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Abstract

The current mode of use of Electronic Health
Records (EHR) elicits text redundancy. Clin-
icians often populate new documents by du-
plicating existing notes, then updating accord-
ingly. Data duplication can lead to propagation
of errors, inconsistencies and misreporting of
care. Therefore, measures to quantify informa-
tion redundancy play an essential role in eval-
uating innovations that operate on clinical nar-
ratives.

This work is a quantitative examination of
information redundancy in EHR notes. We
present and evaluate two methods to mea-
sure redundancy: an information-theoretic
approach and a lexicosyntactic and seman-
tic model. Our first measure trains large
Transformer-based language models using
clinical text from a large openly available
US-based ICU dataset and a large multi-
site UK based Hospital. By comparing
the information-theoretic efficient encoding of
clinical text against open-domain corpora, we
find that clinical text is ∼ 1.5x to ∼ 3x less ef-
ficient than open-domain corpora at conveying
information. Our second measure, evaluates
automated summarisation metrics Rouge and
BERTScore to evaluate successive note pairs
demonstrating lexicosyntactic and semantic re-
dundancy, with averages from ∼43 to ∼65%.

1 Introduction

Electronic Health Record (EHR) text details patient
history, findings, symptoms, diagnoses, procedures
and plans for future care. A single inpatient hos-
pital stay can result in multiple document types
(e.g. GP letters, inpatient admission / discharge
notes) created by the different specialisms involved
in the patient’s care (e.g. nursing, A&E, cardiol-
ogy, neurology, radiology etc.) as well as progress
documents to address previous questions and intro-
ducing follow-up actions or queries. As a result,
a patient’s records can contain different perspec-

tives accumulated through time, by various special-
ities documenting the patient’s ‘progress’ through-
out the care pathway (Mathioudakis et al., 2016).
Therefore, it naturally follows that EHR text and
the design of systems induces redundancy. This
is not necessarily a negative as repeated mentions
could be used to indicate importance, corrobora-
tion or confirmation of a prior finding, diagnosis
etc. However, using the clinical narratives for di-
rect patient care can be difficult (Kroth et al., 2018),
as clinicians must navigate through potentially re-
dundant, out-of-date or erroneous information to
come to the current state of a patient, although
this problem of navigation and data consumption
is not exclusive to unstructured portion of EHRs.
For secondary research purposes (Bayley et al.,
2013; Miriovsky et al., 2012) this requires signifi-
cant time cleaning and pre-processing data (Miotto
et al., 2016; Landi et al., 2020).

Using clinical narratives in EHRs is unavoidable.
For direct patient care, forcing EHR users to spec-
ify patient state in only structured fields thereby
avoiding free-text input is both impractical and in-
sufficient (Goossen, 2011; Abernethy et al., 2017)
and also does not consider existing free-text patient
data. Outside of direct patient care, prior work has
shown EHR text analysis offers insights in diverse
areas such as disease classification (Perlis et al.,
2012), trajectory modelling (Paik et al., 2019), pa-
tient stratification (Landi et al., 2020), therapeutic
development (Maudsley et al., 2018) and person-
alised medicine (Topol, 2019). Yet, the free-text
content of EHRs forces researchers to spend consid-
erable time manually exploring datasets attempting
to identify the most informative portions of notes
to inform predictive models(Murdoch and Detsky,
2013).

Current EHR system designs have focused on
the administrative side of care delivery forcing clin-
ical users to spend more of their time performing
data entry (Tai-Seale et al., 2017; Ratwani et al.,



2019; Holmgren et al., 2021). Systems do not al-
low users to refer to, append, or amend prior notes
whilst keeping the original document as recorded
(Bowman, 2013). To overcome this limitation free
text is often copied from prior notes, duplicating
data that could otherwise be referenced (O’Donnell
et al., 2009).

This work aims to highlight and quantify an of-
ten acknowledged but neglected area of study - the
scale of redundancy in EHR text. As redundancy
is so prevalent in clinical text the research commu-
nity must do more to understand where and why
this redundancy exists in an effort to minimise and
mitigate its effects, allowing for further progress in
the diverse use cases of clinical text as previously
discussed.

Understanding where the most meaningful data
is within a record will enable researchers to better
understand where time should be spent preparing
data, as well as potentially informing EHR system
designers where changes can be made to improve
data entry design or other data redundancy reduc-
tion mechanisms for future implementations.

We present two approaches to measure redun-
dancy in clinical texts:

• Information-theoretic redundancy: We show
language models trained and tested on public and
private clinical texts consistently show higher lev-
els of redundancy in comparison to open-domain
text as demonstrated by information-theory mea-
sures of perplexity and cross-entropy(Shannon,
1951).

• Syntactic and semantic redundancy of succes-
sive note pairs: we show average token level
redundancy across various clinical note types,
through calculation of summarisation metrics of
temporally successive note pairs. This measure
assumes that successive notes from the same ad-
mission and of the same type are ‘summaries’
of former notes within the same clinical admis-
sion. We discuss the implications of recall and
precision of these metrics and perform a manual
analysis of randomly selected notes.

2 Background

2.1 Prior Work
Despite information redundancy in clinical text be-
ing widely reported, work to develop methods or
measures of redundancy and applying these to clin-
ical text have been limited. Early work investigated

lexical matching to measure redundancy (Wrenn
et al., 2010), presenting a modified Levenshtein
edit-distance based algorithm that aligned and mea-
sured redundancy of 100 randomly selected ad-
missions (Wrenn et al., 2010) reporting an average
78% and 54% redundancy for sign-out and progress
notes respectively. Further work applied lexical
normalisation, stop word removal followed by a
sliding window alignment algorithm over multiple
sentences (Zhang et al., 2011), showing a 82% cor-
relation with human annotated expert judgements
of redundancy for randomly selected sentences in
outpatient notes.

Assessing the semantic similarity of documents
provides a more robust method to detect redun-
dancy, as lexical and syntactic variations that
may arise when a prior note is summarised or
copy/pasted then edited can still be marked redun-
dant. Prior work has used statistical modelling
techniques to recognise new relevant information
for various note types (Zhang et al., 2014, 2017).

Automated summarisation systems perform a
similar process to redundancy identification. In-
tuitively, an effective summary will identify the
most ‘important’ sections of a document, highlight-
ing the informative, relevant parts of a document
whilst ignoring the redundant sections (Peyrard,
2019). An extractive summary of text can be seen
as an inverse ranking of redundancy, selecting the
least redundant sections of a source text, and an
abstractive summarisation performs the same rank-
ing followed by a natural language generation step
(Moen et al., 2016). Outside of the clinical domain,
there is strong interest in models for open-domain
free text summarisation (See et al., 2017; Raffel
et al., 2020; Lewis et al., 2020; Zhang et al., 2020a).
Many of these methods use deep neural network
based methods to learn representations that capture
lexical, syntactic and semantic meaning of texts
to produce coherent and informative summaries.
Most methods are knowledge-free, having no re-
liance on external modelled knowledge graphs or
databases and learn to write summaries only from
input text and the associated reference summary.

The clinical domain is uniquely rich with mod-
elled knowledge graphs such as the UMLS (Bo-
denreider, 2004) and SNOMED-CT (Stearns et al.,
2001). Applying Named Entity Recognition and
Linking systems such as cTakes (Savova et al.,
2010), MetaMap (Aronson, 2001) or MedCAT
(Kraljevic et al., 2021) over EHRs and aggregating



extracted concepts over groups of documents per
admission could determine documents with equiv-
alent extracted concepts as redundant. However,
solving such an NER+L task is an ongoing research
problem due to the scale of modelled knowledge
(i.e. hundreds of thousands of possible concepts)
and the variability of clinical text (Wu et al., 2015,
2017).

Recently, corpora of synthetic (Rastegar-
Mojarad et al., 2018) and manually anno-
tated(Wang et al., 2020a) semantic similarity sen-
tence pairs have been used in shared tasks to pro-
mote further research and system development
in this area (Wang et al., 2020b). Deep neural
models such as BERT (Devlin et al., 2019) and
S-BERT (Reimers and Gurevych, 2019) achieved
high scores from multiple challenge submissions
achieving 0.88 correlation in ranking sentences
with a similarity scale of 0-5.

To our knowledge there is no prior work that
estimates information theoretic content of clinical
text and compares such estimates to open-domain
text. Prior work has estimated redundancy using se-
quence alignment algorithms for estimating token-
level redundancy, largely not considering semantic
redundancy, i.e. the tokens differ across texts but
the meaning is equivalent, or they have considered
sentence to sentence semantic similarity, training
models to predict similarity between sentences.

2.2 Measuring Redundancy of Text through
Informativeness

The following sections provide the information the-
oretic basis for empirically estimating redundancy
of clinical text. We initially introduce relevant nota-
tion and information theory concepts, then describe
how language modelling can be used to estimate
redundancy.

Given a language L with a vocabulary V com-
prised of the number of n symbols w1 . . . wn ∈ V
where wi is a character, word or word piece pro-
duced by some tokeniser function Z over text t,
Z(t) provides some sequence of w symbols. Given
that P is a probability distribution over all sym-
bols in V we can define the average information
conveyed by a language L via Shannon’s Entropy
(Shannon, 1997). H(P ) is defined as:

H(P ) = E[I2(P )] = −
n∑

i=1

p(wi) log2 p(wi)

(1)

Entropy is the negative sum of proportional log2
probabilities of each symbol wi with information
units represented as bits (i.e. log2). Intuitively,
entropy provides the average number of bits used
to convey a symbol from set V for the most efficient
coding of L. A maximum bound for the entropy of
L is the uniform distribution for P over all symbols
in V . Given Equation 1 this provides:

H(P ) =

n∑
i=1

p(wi) log2 p(wi)

=
1

n

n∑
i=1

log2 n =
1

n
n log2 n

= log2 n

(2)

A theoretical lower bound of H(P ) ≈ 1
is if the probability of a single symbol W is
P (W = wi) ≈ 1 as the probability mass is focused
on wi, i.e. L effectively only has 1 symbol. Equa-
tion 1 holds in the limit of all possible texts that can
be produced for L. As we cannot produce all pos-
sible texts from L we empirically estimate H(P )
with a distribution Q over the same vocabulary V
for some, usually large, defined set of texts from L.
The cross entropy between distributions P and Q
is:

H(P,Q) = H(P ) +DKL (P‖Q) (3)

where DKL (P‖Q) is the Kullback-Leibler(KL) di-
vergence or relative entropy of Q from P. These are
the extra bits needed to encode symbols from dis-
tribution P through the use of the optimal encoding
scheme found through the distribution Q.

2.3 Causal Language Modelling
Causal Language modelling (LM) is the task to
predict the next symbol conditioned on previous
symbols. Given a defined set texts from L fitting
such a model minimises the DKL (P‖Q) term of
Equation 3 therefore providing an estimate of en-
tropy for L. A language model estimates the joint
probability of a sentence by conditioning the cur-
rent symbol wi on all previous w1 . . . wi−1:

P (w1, ..., wi) = p(w1)...p(wi|w1, ..., wi−1) (4)

2.4 Perplexity and Cross-Entropy to
Compare Redundancy Across Texts

Perplexity (PPL) is the ‘surprise’ a language model
finds having encountered wn given w1, . . . wn−1,



and is the 2H(P,Q) of entropy(Jurafsky and Martin,
2009). Language models are often evaluated us-
ing PPL where the lower the score the better the
model generalises to unseen texts from language
L. Given a language model trained on general pur-
pose text Len, and another language model with the
same available vocabulary V trained on clinical text
Lclinic then comparing PPL / i.e. cross-entropy by
taking log2(PPL), provides a reflection of the level
of information and therefore redundancy present in
texts across the two languages.

It is however important to highlight that this in-
formation theoretic measure of redundancy, i.e. es-
timating the efficiency of encoding of a given a
language given the same language model, does not
capture a human level measure of informativeness
as clinical texts are subject to a context in which
they are written. For example, clinical text progress
reports have represent a time series of clinical in-
formation and therefore repetitions in text could
indicate a continuation or confirmation of prior
clinical information and may not necessarily be
redundant.

2.5 Re-purposing Summarisation Evaluation
Metrics for Sequential Note Sequences

The primary purpose of clinical narratives are to
document new clinical information. However, EHR
data entry often is often poorly designed (Bloom
et al., 2021) or users lack sufficient training, time
or incentives for clean data entry. This results
in frequent use of the copy-paste function with
prior data copied into the current note with addi-
tions and amendments for the new clinical infor-
mation(Hirschtick, 2006; O’Donnell et al., 2009;
Venkateshaiah and Thornton, 2010). Therefore, our
second set of experiments frame a set of clinical
notes of the same type for a given admission as
successive summaries of one another and seeks to
measure the prevalence of copy-pasted notes from
successive note pairs.

We apply n-gram and semantic embedding sum-
marisation metrics to successive pairs of clinical
notes. In this context ‘recall’ captures the propor-
tion of the previous note that is contained in the
current note, whereas ‘precision’ is more ambigu-
ous as successive notes with high precision and
high recall indicate a note is redundant (i.e. the
content is equivalent), whereas high recall, low pre-
cision indicates a summary of the previous note
with additional new information. Low recall and

low precision indicates a successive note does not
summarise prior events at all, we expect this to
be the case for procedure and investigative notes
such as radiology reports as these events are of-
ten standalone, even if they take place during the
same admission. There are no clear aims for high
precision / recall such as the case for comparing
predictive model performance.

3 Methods

3.1 Datasets
Descriptive statistics for datasets and splits are pro-
vided in Table 1. We consider two clinical datasets
in our analysis, we take a ‘stroke’ specific subset
to compare results to our other clinical dataset:

• MIMIC-III: (Johnson et al., 2016) A large, freely-
available US based ICU dataset collected be-
tween 2001-2012 containing 53,423 distinct ad-
missions. We consider MIMIC-FULL (∼1.17M
documents) that contains all free text notes for
primary coded conditions that appeared at least
20 times (∼41k admissions), and MIMIC-Stroke
(337 admissions) with a primary diagnosis of
ICD10 code:I63.*.

• KCH: clinical records for patients diagnosed with
Cerebral infarction (ICD10 code:I63.*) from the
King’s College Hospital (KCH) NHS Foundation
Trust, London, UK, EHR. This includes 9,892
distinct admissions and ∼26K documents. We
extract data via the internal CogStack (Jackson
et al., 2018) system, an Elasticsearch based in-
gestion and harmonization pipeline for EHR data.
This patient cohort is driven by permitted ethical
approval and our ability to compare to a similar
patient cohort in MIMIC-Stroke.

Our two open domain English language datasets
are available via the HuggingFace Datasets1 library,
and are used to demonstrate the entropy / PPL of
non-clinical open-domain datasets. We use:

• OpenWebText (Gokaslan* et al., 2019): a recre-
ated openly available version of the original data
used to train GPT-2. There is no defined ’test’
split so we randomly sample 5000 texts. It
is worth noting our base pre-trained language
model (GPT-2 (Radford et al., 2019)) has likely
seen some if not all of the samples in this random
sample during pre-training. Vocabulary size is
48,105.

1https://huggingface.co/docs/datasets/master/



Dataset # Docs
Avg.

Length
# Note
Types

Test Set
Vocab Size

M-III 1,172,433 2,201 3,127 31,017
M-III (S) 8,213 2,232 241 12,167

KCH 26,348 5,217 1310 27,722
WebText 5000 n/a n/a 48,105

WikiText2 4358 579 n/a 19,037

Table 1: Descriptive statistics for clinical and open do-
main datasets. Average document length is in charac-
ters and a single note type for MIMIC-III is the com-
bined category and description fields. KCH uses a sin-
gle field for note type. M-III is the MIMIC-III ’full’
dataset and (S) is the stroke (I63.*) primary diagnosis
subset. WebText & WikiText-2 do not have # ’Note
Types’ and WebText is only available as sentences only.

• WikiText2 (Merity et al., 2017): the test data
split of WikiText2, a corpus of 4358 Wikipedia
articles often used to assess language models.
This data is unseen by all LMs and is used to
assess open-domain text language modelling per-
formance.

3.2 Experimental Setup

3.3 Data Preparation

To exclude very rare conditions or cases that may
not represent typical clinical language found in
EHRs we extract all MIMIC-III notes and filter the
admissions that have a primary diagnosis that ap-
peared ≥ 20 times in the dataset. We decided upon
this threshold after initial small-scale experimen-
tation. We do not clean the notes from MIMIC-III
or KCH in any way, although the MIMIC-III notes
have already undergone a de-identification process
to remove sensitive information such as dates and
names.

3.3.1 Pre-trained Language Models
We estimate the entropy of clinical language us-
ing GPT-2 (Radford et al., 2019) a previous state-
of-the-art auto-regressive causal language model,
based upon the Transformer (Vaswani et al., 2017)
architecture that has been pre-trained with the
‘WebText’ corpus, ∼40Gb of text data collected
from the Web. Model / tokenizer weights, config-
urations and model implementations are via the
HuggingFace ‘transformers’ (Wolf et al., 2020) li-
brary. We use the base GPT-2 model with 124M pa-
rameters, 12 Transformer block layers with model
dimensionality of 768, and vocabulary size 50,257.

3.3.2 Language Model Fine Tuning and PPL
Calculations

We fine-tune GPT-2 in a self-supervised manner, i.e.
after tokenizing the clinical text we feed each token
sequentially into the model, conditioning on previ-
ous symbols, we produce the distribution over V
via the forward pass of the model, compute the loss
and back-propagate the error gradient back through
the model to update parameters. Code for tokeniz-
ing, training, validating and testing the fine-tuned
model for the openly available datasets are made
available2. We calculate perplexity by concatenat-
ing all test set texts and applying a strided sliding
window half the size of the model dimension (384)
to condition the model and make a token prediction.
This method ignores inconsistent sentence breaks,
a common problem in EHR text. Importantly, this
produces results inline with original GPT-2 (Rad-
ford et al., 2019) work, allowing us to focus on the
impact the datasets have on PPL calculations.

3.3.3 Internote Type Summary Evaluation
Our second method of estimating levels of redun-
dancy in clincal text applies summarisation evalua-
tion metrics to ordered note pairs as demonstrated
in Figure 1. We firstly group each admission’s
note types and order by update time. We apply a
sliding window of pairwise evaluations over each
note sequence then average over the sequence and
admissions. Our output is a table for MIMIC and
KCH with the average token level summarisation
score per note type. This method measures the
level of redundancy between successive clinical
notes within the same admission of the same type.

We use a Gestalt Pattern matching algo-
rithm(Black, 2004) as a baseline that computes
the ratio of matching sub-sequences of ‘tokens’,
(i.e. white-space separated words) between each
successive note. We then report precision/recall
for ROUGE (Lin, 2004) another lexical/syntactic
token metric and BERTScore (Zhang et al., 2020b)
a recent deep-learning model based metric that
embeds texts using pre-trained semantic vector
space, cosine similarity between the embedded
texts produces a similarity score between them.
BERTScore was shown to correlate higher with
human level judgements of generated summary
quality than token based metrics such as ROUGE,
somewhat addressing the documented failings of
ROUGE (Schluter, 2017). Our clinical texts are

2https://github.com/tomolopolis/clinical_sum



Dataset Val Test WikiText2

OpenWebText - 29.57 35.56
MIMIC (Stroke) 6.14 5.38 144.4
MIMIC (Full) 3.12 3.15 204.9

KCH 8.78 9.58 74.51

Table 2: Perplexity scores for GPT-2 trained on
(Open)WebText (i.e. the model is not trained in this
work at all), further training on the MIMIC (Stroke),
KCH, and MIMIC (Full) datasets. WikiText2 test split
results are also provided for an unseen test set of open-
domain text for all models.

longer than the maximum dimension supported
by the default and highest performing model con-
figured with BERTScore. Therefore, We use the
xlnet-base-cased (Yang et al., 2019) embeddings
due to increased maximum permitted input length.
Our scores are normalised to the model baseline
to produce an improved uniformity in similarity
scores as discussed in the original work (Zhang
et al., 2020b).

4 Results

We present results for both clinical datasets pre-
sented in Section 3 and open datasets originally
used to train/test LMs.

4.1 Estimating Entropy of Clinical Text

Table 2 reports PPL scores across datasets used
to pre-train and further fine-tune GPT-2 models.
We report our test set results for the pre-trained
GPT-2 and the model fine-tuned to clinical datasets
presented in Section 3.1. ‘Test’ values for each
dataset provide empirical estimates of entropy for
languages Len i.e. OpenWebText, and Lclinic, i.e.
MIMIC (Stroke / Full) and KCH.

We show LM performance on validation and test
sets, observing that test set PPLs are largely consis-
tent with validation set scores indicating the models
are not over-fitting to idiosyncrasies only present
in the validation set. We are potentially underfit-
ting the data as we did not especially experiment
with techniques such early stopping, learning rate
optimisation and architecture optimisation. As the
model performance is not the valuable contribu-
tion of this work we only used a small number of
fixed epochs (i.e. 8) with a scheduled weight decay
within the AdamW (Loshchilov and Hutter, 2019)
optimizer (i.e. 0.01).

Our results demonstrate the PPL of clinical texts

to be smaller than open domain text. Using Equa-
tions. 2, 3 and computing log2(PPL) we estimate
the information content of our open-domain text
language Len = 5.16 and our clinical language
Lclinic = 1.66 − 3.26. This suggest that clinical
text is ∼ 1.5x to ∼ 3x less efficient in encoding
information than regular open domain text. It is
important however to note this efficiency is with the
respect to the definition of an optimal encoding of
a language L. Predictability of texts within Lclinic

does not necessarily measure the informativeness
from a human perspective in comparison to Len.

We further test our models on WikiText-2 dataset
to observe open-domain performance after clinical
text training. We find that once GPT-2 is further
trained with clinical text it loses the ability to ac-
curately model open-domain text resulting in large
PPLs. This is seen to a greater extent in MIMIC
(Full) compared to MIMIC (Stroke) / KCH, which
is likely due to the MIMIC (Full) model having
seen the highest volume of clinical text.

4.1.1 Perplexity Across Clinical Datasets
We compare our models trained and tested on avail-
able alternative clinical datasets as shown in Table
3. As our MIMIC (Stroke) / KCH trained models
share the common stroke diagnosis we would ex-
pect clinical language and the description of symp-
toms, findings, clinical events, procedures to be
similar. Our KCH trained and MIMIC (Stroke)
tested model performs modestly, i.e. PPL is still 6-
13 points less than open domain PPLs, whereas the
MIMIC trained and KCH tested model performs
poorly. Surprisingly, the similarity in disorder
seems to offer little or no benefit, as KCH trained
and testing on both MIMIC test sets produces simi-
lar PPLs. MIMIC trained and KCH tested also per-
forms better with Full compared with Stroke. We
believe the poor performance with MIMIC trained
models is due to heterogeneity of the KCH dataset,
including out patient notes, patient letters, proce-
dure reports etc. whereas MIMIC only contains
inpatient ICU notes albeit notes from across spe-
cialisms such as physician, nursing, radiology, etc.

4.2 Token Level Redundancy

Figure 2 shows our results computing summari-
sation metrics described in Section 3.3.3 for the
MIMIC (Full) and KCH datasets. Broadly, our
baseline (difflib), ROUGE and BERTScore metrics
display similar trends, as seen by coloured gradi-
ents consistently decreasing across all metrics for



Figure 1: Internote type summarisation evaluation process.

Training Test PPL

KCH MIMIC (Stroke) 23.05
KCH MIMIC (Full) 23.98

MIMIC (Stroke) KCH 119.66
MIMIC (Full) KCH 94.19

Table 3: GPT-2 trained and tested across our clinical
datasets.

similar types of documents. There are some excep-
tions in the MIMIC dataset such as Respiratory:
Respiratory Care Shift Note where our baseline
method reports a lower similarity ratio as compared
to the summarisation metrics.

We report the micro-averaged median scores for
each note type to reduce skew from extremes of
either side of the distribution of scores. Recall
and precision for ROUGE and BERTScore at each
note type are largely equivalent, indicating each
note type has on average proportionally equivalent
amounts of redundant, i.e. duplicated text, from
previous notes (the recall score), and ‘new’ text
(the precision score. We observe that this varies
substantially according to note type with almost
no redundant text with some types, i.e. Nurs-
ing/other:Report and in contrast the majority of
text being redundant, i.e. Physician:Physician Res-
ident Admission Note.

Table 4 shows a final average across each metric
weighted by total number of tokens within each
document and type. Interestingly, recall and preci-
sion are equivalent for ROUGE and BERTScore.
Intuitively, this indicates that successive notes often
have a ‘core’ section which is static throughout an
admission and updates are provided by editing cer-
tain sections only. This reflects a typical workflow
for providing status updates on patient condition or
progress.

Dataset DiffLib ROUGE BERTScore
Rec Prec Rec Prec

MIMIC 0.26 0.43 0.42 0.58 0.58
KCH 0.32 0.49 0.49 0.65 0.65

Table 4: Weighted average by token length of sequen-
tial token level redundancy. Rec = Recall, Prec = Preci-
sion.

Dataset ROUGE BERTScore

KCH 0.83 0.77
MIMIC 0.77 0.63

Table 5: F1 score correlation of redundancy of ROUGE
and BERTScore with manual annotations on a 1-5 Lik-
ert scale of a random sample of note pairs.

4.3 Manual Analysis

We perform a manual analysis of 70 randomly se-
lected note pairs, (35 each from MIMIC-III and
KCH). We group, order and split the notes as shown
in Figure 1 and visually highlight the token level
differences between successive pairs to assist with
determining similarity / differences. We use a Lik-
ert scale of 1-5 to rate redundancy between note
pairs and compute a correlation with F1 score. Ta-
ble 5 shows that ROUGE scores correlate better
with our human annotated measure of redundancy
than BERTScore.

5 Discussion

5.1 Language Modelling for Clinical Text

Our PPL scores suggest that clinical text is ∼ 1.5x
to ∼ 3x less efficient in encoding information than
regular open domain text, or ∼ 1.5x to ∼ 3x more
text is used to communicate the same volume of
information in comparison to open domain text.



(a) MIMIC-III (Full) Summarisation metrics by type

(b) KCH Summarisation metrics by type

Figure 2: Summarisation metrics calculated over a sliding window of generated and reference summaries for
admission texts grouped by admission then by note type and ordered by time. We only show the first 20 note types
of each dataset ordered by ROUGE score.

To our knowledge this is the first work to es-
timate in information theoretic terms the entropy
of clinical language Lclinic and compare against
open-domain language Len. These estimates are
dependent upon the text and models used, but we
believe they are representative as both datasets are
large, from varied geographies, hospital sites, spe-
cialisms and patient types (outpatient vs inpatient).
Our Len corpora are built from curated texts (i.e.
Wikipedia and positive karma Reddit posts) that
cover a wide array of topics. However, our results
may be highly dependent upon these text sources.
Future work could compare other easily available
datasets such as news or academic papers to pro-
vide further clarity on our findings.

Language modelling performance is dependent
upon the size of vocabulary of the model and the
test set. Model vocab size is static as the same
model (GPT-2) and tokenizer configurations are
used throughout all experiments. Despite the nar-
rower focus of clinical text, the vocabulary sizes in
Table 1 indicate MIMIC-III (Full) and KCH are in
fact larger than the WikiText2 corpus although we
observe substantially lower PPLs for clinical text.
This suggests clinical text is overall less informa-
tive and therefore more redundant when compared
to open-domain corpora. However, this interpreta-

tion must be further clarified, as EHRs are written
with a clear task in mind to communicate health
status, and record clinical events. This is in contrast
to open-domain text that has a far wider array of
possible tasks for the text.

We compute PPL scores inline with the original
GPT-2 authors (Radford et al., 2019), as this work
is an assessment of the data rather than the specific
model. A reduced sliding window stride length
during PPL calculation would decrease scores fur-
ther, although relative difference would remain sim-
ilar. However, we acknowledge that our results are
dependent on model architecture, i.e. GPT-2 has
higher performing model variants ‘GPT-2(large)’
even newer variants, ‘GPT-3’, with an even larger
parameter space (Brown et al., 2020) We propose
our results show the trend that clinical domain text
is redundant by some multiple compared to open-
domain text.

The drop in open-domain text performance af-
ter clinical text fine-tuning suggests the model is
incapable of modelling clinical and open-domain
text simultaneously. The difference in lexicon and
syntax forces the model to minimise a loss land-
scape substantially different from that found in
open-domain text. Further work, could experiment
with larger models or with a training process that



jointly attempts to model open-domain and clinical
text, in an effort to maintain high performance on
both. Multiple works (Radford et al., 2019; Raf-
fel et al., 2020) have already highlighted the effect
and importance of data quality, pre-processing and
training configuration in LM training.

5.2 Sequential Inter-Note Type Redundancy

We used BERTScore configured with xlnet-base-
cased, due to the size of input texts. The xlnet-base-
cased embeddings in the BERTScore framework
report worse correlation with human annotations of
summarisation quality than the default settings that
otherwise do not support long input texts. Our man-
ual evaluation of notes against the computed scores
indicate ROUGE more accurately captures redun-
dancy than the current BERTScore configuration.
During the manual review we noticed BERTScore
often scored notes highly that had small token-level
differences. As BERTScore projects note pairs
into a learnt semantic vector space it is difficult to
compare scores with the n-gram based ROUGE.
One explanation is that note pairs are likely by
the same clinician, are the same clinical special-
ism and about the same patient and therefore score
highly, although n-gram differences are larger. A
model such as ClinicalXLNET (Huang et al., 2020)
would likely assist in capturing differences in clini-
cal language thereby producing more appropriate
embeddings compared to the open domain variety
currently used. We leave this experiment to future
work.

This work only considers sequences of notes
labelled as the same type. Analysis of intra-note
type redundancy, where notes of one type refer to
clinical events documented in other note types is
another potential avenue of future work. Future
work could also order note sequences by clinician,
or compare only first and last note for example.

Overall, the interpretation of recall and precision
of the summarisation metrics and their relationship
to redundant text is nuanced. For example, repeated
mentions of an acute condition may simply indicate
the continued presence of a condition or symptom,
and may not be redundant text after all. These
measures do not account for the time series nature
of clinical information present in the record. Fu-
ture work could investigate information extraction,
normalisation and linking methods that leverage
clinical knowledge bases such as cTakes(Savova
et al., 2010), MetaMap(Aronson, 2001) or Med-

CAT(Kraljevic et al., 2021). Extracted concepts
could then be compared across notes whilst being
grounded in clinical knowledge. This would al-
low for redundant clinical events to be identified
alongside how they present in the text.

6 Conclusions

We have presented two empirical approaches for an
often acknowledged (Murdoch and Detsky, 2013)
but neglected area of clinical natural language pro-
cessing research, to measure redundancy in clinical
text. We have trained large language models on
multiple clinical datasets resulting in perplexity
and therefore cross-entropy estimates for a clinical
language Lclinic. We observe a ∼ 1.5x to ∼ 3x
reduction in entropy when comparing the same
model trained on open domain text. Our approach
shows the token level redundancy between different
note types with the usage of automated summarisa-
tion evaluation metrics. We observe variable scores
across different types with some results indicating
clinical notes can be 97-98% redundant (i.e. the
text is largely duplicated across documents MIMIC:
Physician Resident Admission Note), or only 0.12%
redundant (MIMIC: Nursing/other:Report).

Overall, our results support prior work suggest-
ing clinical text contains redundant text (Murdoch
and Detsky, 2013; Wrenn et al., 2010; Zhang et al.,
2011). In information theory terms we show that
clinical text is less efficient than open domain text
meaning on average more text is required to express
the same volume of information in comparison to
general purpose texts. However, this efficiency mea-
sure does not take into account the context in which
EHR records are written, that is a time series of
clinical events, where repetition may not neces-
sarily be redundant but indicative of an ongoing
condition or clinical event.

With more stressors on our healthcare system
than ever before (Mesa Vieira et al., 2020) and
despite increasing investment (Jakovljevic et al.,
2020) we continue to see increased clinician burn-
out (Montgomery et al., 2019). A contributing fac-
tor is the often enforced usage of EHR systems, in-
creasing doctor-computer time (Kroth et al., 2018),
forcing clinicians to overcome poor usability of
systems (Bloom et al., 2021). Improving EHR en-
try to allow easy updating, cross referencing and
versioning of notes could alleviate an extra burden
on clinical staff. To this aim we would urge EHR
providers to adapt their systems to improve data



entry and maintenance, potentially considering fea-
tures similar to source code management version
control allowing for a living document to improve
data quality, minimise redundancy and errors that
are propagated through the usage of copy/paste.
We acknowledge this would however require sub-
stantial non-trivial changes to systems and user
workflow (Lyons and Klasko, 2011; Schmucker,
2009). Until EHR providers address these short-
comings researchers will have to rely on ad-hoc
pre-processing logic to clean datasets before carry-
ing out analysis.

Data Availability Statement

Open-domain text (OpenWebText and WikiText2)
data is openly available as described in Section
3.1. MIMIC-III(Johnson et al., 2016) is freely
available but users must obtain permission and a
license from dataset owners. KCH data is a highly
sensitive dataset and is not easily available. Inter-
ested researchers are encouraged to discuss poten-
tial projects with the authors to discuss how data
access can be granted.
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