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sensory processing in cortical circuits at
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inhibitory neurons in the visual cortex

across learning and during attention

switching, Poort et al. demonstrate that

distinct mechanisms underlie the

enhancement of sensory processing due

to learning and attention.
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SUMMARY
Selectivity of cortical neurons for sensory stimuli can increase across days as animals learn their behavioral
relevance and across seconds when animals switch attention. While both phenomena occur in the same cir-
cuit, it is unknownwhether they rely on similarmechanisms.We imaged primary visual cortex asmice learned
a visual discrimination task and subsequently performed an attention switching task. Selectivity changes due
to learning and attention were uncorrelated in individual neurons. Selectivity increases after learning mainly
arose from selective suppression of responses to one of the stimuli but from selective enhancement and sup-
pression during attention. Learning and attention differentially affected interactions between excitatory and
PV, SOM, and VIP inhibitory cells. Circuit modeling revealed that cell class-specific top-down inputs best
explained attentional modulation, while reorganization of local functional connectivity accounted for
learning-related changes. Thus, distinct mechanisms underlie increased discriminability of relevant sensory
stimuli across longer and shorter timescales.
INTRODUCTION

Learning and attention both selectively enhance the processing

of behaviorally relevant stimuli (Gdalyahu et al., 2012; Goltstein

et al., 2013; Li et al., 2008; McAdams and Maunsell, 1999; Ni

et al., 2018; Reynolds and Chelazzi, 2004; Rutkowski and Wein-

berger, 2005; Schoups et al., 2001; Speed et al., 2020; Wiest

et al., 2010; Yan et al., 2014; Yang and Maunsell, 2004). When

animals learn what sensory features are task relevant or when

they focus their attention on task-relevant features, early sensory

cortical representations often undergo substantial changes.

However, it is not known whether cortical changes during

learning and attention rely on similar neural mechanisms.

The neural correlates of learning and attention share several

characteristics. Visual learning results in increased stimulus

selectivity through changes in stimulus-evoked neural firing rates

(Gilbert and Li, 2012; Karmarkar and Dan, 2006; Li et al., 2008;

Poort et al., 2015; Schoups et al., 2001; Yan et al., 2014; Yang

and Maunsell, 2004), and is accompanied by changes in the in-

teractions and correlations between neurons (Gu et al., 2011;

Khan et al., 2018; Ni et al., 2018). Similarly, visual attention can
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also result in increased selectivity of attended stimuli, again

through changes in stimulus-evoked firing rates (Reynolds and

Chelazzi, 2004; Speed et al., 2020; Spitzer et al., 1988; Wimmer

et al., 2015) and neuronal interactions (Cohen and Maunsell,

2009; Mitchell et al., 2009; Ni et al., 2018). Importantly, activity

modulations during learning and attention are not uniformly

distributed throughout the neural population but are restricted

to subsets of neurons (see, for example, Chen et al., 2008; McA-

dams and Maunsell, 1999; Poort et al., 2015; Schoups et al.,

2001; Yan et al., 2014). Thus, both learning and attention lead

to sharper and more distinct information being sent to down-

stream regions though subnetworks of learning- or attention-

modulated cells.

Inhibition plays a crucial role in cortical plasticity (Froemke,

2015; van Versendaal and Levelt, 2016), and specific classes

of inhibitory interneurons have been implicated in the plasticity

of cortical circuits during both learning and attention (Chen

et al., 2015; Kato et al., 2015; Kuchibhotla et al., 2017; Makino

and Komiyama, 2015; Sachidhanandam et al., 2016; Yazaki-Su-

giyama et al., 2009). The activity of interneurons can change dur-

ing both learning (Kato et al., 2015; Khan et al., 2018; Letzkus
ebruary 16, 2022 ª 2021 The Authors. Published by Elsevier Inc. 1
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et al., 2011; Makino and Komiyama, 2015) and attention (Mitchell

et al., 2007; Snyder et al., 2016; Speed et al., 2020), which can

result in more stimulus-specific inhibition in the network.

Both learning and attention rely, to varying degrees, on the

integration of top-down inputs with bottom-up signals. During

attention, higher-order brain regions are thought to provide feed-

back signals to bias bottom-up information processing (Desi-

mone and Duncan, 1995; Gilbert and Li, 2013), most prominently

through direct feedback projections (Leinweber et al., 2017;

Zhang et al., 2014) or through thalamic nuclei (Chalupa et al.,

1976; Wimmer et al., 2015). These feedback projections can

target excitatory or specific inhibitory interneurons (Leinweber

et al., 2017; Zhang et al., 2014, 2016). In contrast, learning is

thought to be primarily implemented by long-term plasticity of

synapses, and reorganization of connectivity patterns (Froemke,

2015; Khan et al., 2018; Whitlock et al., 2006; Xiong et al., 2015),

although top-down projections may also play a crucial role in

guiding this process (Roelfsema and Holtmaat, 2018; Williams

and Holtmaat, 2019).

Thus, both learning and attention modulate the firing properties

of subsets of excitatory and inhibitory cortical neurons, leading to

changes in firing rates and interactions betweencells. It has there-

fore been suggested that learning and attention rely on similar

neural mechanisms (Ni et al., 2018) or that attention-like pro-

cesses may co-opt some of the underlying circuitry of learning

(Kuchibhotla et al., 2017). However, this has never directly been

tested, and it is not known whether learning and attention engage

the same neurons and circuits. A number of questions thus arise.

First, within a population, is a common subset of neurons modu-

lated by both learning and attention? Second, do learning-modu-

lated and attention-modulated neurons undergo similar changes

in their firing rates to increase stimulus selectivity? Third, do

learning and attention result in similar changes in interactions be-

tween different excitatory and inhibitory cell classes?

To address these questions, we compared the changes in ac-

tivity and interactions of the same population of neurons in V1

during learning and attention. We tracked the same identified

pyramidal (PYR) neurons and parvalbumin- (PV), somatostatin-

(SOM), and vasoactive intestinal peptide (VIP)-positive interneu-

rons as mice learned to discriminate two visual stimuli and sub-

sequently performed an attention-switching task involving the

same visual stimuli. We observed a similar profile of average

changes in stimulus selectivity across the four cell classes during

learning and attention. However, we discovered that these

changes were uncorrelated at the single-cell level, consistent

with distinct mechanisms of selectivity changes during learning

and attention. In support of this idea, we found that neural stim-

ulus responses were dominated by selective suppression during

learning, but displayed a combination of suppression and

enhancement during attention. In addition, learning and attention

differentially modulated interactions between excitatory and

inhibitory cell classes. While learning-related changes were

well captured by a model invoking changes in functional interac-

tion strengths, attention-related changes were captured by a cir-

cuit model with top-down inputs targeted to PYR and SOM cells.

These results reveal that more selective cortical representations

for behaviorally relevant stimuli arise through distinct mecha-

nisms over longer and shorter timescales.
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RESULTS

Increased response selectivity related to learning and
attention switching
To understand how the same neural populations change their re-

sponses to visual stimuli with learning and attention, we trained

mice to learn a go-no go visual discrimination task and subse-

quently trained them to perform an attention-switching task

involving the same pair of visual stimuli (Figures 1A and 1B).

Head-fixed mice ran through a virtual approach corridor (Fig-

ure 1A) where the walls displayed a short stretch of circle pat-

terns followed by gray walls for a random distance chosen

from an exponential distribution (Figure 1C, top). Mice were

then presented with one of two grating patterns, vertical or

angled (40� relative to vertical), and were rewarded for licking a

reward spout in response to the vertical grating. No punishment

was given for licking the spout in response to angled gratings. All

mice learned to discriminate the grating stimuli, reaching a

threshold criterion of d0 > 2.0 (�85% accuracy) within 7–9 days

(Figure S1 example lick rasters from sessions pre- and post-

learning; Figure 1D, average behavioral d0 pre-learning �0.18 ±

0.56 SD, post-learning 3.32 ± 0.82, sign test, p = 0.008, N =

8 mice).

We subsequently trained themice to switch between blocks of

the same visual discrimination task and an olfactory discrimina-

tion task, in which they learned to lick the reward spout to obtain

a reward in response to one of two odors. During the olfactory

discrimination blocks, the same grating stimuli used in the visual

discrimination blocks were presented on 70% of trials but were

irrelevant to the task (Figure 1C, bottom). Mice learned this

attention-switching task in 1–2 days. Mice switched between

the two blocks within the same session, successfully attending

to and discriminating the grating stimuli in the visual block but

ignoring the same grating stimuli while successfully discrimi-

nating odors during the olfactory blocks (Figure S1 example

lick rasters from a session of attention-switching behavior; Fig-

ure 1D, behavioral d0 attend visual 3.02 ± 0.41 versus ignore vi-

sual 0.63 ± 0.25, sign test p = 0.015, d0 discriminating olfactory

stimuli 4.10 ± 0.27).

Selectivity changes at the population level are similar
across learning and attention
We expressed the calcium indicator GCaMP6f in V1 using viral

vectors and measured responses of layer 2/3 neurons using

two-photon calcium imaging during the task. We re-identified

the same neurons in co-registered, immunohistochemically

stained brain sections from these animals and determined

the identity of putative excitatory PYR neurons and cells

belonging to the three major classes of GABAergic inhibitory

interneurons (Figure 2A). This approach allowed us to measure

the simultaneous activity of PV-, SOM-, and VIP- positive in-

terneurons along with the local excitatory neuron population

(see Method details). We imaged the same 1,848 PYR, 193

PV, 78 SOM, and 237 VIP neurons before and after learning

and a partially overlapping population of 6,013 PYR, 596 PV,

263 SOM, and 366 VIP neurons during the attention-switching

task (1,469, 166, 74, and 198 cells overlapping respectively,

N = 9 mice; all four cell classes were identified in all mice;
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Figure 1. Visual discrimination learning and attention switching in mice

(A) Top, schematic showing virtual reality and imaging setup.

(B) Experimental timeline.

(C) Schematic of behavioral tasks. Top, visual discrimination: mice were rewarded for licking the reward spout when vertical gratings were presented and not

when angled gratings were presented. Olfactory discrimination: mice were rewarded for licking when odor 1 was presented and not when odor 2 or vertical or

angled gratings were presented.

(D) Behavioral discrimination performance (behavioral d0) across learning and during attention switching (N = 9mice, 7 of which were tracked across both learning

and attention). Connected closed points indicate visual discrimination in individual mice. Open circles indicate olfactory discrimination.

See also Figure S1.
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see Figure S2 for distribution of cells across mice and

cell type).

Neurons from each cell class showed varying degrees of

responsiveness to the visual grating stimuli (Figures S3A and

S3B). During learning, we observed changes in visual grating re-

sponses in subsets of neurons from all cell classes (Figures 2B,

S3A, and S3B). This led to changes in stimulus selectivity (differ-

ence in themean responses to the two grating stimuli normalized

by response variability; see Method details) in individual cells to

varying degrees (Figure 2C). On average, PYR and PV cells

significantly increased their stimulus selectivity during learning,

as reported previously (Khan et al., 2018; Poort et al., 2015) (Fig-

ure 2D; PYR, average absolute selectivity pre-learning, 0.27 ±

0.28 [mean ± SD], post-learning 0.37 ± 0.39, sign test, p = 2 3

10�10, N = 1,469; PV, pre-learning, 0.22 ± 0.18, post-learning

0.38 ± 0.34, p = 2 3 10�5, N = 166). In contrast, the average

selectivity of SOM and VIP interneurons did not change signifi-

cantly (SOM, pre-learning 0.24 ± 0.16, post-learning 0.32 ±

0.34, p = 0.91, N = 74; VIP, pre-learning 0.17 ± 0.13, post-

learning 0.20 ± 0.18, p = 0.62, N = 198).

We found a similar profile of selectivity changes across cell

classes between the ‘‘ignore’’ and ‘‘attend’’ conditions of the

attention-switching task. Specifically, visual stimulus selectivity

increased on average in PYR and PV cells but not in SOM and

VIP cells when mice switched from ignoring to attending the

same visual grating stimuli (Figures 2E–2G; PYR, ignore 0.30 ±

0.30, attend 0.39 ± 0.37, p = 9 3 10�13, N = 1,469; PV, ignore

0.26 ± 0.19, attend 0.35 ± 0.29, p = 0.0008, N = 166; SOM, ignore

0.35 ± 0.38, attend 0.30 ± 0.34, p = 0.30, N = 74; VIP, ignore
0.25 ± 0.18, attend 0.26 ± 0.18, p = 0.62, N = 198; data from

the same cells matched across learning and attention). Changes

in running and licking could not account for the increased selec-

tivity of responses during learning or attention (Figures S4A and

S4B; see also Figure S2A for data from individual mice). Thus,

learning and attention both led to similar changes in stimulus

selectivity of V1 neurons on average, across excitatory and mul-

tiple inhibitory cell classes.

Selectivity changes at the single-cell level are
uncorrelated
The similar profile of changes in average selectivity during

learning and attention switching suggested that the neural basis

of these two changes may overlap. Both learning and attention

serve a similar purpose: to enhance the ability of an animal to

detect and respond to relevant stimuli, and prior work has sug-

gested that the two may be implemented by common neural

mechanisms (Ni et al., 2018). We therefore asked whether the in-

crease in selectivity during learning and attention was related at

the single-neuron level.

Across the population of PYR neurons that were identified

across both learning and attention, we found that there was no

significant correlation between the learning-related and atten-

tion-related changes in stimulus selectivity (Figure 3A; R =

0.03, p = 0.25; see also Figure S3C). This indicated that the

change in stimulus selectivity of a cell during learning had no

bearing on its change during attention. This absence of correla-

tion was not due to extensive changes in the original visual

response selectivity of these cells from the post-learning session
Neuron 110, 1–12, February 16, 2022 3
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Figure 2. Similar changes in stimulus response selectivity across 4 cell classes during learning and attention switching

(A) Two example regions of in vivo image planes with GCaMP6f-expressing neurons and the same regions after post hoc immunostaining for PV, SOM, and VIP

(orange, blue, and magenta, respectively) following image registration. Identified interneurons are indicated by arrowheads.

(B) Example cells from the 4 cell classes, average responses to vertical (blue line), and angled (red line) grating stimuli before (pre) and after (post) learning. Shaded

area represents SEM. Gray shading indicates 0–1 s window from stimulus onset used to calculate stimulus selectivity.

(C) Stimulus selectivity of the same cells (rows) before and after learning (columns). Cells were ordered by their mean pre- and post-learning selectivity.

(D) Average absolute selectivity of the 4 cell classes before and after learning. Error bars represent SEMs. Sign test, **p < 0.001. Selectivity distribution in

Figure S5A.

(E–G) Same as (B)–(D) for attention-switching task.

Cells in (C), (D), (F), and (G) were tracked both pre- and post-learning and during the attention task. N = 1,469 PYR, 166 PV, 74 SOM, and 198 VIP cells.

See also Figures S2, S4, and S5.
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to the attention-switching session; there was a strong correlation

between the post-learning selectivity and the selectivity during

the attend condition of the attention-switching task (Figure 3B;

R = 0.53, p = 2.6 3 10�108).

Similarly, we observed no correlation between the learning-

related and attention-related changes in PV, SOM, or VIP inter-

neurons (Figure 3C; PV, R = 0.07, p = 0.40; SOM, R = �0.08,

p = 0.49; VIP, R = �0.11, p = 0.13; see also Figure S2B for

data from individual mice). All of the interneuron cell classes

also displayed strong correlations between the post-learning

selectivity and the selectivity during the attend condition (Fig-

ure 3D; PV, R = 0.52, p = 1.1 3 10�12; SOM, R = 0.46, p =

3.93 10�5; VIP, R = 0.37, p = 6.03 10�8), and all of the cell clas-

ses displayed strong correlations between the post-learning

selectivity and the selectivity during the ignore condition (R =

0.53, 0.35, 0.51, and 0.25 for PYR, PV, SOM, and VIP cells,

respectively; all p < 10�3), again ruling out extensive changes

in the stimulus tuning of cells between the post-learning and

attention-switching sessions.

Thus, while increases in neural selectivity due to learning and

attention were similar across excitatory and multiple inhibitory

interneuron classes on average, they were uncorrelated at the

single-cell level. The lack of correlation between selectivity mod-

ulations during learning and attention suggested that these two

processes may be driven by distinct neural mechanisms.
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Mechanisms of selectivity change
Neurons can increase their stimulus selectivity by selective sup-

pression of responses to non-preferred stimuli (Lee et al., 2012),

selective increase in responses to preferred stimuli (McAdams

and Maunsell, 1999), or a combination of the two. We tested

for the relative prevalence of these changes in the population

of PYR cells during learning and attention.

We studied changes in stimulus-evoked firing rates in all re-

corded PYRcells, regardless of their stimulus selectivity.We sub-

tracted the pre-learning from the post-learning stimulus response

profile of each cell for a given stimulus to obtain the difference-

peristimulus time histogram (PSTH). During learning, the differ-

ence-PSTHs of the PYR population were dominated by cells

with negative deflections from baseline—in other words, cells

that decreased their stimulus response amplitude to the same

stimulus during learning (Figure 4A, left). This was true for both re-

warded and non-rewarded stimuli (Figure S6A, left). Interestingly,

the difference-PSTH during attention switching (attend minus

ignore condition) revealed that changes with attention were

more uniformly distributed across increases and decreases in

response amplitude (Figure 4A, right). This was again true for

both rewardedandnon-rewardedstimuli (FigureS6A, right, differ-

ence-PSTH averaged 0–1 s significantly different between

learningandattention, p=0, sign test; FigureS6D). Thus, learning,

unlike attention, was dominated by a suppression of responses.
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B Figure 3. Changes in stimulus selectivity dur-

ing learning and attention are uncorrelated

(A) Relationship between DSelectivity with learning

(positive values indicate increased selectivity after

learning) and DSelectivity with attention (positive

values indicate increased selectivity with attention)

for PYR cells (N = 1,469 cells).

(B) Relationship between post-learning selectivity

and selectivity in the attend condition for PYR cells.

(C and D) Same as (A) and (B) for the 3 interneuron

classes (N = 166 PV, 74 SOM, and 198 VIP cells).

See also Figure S3.
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Learning and attentionmay lead to complex temporal changes

in firing rate profiles, not captured in the above analysis. We

therefore performed principal-component analysis (PCA) to

identify the components that captured the majority of variance

in the shapes of all difference-PSTHs. Interestingly, for both

learning and attention, we found that a single component ac-

counted for >85% of the variance across all cells, and this

component had a similar temporal profile for both learning and

attention (Figures 4B and 4C). However, the distributions of

weights projected onto this PC during learning and attention

were substantially different, with a predominance of negative

weights during learning (Figure 4D; p = 0, sign test). Thus, while

we did not find a difference in the temporal profile of firing rate

changes, we confirmed the robust presence of stimulus

response suppression during learning, but not during attention.

At the single-cell level, we found that the scores of the same

neurons on the first PCA components for learning and attention
had a low correlation (Figure 4E; R = 0.12,

p = 9.7 3 10�6; see Figure S6E for a similar

effect with average calcium responses),

suggesting near-independent firing rate

modulation of individual cell responses to

the same stimuli by learning and attention.

We next asked what changes in firing

rates underlie the increased stimulus selec-

tivity in the population. We restricted this

analysis to the subset of cells that changed

from non-selective to significantly selective

for any stimulus during learning or attention.

The average PSTHs of these ‘‘recruited’’

cells showed markedly distinct features.

During learning, recruited cells showed

preferential suppression of responses to

one of the two stimuli (Figure 4F). In

contrast, with attention, cells became se-

lective through a combination of enhance-

ment and suppression of responses to the

two stimuli (Figure 4G, percentage changes

in stimulus response amplitude to vertical

and angled stimuli: Figure 4F, left, �12%,

�83%; Figure 4F, right �90%, �34%; Fig-

ure 4G, left, 69%, 7%, not significant; Fig-

ure 4G right �94%, 56%; changes were

calculated as the percentage of the
maximum in each category; all of the responses averaged 0–

1 s and all p < 10�6, except where stated).

Thus, learning was associated with suppression of evoked re-

sponses, particularly of the non-preferred stimulus, while atten-

tion was mainly associated with increased responses of the

preferred stimulus.

Changes in interactions between excitatory and
inhibitory cell classes
Changes in cortical processing are accompanied by a reconfigu-

ration of network dynamics and interactions. We previously

demonstrated that interactions between PV cells and surround-

ing PYR cells are reorganized during learning (Khan et al., 2018).

Specifically, wemeasured the correlation between PV cell selec-

tivity and the selectivity of the PYR cell population within 100 mm

of each PV cell. The slope of the line of best fit and correlation co-

efficient of this relationship significantly decreased during
Neuron 110, 1–12, February 16, 2022 5
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Figure 4. Increased stimulus selectivity through

selective response suppression during learning

but enhancement and suppression during atten-

tion

(A) Difference in calcium responses to the rewarded

vertical grating stimulus, post- minus pre-learning (left)

or attend minus ignore conditions (right) for all recorded

PYR cells (difference-PSTHs). Responses are baseline

corrected (subtraction of baseline DF/F �0.5 to 0 s

before stimulus onset) and aligned to grating onset

(dashed line). Cells are sorted by their average ampli-

tude 0–1 s from stimulus onset. N = 1,469 matched PYR

cells, in (A)–(E), N = 7 mice.

(B) First principal component (PC) of the difference-

PSTHs from the learning (left) and attention data (right).

Circles indicate the time points (0–1 s) used to determine

the PCs.

(C) Percentage of variance explained by each PC during

learning (left) and attention (right).

(D) Distribution of weights from each cell onto the first

PC during learning and attention.

(E) Relationship between the weights of cells on the first

PC during learning and attention. Values greater than the

axis limits are pegged to the maximum displayed value.

(F) Average PSTHs of all recruited cells—in other words,

cells that changed from non-selective to selective

stimulus responses during learning; N = 332 and 263

cells recruited with preference for vertical stimulus or

angled stimulus, respectively.

(G) Average PSTHs of all recruited cells during attention;

N = 703 and 690 cells recruited with preference for

vertical stimulus or angled stimulus, respectively.

Shaded area represents SEM. Gray shading indicates

0–1 s window from stimulus onset used for analysis.

See also Figure S6.
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Figure 5. Distinct changes in interactions between excitatory and inhibitory cells during learning and attention
(A) Top, relationship between the selectivity of individual PV cells and the mean selectivity of the local PYR population within 100 mm of each PV cell, before (pre)

and after (post) learning. N = 193 PV cells. Bottom, same comparison for the ignore and attend conditions of the attention-switching task. N = 427 PV cells.

(B) Average noise correlations between cell pairs belonging to the same or different cell classes, before and after learning (top) or in the ignore and attend

conditions (bottom). Only cells with significant responses to the grating stimuli were included. The number of cell pairs in each cell class combination was as

follows: pre-, post-learning, PYR-PYR 153,347, 84,119; VIP-VIP 1,519, 1,046; SOM-SOM 281, 128; PV-PV 2,935, 1,628; PV-VIP 1,390, 920; PV-PYR 36,652,

19,704; PYR-VIP 22,131, 4,368; SOM-PV 1,673, 798; SOM-PYR 11,374, 6,158; SOM-VIP 771, 519. Ignore/attend conditions, PYR-PYR 57,179; VIP-VIP 58;

SOM-SOM380; PV-PV 750; PV-VIP 126; PV-PYR 10,656; PYR-VIP 2,993; SOM-PV 792; SOM-PYR 6,354; SOM-VIP 134. Error bars represent SEMs. The full data

distribution can be seen in Figure S5B.

(C) Changes in noise correlations (shown in B) due to learning (top) or attention (bottom) as indicated by line thickness and color code. Shorter line segments

indicate change in noise correlations between cells of the same type.

See also Figure S5.
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learning (Figure 5A, top, pre-learning, slope = 0.21, 95% confi-

dence intervals [CIs] 0.16–0.26, R = 0.51, post-learning, slope =

0.04, CI 0.01–0.08, R = 0.22, bootstrap test for reduction in slope

p < 10�4), suggesting that during learning, PV cell activity

became less dependent on the average stimulus preference of

surrounding PYR cells. However, when we performed the

same analysis comparing ignore and attend conditions, we

found no difference in the correlation coefficient or slope of

this relationship (Figure 5A, bottom, ignore, slope = 0.05, CI

0.03–0.07, R = 0.23, attend, slope = 0.03, CI 0.01–0.05, R =

0.15, bootstrap test for reduction in slope p = 0.06). The relation-

ship appeared similar to that observed at the end of learning.

This was despite the fact that PV cells displayed a comparable

degree of selectivity increase with attention to that of learning.

To further explore the network signatures of changes during

learning and attention, we computed noise correlations during

the grating stimulus period between pairs of neurons within

and across cell classes, before and after learning and during

attend and ignore conditions. Since noise correlations are a

measure of the stimulus-independent trial-to-trial co-variability

of neural responses, they provide an estimate of mutual connec-

tivity and shared inputs. As reported earlier, we found that during

learning, SOM cells become de-correlated from pyramidal, PV,

and VIP neurons, with the largest changes between cell classes

(sign test, all reductions in noise correlation were significant at

p < 10�4 [Bonferroni corrected all p < 10�3], with the exception

of SOM-SOM cell pairs, p = 0.75, sign test [see also Khan
et al., 2018]). Specifically, we observed a large reduction in noise

correlation between SOM-PV, SOM-PYR, and SOM-VIP cell

pairs during learning (Figures 5B and 5C, top, vertical grating

stimulus; full distributions in Figure S5B).

In contrast, during attention switching, we found that the

largest absolute changes in noise correlation were within cell

classes, namely between SOM-SOM and VIP-VIP cell pairs (Fig-

ures 5B and 5C, bottom). SOM-SOM cell pairs displayed an in-

crease in noise correlation (sign test, p = 5 3 10�10), whereas

VIP-VIP pairs displayed decreased noise correlation (p = 0.02,

Bonferroni corrected p = 53 10�9 and 0.2, respectively). In addi-

tion, PYR-PV and PV-PV cell pairs showed a significant reduc-

tion in noise correlation, although the absolute change was

smaller (p = 8 3 10�19 and 0.03, Bonferroni corrected p = 8 3

10�18 and 0.3, respectively). Changes in running speed or licking

could not account for the observed changes in noise correlations

(Figures S4C and S4D).

Thus, learning and attention are associated with different pat-

terns of changes in noise correlations between excitatory and

multiple inhibitory cell classes, which is consistent with the

idea that distinct mechanisms underlie these processes.

Modeling response changes during learning and
attention
What changes in network properties underlie the observed

changes during learning and attention? We recently developed

a multivariate autoregressive (MVAR) linear dynamical system
Neuron 110, 1–12, February 16, 2022 7
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model to predict the activity of single cells based on interaction

weights with their local neighbors. Analysis of the MVAR model

fit to the neural responses during learning revealed that

increased response selectivity after learning was associated

with the reorganization of interaction weights between cells (Fig-

ures S7A–S7C; see also Khan et al., 2018). We tested whether

similar changes in functional connectivity can account for the

changes in stimulus responses observed with attention. We

compared a model that allowed interaction weights to change

across the attend and ignore conditions against a simpler model

that used the same weights across both conditions. We found

that the fit quality of the MVAR model, quantified by the cross-

validated R2, was actually lower for the model, allowing weights

to change across the attend and ignore conditions, demon-

strating that changing interaction weights during attention

conferred no advantage to the model (Figure S7B). Even when

weights were allowed to change in the MVAR model, we found

stable PYR-PV interaction weights during attention, in contrast

to the changes in weights observed during learning (Figure S7C).

Together with the absence of reorganization of PYR-PV interac-

tions during attention (Figure 5A, bottom), these results suggest

that local functional connectivity is relatively stable during atten-

tion but changes during learning, possibly through long-term

synaptic plasticity mechanisms.

Since the data-driven MVARmodel analysis indicated that the

selectivity changes were not predicted by changes in local func-

tional interactions, we developed a detailed theoretical model of

the local circuit enabling us to evaluate what type of external in-

puts could explain the attentional modulation of the local circuit.

In this model, we represented each of the four cell types (PYR,

PV, SOM, and VIP) by their population activity, corresponding

to the average response across all cells with a given stimulus

preference in the population. Population activity was determined

by baseline activity, feedforward stimulus-related input, top-

down attentional modulatory input, and connection weights

with other cell populations (see Method details). The four neural

populations were connected using experimentally derived con-

nectivity values, similar to Kuchibhotla et al. (2017) (Figure 6A).

The model’s population responses resembled the average pop-

ulation stimulus responses of all four cell classes (Figure 6B,

experimental responses shown in inset).

In the model, each population received fluctuations from cell-

intrinsic sources (e.g., due to ion channel noise) and shared

external sources (stimulus and top-downmodulatory inputs; Fig-

ure 6A). The simulated noise correlations thus reflected both

connectivity and fluctuations in the stimulus and modulatory in-

puts. Since functional connectivity weights between cell classes

were stable across attend and ignore conditions, we modeled

the changes in noise correlations during attention switching as

arising from changes in the shared external fluctuations.

It is unclear whether attention has a multiplicative effect (Goris

et al., 2014; Reynolds and Heeger, 2009) or an additive effect

(Buracas and Boynton, 2007; Thiele et al., 2009). We therefore

considered two different types of models with an additive or mul-

tiplicative effect of attentional modulation. We systematically

simulated all of the conditions in which attentional modulation

targeted different cell classes and combinations of cell classes.

We then evaluated the stimulus selectivity changes and noise
8 Neuron 110, 1–12, February 16, 2022
correlation changes induced by attentional modulation (Fig-

ure 6C). We looked for conditions that replicated our experi-

mental findings, including that (1) attention increased only PYR

and PV stimulus selectivity (Figure 2G) and (2) attention mainly

increased SOM-SOM and decreased VIP-VIP noise correlations

(Figure 5C, bottom). Of all of the conditions, only one matched

both of these experimental findings, in which PYR and SOMcells

received multiplicative attentional modulation (Figure 6C,

arrows).

The model so far assumed equal influence of attentional mod-

ulation onto all cells. We next varied the relative strengths of

modulation received by PYR and SOM cells to test whether the

match to experimental findings could be improved. Specifically,

the current model produced an increase in noise correlations be-

tween PYR-PYR, PYR-SOM, SOM-PV, and SOM-VIP cells,

which was not observed experimentally. A model in which the

attentional modulation of PYR was 0.7 times the modulation of

SOM improved the match to the data (Figure S7D). This model

replicated the increase in PYR and PV stimulus selectivity (Fig-

ure 6D) as well as the changes in SOM-SOM and VIP-VIP noise

correlations, with only minor changes in noise correlations be-

tween other cell types (Figure 6E). Thus, a model in which PYR

and SOM populations received different degrees of multiplica-

tive attentional modulation best accounted for the changes in

selectivity and noise correlations observed in the data

(Figure S7E).

DISCUSSION

We show that improvements in sensory coding arising from

learning or attention rely on distinct mechanisms, based on three

lines of evidence. First, at the single-cell level, the effects of

learning and attention are uncorrelated. Second, distinct pat-

terns of firing rate changes underlie the increases in selectivity

during learning and attention. Third, learning and attention are

associated with different changes in functional interactions be-

tween cell classes. Our computational models suggest that

learning relies on the reorganization of interactions in the local

circuit, whereas attention relies on multiplicative top-down sig-

nals that target specific cell-classes.

Subpopulations of excitatory neurons modulated by
learning and attention
Learning and attention are closely linked: attended objects are

preferentially learned, and learning can bias the allocation of

attention (Gilbert et al., 2000; Vartak et al., 2017). Although we

show that learning and attention both lead to a similar increase

in stimulus selectivity on average in PYR and PV cells, these in-

creases are not driven by the same subset of neurons. Impor-

tantly, this does not mean that cells are either modulated by

learning or attention. Instead, learning and attention each modu-

late the same neurons to varying degrees, and a neuron’s degree

of modulation during learning is uncorrelated with its degree of

modulation by attention.

The basis of neural susceptibility to either learning- or atten-

tion-related modulations is poorly understood. For example, it

may be related to intrinsic excitability (Brebner et al., 2020),

expression of immediate-early genes (e.g., CREB [Han et al.,
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Figure 6. A circuit model can distinguish between different patterns of top-down attentional modulation

(A) The model architecture, indicating connectivity between different cell classes and possible sources of shared external fluctuations.

(B) Simulated responses of the 4 cell types to the preferred stimulus. Inset: experimentally obtained average responses of all of the cells in each cell class aligned

to the vertical grating stimulus onset. Shading indicates SEM.

(C) Changes in stimulus selectivity and noise correlations (NCs) obtained from models with attentional modulation applied to different combinations of cell

populations. Both additive and multiplicative modulations were tested. The arrow indicates the condition that best replicated the experimental changes in

selectivity and noise correlation.

(D) Absolute selectivity of different cell classes without (ignore) and with (attend) attentional modulation provided to PYR and SOM populations, with PYR

receiving 0.7 times the modulation of SOM (see Figures S7D and S7E).

(E) Changes in noise correlations (NC change) with attentional modulation as in (D) between and within the 4 cell classes, as indicated by line thickness and

color code.

See also Figure S7.
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2007] or Arc [Gouty-Colomer et al., 2016]; see also Holtmaat and

Caroni, 2016), and pre- or post-synaptic expression of neuromo-

dulator receptors (Disney et al., 2007; Herrero et al., 2008) or

connectivity with distal and top-down inputs (Iacaruso et al.,

2017; Marques et al., 2018). Our results impose an important

restriction: these molecular or circuit mechanisms must be

independent or exert a minimal influence on each other, since

the effects of learning and attention on individual cells are

uncorrelated.

While we have studied the three major classes of interneu-

rons in the cortex (Xu et al., 2010), each of these classes con-

tains further subdivisions of cell types (Tasic et al., 2016).

Further studies may reveal functional differences between

these subclasses describing their specific roles in learning

and attention.
Suppression and enhancement of stimulus responses
We find that learning and attention lead to distinct patterns of

suppression and enhancement of firing rates. Learning was

dominated by selective suppression of responses to the non-

preferred stimulus, perhaps because it ismetabolically more effi-

cient for implementing long-term selectivity changes (Howarth

et al., 2012). Previous studies of associative conditioning have

described both suppression and enhancement of responses in

the sensory cortex (Gdalyahu et al., 2012; Goltstein et al.,

2013; Makino and Komiyama, 2015). By longitudinally tracking

the same neurons, we find that learning is largely accompanied

by sparsification of cortical responses. Attention, in contrast,

largely led to selectivity changes through selective enhancement

of responses. This is consistent with a large body of work

showing that the enhancement of attended responses is a
Neuron 110, 1–12, February 16, 2022 9
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common form of attentional modulation (McAdams and Maun-

sell, 1999; Speed et al., 2020; Spitzer et al., 1988; Wilson et al.,

2019). Here, by studying the same neural population across

both learning and attention, we demonstrate that V1 neurons

are remarkably versatile, capable of displaying either selective

enhancement or selective suppression of stimulus responses

according to the current behavioral demand.

Changes in interactions
Imaging the activity of multiple cell classes simultaneously al-

lowed us to investigate both interactions within and between

excitatory and inhibitory cell classes. We found changes in inter-

actions at two levels.

First, we observed a reorganization of interaction weights be-

tween PYR and PV cells during learning, possibly through long-

term synaptic plasticity, which was captured quantitatively by a

linear dynamical systems model. In contrast, attention did not

lead to a similar change in interaction weights, suggesting that

the short timescale of attention does not permit large-scale reor-

ganization of connectivity patterns.

Second, we found changes in noise correlations between

pairs of the same or different cell classes. Changes in noise cor-

relations have been implicated in improved behavioral abilities

during learning and attention (Jeanne et al., 2013; Ni et al.,

2018). We found that noise correlation changes were dramati-

cally different across learning and attention. Learning was

marked by reductions in inter-cell class correlations. Specif-

ically, SOM cells became decorrelated from the rest of the

network. This transition potentially facilitates plasticity in the

network by reducing the amount of dendritic inhibition from

SOMcells that coincides with visual responses in excitatory cells

(Khan et al., 2018). In contrast, attention changed the correla-

tions of SOM-SOM and VIP-VIP cell pairs, leaving inter-cell class

correlations relatively unchanged. Our model demonstrates that

these changes can be explained by top-down input in the

absence of local connectivity changes. Importantly, this relies

on specific connectivity motifs across cell classes (Fino and

Yuste, 2011; Hofer et al., 2011; Jiang et al., 2015; Pfeffer

et al., 2013).

To account for the increased stimulus selectivity and noise

correlation changes, we tested a variety of circuit architectures

(Prinz et al., 2004). Top-down attentional modulation signals

can be multiplicative (Goris et al., 2014; Reynolds and Heeger,

2009) or additive (Buracas and Boynton, 2007; Thiele et al.,

2009), and they can target specific cell classes (Leinweber

et al., 2017; Zhang et al., 2014, 2016). Here, the experimental re-

sults limited possible model architectures to a single one, with

multiplicative top-down modulation targeting SOM and PYR

cells. Top-down projections with specific targeting have been

proposed to be central to the gating of plasticity, allowing atten-

tion to guide learning (Roelfsema and Holtmaat, 2018). Our pre-

dictions of targeted top-down projections provide a basis for

future experimental work.

In summary, learning and attention lead to similar increases in

neural response selectivity, but the effects are driven by different

subsets of cells. Cells undergo distinct patterns of activity

changes to achieve increased neural response selectivity during

learning and attention. These results highlight the remarkable
10 Neuron 110, 1–12, February 16, 2022
versatility by which a cortical circuit implements computations

across short and long timescales.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat anti-parvalbumin Swant PVG-213; RRID AB_2650496

Mouse anti-parvalbumin Swant PV-235; RRID AB_10000343

Rabbit anti-Vasoactive intestinal peptide ImmunoStar Cat# 20077; RRID AB_572270

Rat anti-somatostatin Millipore MAB354; RRID AB_2255365

DyLight 405-AffiniPure Donkey Anti-Mouse Jackson ImmunoResearch Cat# 715-475-150; RRID AB_2340839

Rhodamine Red-X-AffiniPure

Donkey Anti-Rabbit

Jackson ImmunoResearch Cat# 711-295-152; RRID AB_2340613

Alexa Fluor 647-AffiniPure Donkey Anti-Rat Jackson ImmunoResearch Cat# 712-605-153; RRID AB_2340694

Alexa Fluor 594-AffiniPure

Donkey Anti-Mouse

Jackson ImmunoResearch Cat# 715-585-151; RRID AB_2340855

Alexa Fluor 647-AffiniPure

Donkey Anti-Rabbit

Jackson ImmunoResearch Cat# 711-605-152; RRID AB_2492288

DyLight 405-AffiniPure Donkey Anti-Rat Jackson ImmunoResearch Cat# 712-475-153; RRID AB_2340681

DyLight 405-AffiniPure Donkey Anti-Goat Jackson ImmunoResearch Cat# 705-475-147; RRID AB_2340427

Bacterial and virus strains

AAV2.1-syn-GCaMP6f-WPRE Addgene Cat#100837

Experimental models: organisms/strains

Mouse: C57BL/6 Biozentrum animal facility N/A

Mouse: Rosa-CAG-LSL-tdTomato (JAX:

007914) crossed with PV-Cre (JAX: 008069)

Jackson Laboratory JAX: 007914; RRID IMSR_JAX:007914

JAX: 008069; RRID IMSR_JAX:008069

Mouse: Rosa-CAG-LSL-tdTomato (JAX: 007914)

crossed with VIP-Cre (JAX: 010908)

Jackson laboratory JAX: 007914; RRID IMSR_JAX:007914

JAX: 010908; RRID IMSR_JAX:010908

Software and algorithms

MATLAB Mathworks https://ww2.mathworks.cn/products/

matlab.html; RRID: SCR_001622

Fiji (ImageJ) NIH https://imagej.net/software/fiji

Circuit model Custom code 10.5281/zenodo.5674688
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Jasper

Poort (jp816@cam.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data reported in this paper will be shared by the lead contact upon request. All original code has been deposited at https://zenodo.

org/record/5674688 and is publicly available as of the date of publication. DOIs are listed in the Key resources table. Any additional

information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental procedures for the behavioral task, surgery, two-photon calcium imaging, post hoc immunostaining and image regis-

tration have been described in detail in previous studies (Khan et al., 2018; Poort et al., 2015).
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Animals and two-photon calcium imaging
All experimental procedures were carried out in accordance with institutional animal welfare guidelines and licensed by the UKHome

Office and the Swiss cantonal veterinary office. Nine mice were used in this study, of which 7 were tracked across both learning and

attention, one during learning alone and one during attention alone. Mice were C57BL/6 wild-type mice (3 males, 1 female, Janvier

Labs), crosses between Rosa-CAG-LSL-tdTomato (JAX: 007914) and PV-Cre (JAX: 008069) (3 males), and crosses between Rosa-

CAG-LSL-tdTomato and VIP-Cre (JAX: 010908) (1 male, 1 female) all obtained from Jackson Laboratory. Since we were able to

retrieve cell class identity in all mice from the post hoc immunostaining (see below), the transgenically expressed tdTomato was

rendered redundant. Data from these mice at pre and post learning data points were analyzed in a prior study (Khan et al., 2018).

The data collected during the attention switching task has not been reported previously.

METHOD DETAILS

Mice aged P48-P58 were implanted with a chronic imaging window following viral injections of AAV2.1-syn-GCaMP6f-WPRE (Chen

et al., 2013). Multi-plane two-photon imaging began approximately three weeks after surgery, during which 4 planes were imaged

with 20 mmspacing at an imaging rate of 8 Hz for each imaging plane. Eight micewere imaged both pre-learning (either first or second

day of training) and post-learning (either day 7, 8 or 9 of training), and during an attention switching task (1 session each, after 1 to

2 days of learning the attention switching task). Before each imaging session the same site was found by matching anatomical

landmarks.

Behavioral training
Details of the behavioral task have been described in previous studies (Khan et al., 2018; Poort et al., 2015). Food restrictedmicewere

trained in a virtual environment to perform a visual go-no go discrimination task. Trials were initiated by head-fixed mice running on a

Styrofoam wheel for a randomly chosen distance in an approach corridor (black and white circle pattern unrelated to the task for

111cm followed by gray walls for 74-185 cm plus a random distance of gray walls chosen from an exponential distribution with

mean 37 cm). Mice were then presented with either a vertical grating pattern (square wave gratings, 100% contrast) or an angled

grating pattern (rotated 40� relative to vertical) on the walls of the virtual environment (grating corridor length 111 cm). In the vertical

grating corridor, themouse could trigger the delivery of a reward, a drop of soymilk, by licking the spout after it had entered a ‘reward

zone’ a short distance (55.5 cm) into the grating corridor (mice often licked in anticipation of the reward zone). This was considered a

‘hit’ trial. If an animal did not lick by the end of the reward zone, this was considered a ‘miss’ trial. In the angled grating corridor, the

mouse did not receive a reward, and a single lick or more in this corridor was considered a ‘false alarm’ trial. No punishment was

given. Running through the angled corridor without licking was considered a ‘correct rejection’ trial. Mice typically stopped running

when they licked the spout, visible as longer stays in in the grating corridor in the lick rasters (Figure S1). Mouse performance was

quantified using a behavioral d-prime: bd0 = F�1ðHÞ� F�1ðFÞ, where F�1 is the normal inverse cumulative distribution function, H is

the rate of hit trials and F is the rate of false alarm trials.

After reaching high levels of discrimination performance, all mice were trained to switch between blocks of an olfactory and vi-

sual discrimination task (the attention switching task). This task is an attentional set-shifting task in which mice switch between two

rules or attentional sets: either attending to and discriminating visual stimuli, or attending to and discriminating odor stimuli while

ignoring the same visual stimuli. The visual blocks were the same as the visual discrimination task described above. In olfactory

blocks, mice performed an olfactory go-no go discrimination task in which odor 1 (10% soya milk odor) was rewarded and odor 2

(10% soya milk with 0.1% limonene mixture) was not rewarded. Odors were delivered through a flow dilution olfactometer cali-

brated with a mini PID (Aurora) at 10%–20% saturated vapor concentration of the above solutions, and at 1 L/min flow rate. Before

the presentation of odors, in 70% of randomly chosen trials mice were also presented with the same vertical or angled grating

stimuli at different positions in the approach corridor, with the grating corridor ending before the onset of odors. Mice learnt to

ignore these irrelevant grating stimuli while accurately discriminating the odors. On switching to the visual block, mice licked selec-

tively to the rewarded grating as before. Block transitions were not explicitly cued and mice transitioned between the two rules by

noticing changes in stimuli and reward contingencies. Mice typically performed two visual and two olfactory blocks in each ses-

sion, data was pooled across blocks of the same type. After each block transition, we excluded trials in which the behavior of the

mice was ambivalent (Poort et al., 2015). Each block typically contained 70-150 trials. Mice typically learnt to perform the attention

switching task successfully within 1-2 days.

Immunohistochemistry and image registration
Brain fixation was performed by transcardial perfusion with 4% paraformaldehyde in phosphate buffer 0.1 M followed by 24 hours of

post-fixation in the same solution at 4�C. The brains underwent two freeze-thaw cycles in liquid nitrogen, and were sliced tangentially

to the surface of visual cortex. 80 mm slices were cut on a vibratome (Zeiss Hydrax V50) and were immunostained for PV, SOM and

VIP (Khan et al., 2018). Primary and secondary antibodies are listed in the Key Resources Table.We imaged the slices with a confocal

microscope (Zeiss LSM 700), and confocal z stacks were registered with the previously acquired in vivo imaging planes and z stacks

of the recording sites. Cells were identified manually and assigned to cell classes based on immunostaining.
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Data analysis
Regions of interest (ROIs) frommotion-corrected image stacks were selected for each cell in each session. We adapted the method of

Chen et al. (2013) to correct for neuropil contamination of calcium traces. Neuropil masks were created for each cell by extending the

ROI by 25mmand including all pixels thatweremore than 10mmaway from the cell boundary, excluding pixels assigned to other cells or

segments of dendrites and axons (pixels that were more than 2 standard deviations brighter than the mean across all pixels in the neu-

ropil mask).We performed a robust regression on the fluorescence values of the ROI and neuropil mask.We inspected the slope of this

regression in a sample of our dataset and obtained a factor of 0.7 by which wemultiplied the neuropil mask fluorescence (median sub-

tracted) before subtracting it from the ROI fluorescence to obtain the neuropil-corrected raw fluorescence time series F(t). Baseline

fluorescence F0(t) was computed by smoothing F(t) (causal moving average of 0.375 s) and determining for each time point the min-

imum value in the preceding 600 s time window. The change in fluorescence relative to baseline, DF/F, was computed by taking the

difference between F and F0, and dividing by F0. The pre- and post-learning data was also used in Khan et al. (2018).

Responses were analyzed for the vertical and angled grating corridor by aligning neuronal activity to the onset of the stimuli. We

used a Wilcoxon rank-sum test to determine if the response of a cell (average DF/F in a time window of 0-1 s after grating onset) was

significantly different between vertical and angled gratings (p < 0.05). We used a Wilcoxon signed-rank test to determine if the

response (DF/F 0-1 s) to the gratings significantly increased or decreased relative to baseline (�0.5 to 0 s). For visualizing stim-

ulus-evoked responses and for computing the change in stimulus-evoked responses with learning and attention, we subtracted

the pre-stimulus baseline (�0.5 to 0 s before stimulus onset) from the average response.

The selectivity of each cell was quantified as the selectivity index (SI), the difference between themean response (0-1 s) to the vertical

and angledgrating dividedby the pooled standard deviation,whichwaspositive or negative for cells that preferred the vertical or angled

grating respectively. We took the average of the absolute selectivity of all cells to obtain an average measure of the selectivity across a

population of cells (including vertical and angled preferring cells). Cells were classified as significantly selective or non-selective based

onwhether their responses to the twogratingstimuli ina timewindowof1 saftergratingonsetweresignificantlydifferent (Wilcoxon rank-

sum test, p < 0.05). Recruited cells were all cells non-selective in the pre-learning/ignore condition and significantly selective in the post-

learning/attend condition. PSTHs of recruited cells were averaged and the percentage change of responseswas calculated in the 0-1 s

window after stimulus onset, with negative values indicating reduced responses. In Figures 4F and 4Gwe selected cells on the basis of

this selectivity change, which does not constrain the direction of the response change. We calculated the selectivity of the local PYR

population around each PV cell by averaging the responses of all PYR cells, within 100 mm distance, to the two grating stimuli. Confi-

dence intervals were calculated by a bootstrap procedure where we randomly selected cells with replacement 10,000 times to obtain

the 2.5 and 97.5percentiles. TheP valuewasgivenby thepercentage of bootstrappedpre-learning or ignore condition slope values that

were lower than the post-learning or attend slopemultiplied by two (two-sided test). To computeDselectivity during learning and atten-

tion, we took the differenceSIpost – SIpre or SIattend – SIignore for cells with positive selectivity post learning or in the attend condition. Simi-

larly,we took the difference –(SIpost – SIpre) or –(SIattend – SIignore) for cells with negative selectivity post learning or in the attend condition.

To compute noise correlation, we first subtracted for each trial and each cell the average stimulus evoked responses across all

trials. We then used the Pearson correlation coefficient to quantify the correlation between responses of pairs of cells. Changes in

noise correlations with learning and attention between different cell types were tested using a sign test on all cells imaged pre-

and post-learning or in the ignore and attend conditions.

In a previous study based on the learning dataset used here, we controlled for the effects of running and licking on neural responses

(Khan et al., 2018). Here we performed similar analysis on the attention dataset. We controlled for the possible effect of variations in

running speed across the ignore and attend conditions on stimulus selectivity and noise correlations using a stratification approach.

We selected a subset of trials with similar distributions of running speed in the ignore and attend condition for each stimulus. We then

recomputed the stimulus selectivity and noise correlations in the attend and ignore conditions and obtained similar results with and

without stratification (Figures S4A and S4C). On excluding trials with licks in the analysis window (0-1 s after grating onset), we also

obtained similar results for stimulus selectivity and noise correlations (Figures S4B and S4D).

Linear multivariate autoregressive system model
Details of the MVAR model are described in a previous study (Khan et al., 2018). We fit the activity of all simultaneously imaged neu-

rons using a multivariate autoregressive (MVAR) linear dynamical system incorporating stimulus-related input, the simultaneously

measured co-fluctuations from multiple cells of different cell types and the mouse running speed. We estimated the interaction

weights between pairs of cells which describe the relationship between the activity of one cell and the activity of another cell at pre-

vious time points, conditioned over the activity of all other cells and over behavioral and sensory variability.

The learning-related data was previously studied in detail using this model (Khan et al., 2018). Here we fit themodel separately to the

learning and attention switching tasks, in each case fitting either separate interaction weights for the pre/post learning or ignore/attend

conditions or a single set of weights to account for activity in both conditions. The different MVARmodels were compared using leave-

one-out cross validation (Figure S7B), measuring prediction quality on held-out data.We held out one vertical grating trial from the post

learning or attend condition in the test set, using the remaining trials of all types for training. The MVAR model was fit to these training

data, and the error in the model prediction was calculated for each time sample in the test trial. This procedure was repeated, leaving

out each vertical grating trial in turn. We calculated an R2 value for each cell combining errors across all of these trials. Specifically, the

R2 was defined relative to a baselinemodel which incorporated only the trial-averaged response profile of each cell, i.e.,R2 = 1 – (sumof
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squared errors in MVAR prediction)/(sum of squared errors in the trial-averaged response profile prediction). Running speed was not

included in themodel for the cross-validation analysis to facilitate comparisonwith alternativemodels. To determinewhether the results

from this analysis were influenced by differences in the goodness of fit, or degree of overfitting of the MVARmodel to the learning and

attention datasets, we estimated the degree of overfitting as the difference between the train and test R2 values. We obtained similar

distributions of overfitting in the learning and attention data by excluding sessions from the attention datawith higher or lower overfitting

estimates (14 of 29 sessions excluded fromattention data, learning data left unchanged. After excluding these sessions, overfittingwas

not significantly different between learning and attention, p = 0.16, t test). TheMVARmodel fit to this subset of data produced the same

results as Figure S7B, the attention data was better fit when the interaction weights were held fixed rather than free (Cross-validated

R2 = 0.26 ± 0.007 weights free and 0.30 ± 0.007 weights fixed, p = 3.34 3 10�6).

Circuit model
We modeled a circuit consisting of an excitatory population PYR, and three inhibitory populations, corresponding to PV, SOM, and

VIP interneurons. The activity of the population i is described by its calcium response ri, which evolves over time according to one of

the following equations:

Additive model

ti
dri
dt

= � ri +f
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Multiplicative model
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where i; j˛fPYR;PV ;SOM;VIPg and

ti is the time constant of population i.

Ibi is the baseline input to population i,

Isi is the stimulus-dependent feedforward input to population i,

ITDi is the modulatory top-down input - the attentional modulation of population i, andP
j

Wijrj is the recurrent input from the local circuit and Wij is the effective synaptic weight.

As in earlier models (Kanashiro et al., 2017), each population received private and shared noise. xiðtÞ is noise, private to each pop-

ulation, corresponding to noise arising from ion channels, or the activation function.

xTDðtÞ and xFFðtÞ are shared noise terms arising from sharedmodulatory top-down and/or feedforward inputs. xi (t),xTDðtÞ, and xFFðtÞ
are drawn from a Gaussian distribution with zero mean and unit variance. We assume that external noise sources contribute equally.

fðxÞ is the activation function:

fðxÞ =
(

0 if x < 0
ðrmax � r0Þtanhðx=ðrmax � r0ÞÞ if xR0

PYR and PV populations receive an input current Isi upon presentation of their preferred stimulus (Ji et al., 2016) representing

thalamic inputs. They receive a fraction of this input current (0.2 $Is) upon presentation of their non-preferred stimulus. Similar results

were observed when SOM and VIP populations also received the same input current as PV cells. All populations received a constant

baseline current input Ibi . Each modulated population i received a top-down modulation ITDi , which took one of two values

fxignore; xattendg depending on the absence or presence of attention (see Tables A and B). r0 = 1:0 and rmax = 20:0 denote the minimum

and maximum activity, respectively.

Table: Inputs to the multiplicative model. Shown are the values for the baseline, stimulus, and top-down inputs to the popula-

tions PYR, PV, SOM, and VIP. Top-down inputs depend on the condition, which is either ignore or attend: fxignore;xattendg.
Population baseline Ibi stimulus Isi top-down ITDi

PYR 6.0 17.8 {1.0, 2.0}

PV 4.0 10.0 {1.0, 2.0}

SOM 1.2 0.0 {1.0, 2.0}

VIP 4.6 0.0 {1.0, 2.0}
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Table: Inputs to the additive model. Shown are the values for the baseline, stimulus, and top-down inputs to the populations

PYR, PV, SOM, and VIP. Top-down inputs depend on the condition, which is either ignore or attend: fxignore;xattendg.
Population baseline Ibi stimulus Isi top-down ITDi

PYR 6.0 17.8 {0.0, 1.0}

PV 4.0 10.0 {0.0, 1.0}

SOM 1.2 0.0 {0.0, 1.0}

VIP 4.6 0.0 {0.0, 1.0}
We changed the contributions of noise sources to the overall noise in the populations, depending on the inputs population i

received, according to Kanashiro et al. (2017). If population i received attentional modulation:

cTD
i =

1

3

otherwise:

cTD
i = 0:

If population i received feedforward input:

cFF =
1

3

otherwise:

cFF = 0:

The standard deviation of the total noise was given by:

si = 0:5
ffiffiffi
2

p

Connectivity
We took the weight matrixW from Kuchibhotla et al. (2017), and adjusted only the baseline and stimulus inputs Ibi and Isi such that the

simulated neural responses matched the data.

W =

0
BBBBBBBB@

WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WVE WVP WVS WVV

1
CCCCCCCCA

=

0
BBBBBBBB@

:017 :956 :512 :045

:8535 :99 :307 :09

1:285 0 0 :14

2:104 :184 :734 0

1
CCCCCCCCA

Each population was represented twice in the model, allowing us to measure noise correlations within cell classes.

We simulated the network without stimulus input for 5 s until the neural activity for each cell class reached steady state. Then we

presented the non-preferred stimulus for 3 s, following which we waited another 4 s before we presented the preferred stimulus for 3

s. The simulation time step was 1 ms. We repeated this protocol for 100 trials. tPYR was 800 ms and ti with i˛fSOM;VIP;PVg was

400 ms.

To calculate the selectivity of cell populations in the model, we subtracted the mean activity to the non-preferred stimulus xN from

themean activity to the preferred stimulus xP during 1 s after stimulus onset and normalized by their pooled standard deviation spooled:

SI =
xP � xN
spooled

spooled =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þs2P + ðn� 1Þs2N

2n� 2

r

where n is the number of trials, sP is the standard deviation of the activity during the preferred stimulus, and sN is the standard de-

viation of the activity during the non-preferred stimulus.

To determine the noise correlation between cell populations in the model, we calculated the average activity in populations x and y

in each trial i in a 1 s time window after onset of the preferred stimulus: xi and yi. We calculated the means x and y and standard
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deviations sx and sy of the activity over trials for each population. We then calculated noise correlations between populations x and y

over n= 100 trials according to the following equation:

NCxy =
1

n� 1

Xn
i = 1

�
xi � x

sx

yi � y

sy

�
:

For Figure S7D, ITDPV and ITDVIP were 0.0, and we varied ITDSOM continuously between 1 and 2.2 and ITDPYR proportionally to ITDSOM as indicated

in the figure.
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