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Stage-Aware Feature Alignment Network for
Real-Time Semantic Segmentation of Street Scenes
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Abstract—Over the past few years, deep convolutional neural
network-based methods have made great progress in semantic
segmentation of street scenes. Some recent methods align feature
maps to alleviate the semantic gap between them and achieve
high segmentation accuracy. However, they usually adopt the
feature alignment modules with the same network configuration
in the decoder and thus ignore the different roles of stages of the
decoder during feature aggregation, leading to a complex decoder
structure. Such a manner greatly affects the inference speed. In
this paper, we present a novel Stage-aware Feature Alignment
Network (SFANet) based on the encoder-decoder structure for
real-time semantic segmentation of street scenes. Specifically, a
Stage-aware Feature Alignment module (SFA) is proposed to
align and aggregate two adjacent levels of feature maps effec-
tively. In the SFA, by taking into account the unique role of each
stage in the decoder, a novel stage-aware Feature Enhancement
Block (FEB) is designed to enhance spatial details and contextual
information of feature maps from the encoder. In this way, we are
able to address the misalignment problem with a very simple and
efficient multi-branch decoder structure. Moreover, an auxiliary
training strategy is developed to explicitly alleviate the multi-
scale object problem without bringing additional computational
costs during the inference phase. Experimental results show that
the proposed SFANet exhibits a good balance between accuracy
and speed for real-time semantic segmentation of street scenes.
In particular, based on ResNet-18, SFANet respectively obtains
78.1% and 74.7% mean of class-wise Intersection-over-Union
(mIoU) at inference speeds of 37 FPS and 96 FPS on the
challenging Cityscapes and CamVid test datasets by using only
a single GTX 1080Ti GPU.

Index Terms—Real-time semantic segmentation, street scene
understanding, deep learning, lightweight convolutional neural
network, feature alignment and aggregation.

I. INTRODUCTION

RECENT years have witnessed an increasing interest in
the applications of autonomous driving and intelligent

transportation. A problem of key importance in these appli-
cations is to provide a comprehensive understanding of traffic
situations at the semantic level. Semantic image segmentation,
which assigns a label from a set of predefined classes to each
pixel in an image, is a fundamental technique to characterize
the contextual relationship of semantic categories in street
scenes [1]. It can be used as a pre-processing step to remove

X. Weng, Y. Yan, H. Wang are with the Fujian Key Laboratory of Sensing
and Computing for Smart City, School of Informatics, Xiamen University, X-
iamen 361005, China (e-mail: xweng@stu.xmu.edu.cn; yanyan@xmu.edu.cn;
hanzi.wang@xmu.edu.cn).

S. Chen is with the School of Computer and Information Engineering,
Xiamen University of Technology, Xiamen 361024, China (e-mail: chen-
si@xmut.edu.cn).

J.-H. Xue is with the Department of Statistical Science, University College
London, London WC1E 6BT, UK (e-mail: jinghao.xue@ucl.ac.uk).

5. Conclusion

Real-time performance is a very important trait of se-
mantic segmentation models aiming at applications in
robotics and intelligent transportation systems. Most pre-
vious work in the field involves custom convolutional en-
coders trained from scratch, and decoders without lateral
skip-connections. However, we argue that a better speed-
accuracy trade-off is achieved with i) compact encoders
designed for competitive ImageNet performance and ii)
lightweight decoders with lateral skip-connections. Ad-
ditionally, we propose a novel interleaved pyramidal fu-
sion scheme which is able to further improve the results
on large objects close to the camera. We provide a de-
tailed analysis of prediction accuracy and processing time
on Cityscapes and CamVid datasets for models based on
ResNet-18 and MobileNetv2. Our Cityscapes test submis-

sion achieves 75.5% mIoU by processing 1024⇥2048 im-
ages at 39.9 Hz on a GTX1080Ti. To the best of our knowl-
edge, this result outperforms all previous approaches aim-
ing at real-time application. The source code is available at
https://github.com/orsic/swiftnet.
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Fig. 1. Some segmentation results obtained by SwiftNet [1] and our proposed
SFANet on Cityscapes [10] (the first row) and CamVid [11] (the second row).
The images from left to right denote (a) the input images, (b) the ground-truth
images, (c) the outputs obtained by SwiftNet, and (d) the outputs obtained
by SFANet, respectively. Compared with SwiftNet, SFANet is able to classify
multi-scale objects more accurately and give more refined boundaries (see the
red rectangles).

uninformative regions [2], [3] or combined with 3D scene
geometry [4], [5]. In general, these tasks require not only high-
resolution input images to cover a wide field of view, but also
fast inference speed for interaction or response.

Benefiting from the progress of Deep Convolutional Neu-
ral Network (DCNN), a large number of accuracy-oriented
semantic segmentation methods [6]–[9] have been developed
and achieved promising performance on a variety of datasets,
including street scene datasets (such as Cityscapes [10] and
CamVid [11]) and natural scene datasets (such as PASCAL
VOC 2012 [12]). These methods exploit rich contextual cues
and spatial details to ensure segmentation accuracy. However,
they often adopt very deep network architectures (such as X-
ception [13] and ResNet-101 [14]) that involve a large number
of network parameters. Moreover, they take high-resolution
images as inputs to capture spatial details, which can result in
a heavy memory footprint and large-scale floating-point op-
erations. Therefore, these methods suffer from slow inference
speed in practical applications.

Up to date, many efforts have been made towards efficient or
real-time semantic segmentation. Some methods either reduce
input image resolutions [15]–[17] or design highly lightweight
network structures [18]–[20]. Although the above method-
s greatly reduce the computational complexity of semantic
segmentation, they lose the contextual information or spatial
details to some extent, thus leading to a significant decrease in
accuracy. Therefore, how to achieve a good balance between
inference speed and segmentation accuracy has become a crit-
ical challenge in real-time semantic segmentation, especially
for complex street scenes.

Currently, some real-time semantic segmentation methods
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(such as Bilateral Segmentation Network (BiSeNet) [21] and
Deep Feature Aggregation Network (DFANet) [22]) have been
proposed. These methods employ a multi-branch framework
to combine the contextual information from high-level feature
maps with spatial details from low-level feature maps. In
these methods, the high-level feature map is often scaled
up to the same size as the low-level feature map, and then
an element-wise addition or a channel-wise concatenation
operation is used to aggregate two feature maps. Unfortunately,
the segmentation accuracy of these methods on street scene
images, which usually contain many small objects (such as
poles and traffic lights), is still far from being satisfactory.
This is partly due to the fact that these methods ignore the
misalignment between different levels of feature maps, which
may lead to the misclassification of boundaries for small
objects [23].

To mitigate the misalignment problem, Guided Upsampling
Network (GUN) is proposed to guide the upsampling of high-
level feature maps by using a Guided Upsampling Module
(GUM) [24]. Based on the encoder-decoder structure, Seman-
tic Flow Network (SFNet) [25] develops a Flow Alignment
Module (FAM) to take two adjacent levels of feature maps
as inputs and learn a semantic flow to align them. However,
SFNet adopts the feature alignment modules with the same
network configuration at each stage of the decoder. In other
words, it ignores that the roles of different stages in the
decoder are different (e.g., the early stages of the decoder
are concerned with high-level contextual cues, while the later
stages of the decoder focus on low-level spatial details). There-
fore, SFNet has to rely on a complex decoder structure with
multiple shortcut paths to ensure segmentation performance.
As a result, its inference speed is influenced.

Different from natural scene images, street scene images
often cover different scales of objects (such as cars and pedes-
trians). The existence of objects at multiple scales is another
important challenge of semantic segmentation that greatly
affects the segmentation accuracy in complex street scenes.
Generally, there are two main strategies to deal with this
problem: 1) multi-scale contextual aggregation [8], [26], and 2)
long-range contextual modeling [27], [28]. Although these two
strategies improve the accuracy, they usually bring additional
computational burden for both training and inference.

In the light of the above issues in street scenes, in this paper,
we propose a novel real-time segmentation method, called
Stage-aware Feature Alignment Network (SFANet), through
designing an encoder-decoder structure targeting fast inference
speed and excellent segmentation accuracy. A lightweight
backbone (ResNet-18) is adopted as the encoder, while a
Stage-aware Feature Alignment module (SFA) is proposed to
effectively align and aggregate two adjacent levels of feature
maps in the decoder. In particular, considering the different
roles of stages in the decoder, four SFAs with different
network configurations (SFA-1, SFA-2, SFA-3, and SFA-4)
are developed at all stages of the decoder.

In each SFA, we propose a stage-aware Feature Enhance-
ment Block (FEB) to enhance spatial and semantic repre-
sentations. Meanwhile, we adopt a Spatial-Channel Attention
module (SCA) to reduce the interference caused by the ir-

relevant information and preserve the important information.
Based on FEB and SCA, we further use a Feature Alignment
and Aggregation module (FAA) to perform feature alignment
and aggregation. Hence, the misalignment problem can be
greatly addressed. Moreover, we develop an auxiliary training
strategy to explicitly enable each SFA to capture the object
information at a certain scale, so as to alleviate the multi-scale
object problem in semantic segmentation. It is worth noting
that the auxiliary training strategy will not bring additional
computational costs during the inference phase since it is
only used for training. Some segmentation results obtained
by SwiftNet [1] and our proposed SFANet are given in
Fig. 1. Compared with SwiftNet, SFANet is able to segment
multi-scale objects more accurately and give more refined
boundaries.

In summary, our main contributions in this paper can be
summarized as follows:

• A stage-aware FEB is proposed to enhance the spatial
and contextual information of feature maps from the
encoder during feature aggregation, while an auxiliary
training strategy is introduced to facilitate the training
of the network at a certain scale without increasing the
computational burden for inference in each SFA. This
is beneficial to simultaneously alleviate the problems
of misalignment and multi-scale objects for semantic
segmentation of street scenes.

• Multiple SFAs with different network configurations are
elaborately designed to align and aggregate adjacent
levels of feature maps. In this way, the spatial details
and contextual information can be effectively combined
for pixel-level classification, leading to improved segmen-
tation performance of small objects. As a result, a very
simple and efficient multi-branch decoder structure can
be leveraged to perform real-time semantic segmentation
of street scenes.

Our proposed SFANet achieves impressive results on two
challenging street scene benchmarks. More specifically, based
on ResNet-18, our method obtains 78.1% mIoU and 74.7%
mIoU on the Cityscapes and CamVid test datasets at inference
speeds of 37 FPS and 96 FPS, respectively, with a single
GTX 1080Ti GPU. This demonstrates that our method is
able to strike a good balance between inference speed and
segmentation accuracy.

The rest parts of this paper are organized as follows. Section
II reviews the related work. Section III first gives an overview
of the proposed method and then describes the key components
in detail. Section IV presents and discusses the experimental
results. Finally, Section V draws the conclusion.

II. RELATED WORK

Recently, a large number of DCNN-based semantic seg-
mentation methods have been proposed and made significant
progress. These methods can be roughly divided into two
categories: accuracy-oriented semantic segmentation methods
and real-time ones. In the following, we briefly review the
two categories of methods. Moreover, we introduce some
representative feature aggregation methods, which are closely
related to our proposed method.
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A. Accuracy-Oriented Semantic Segmentation Methods
Long et al. [29] develop the pioneering Fully Convolutional

Network (FCN), which replaces the fully-connected layers
of the classification networks with the convolutional layers,
for semantic segmentation. Since then, a large number of
accuracy-oriented semantic segmentation methods have been
proposed to improve the segmentation accuracy by exploiting
spatial details and contextual information of images. DeepLab
[30] makes use of atrous convolution [31] to enlarge the
receptive fields without losing spatial resolutions. U-Net [32]
and DeepLabv3+ [7] adopt the encoder-decoder structure to
extract high-level contextual information from the encoder and
restore spatial details by the decoder. Ji et al. [6] incorporate
cascaded Conditional Random Fields (CRFs) into the decoder
to improve the segmentation accuracy. Ji et al. [33] propose a
deformable DCNN model to capture the semantic information
for non-rigid objects. Lin et al. [34] develop a multi-path
refinement network (called RefineNet) to refine feature rep-
resentations from high-level feature maps to low-level feature
maps. Shi et al. [5] leverage a two-stream network to fuse RGB
and depth information for RGB-D semantic segmentation.
Chen et al. [35], [36] consider different importance levels
of distinct classes and design an importance-aware loss for
autonomous driving. Zhou et al. [37] introduce two loss
functions (i.e., the selection loss and the attention loss) for
weakly supervised semantic segmentation.

One challenge of applying DCNN to semantic segmenta-
tion of street scenes is the existence of objects at multiple
scales [26]. To alleviate this challenge, DeepLabv2 [26] and
DeepLabv3 [38] use the Atrous Spatial Pyramid Pooling
(ASPP) to capture the multi-scale contextual information. Sim-
ilarly, Pyramid Scene Parsing Network (PSPNet) [8] develops
a Pyramid Pooling Module (PPM) to aggregate feature maps
at different pyramid scales. Recently, a few methods take
advantage of non-local operations and self-attention mecha-
nisms to model the contextual relationship between pixels.
Dual Attention Network (DANet) [27] designs a position and
channel attention module to model the dependencies in spatial
and channel dimensions. Criss-Cross Network (CCNet) [28]
proposes a novel criss-cross attention module to efficiently
encode the contextual information.

Although the above methods have achieved impressive
performance on various semantic segmentation benchmarks
(including street scene ones), they are usually based on deep
and wide DCNNs that involve heavy computational opera-
tions. This severely hinders the adoption of these methods in
the applications demanding real-time inference. Unlike these
methods, we adopt a lightweight network to generate different
levels of feature maps in the encoder, and multiple SFAs with
different stage-aware FEBs to efficiently aggregate the multi-
scale spatial and contextual information in the decoder. Such
a manner significantly reduces the computational burden for
real-time inference.

B. Real-Time Semantic Segmentation Methods
During the past few years, real-time semantic segmenta-

tion has attracted considerable attention, mainly due to the

growing demand for fast inference in many practical appli-
cations. Segmentation Network (SegNet) [39] uses a small
symmetric structure and the skip connection to accelerate
the inference speed. Efficient Neural Network (ENet) [18]
proposes a custom lightweight network and leverages down-
sampling operations at the early stages of the network to
achieve extremely high inference speed. Similarly, Lightweight
Encoder-Decoder Network (LEDNet) [19] and Lightweight
Reduced Non-Local Operation Network (LRNNet) [20] design
lightweight networks as the decoders, which significantly
reduce the number of network parameters. However, these
lightweight architectures may affect the learning capability
of the network, leading to a performance decrease. Efficient
Spatial Pyramid Network (ESPNet) [40] and Efficient Residual
Factorized Network (ERFNet) [16] follow the principle of
convolution factorization to reduce the computational cost. In
particular, ESPNet decomposes the standard convolution into
point-wise convolutions and a spatial pyramid of dilated con-
volutions. ERFNet adopts residual connections and factorized
convolutions to balance the trade-off between accuracy and
efficiency.

Recently, the multi-branch framework has been developed
to achieve real-time semantic segmentation. Image Cascade
Network (ICNet) [15] employs a multi-branch architecture
to combine cascaded feature maps from different resolution
inputs and perform dense prediction. Bilateral Segmentation
Network (BiSeNet) [21] adopts a two-branch network to
capture the spatial and contextual information, respectively.
Note that BiSeNet aggregates the contextual and spatial infor-
mation at the last stage of the network, which may not fully
explore different levels of information in the network, thus
affecting the final performance. To address the above problem,
Deep Feature Aggregation Network (DFANet) [22] leverages
a feature reuse strategy to achieve fast inference and good
accuracy.

In this paper, we also adopt a multi-branch framework
to perform real-time semantic segmentation. However, differ-
ent from existing real-time methods, we elaborately design
multiple SFAs with different network configurations to fully
exploit feature maps at different stages of the decoder, enabling
our network to learn discriminative feature representations
for pixel inference. This greatly alleviates the difficulty of
extracting rich semantic information due to the adoption of
a lightweight network as the encoder.

C. Feature Aggregation

The spatial information is crucial for semantic segmenta-
tion. However, the conventional downsampling operations in
DCNN may cause the loss of detailed spatial information.
Therefore, to achieve satisfactory segmentation performance,
many accuracy-oriented and real-time semantic segmentation
methods aggregate different levels of feature maps to combine
the contextual information with spatial details.

Some methods rely on simple operations (such as an
element-wise addition [21], [22], [40] or a channel-wise
concatenation operation [17], [1], [41]) to perform feature
aggregation. However, these methods ignore the misalignment
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Fig. 2. The network architecture of the proposed SFANet. First, ResNet-18 backbone (incorporated with the Spatial-Channel Attention module (SCA)) with
four stages (Res-1 ⇠ Res-4) offers four different levels of feature maps. Then, the Global Average Pooling (GAP) operation is employed to capture the global
contextual information and the Conv-BN-ReLU (CBR) is used to reduce the channel number of feature maps. Next, the feature map obtained from the GAP
gradually recovers its spatial details with higher-resolutions by four SFAs (from SFA-4 to SFA-1). Finally, the output feature maps from SFA-1 and Res-1 are
concatenated and fed into a segmentation head to generate the final predicted results. In the figure, “BasicBlock” represents the basic residual block. “Seg
Head” means the segmentation head. “C” and “up” denote the channel-wise concatenation operation and the up-sampling operation, respectively.

between different levels of feature maps, which may result in
poor segmentation performance on the boundaries for small
objects.

To mitigate the above problem, a few recent methods take
advantage of feature alignment modules to perform feature ag-
gregation more effectively. For example, Guided Upsampling
Network [24] adopts a guided upsampling module to enrich
upsampling operators by learning a transformation based on
high-resolution inputs. Huang et al. [23] propose the Feature-
Aligned Segmentation Networks (AlignNet), which mainly
consist of an Aligned Feature Aggregation module (AlignFA)
and an Aligned Context Modeling module (AlignCM), to
deal with the misalignment problem. Similarly, Semantic Flow
Network (SFNet) [25] develops the Flow Alignment Module
(FAM) to align and aggregate different levels of feature maps.

In this paper, the proposed SFANet also addresses the
misalignment problem between feature maps. However, unlike
the above methods, our proposed SFA not only effectively
aligns adjacent levels of feature maps, but also enhances the
spatial and contextual information during feature aggregation.
Such a way enables our method to perform real-time semantic
segmentation with a lightweight decoder structure. As a result,
SFANet achieves a good balance between inference speed and
segmentation accuracy.

III. PROPOSED METHOD

In this section, we present our proposed SFANet in detail.
First, we give an overview of SFANet in Section III-A. Then,
we describe its critical module SFA in Section III-B. Finally,
we present some discussions between our proposed method
and several related methods in Section III-C.

A. Overview

The network architecture of the proposed SFANet is shown
in Fig. 2. SFANet adopts an encoder-decoder structure, where
the encoder generates low-level and high-level feature maps
while the decoder efficiently combines the contextual infor-
mation with spatial details to perform pixel-level inference at
a low computational cost.

1) Encoder: Due to the requirements of fast inference and
small resource consumptions, lightweight DCNNs (such as
ResNet-18 [14] and MobileNetV2 [42]) are preferable in real-
time semantic segmentation of street scenes. In this paper, our
backbone network (i.e., the encoder) is based on ResNet-18
pretrained on ImageNet [43].

More specifically, we remove all the network layers after
the last basic residual block of ResNet-18. Roughly, ResNet-18
can be divided into four stages (Res-1, Res-2, Res-3, and Res-
4), according to the different resolutions of output feature maps
[44]. In particular, the resolution of an input RGB image is
first downsampled to half by using a convolutional layer. Then,
the resolution of the downsampled feature map is reduced to
one half after passing through each stage. In this way, four
different levels of feature maps (corresponding to 1/4, 1/8,
1/16, and 1/32 resolutions of the input image) are extracted
from four stages of the backbone network.

Note that the downsampling operations are employed in
the first residual blocks of Res-2, Res-3, and Res-4, and
thus they may lead to the information loss. Therefore, SCA
(see Section III-B3) is incorporated between two consecutive
residual blocks of Res-2, Res-3, and Res-4 to improve feature
representation capability of the backbone network.
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2) Decoder: As shown in Fig. 2, the decoder, mainly
consisting of four Stage-aware Feature Alignment modules
(SFA-1, SFA-2, SFA-3, and SFA-4) and a segmentation head,
effectively and efficiently aggregates feature maps.

More specifically, the channel numbers of the output feature
maps from Res-2, Res-3, and Res-4 are first reduced to half
by using a Conv-BN-ReLU (CBR) module (i.e., a 3 ⇥ 3
convolutional layer, followed by a Batch Normalization (BN)
layer and a ReLU activation function) to improve the inference
speed of the network (in this paper, we do not apply CBR
to the output feature map from Res-1 since this feature map
can provide rich spatial details for final feature aggregation).
Meanwhile, a Global Average Pooling (GAP) operation is
performed on the output feature map from Res-4 to capture
the global contextual information. Then, four SFAs gradually
recover spatial details with higher-resolutions from the input
lower-resolution feature maps. Finally, the output feature map
from SFA-1 is concatenated with that from Res-1, and the
concatenated feature map is fed into a segmentation head to
obtain the final predicted results. In particular, an auxiliary
training strategy is proposed in each SFA. This strategy
enables the network to explicitly capture objects at different
scales and thus further alleviate the problem caused by the
existence of objects at multiple scales.

3) Segmentation Head: The details of the segmentation
head are illustrated in Fig. 2. Suppose that the input feature
map is denoted as I 2 RH

s⇥W
s⇥C

s

, where H
s, W s, and C

s

represent the height, width, and channel number of the input
feature map, respectively. We first apply a CBR to the input
feature map I to reduce the channel number from C

s to C
t to

obtain the transition feature map It 2 RH
s⇥W

s⇥C
t

. Then, the
channel number of It is reduced from C

t to the final number
of semantic classes (N ) by using a 3⇥ 3 convolutional layer.

Finally, an upsamping operation is adopted to generate the
feature map Io 2 RH

o⇥W
o⇥N , where H

o and W
o represent

the height and width of the final feature map (the same as
those of the original input image), respectively. Notice that the
channel number Ct of It can be set to a fixed value to control
the computational complexity of the segmentation head. In this
paper, we empirically set Ct to 64 to achieve a good trade-off
between inference speed and segmentation accuracy.

B. Stage-aware Feaure Alignment Module (SFA)

To effectively address the misalignment problem during fea-
ture aggregation, we design four SFAs with different network
configurations (SFA-1, SFA-2, SFA-3, and SFA-4) based on
the unique role of each stage in the decoder. Each SFA aligns
two adjacent levels of input feature maps (a high-resolution
feature map from the encoder and a low-resolution feature
map from its preceding SFA) for feature aggregation.

The network architecture of the proposed SFA is shown in
Fig. 3. Two feature maps with different resolutions are taken
as the inputs of the SFA. The high-resolution feature map
Fh 2 RH

h⇥W
h⇥C

h

is from the corresponding stage of the
encoder, and the low-resolution feature map Fl 2 RH

l⇥W
l⇥C

l

is from its preceding SFA. For the high-resolution feature map
in the SFA, it is first fed into a stage-aware FEB and then
passed through SCA to obtain the enhanced feature maps,
where the important information is emphasized while the
irrelevant information is suppressed. Meanwhile, for the low-
resolution feature map, a CBR module and an up-sampling
operation are employed to adjust its size to the same as the
high-resolution feature map. In this way, the enhanced high-
resolution feature map and the resized low-resolution feature
map can be effectively aligned and aggregated by using a
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Fig. 4. The network architecture of FAA.

Feature Alignment and Aggregation module (FAA). Finally,
an auxiliary training strategy is developed to capture the object
information at a certain scale.

In the following, we respectively introduce these key com-
ponents (FEB, FAA, SCA, and the auxiliary training strategy)
of SFA in detail.

1) Stage-Aware Feature Enhancement Block (FEB): To
ensure real-time inference speed, the lightweight backbone
(ResNet-18) is used as our encoder to generate different
levels of feature maps. However, compared with complex
backbones (such as ResNet-101), the model capacity and
feature representation capability of ResNet-18 are relatively
limited. Therefore, inspired by residual building blocks [14], a
stage-aware FEB is proposed to enhance spatial and contextual
representations of feature maps from one stage of the encoder.

Considering the unique role of each stage in the decoder, we
design multiple FEBs with different network configurations.
For the early stage (SFA-4), FEB-4 is designed to enhance
the contextual information for the input feature maps from
Res-4. For the middle stage (SFA-3), FEB-3 is designed to
balance the trade-off between learning spatial representations
and capturing the contextual information for the input feature
maps from Res-3. For the later stage (SFA-2), FEB-2 is
designed to enhance the spatial representations for the input
feature maps from Res-2. Note that we do not use FEB in SFA-
1 to avoid a high computational cost because of the large size
of the high-resolution feature maps from Res-1.

The network architecture of FEB is shown in Fig. 3. To be
specific, FEB-4 adopts two 3 ⇥ 3 depthwise separable con-
volutions [45], where the atrous rates of depthwise separable
convolutions are respectively set to 2 and 5 to obtain large
receptive fields. Mathematically, the above process can be
expressed as

FDWC2 = DWC2(F
h),

FDWC5 = DWC5(BN(FDWC2)),
(1)

where DWC2(·) and DWC5(·) represent the depthwise sep-
arable convolutions with the atrous rates of 2 and 5, respec-
tively. BN(·) denotes the batch normalization operation.

Then, the two feature maps (i.e., FDWC2 and FDWC5) are
concatenated, which can be formulated as

FCAT = CAT (FDWC2,FDWC5), (2)
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Fig. 5. The network architecture of SCA.

where FCAT represents the output feature map. CAT (·)
denotes the concatenation operation. By concatenating two
different feature maps, FCAT simultaneously captures two
different receptive fields.

Next, we leverage a 1⇥1 pointwise convolution to compute
channel-wise correlations of concatenated feature maps and
batch normalization to output the normalized feature map.
Finally, the normalized feature map is combined with the input
Fh by a shortcut path and fed into a ReLU layer to obtain the
enhanced feature map FFEB-4. The above process is given as

FFEB-4 = �(Fh +BN(Conv11(FCAT ))), (3)

where Conv11(·) represents the 1 ⇥ 1 pointwise convolution.
�(·) denotes the ReLU activation function.

FEB-3 uses the same network architecture as FEB-4, except
that the atrous rates of depthwise separable convolutions are
set to 1 to avoid excessive operational costs and overhead.

FEB-2 employs two standard convolutions to learn spatial
representations for the input feature maps from Res-2. Math-
ematically, this process can be written as

FFEB-2 = �(Fh +BN(Conv33(BN(Conv33(F
h)))), (4)

where Conv33(·) indicates the standard convolution with the
kernel size of 3 ⇥ 3.

Note that, compared with the basic residual block [14],
FEB-2 removes the ReLU layer after the first convolutional
layer to preserve more spatial details, which can be ben-
eficial for back-propagating information when training the
lightweight network. FEB-3 and FEB-4 replace the standard
convolutional layers in the basic residual block with the dilated
convolutional layers. Moreover, they adopt more shortcuts
to capture larger receptive fields. Therefore, our stage-aware
FEBs can more effectively enhance the spatial and contextual
information than the basic residual block for real-time seman-
tic segmentation of street scenes.

2) Feature Alignment and Aggregation Module (FAA): Sim-
ilar to [23], [25], we use FAA to perform feature alignment and
aggregation between the enhanced high-resolution and low-
resolution feature maps. The network architecture of FAA is
shown in Fig. 4. Compared with traditional feature alignment
modules, we further use SCA to improve the representations
of aggregated features.

Note that FAA is very similar to the optical flow estimation
methods [46], [47], which compute the motion field from a
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(a) (b) (c)

Fig. 6. Visualization results of output feature maps from SFA-4 and SFA-3 in the decoder. (a) The original input images. (b) and (c) show the output feature
maps from SFA-4 and SFA-3, respectively. The receptive fields in the later stage of the decoder (e.g., SFA-3) are smaller than those in the early stage of the
decoder (e.g., SFA-4). Thus, SFA-3 focuses on smaller objects than SFA-4 (see the red rectangles).

time-varying sequence of images and are widely used in video-
related tasks, including video object detection and motion
detection. However, the object position does not change in the
semantic image segmentation of street scenes. The differences
between two adjacent levels of feature maps are usually subtle
in terms of contextual information and spatial details. In this
paper, we develop the stage-aware FEB to enhance the context
information and spatial details according to the role of each
stage in the decoder. Such a way enables FAA to perform
feature alignment and aggregation more effectively, greatly
improving the segmentation performance of the network.

3) Spatial-Channel Attention Module (SCA): Recently, at-
tention mechanisms have shown great potential in improving
the performance of DCNNs, and have been widely used in
a variety of computer vision applications [37], [48]–[51]. In
this paper, we also employ a Spatial-Channel Attention module
(SCA) to further improve the segmentation performance.

As shown in Fig. 5, SCA is similar to the scSE module [48],
except that the channel branch in scSE is simply replaced with
the ECA [50] module to effectively remove the disturbance
and improve feature representation ability with small resource
consumptions. SCA consists of a spatial path and a channel
path. The input feature map X 2 RH

e⇥W
e⇥C

e

is enhanced
along the channel and space dimensions to obtain the output
feature map X

0
2 RH

e⇥W
e⇥C

e

. For the spatial path, SCA
first employs a 1 ⇥ 1 convolution to get a projection tensor
V 2 RH

e⇥W
e⇥1. For the channel path, the GAP is employed

to obtain the tensor U 2 R1⇥1⇥C
e

. Then, a 1D convolution
with an adaptive kernel size is used to capture the local cross-
channel interaction of U, and thus the tensor W 2 R1⇥1⇥C

e

is obtained as

W = � (U) , (5)

where �(·) means the 1D convolutional operation.
Finally, a Sigmoid activation function is adopted on both

spatial and channel paths to limit the range of the output. The
overall attention process can be formulated as

X
0

c
= � (wc) · Xc + � (V) ⌦ Xc, (6)

where ‘⌦’ denotes the element-wise multiplication. Xc and X
0

c

represent the feature maps at the c-th channel of X and X
0
,

respectively. wc means the weighting factor at the c-th channel
of W. � (·) denotes the Sigmoid activation function.

It is worth pointing out that SCA is different from CBAM
[51] that also uses spatial and channel attention. First, the
channel attention module in CBAM adopts the design similar
to SENet [52], where the spatial dimension of the input feature
map is compressed to efficiently compute the channel atten-
tion. However, such a way may cause the information loss,
especially for the lightweight network. Therefore, we adopt
the channel attention module used in ECA [50], where 1 ⇥ 1
convolution is used instead of the squeeze operation, avoiding
the information loss. Second, the spatial attention module in
CBAM aggregates spatial information of an input feature map
to extract intermediate feature maps by using both average-
pooling and max-pooling operations. Then these feature maps
are fed into a convolutional layer to generate a spatial attention
map. In contrast, in our method, to achieve good segmentation
accuracy while maintaining real-time inference speed, we
only use the convolution to generate the final attention map.
The channel number in the spatial path of our method is
much less than that used in accuracy-oriented segmentation
methods. Moreover, without using average-pooling and max-
pooling operations, the efficiency of our method can be greatly
improved.
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4) Auxiliary Training Strategy: In the decoder, four SFAs
with different network configurations effectively aggregate
different levels of feature maps, which enables our network to
implicitly deal with the multi-scale object problem. However,
such a way still does not fully exploit the capability of the
network to capture the multi-scale information. Therefore,
we further propose an auxiliary training strategy in each
SFA to explicitly alleviate the multi-scale object problem.
This strategy does not bring the computational burden at the
inference phase since it is not used for inference.

Specifically, the feature maps from each SFA are fed into
a segmentation head to compute the auxiliary loss, enabling
the network to learn the object information at a certain scale.
Mathematically, the auxiliary loss adopts the pixel-wise cross
entropy, which is defined as follows:

Laux(Z) =
1

HW

H,WX

i,j

NX

k

�qi,j,k log(zi,j,k), (7)

where qi,j,k = 1 if k is equal to the ground-truth label at
the pixel location (i, j), and qi,j,k = 0 otherwise. Z is the
predicted output given by the softmax function. zi,j,k denotes
the probability value at the (i, j)-th pixel location and the k-
th channel of the output. H and W denote the height and
width of the predicted output, respectively. N indicates the
total number of semantic classes.

Notice that BiSeNetV2 [53] adopts a booster training strat-
egy, which employs multiple auxiliary segmentation heads on
the semantic branch. However, the proposed auxiliary training
strategy and the booster training strategy are intrinsically
different. The auxiliary segmentation heads in BiSeNetV2
are used to enhance feature representations on the semantic
branch. In contrast, our auxiliary training strategy is used to
alleviate the multi-scale object problem. As we mentioned
above, the decoder gradually restores the feature maps from
the encoder to the final outputs through four SFAs, where the
auxiliary training strategy is employed to capture the object
information at a scale in each SFA.

5) Overall Loss: The overall loss of our SFANet can be
formulated as

L = Lp(Y) +
4X

i=1

�iLaux(YSFA-i), (8)

where Lp and Laux denote the principal loss and the auxiliary
loss, respectively. The principal loss also uses the pixel-wise
cross entropy same as the auxiliary loss. Y denotes the final
output of the network. YSFA-i denotes the output feature map
from the SFA-i. �i is the balance weight for the auxiliary loss
of the SFA-i.

Some visualization results are given in Fig. 6. As we can
see, the output feature maps from SFA-3 are concerned with
small objects or boundaries of large objects, while those from
SFA-4 focus on large objects. This clearly shows the different
roles of SFAs in the decoder.

C. Discussions
It is worth pointing out that both our proposed method and

some previous methods [23]–[25] leverage feature alignment

to improve the segmentation accuracy. However, there are
significant differences between our proposed method and these
methods.

First, our proposed SFA in SFANet is elaborately designed
according to the unique role of each stage in the decoder.
As we mentioned before, the early stages of the decoder
focus on the contextual information, while the later stages
emphasize spatial details. Therefore, multiple SFAs with d-
ifferent network configurations can better exploit different
stages of the decoder. In each SFA, we develop a stage-aware
FEB to enhance the spatial details and contextual information
during feature aggregation. By tightly combining several key
components (FEB, FAA, and SCA), we are able to align and
aggregate different levels of feature maps more effectively.
As a result, a simple and efficient decoder structure can be
used to perform real-time semantic segmentation. In contrast,
previous methods (such as AlignNet [23], SFNet [25]) use
the alignment modules with the same network configuration
to perform feature alignment and aggregation at each stage
of the decoder. To achieve good segmentation accuracy, these
methods either adopt a large DCNN as an encoder [23] to
enhance the quality of feature maps, or use dense shortcut
connections [25] to promote the information flow. Both ways
greatly affect the inference speed.

Second, by taking advantage of multiple stage-aware FEBs
and the auxiliary training strategy in four SFAs, our method
can simultaneously address the problems of misalignment and
multi-scale objects during training. On the contrary, GUN [24]
uses the different sizes of image as the input to alleviate the
multi-scale problem, while SFNet [25] adopts additional multi-
scale modules (pyramid pooling modules) in the decoder. Such
manners often introduce extra computational burden, thereby
increasing the inference speed.

IV. EXPERIMENTS

In this section, we perform extensive experiments to eval-
uate the effectiveness and efficiency of the proposed SFANet.
In Section IV-A, we first introduce two representative street
scene benchmark datasets and evaluation metrics. Then, in
Section IV-B, we give the implementation details. Next, in
Section IV-C, we perform ablation studies to evaluate each
component of the proposed SFANet. Finally, in Section IV-D,
we compare the proposed SFANet with several state-of-the-art
semantic segmentation methods on the benchmark datasets.

A. Datasets and Evaluation Metrics
To show the superiority of the proposed SFANet for seman-

tic segmentation of street scenes, we conduct experiments on
the Cityscapes dataset [10] and the CamVid dataset [11].

The Cityscapes dataset is a large-scale urban-scene dataset
collected from 50 different cities in Germany. It consists of
25,000 street scene images, where 5,000 images are labeled
with fine annotations and 20,000 images are given with coarse
annotations. Each image has the size of 1,024⇥2,048 and each
pixel is annotated to the pre-defined 19 classes. In this paper,
we only use 5,000 fine-annotated images for all experiments
to validate the performance of our proposed method. These
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fine-annotated images can be split into three sets: a training
set (containing 2,975 images), a validation set (containing 500
images), and a test set (containing 1,525 images). For a fair
comparison, the annotations of the test set are not publicly
released for the Cityscapes dataset.

The CamVid dataset is another challenging street scene
dataset extracted from five video sequences. It contains 701
high-resolution images (each image has the size of 720⇥960)
with high-quality pixel-wise annotations for 11 classes. Fol-
lowing [21], [25], these images can be split into three sets: a
training set (including 367 images), a validation set (including
101 images), and a test set (including 233 images).

For quantitative evaluation, we adopt the mean of class-wise
Intersection-over-Union (mIoU) to measure the segmentation
accuracy. For the inference speed, we use Frames Per Second
(FPS) to measure the latency. Moreover, we also employ
the number of parameters (Params) and float-point operations
(FLOPs) to evaluate the memory consumption and computa-
tional complexity, respectively.

B. Implementation Details

We adopt the PyTorch framework to implement our pro-
posed SFANet. Instead of training from scratch, we use the
publicly available ResNet-18 model pretrained on the Ima-
geNet dataset [43] to initialize our backbone network. All the
other weights of our network are randomly initialized by using
the Kaiming normal initialization [54].

To optimize the whole network, we adopt mini-batch S-
tochastic Gradient Descent (SGD) [55] with the momentum
of 0.9 and the weight decay of 0.0005 to update the net-
work parameters. The mini-batch size is set to 12 for the
Cityscapes dataset and 4 for the CamVid dataset. Moreover,
the “poly” learning rate strategy is employed to decay the
initial learning rate, where the initial learning rate is multiplied
by (1� iter

total iters
)power at each iteration with the power of 0.9,

and it is set to 0.005 and 0.001 for the Cityscapes and CamVid
datasets, respectively. As a common practice, we utilize an
online hard example mining technique [56] to alleviate the
influence of class imbalance. We train our model for 120K
and 80K iterations for the Cityscapes and CamVid datasets,
respectively.

During the training phase, we employ mean subtraction,
random horizontal flip, random scaling (the scale ratio ranges
from 0.5 to 2.0), and random cropping to enlarge the training
data, as done in [21], [22], [25]. During the inference phase,
we do not rely on any evaluation tricks (such as sliding-
window evaluation and multi-scale testing). Although these
tricks can greatly improve the final segmentation results on
the test set, they significantly increase the inference speed.

We use one NVIDIA GTX 1080Ti GPU card to evaluate the
inference speed of our method, and repeat 5,000 iterations to
mitigate the error fluctuation. Notice that the BN layers in our
network are excluded when we evaluate the inference speed,
because they can be merged with previous convolutional layers
[1].
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Fig. 7. Comparisons of the inference speeds obtained by different backbone
networks at different resolution inputs.

C. Ablation Studies

In this subsection, we conduct ablation studies to inves-
tigate the effectiveness of each component of our proposed
method for real-time semantic segmentation on the Cityscapes
validation dataset. All experiments on speed analysis are
performed by using the full-resolution image (with the size
of 1,024⇥2,048) as the input, unless explicitly mentioned.

1) Ablation for the Backbone Network: As we mentioned
above, complex DCNNs can provide powerful feature rep-
resentation capability, but their large numbers of network
parameters seriously affect the inference speed. Therefore,
lightweight DCNNs are usually adopted as backbone networks
for real-time semantic segmentation to ensure efficient infer-
ence. In this paper, we use ResNet-18 with SCA, denoted as
ResNet-18 (SCA), as our backbone network.

To verify the efficiency and effectiveness of ResNet-18
(SCA), we compare it with three backbone networks, including
two lightweight DCNNs (the original ResNet-18 [14] and
MobileNetV2 [42]) and a complex DCNN (ResNet-101).

First, we compare the inference speeds obtained by the
backbone networks at different resolution inputs, as shown
in Fig. 7. We can see that ResNet-18 achieves much faster
inference speeds than MobileNetV2 at different resolution in-
puts. ResNet-18 (SCA) obtains the speed similar to ResNet-18.
Especially, the inference speeds obtained by ResNet-18 (SCA)
and ResNet-18 are very close at the large resolution input.
Among all the backbone networks, ResNet-101 achieves the
lowest inference speed due to its complex DCNN architecture.

Next, we further analyze the segmentation performance
obtained by different backbone networks on the Cityscapes
validation dataset. For a fair comparison, all the backbone
networks use FCN-32 [29] as the base network structure and
are pretrained by ImageNet. The comparison results are shown
in Table I. FCN+MobileNetV2 has the least parameters (about
2.04M Params), but it also achieves the lowest mIoU among all
the backbone networks. Meanwhile, FCN+ResNet-101 obtains
higher mIoU than the other networks. However, its number
of parameters is significantly high (about 51.95M Params).
Although FCN+ResNet-18 (SCA) gets worse segmentation
accuracy (about 1.0% mIoU lower) than FCN+ResNet-101,

Page 17 of 23 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE I
PERFORMANCE COMPARISONS OF DIFFERENT BACKBONE NETWORKS:

MOBILENETV2, RESNET-18, RESNET-101, RESNET-18 (ECA),
RESNET-18 (SCSE), AND RESNET-18 (SCA) ON THE CITYSCAPES

VALIDATION DATASET.

Backbone Network mIoU (%) Speed (FPS) Params (M)

FCN+MobileNetV2 61.7 28 2.04
FCN+ResNet-18 63.6 54 11.77
FCN+ResNet-101 65.2 9 51.95
FCN+ResNet-18 (ECA) 63.7 53 11.77
FCN+ResNet-18 (scSE) 63.8 52 12.47
FCN+ResNet-18 (SCA) 64.2 52 11.77

TABLE II
INFLUENCE OF GAP AND SFA ON THE PERFORMANCE ON THE

CITYSCAPES VALIDATION DATASET.

Method mIoU (%) Speed (FPS)

FCN+ResNet-18 (SCA) 64.2 52
Baseline+EA 74.4 45
Baseline+GAP+EA 75.8 45
Baseline+GAP+SFA FEB-2 77.1 38
Baseline+GAP+SFA FEB-3 77.4 36
Baseline+GAP+SFA FEB-4 77.8 36
Baseline+GAP+SFA 78.4 37

it has the much lower number of parameters. Moreover,
FCN+ResNet-18 (SCA) achieves about 2.5% mIoU higher
than FCN+MobileNetV2. Compared with FCN+ResNet-18,
FCN+ResNet-18 (SCA) attains higher segmentation accuracy.
For the speed comparison, FCN+ResNet-101 runs at only
9 FPS in terms of inference speed, mainly due to its high
computational cost. FCN+ResNet-18 (SCA) is about 2 times
faster than FCN+MobileNetV2 and is close to FCN+ResNet-
18 for speed inference.

Finally, to investigate the influence of different atten-
tion modules used in the backbone network, we replace
SCA in FCN+ResNet-18 (SCA) with ECA [50] (denot-
ed as FCN+ResNet-18 (ECA)) and scSE [48] (denoted as
FCN+ResNet-18 (scSE)), respectively, as shown in Table I.
These attention modules improve the final segmentation per-
formance. This shows that adopting an attention module in the
backbone network can alleviate the disturbance caused by the
irrelevant information and highlight the important information.
In particular, FCN+ResNet-18 (SCA) achieves the highest ac-
curacy (about 0.5% and 0.4% mIoU higher than FCN+ResNet-
18 (ECA) and FCN+ResNet-18 (scSE), respectively) without
increasing the number of network parameters. This not only
implies the importance of the attention mechanism on the
spatial and channel dimensions for semantic segmentation, but
also indicates that ECA and scSE can be efficiently combined
to achieve better segmentation performance.

In summary, the above results show that ResNet-18 (SCA)
is able to achieve a good trade-off between speed and accuracy
by incorporating SCA into ResNet-18. In the following exper-
iments, we use ResNet-18 (SCA) as our backbone network
(i.e., the encoder in our method).

2) Ablation for the Decoder: In this subsection, we perform
experiments to investigate the influence of key components
in the decoder on the accuracy and speed of the proposed
SFANet. The performance comparisons are shown in Table II.
The Baseline+EA method denotes a variant of SFANet, where
each SFA is replaced with an Element-wise Addition (EA)
operation and the GAP operation is not used.

From Table II, we can find that the Baseline+EA method
achieves the accuracy of 74.4% mIoU on the Cityscapes vali-
dation dataset, and it significantly outperforms FCN+ResNet-
18 (SCA) by about 10.2% mIoU. This verifies the importance
of adopting the encoder-decoder structure in real-time seman-
tic segmentation. By incorporating GAP into the Baseline+EA
method, Baseline+GAP+EA obtains better segmentation accu-
racy (about 1.4% mIoU higher) than the Baseline+EA method.
By replacing the simple element-wise addition operations with
four SFAs, the performance obtained by Baseline+GAP+SFA
is boosted by about 2.6% mIoU and is about 4.0% mIoU
higher than that obtained by Baseline+EA.

The inference speed of the Baseline+EA method is 7 FPS
slower than that of FCN+ResNet-18 (SCA). The inference
speed of Baseline+GAP+EA runs at 45 FPS. This shows
that the GAP can not only effectively exploit the global
context information, but also have no much influence on the
inference speed. By taking into account both GAP and SFA,
the inference speed of Baseline+GAP+SFA is slightly slower
than that of Baseline+GAP+EA. The above results show that
the effectiveness and efficiency of our SFA.

In order to further validate the importance of design-
ing different FEBs at different stages of the decoder, we
replace the three stage-aware FEBs with FEB-2, FEB-3,
and FEB-4, respectively. The comparison results are giv-
en in Table II, where Baseline+GAP+SFA FEB-2, Base-
line+GAP+SFA FEB-3, and Baseline+GAP+SFA FEB-4 use
the same network structure as Baseline+GAP+SFA, except that
the stage-aware FEB in each SFA is replaced with FEB-2,
FEB-3, and FEB-4, respectively.

From Table II, when the same FEB is used in the SFA,
the segmentation performance of the network is decreased.
Simply using the same module in each stage of the decoder
cannot help the network to learn effective discriminative
feature maps, thereby affecting the segmentation accuracy.
In terms of speed, the speeds of Baseline+GAP+SFA FEB-
4 and Baseline+GAP+SFA FEB-3 are slightly lower than that
of Baseline+GAP+SFA, since FEB-4 and FEB-3 have more
convolutional layers than FEB-2. Baseline+GAP+SFA FEB-
2 achieves the fastest inference speed, but its segmentation
accuracy is lower than the other two variants. In a word, our
SFANet, which designs multiple FEBs at different stages of
the decoder, can achieve a good balance between speed and
accuracy.

3) Ablation for SFA: As mentioned before, our SFA con-
tains four key components (FAA, FEB, SCA, and the auxiliary
training strategy). In this subsection, we study the importance
of these key components in the SFA, as illustrated in Table
III. We also evaluate the performance of our method when
the conventional FAM [25] is used for feature alignment and
aggregation instead of FAA.
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(a) Input images (b) SFA-4 (c) SFA-3 

(a) (b) (c) (d)

Fig. 8. Visualization results of the low-resolution feature map in SFA-1. The images from the first column to the last column denote (a) the input images,
(b) the low-resolution feature maps before the warping operation, (c) the low-resolution feature maps after the warping operation (only FAA is used in the
SFA), and (d) the low-resolution feature maps after the warping operation (all the key components are used in the SFA).

TABLE III
INFLUENCE OF EACH KEY COMPONENT IN THE SFA ON THE FINAL
PERFORMANCE ON THE CITYSCAPES VALIDATION DATASET. HERE,

‘AUX’ DENOTES THE AUXILIARY TRAINING STRATEGY.

FAM FAA FEB SCA Aux mIoU (%)
X 76.2

X 76.6
X X 77.6
X X X 77.8
X X X X 78.4

From Table III, by only using FAA in each SFA, our method
achieves 76.6% mIoU and outperforms our method only using
FAM in terms of mIoU (about 0.4% mIoU higher). This result
shows that SCA in FAA can increase the final segmentation
accuracy due to the enhanced feature representations generated
by the attention mechanism. By combining FAA and FEB in
SFA, our method achieves the performance of 77.6% mIoU.
This shows that our proposed FEB can effectively enhance
spatial and contextual representations of feature maps, leading
to performance improvements. By incorporating FAA, FEB,
and SCA into SFA, the performance of our method is further
improved. Finally, by using all the key components, our
method obtains the best segmentation accuracy (about 78.4%
mIoU), demonstrating the effectiveness of the SFA.

We also present some visualization results of the low-
resolution feature maps in SFA-1 to show the effectiveness of
our proposed SFA, as shown in Fig. 8. To be specific, we show
the visualization results of low-resolution feature maps before
and after the warping operatio. Moreover, we also present the
visualization results obtained by a variant of SFANet (where
only FAA is used in each SFA). As can be observed, the
low-resolution feature maps before the warping operation are
blurry and difficult to distinguish different objects. In contrast,

TABLE IV
INFLUENCE OF THE AUXILIARY TRAINING STRATEGY IN DIFFERENT
SFAS ON THE CITYSCAPES VALIDATION DATASET. ‘X’ MEANS THE

BALANCE WEIGHT OF THE AUXILIARY LOSS IS SET TO 1.

SFA-1 SFA-2 SFA-3 SFA-4 mIoU (%)

77.8
X 77.3

X 77.8
X 78.0

X 78.1
X X 78.4

X X X 78.0
X X X X 77.4

the objects in the low-resolution feature maps after the warping
operation are more structured and have more finer boundaries.
This shows the importance of feature alignment. Furthermore,
by further employing FEB, SCA, and the auxiliary training
strategy in the SFA, the low-resolution feature maps are further
refined and can focus on the small objects (such as pedestrians
and cars) and boundaries. This indicates that FEB, SCA,
and the auxiliary training strategy can not only improve the
representation ability of the aggregated features in the SFA,
but also benefit the feature alignment operation for adjacent
levels of feature maps.

4) Ablation for the Auxiliary Training Strategy: As men-
tioned above, employing the auxiliary training strategy in SFAs
can effectively enable the network to explicitly capture the
multi-scale object information, and thus improve the final
segmentation performance. Considering the complexity of the
street scenes, in this ablation study, we empirically set the
balance weight for the auxiliary loss in each SFA to 0 or 1 to
indicate that whether the corresponding auxiliary loss is used
or not. All the results are shown in Table IV.

From Table IV, we can observe that employing the auxiliary
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TABLE V
COMPARISONS BETWEEN THE PROPOSED METHOD AND OTHER STATE-OF-THE-ART METHODS ON THE CITYSCAPES TEST DATASET. ‘-’ INDICATES

THAT THE CORRESPONDING RESULT IS NOT PROVIDED BY THE METHOD. FLOPS CALCULATION ADOPTS A 1024 ⇥ 2048 IMAGE AS THE INPUT.

Method Backbone Input Size FLOPs (G) Params (M) Speed (FPS) mIoU (%)

DeepLab [30] ResNet-101 512 ⇥ 1024 457.8 262.1 0.25 63.1
PSPNet [8] ResNet-101 713 ⇥ 713 412.2 250.8 0.78 78.4
SegNet [39] VGG-16 640 ⇥ 360 286 29.5 14.6 56.1
ENet [18] 43-layer CNN 640 ⇥ 360 4.4 0.4 76.9 58.3
ESPNet [40] 9-layer CNN 512 ⇥ 1024 4.7 0.4 112 60.3
ERFNet [16] 16-layer CNN 512 ⇥ 1024 - 2.1 41.7 68.0
ICNet [15] PSPNet-50 1024 ⇥ 2048 29.8 26.5 30.3 69.5
DABNet [57] 15-layer CNN 1024 ⇥ 2048 - 0.8 27.7 70.1
GUN [24] DRN-D-22 512 ⇥ 1024 - - 33.3 70.4
EDANet [41] 68-layer CNN 512 ⇥ 1024 - 0.68 108.7 67.3
LEDNet [19] 55-layer CNN 512 ⇥ 1024 - 0.94 71 70.6
DFANet [22] 43-layer CNN 1024 ⇥ 1024 3.4 7.8 100 71.3
DF1-Seg [58] DF1 1024 ⇥ 2048 - 8.55 80 73.0
DF2-Seg [58] DF2 1024 ⇥ 2048 - 17.2 55 74.8
LRNNet [20] 55-layer CNN 512 ⇥ 1024 8.58 0.68 71 72.2
RTHP [17] MobileNetV2 448 ⇥ 896 49.5 6.2 51.0 73.6
SwiftNet [1] ResNet-18 1024 ⇥ 2048 104 11.8 39.9 75.5
SwiftNet-ens [1] ResNet-18 1024 ⇥ 2048 218.0 24.7 18.4 76.5
SFNet [25] DF2 1024 ⇥ 2048 - 19 44 77.8
SFNet [25] ResNet-18 1024 ⇥ 2048 123.5 12.87 15.2 78.9
BiSeNet [21] ResNet-18 768 ⇥ 1536 55.3 49.0 45.7 74.7
BiSeNetV2 [53] 18-layer CNN 1024 ⇥ 2048 118.5 47.3 47.3 75.3

SFANet (ours) DF2 1024 ⇥ 2048 90.0 20.9 49 78.0
SFANet (ours) ResNet-18 1024 ⇥ 2048 99.6 14.6 37 78.1

TABLE VI
THE ACCURACY AND SPEED COMPARISONS OF THE PROPOSED METHOD

AGAINST OTHER METHODS ON THE CAMVID TEST DATASET.

Method Backbone Speed (FPS) mIoU (%)

SegNet [39] VGG-16 46 55.6
ENet [18] 43-layer CNN 61.2 51.3
ICNet [15] PSPNet-50 27.8 67.1
DFANet [22] 43-layer CNN 120 64.7
SwiftNet [1] ResNet-18 - 72.6
SFNet [25] DF2 105 70.4
SFNet [25] ResNet-18 41.6 73.8
BiSeNet [21] ResNet-18 116.3 68.7
BiSeNetV2 [53] 18-layer CNN 32.7 73.2

SFANet (ours) DF2 113 74.4
SFANet (ours) ResNet-18 96 74.7

training strategy in the early stage of the decoder (SFA-4 or
SFA-3) is beneficial to improve the segmentation performance
(increased by 0.3% mIoU and 0.2% mIoU, respectively),
compared with SFANet without using the auxiliary training
strategy. However, employing the auxiliary training strategy
in the later stage of the decoder (SFA-2 or SFA-1) cannot
improve the segmentation accuracy of SFANet. On the one
hand, in the early stages of the decoder, the scale information
is not effectively captured by only using SFA-3 or SFA-4.
Therefore, the scale information can be explicitly learned
by using the auxiliary training strategy in SFA-3 or SFA-4,

improving the final segmentation accuracy. On the other hand,
the introduction of the auxiliary training strategy in SFA-1 or
SFA-2 affects the learning ability of the network, resulting
in performance decline. This is because the scale information
captured by the auxiliary training strategy in SFA-1 or SFA-2
is similar to that captured by the segmentation head in the last
stage of the network. Such a way may increase the difficulty
of network learning, leading to a performance decrease.

By employing the auxiliary training strategy in both SFA-4
and SFA-3, our method achieves the highest accuracy (about
78.4% mIoU). However, the adoption of the auxiliary training
strategy in both SFA-2 and SFA-1 is not helpful to improve
the segmentation accuracy. Our method using the auxiliary
training strategy in all the SFAs is about 1% mIoU lower than
that using the strategy in both SFA-4 and SFA-3. The above
results show that the auxiliary training strategy needs to be
carefully chosen in each SFA to ensure the final performance.

D. Comparisons with State-of-the-Art Methods
In this subsection, we compare our proposed SFANet

method with several state-of-the-art semantic segmentation
methods on the Cityscapes test dataset and the CamVid test
dataset, respectively. All the comparison results (including
the segmentation accuracy and inference speed) are reported
in Tables V and VI. All the experiments on measuring the
inference speed are not accelerated by TensorRT. Note that
we also evaluate the performance of SFANet that adopts DF2
as the encoder to validate the generality of our method. We
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(a) (c)(b)

Fig. 9. Segmentation results of the proposed SFANet on the Cityscapes validation dataset. The images from the left column to the right column represent (a)
the input images, (b) the predicted results obtained by SFANet, and (c) the ground-truth images, respectively. Some failure cases are shown in the last two
rows.

denote SFANet based on ResNet-18 and DF2 as SFANet
(ResNet-18) and SFANet (DF2), respectively.

1) Results on Cityscapes: Table V shows the comparison
results obtained by the proposed SFANet and representative se-
mantic segmentation methods (including several state-of-the-
art real-time methods and some accuracy-oriented methods) on
the Cityscapes test dataset. Note that state-of-the-art semantic
segmentation methods usually leverage different backbones to
achieve good segmentation accuracy or fast inference speed, or
a good trade-off between them. For fair comparisons between
all the competing methods, a number of evaluation metrics
(such as mIoU, inference speed, the number of network
parameters, and FLOPs) are used to comprehensively evaluate
the performance.

In Table V, we can observe that the proposed SFANet
(ResNet-18) and SFANet (DF2) achieve 78.1% and 78.0%

mIoU at the inference speeds of 37 FPS and 49 FPS, re-
spectively. In particular, SFANet (DF2) gives higher mIoU
and faster inference speed than SFNet (DF2). Compared
with ESPNet [40], one of the fastest semantic segmentation
methods, the proposed SFANet (ResNet-18) is about 17.8%
mIoU higher. Both BiSeNetV2 [53] and DFANet [22] also
adopt a multi-branch framework for real-time semantic seg-
mentation, but our SFANet (ResNet-18) method obtains better
performance. Compared with SwiftNet [1] and SFNet (DF2)
[25], our SFANet (ResNet-18) and SFANet (DF2) not only
have less computational complexity and memory consumption,
but also achieve higher segmentation accuracy. Furthermore,
SFANet (ResNet-18) is even better than an accuracy-oriented
method. For example, SFANet (ResNet-18) is about 150 times
faster and 15.0% mIoU higher than DeepLab. Even compared
with PSPNet, SFANet (ResNet-18) is only 0.3% mIoU lower,
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but 50 times faster.
It is worth pointing out 30 FPS is a common practice

to be considered as real-time for semantic segmentation (
[24], [1], [41]). Although the accuracy obtained by SFNet
(ResNet-18) is slightly better than that obtained by SFANet
(ResNet-18) (about 0.8% mIoU higher), its inference speed is
much lower than 30 FPS and is about two times slower than
our method (using the same GPU as ours). This is because
SFNet (ResNet-18) uses a modified ResNet-18, where the
partial convolution in the original ResNet-18 is replaced with
a convolution layer with a larger kernel size. Although such
a way improves the segmentation accuracy, it can affect the
inference speed. Moreover, SFNet (ResNet-18) uses a complex
decoder structure. In contrast, in this paper, we only employ
the original ResNet-18 with SCA as the encoder, and design
a simple and efficient multi-branch decoder structure. The
above results show that our proposed SFANet (ResNet-18)
can achieve a good balance between accuracy and speed for
real-time semantic segmentation.

Some qualitative segmentation results are given in Fig. 9.
We can see that SFANet is able to correctly assign the
semantic labels to the different scales of objects in complex
street scenes. However, for some scenarios including severe
occlusions and small objects, SFANet may fail to determine
the labels for these objects, leading to wrong segmentation
results (see the last two rows in Fig. 9). Note that these
problems also exist in some state-of-the-art real-time semantic
segmentation methods, such as BiSeNetV2 and SFNet.

2) Results on CamVid: Table VI gives the performance
obtained by SFANet and several state-of-the-art semantic
segmentation methods on the CamVid test dataset. The pro-
posed SFANet (ResNet-18) and SFANet (DF2) respectively
achieve 74.7% mIoU and 74.4% mIoU, outperforming the
other competing methods. Furthermore, they obtain much
faster inference than most of the competing methods. In
particular, compared with BiSeNetV2, SFANet (ResNet-18)
not only shows higher mIoU, but also achieves faster inference
speed. Moreover, the mIoU obtained by SFANet (ResNet-18)
is about 0.9% higher and its inference speed is about 2.7 times
faster than SFNet (ResNet-18).

By comparing Table V with Table VI, SFANet (DF2) gives
slightly better accuracy (about 0.2% mIoU higher) and faster
speed than SFNet (DF2) for the Cityscapes dataset, while
SFANet (DF2) achieves much better performance (about 4.0%
mIoU higher) and faster inference speed than SFNet (DF2)
for the CamVid dataset. Note that our proposed stage-aware
FEB is designed to be capable of capturing large receptive
fields, thereby facilitating the exploitation of more spatial
and contextual information in the case of small image sizes.
Therefore, the mIoU improvement is more evident on the
CamVid dataset involving smaller image sizes than on the
Cityscapes dataset. In a word, the proposed SFANet once again
demonstrates the excellent performance in terms of the balance
between accuracy and inference speed.

Finally, we would like to emphasize that our method is not
designed only for ResNet-18, since the developed decoder
can be combined with any encoder that generates multi-
scale feature maps. We can see that SFANet (ResNet-18)

and SFANet (DF2) achieve good performance on both the
Cityscapes and CamVid datasets. Therefore, the developed
SFAs are general and can be combined with other backbone
networks.

V. CONCLUSION

In this paper, we propose a novel SFANet method for real-
time semantic segmentation of street scenes. Specifically, an
effective SFA is developed to not only alleviate the misalign-
ment problem between two adjacent levels of feature maps,
but also explicitly deal with the multi-scale object problem
without increasing the computational burden for inference
based on an auxiliary training strategy. In particular, a stage-
aware FEB is designed to pertinently enhance spatial and
contextual representations of high-resolution feature maps at
each stage of the decoder. Extensive experiments have shown
the effectiveness and efficiency of SFANet, which achieves a
good balance between accuracy and inference speed.
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