivariate data. Their approach
is based on the philosophy of minimum message length
encoding [41], where one aims to build a short-code that
facilitates a good data generation model. Their algorithm can
select the number of components and, unlike the standard
expectation-maximisation algorithm, does not require careful
initialisation. The proposed method also avoids another
drawback of expectation-maximisation for mixture fitting:
the possibility of convergence toward a singular estimate at
the boundary of the parameter space. Denote the optimal
mixture parameter set

θ∗ = argmin
θ
`FJ (θ ,u),

where

`FJ (θ ,u) =
n
2

k∑
j=1

ln
(
nπk
12

)
+
k
2
ln
(
n
12

)
+
k(n+ 1)

2
− ln p(u|θ).

This leads to a modified maximisation step

πc =

max
{
0,
(∑n

i=1 ric
)
−

n
2

}
∑k

j=1max
{
0,
(∑n

i=1 rij
)
−

n
2

}
for c = 1, 2, . . . , k.

The maximisation step is identical to expectation-
maximisation, except that the c′th parameter set θc is only
estimated when πc > 0 and θc is discarded from θ∗

when πc = 0. A distinctive feature of the modified
maximisation step is that it leads to component annihilation;
this prevents the algorithm from approaching the boundary of
the parameter space. In other words, if one of the mixtures is
not supported by the data, it is annihilated.

We finish the section by showing figure 3, which provides
a visual representation of the feature representation transfer
from the radial basis function network to the recurrent
reinforcement learning agent. The external input to the
transfer learner, represented by the left-most black circles,
is a vector of daily returns of the 36 currency pairs used in
the experiment, detailed in section IV-A. The grey circles
represent the radial basis function network hidden processing
unit layer. In addition, we have a blue circle that represents the
previously estimated position of the recurrent reinforcement
learning agent. The outputs of this hidden layer are stored

FIGURE 3. Feature representation transfer from a radial basis function
network to a recurrent reinforcement learning agent.

Algorithm 2: Exponentially Weighted Recursive Least-
Squares
Require: α, τ // α ≥ 0 is a Ridge penalty.
// 0� τ ≤ 1 is an exponential decay factor.
Initialise: w = 0d , P = Id/α // 0d is a zero vector

in Rd.
// P is the precision matrix in Rd×d.
Input: xt−1, xt ∈ Rd , yt // yt is the daily sampled

return of the target.

Output: ŷt
1 r = 1+ xTt−1Pt−1xt−1/τ
2 k = Pt−1xt−1/(rτ )
3 wt = wt−1 + k(yt − wT

t−1xt−1)
4 Pt = Pt−1/τ − kkT r
5 Pt = Ptτ // variance stabilisation

6 ŷt = wTt xt

in a feature vector, as shown by equation 10. These outputs
are fed into the recurrent reinforcement learning agent, who
learns the position function using equation 9. The weights of
the position function are fitted via the extended Kalman filter
procedure of algorithm 1. The gradient vector, fed into the
extended Kalman filter, is computed using equation 11. This
output is fed back into the hidden layer in a recurrent manner
represented by the dotted blue line.

C. BASELINE MODELS
In order to assess the comparative strength of the model
of section III-A, we employ two baseline models. The first
model is a momentum trader, which uses the sign of the next
step ahead return forecast as a target position. This model is
also a radial basis function network; except here, the feature
representation transfer of the Gaussian mixture model cluster
is made available to an exponentially weighted recursive
least-squares supervised learner. A visual representation of
themodel is similar to figure 3, without any recurrent position
unit as represented by the blue circle.
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The exponentially weighted recursive least-squares fitting
procedure is shown compactly in algorithm 2. The precision
matrix P0 may be initialised to the identity matrix scaled by
the inverse of the Ridge penalty, Idα−1 and the initial weights
w0 are typically initialised to the zero vector. The discount
factor τ is typically close to but less than 1. The particular
model form is experimented with by Borrageiro et al. [38] in
a multi-step horizon forecasting context.

Our second baseline is the carry trader, hoping to earn
the positive differential overnight foreign exchange rate.
Denoting the long and short carry as

κ
long
t = bid spott − ask tnt

κshortt = bid tnt − ask
spot
t ,

where the superscript spot denotes the cash price, and the
superscript tn denotes the tomorrow/next price, the position
of the carry trader is

f carryt =

{
sign

(
κ
long
t − κshortt

)
, if κ longt or κshortt > 0

0, otherwise.

In other words, the carry trader goes long the base currency
if the base currency has an overnight interest rate higher than
the counter currency. Equally, the carry trader sells the base
currency short if the base currency has an overnight interest
rate that is lower than the counter currency. Long and short
carry may be a cost rather than a profit due to the bid/ask
spread that traders makemarkets in tomnext swaps. Therefore
we allow the carry trader to abstain from trading completely
in such circumstances.

IV. EXPERIMENT DESIGN
In this section, we establish the design of the experiment,
beginning with a description of the data we use and finishing
up with a description of the performance evaluation criteria.

A. THE DATA
We obtain our experiment data from Refinitiv. We extract
daily sampled data for 36 major cash foreign exchange
pairs with available tomnext forward points and outrights.
These foreign exchange pairs are listed in table 1. Summary
statistics of the distribution of the daily returns for these
currency pairs are shown in table 2. The dataset begins 2010-
12-07 and ends on 2021-10-21, a total of 2,840 observations
per pair. Daily spot mid-price returns are constructed for each
of these currency pairs. These are used as the features for the
recurrent reinforcement learning agent and the exponentially
weighted recursive least-squares momentum trader. The
mid-price is defined in equation 2, and the return for the k ′th
pair is simply

retkt =
midkt
midkt−1

− 1 ≈ ln
(
midkt /mid

k
t−1
)
.

One of the challenges that the models will face in the
experiment is that these daily data show the last known top
of book spot and outright prices at the end of the trading day,

TABLE 1. The major foreign exchange pairs we use in our experiment,
with Refinitiv information codes (ric)s.

5 pm EST. The bid/ask spread for these prices are at their
widest statistically at this time. Therefore the execution and
funding costs will be more expensive; this contrasts with
a trader who can execute at a more liquid time, such as
2 pm GMT. If we try to use intraday data, say data sampled
minutely, Refinitiv restricts us to 41 trading days, which is
not a huge sample size. Figure 4 illustrates the challenge
succinctly. It shows relative intraday bid/ask spreads

spread spott =
askspott − bid spott

mid spott
,

for the 36 currency pairs that we experiment with. The data
are sampled minutely over two months ending mid-October
2021. The global maximum bid/ask spread occurs precisely
when Refinitiv samples the daily data.

B. PERFORMANCE EVALUATION METHODS
We have a little over 11 years of daily data to use in our
experiment. From these data, we construct daily returns for
each of the 36 currency pairs, reserving the first third as a
training set and the final two-thirds as a test set. The structure
of the radial basis function networks of sub-section III-B
is determined in the training set, with external input being
the returns of the various currency pairs. The recurrent
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TABLE 2. A statistical summary of the daily returns of the major foreign
exchange pairs we use in our experiment. The dataset begins 2010-12-07
and ends on 2021-10-21, a total of 2,840 observations per pair. The 25t́h,
50t́h and 75t́h percentiles of the returns distribution are shown along
with the mean returns and their standard deviations.

FIGURE 4. Relative intra-day bid/ask spreads for the 36 Refinitiv currency
pairs that we experiment with.

reinforcement learning agent is also fitted in the training set
to each currency pair, explicitly learning the weights in the
position function 9, using the extended Kalman filter learning
procedure of algorithm 1. Additionally, the momentum trader
of sub-section III-C is fitted in the training set to each
currency pair using algorithm 2. Both models continue to
learn online during the test set. However, the carry trader
baseline does not require any model fitting.

The test set evaluates performance for each currency pair
using the net profit and loss equation 8. This reward, net
of transaction and funding cost, is in price difference space.
We convert to returns space by dividing by the mid-price
computed using equation 2. These returns are accumulated to
produce the results shown in figure 6 and themiddle sub-plots
of figures 8 and 9. In addition, the daily returns are described
statistically in tables 3 and 4. In table 3, the information ratio
(ir) is computed using equation 6. We set the baseline return
bt = 0. In summary, we evaluate performance by considering
the risk-adjusted daily returns generated by each model, net
of transaction and funding costs.

C. HYPER-PARAMETERS
The following hyper-parameters are set in the experiment:
• τ = 0.99; this is the exponential decay constant of
moving moment equations 4, 5, 8, extended Kalman
filter weight algorithm 1 and exponentially weighted
recursive least-squares algorithm 2.

• α = 1; this is the Ridge penalty of extended Kalman
filter weight algorithm 1 and exponentially weighted
recursive least-squares algorithm 2.

• γ , the risk appetite parameter of equation 3, is initially
set to 1 and then updated by passing through the training
data once and setting it via the procedure of equation 7.

V. EXPERIMENT RESULTS
Figure 6 shows the accumulated returns for each strategy.
The reinforcement learning agent is denoted as drl, the
momentum trader is shown as mom and the carry trader
is indicated as carry. The carry baseline performs poorly,
reflecting the low-interest rate differential environment since
the 2008 financial crisis. Essentially the available funding
that can be earned relative to execution cost is small. Figure 5
shows the direction of travel in central bank interest rates
over the past 20 years. Central bank rates halved on average
during the 2008 global financial crisis and have declined
further since. In contrast, the momentum trader achieves
the highest return with an annual compound net return
of 11.7% and an information ratio of 0.4. Additionally,
the recurrent reinforcement learner achieves an annual
compound net return of 9.3%, with an information ratio
of 0.52. Its information ratio is driven higher because its
standard deviation of daily portfolio returns is two-thirds
of the momentum trader’s. Table 3 summarises net profit
and loss returns statistics by strategy, with a figure of the
distribution of the daily returns in figure 7. Table 4 shows the
funding or carry in returns space for each strategy. We can
see that the carry baseline does indeed capture positive carry,
although this return is not enough to offset the execution
cost and the profit and loss associated with holding risk,
which moves in a trend-following way, mainly as opposed
to the funding profit and loss. How funding moves opposite
to price trends is expected. Central banks invariably increase
overnight rates when currencies depreciate considerably to
make their currency more attractive and stem the tide of
depreciation. The Turkish Lira and Russian Ruble are two
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FIGURE 5. Stacked central bank interest rates in percentage points, data
source: Bank of international settlements.

TABLE 3. Portfolio net profit and loss returns by strategy: the
reinforcement learning agent is (drl), momentum trader is (mom) and
carry trader is (carry).

TABLE 4. Portfolio funding profit and loss returns by strategy: the
reinforcement learning agent is (drl), momentum trader is (mom) and
carry trader is (carry).

cases in point. We see evidence in table 4 that the recurrent
reinforcement learner captures more carry relative to the
momentum trader. This funding capture is expected as well,
as the funding profit and loss make their way into equation 8
and are propagated through the derivative of the utility
functionwith respect to themodel weights, using equation 11.

VI. DISCUSSION
Both baselines make decisions using incomplete information.
The momentum trader focuses on learning the foreign
exchange trends but ignores the execution and funding costs,
whereas the carry trader tries to earn funding but ignores
execution costs and the price movements of the underlying
currency pair. In contrast, the recurrent reinforcement learner
optimises the desired position as a function of market
moves and funding whilst minimising execution cost. To

FIGURE 6. Cumulative daily returns for the reinforcement learning agent
(pnl drl), momentum trader (pnl mom) and carry trader (pnl carry).

FIGURE 7. Distribution of daily returns for the reinforcement learning
agent (pnl drl), momentum trader (pnl mom) and carry trader (pnl carry).

TABLE 5. Empirical information ratios, source: Blackrock.

demonstrate that the recurrent reinforcement learner is indeed
learning from these reward inputs, we compare the realised
positions of a USDRUB trader where in the former case,
transaction costs and carry are removed (figure 8) and in the
latter case, transaction costs and carry are included (figure 9).
We see that without cost, the recurrent reinforcement learner
realises a long position (buying USD and selling RUB)
broadly, as the Ruble depreciates over time. In contrast, when
funding cost is accurately applied, the overnight interest rate
differential is roughly 6%, and the recurrent reinforcement
learner learns a short position (selling USD and buying RUB),
capturing this positive carry. The positive carry is not enough
to offset the rapid depreciation of the Ruble.

How significant are these results? Grinold and Kahn [34]
show table 5 of empirical information ratios for US fund
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FIGURE 8. A USDRUB reinforcement learning agent trading without
execution or funding cost.

FIGURE 9. A USDRUB reinforcement learning agent trading with
execution and funding cost.

managers over the five years from January 2003 through
December 2007. The data relates to 338 equity mutual
funds, 1,679 equity long-only institutional funds, 56 equities
long-short institutional funds and 537 fixed-income mutual
funds. Although now a bit dated, the results indicate that
our recurrent reinforcement learner that trades statistically
at the worst time of day in the foreign exchange market
achieves an information ratio at the 75′th percentile of
information ratios achieved empirically by various passive
and active fund managers within fixed income and equities.
The momentum trader achieves an information ratio between
the 50′th and 75′th percentile. The information ratio is a
measure of consistency and has a probabilistic interpretation:
it measures the probability that a strategywill achieve positive
residual returns in every period [34]. Equation 6 shows that
the information ratio is the ratio of residual return to residual
risk. Let us denote this residual return as the strategy’s alpha:

αt = µt − bt .

The probability of realising a positive residual return is

Pr(αt > 0) = 8(irt ),

where 8(.) denotes the cumulative normal distribution
function. In this respect, we find that recurrent reinforcement

learner has a probability of positive residual return of 70%
and the momentum baseline has a probability of positive
residual return of 66%.

In terms of future work, one might consider a multi-layer
perceptron version of our recurrent reinforcement learner.
One might also consider an echo state network [42] version
of the model. In addition, one might be able to improve the
results further by applying a portfolio overlay. The utility
function of equation 3 is readily treated as a portfolio problem

υt = hTµt −
λ

2
hT6th,

where the optimal, unconstrained portfolio weights are
obtained by differentiating the portfolio utility with respect
to the weight vector

h∗ =
1
λ
6−1t µt .

Another approach is to treat portfolio selection as a policy
gradient problem, where the policy of picking actions,
or this case portfolio constituents, is estimated via function
approximation techniques.

VII. CONCLUSION
We conduct a detailed experiment on major cash foreign
exchange pairs, accurately accounting for transaction and
funding costs. These sources of profit and loss, including
the price trends that occur in the currency markets, are
made available to our recurrent reinforcement learner via a
quadratic utility, which learns to target a position directly.
We improve upon earlier work by casting the problem
of learning a risk position in an online learning context.
This online learning occurs sequentially in time but also
via transfer learning. This transfer learning takes the form
of radial basis function hidden processing units, whose
means, covariances and overall size are determined by an
unsupervised learning procedure for finite Gaussian mixture
models. The intrinsic nature of the feature space is learnt
and made available to the recurrent reinforcement learner and
baseline supervised-learning momentum trader. The recur-
rent reinforcement learning trader achieves an annualised
portfolio information ratio of 0.52 with a compound return
of 9.3%, net of execution and funding cost, over a 7-year
test set, despite forcing the model to trade at the close of
the trading day 5 pm EST, when trading costs are statistically
the most expensive. The momentum baseline trader achieves
a similar total return but a lower risk-adjusted return. The
recurrent reinforcement learner does maintain an essential
advantage in that the model’s weights can be adapted to
reflect the different sources of profit and loss variation,
including returns momentum, transaction costs and funding
costs. We demonstrate this visually in figures 8 and 9, where
a USDRUB trading agent learns to target different positions
that reflect trading in the absence or presence of cost.
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