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Abstract

It is common to rank different categories by means of preferences that are revealed through
data on choices. A prominent example is the ranking of political candidates or parties using
the estimated share of support each one receives in surveys or polls about political attitudes.
Since these rankings are computed using estimates of the share of support rather than the true
share of support, there may be considerable uncertainty concerning the true ranking of the
political candidates or parties. In this paper, we consider the problem of accounting for such
uncertainty by constructing confidence sets for the rank of each category. We consider both
the problem of constructing marginal confidence sets for the rank of a particular category as
well as simultaneous confidence sets for the ranks of all categories. A distinguishing feature of
our analysis is that we exploit the multinomial structure of the data to develop confidence sets
that are valid in finite samples. We additionally develop confidence sets using the bootstrap
that are valid only approximately in large samples. We use our methodology to rank political
parties in Australia using data from the 2019 Australian Election Survey. We find that our
finite-sample confidence sets are informative across the entire ranking of political parties, even
in Australian territories with few survey respondents and/or with parties that are chosen by
only a small share of the survey respondents. In contrast, the bootstrap-based confidence sets
may sometimes be considerably less informative. These findings motivate us to compare these
methods in an empirically-driven simulation study, in which we conclude that our finite-sample
confidence sets often perform better than their large-sample, bootstrap-based counterparts,
especially in settings that resemble our empirical application.
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1 Introduction

Preferences over different categories are often assessed by means of data on choices. It is natural to

summarize this type of data by ranking the different categories according to the share of support

each one receives in the data. A prominent example is provided by surveys or polls of political

attitudes. In this case, different categories may correspond to different political candidates or parties

and individuals choose one political candidate or party from among those available. In “winner-

take-all” elections, these rankings may be indicative of the ultimate winner of the election. They

may also be used as inputs into consequential decisions before the actual election. For example, in

U.S. Presidential Elections, the decision about which candidates to feature in nationally televised

political debates may hinge on their performance in different polls leading up to the election.

Importantly, however, these rankings are computed using only estimates of the underlying share of

support for each category. As a result, there may be considerable uncertainty concerning the true

rank of each category.

Such data on choices, including polls of political attitudes, commonly feature limited sample

sizes and/or categories whose true share of support is small. As explained further below, these

features pose challenges to inference methods justified using large-sample arguments. In contrast,

this paper considers the problem of constructing confidence sets for the rank of each category that

are valid in finite samples, even when some categories are chosen with probability close to zero.

We consider two types of confidence sets: marginal confidence sets for the rank of a particular

population, by which we mean random sets that contain the rank of a particular category with

probability no less than some pre-specified level, as well as simultaneous confidence sets for the

ranks of all categories, by which we mean random sets that contain the ranks of all categories

with probability no less than some pre-specified level. The former confidence sets provide a way

of accounting for uncertainty when answering questions pertaining to the rank of a particular

category, whereas the latter confidence sets provide a way of accounting for uncertainty when

answering questions pertaining to the ranks of all categories. Our constructions are based off of

testing a family of one-sided null hypotheses concerning differences in pairs of success probabilities

in a way that controls the familywise error rate in finite samples. In order to do so, we exploit the

multinomial structure of the data, which enables the use of a simple conditioning argument.

As a second contribution, we develop bootstrap methods for the construction of these confidence

sets. Their validity is justified using large-sample arguments as in Mogstad et al. (2020). However,

unlike in Mogstad et al. (2020)’s applications, the estimators of the success probabilities of different

categories are necessarily dependent and the bootstrap procedure proposed in this paper explicitly

accounts for this dependence. As described in more detail below, the results in Brown et al. (2001)

suggest that such bootstrap methods may perform poorly when sample sizes are small and/or some

categories are chosen with small probabilities. In particular, approaches that explicitly or implicitly
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(such as the bootstrap) rely on asymptotic normality of the estimators of the success probabilities

perform poorly when the true success probability is small. In such a case, it is well known that

the Poisson distribution is in fact a better approximation than the normal. In our simulations, we

find not only that the bootstrap-based confidence sets (with or without studentization) may have

coverage probability significantly below the desired level, but also that they may be excessively

wide. In contrast, the finite-sample confidence sets have coverage probability no less than the

desired nominal level and may even be significantly shorter.

We apply our inference procedures to re-examine the ranking of political parties in Australia

using data from the 2019 Australian Election Survey. We find that the finite-sample (marginal

and simultaneous) confidence sets are remarkably informative across the entire ranking of political

parties, even in Australian territories with few survey respondents and/or with parties that are

chosen by only a small share of the survey respondents. To illustrate this point further, consider

one particular Australian territory, Greater Melbourne. We find that the finite-sample confidence

sets are either of similar length to or substantially shorter than their bootstrap-based counterparts

(with or without studentization). For instance, at conventional significance levels, the finite-sample

marginal confidence set for the rank of the Green Party contains only rank 4. In contrast, the

bootstrap-based marginal confidence sets (with or without studentization) contain the ranks 3 to

7, thus exhibiting significantly more uncertainty about the true rank of the Green Party. The

studentized procedure leads to especially wide confidence sets for the ranks of parties that are

chosen only by a small share of respondents. We find similar patterns in the eight most populous

territories, while confidence sets in the remaining seven least populous territories are uninformative

due to very small sample sizes. Unlike in Greater Melbourne, however, in some other territories

bootstrap-based confidence sets (with or without studentization) may be slightly smaller than their

finite-sample counterparts.

These findings motivate us to compare the different confidence sets in a simulation study mod-

eled after our empirical application. The findings of this exercise can be summarized as follows.

First, finite-sample marginal confidence sets have coverage probabilities no less than the desired

nominal level in all simulation designs, including those with very small sample sizes and/or with

parties that are chosen by only a small share of the respondents. Second, bootstrap-based confi-

dence sets without studentiziation also have coverage probabilities no less than the nominal level,

except when sample sizes are very small. In contrast, bootstrap-based confidence sets with studen-

tization may have coverage probabilities less than the nominal level when sample sizes are small

and/or the number of parties to be ranked is not too small. Third, the finite-sample confidence sets

may produce significantly shorter confidence sets for the ranks compared to the bootstrap-based

ones, especially when there are parties that are chosen by only a small share of respondents. How-

ever, there are also situations in which the latter methods produce shorter confidence sets than the

former, so neither approach always dominates the other in terms of length of their confidence sets.
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Our paper is most closely related to the aforementioned paper by Mogstad et al. (2020). We

emphasize that the primary contribution of our analysis relative to theirs is to show how one may

exploit additional structure given by the multinomial data to construct confidence sets that enjoy

finite-sample validity. Importantly, the finite sample guarantee allows for data-generating processes

with success probabilities that are arbitrarily close to zero, whereas the asymptotic arguments

justifying the bootstrap require these probabilities to be bounded away from zero. Second, we

propose a bootstrap method that accounts for the dependence in the estimators of the multinomial

success probabilities. Our paper is also related to a recent paper by Klein et al. (2020), who consider

the problem of constructing confidence sets analogous to those in Mogstad et al. (2020). We show

how a modification of their procedure can also be used to construct confidence sets that are valid

in finite samples in the presence of multinomial data. In our simulations, we find that the resulting

confidence sets are often of comparable length to our finite-sample confidence sets, but sometimes

meaningfully larger. We refer the reader to Mogstad et al. (2020) for additional comparisons. Other

related work includes Goldstein and Spiegelhalter (1996), who propose a different bootstrap-based

confidence set to account for uncertainty in reported ranks. As explained by Hall and Miller (2009),

Xie et al. (2009) and most recently by Mogstad et al. (2020), however, this method performs poorly

in the presence of categories that are chosen with similar frequencies (i.e., in the context of our

simulations, when some parties are nearly tied). We confirm this finding in our simulations.

Our paper also draws motivation from earlier work by Brown et al. (2001), who demonstrate

that conventional confidence intervals for the probability of success using binomial data may behave

poorly in the sense of exhibiting undercoverage, especially when the success probability is close to

zero or one, and may also behave erratically in the sense that coverage probabilities may be volatile

and non-monotonic in the sample size. In our simulations, we find similar patterns concerning the

coverage probabilities for the differences in pairs of success probabilities using multinomial data.

For this reason, we view insistence upon finite-sample validity for our confidence sets to be especially

compelling in this setting. On the other hand, we find that this poor behavior of confidence sets for

the differences in the success probabilities need not translate into similar behavior for the implied

confidence sets for the ranks.

Finally, we note some key differences between the problems considered in this paper and those

of two recent papers in econometrics, Andrews et al. (2018) and Gu and Koenker (2020). In

the context of the multinomial setting studied here, Andrews et al. (2018) develop methods for

inference on the true success probability for the randomly selected category whose estimated rank

is highest. In contrast, as the discussion above makes clear, we develop methods for inference on

the true ranks themselves. Gu and Koenker (2020) develop decision rules for selecting the most

popular categories (i.e., those with the highest success probabilities), which is more closely related

to a literature on subset selection (see Gupta and Panchapakesan (1979) for a review). We show,

however, how our simultaneous confidence sets may be used to create a complimentary object that

4



we refer to as the confidence set for the τ -best. For given value of τ , such a confidence set is a

random set that contains the identities of (all of) the categories whose rank is less than or equal to

τ with probability approximately no less than some pre-specified level.

The remainder of the paper is organized as follows. In Section 2.1, we introduce our general

setup, including a formal description of the different types of confidence sets we consider and the

general testing problem involved in their constructions. Suitable tests that lead to confidence sets

that are valid in finite samples are then described in 2.2. The construction of confidence sets

for the τ -best that are valid in finite samples is briefly summarized in 2.3. Section 3 described

bootstrap-based versions of these same confidence sets. In Section 4.1, we apply our inference

procedures to re-examine the ranking of political parties in Australia. Finally, in Section 5, we

examine the finite-sample behavior of our inference procedures via a simulation study modeled

after our empirical application.

2 Main Results

2.1 Setup and Notation

Let j ∈ J ≡ {1, . . . , p} index categories of interest, e.g., parties in an election. There are n

independent observations, and each observation falls in category j with probability θj . Let Xj

denote the observed count for category j from the n observations, e.g. the number of votes party

j receives from n voters. Hence, X ≡ (X1, . . . , Xp)
′ is distributed according to the multinomial

distribution with parameters n and θ ≡ (θ1, . . . , θp)
′.

The rank of category j is defined as

rj ≡ 1 +
∑
k∈J

1{θk > θj},

where 1{A} is equal to one if the event A holds and equal to zero otherwise. Let r ≡ (r1, . . . , rp)
′.

Before proceeding, it is useful to provide a simple example to illustrate the way in which ties are

handled with this definition of ranks: if θ = (0.4, 0.1, 0.1, 0.2, 0.2)′, then r = (1, 4, 4, 2, 2)′.

The primary goal is to construct confidence sets for the rank of a particular category or for the

ranks of multiple categories simultaneously. Let J0 ⊆ J denote the categories of interest. For a

given value of α ∈ (0, 1), we use data X to construct (random) sets

Rn ≡
∏
j∈J0

Rn,j

such that

P {rj ∈ Rn,j ∀j ∈ J0} ≥ 1− α. (1)
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If J0 is a singleton, then sets Rn satisfying (1) are referred to as marginal confidence sets for the

rank of a single category. If J0 = J , then sets Rn satisfying (1) are referred to as simultaneous

confidence sets for the ranks of all categories. The remainder of the paper, however, allows J0 to

be any subset of J . In our constructions, Rn,j are subsets of J for each j ∈ J0, allowing for the

possibility that the lower endpoint is 1 or the upper endpoint is p to permit both one-sided and

two-sided inference.

In addition, we consider the goal of constructing confidence sets for the identities of all categories

whose rank is less than or equal to a pre-specified value τ ∈ J , i.e., for a given value of α ∈ (0, 1),

we construct (random) sets Rτ−bestn that are subsets of J and satisfy

P
{
Rτ−best0 ⊆ Rτ−bestn

}
≥ 1− α , (2)

where

Rτ−best0 ≡ {j ∈ J : rj ≤ τ} .

Sets satisfying (2) are referred to as confidence sets for the τ -best categories.

As in Mogstad et al. (2020), the construction of confidence sets for ranks can be based on tests

of the hypotheses

Hj,k : θj ≤ θk

for pairs of indices (j, k) ∈ J2. Which pairs are relevant depends on whether the desired confidence

sets for the ranks indicated by J0 are lower, upper or two-sided confidence bounds:

J lower ≡ {(j, k) ∈ J × J0 : j 6= k}

Jupper ≡ {(j, k) ∈ J0 × J : j 6= k}

J two−sided ≡ J lower ∪ Jupper

Suppose a family of tests of the hypotheses Hj,k is given. Then, for each j ∈ J0, let

Rej−j ≡ {k ∈ J \ {j} : reject Hk,j and claim θj < θk} (3)

indicate the set of hypotheses that are rejected in favor of θj < θk and

Rej+j ≡ {k ∈ J \ {j} : reject Hj,k and claim θj > θk} (4)

the set of hypotheses that are rejected in favor of θj > θk. Consider the goal of constructing a

two-sided marginal confidence set for the rank of a category j0, i.e., J0 = {j0}. Then, Rej−j0 contains

all categories k 6= j0 whose parameter θk is claimed to be strictly larger than θj0 . If these claims

were correct, then the lower bound on the rank of category j0 must be equal to the number of such

categories k, denoted by |Rej−j0 |, plus one. Similarly, Rej+j0 contains all categories k 6= j0 whose
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parameter θk is claimed to be strictly smaller than θj0 . Again, if these claims were correct, then

the upper bound on the rank of category j0 must be the total number of categories, p, minus the

number of categories with smaller probability, denoted by |Rej+j0 |. Therefore, if all claims made in

Rej−j0 and Rej+j0 are correct, the set

Rn,j0 ≡
{
|Rej−j0 |+ 1, . . . , p− |Rej+j0 |

}
.

contains the rank of category j0, rj0 . More generally, for an arbitrary set of indices J0 ⊆ J , if all

claims made in Rej−j and Rej+j , j ∈ J0, are correct, then the set

Rn ≡
∏
j∈J0

Rn,j with Rn,j ≡
{
|Rej−j |+ 1, . . . , p− |Rej+j |

}
(5)

contains the ranks of all categories in J0, (rj : j ∈ J0). Of course, it cannot be guaranteed that

tests of Hj,k never falsely reject, but the probability of such mistakes can be controlled. More

specifically, for the set Rn to satisfy the coverage statement in (1), the number of false claims must

be controlled in the sense that the familywise error rate for testing Hj,k for the relevant pairs of

indices I ⊂ J2 is no larger than α, i.e.,

FWERI ≡ P {reject at least one true hypotheses Hj,k, (j, k) ∈ I} ≤ α. (6)

For two-sided confidence sets, the relevant set of indices I is J two−sided and, for one-sided confidence

sets, it is either J lower or Jupper. The following theorem is a slight generalization (allowing for a

general set J0 of indices) of Theorem 3.4 in Mogstad et al. (2020) and summarizes the above

discussion.

Theorem 2.1. For J0 ⊆ J , let I be equal to J lower, Jupper, or J two−sided. Let Rn be defined by

(3), (4), and (5), where the family of hypotheses Hj,k, (j, k) ∈ I, is tested using a procedure that

satisfies (6) for some α ∈ (0, 1). Then, Rn satisfies (1).

Instead of controlling the coverage probability in finite samples as in (1), the confidence sets

proposed in Mogstad et al. (2020) only asymptotically control the coverage probability. Their

constructions assume the availability of bootstrap confidence sets that simultaneously cover the

differences θj − θk for all relevant pairs of indices (j, k). While their paper does not explicitly show

how these can be constructed when X1, . . . , Xp are not independent (which by construction is the

case with multinomial data), it is not difficult to propose an appropriate bootstrap procedure (see

Appendix A).

The general approach in Mogstad et al. (2020) does not require X to follow a multinomial

distribution. The purpose of the remainder of this paper is to show that with this additional

distributional assumption it is possible to construct confidence sets for ranks that control the
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coverage probability not only asymptotically, but in finite samples.

Remark 2.1 (Definition of Rank). To simplify the exposition in this remark, suppose we are

interested in a single category, J0 = {j0}. In the presence of ties, there is some ambiguity in the

way in which we define the rank of a category. For any j ∈ J , let rj ≡ 1 +
∑

k∈J 1{θk > θj}
and r̄j ≡ p −

∑
k∈J 1{θk < θj} be the smallest (i.e., best) and largest (i.e., worst) possible rank

of category j. If category j0 is not tied with any other category, then rj0 = r̄j0 and the rank is

unique. On the other hand, when category j0 is tied with at least one other category, then rj0 < r̄j0

and different definitions of the rank may select different values from the interval Rj0 ≡ [rj0 , r̄j0 ].

An inspection of the proof of Theorem 2.1 reveals that the confidence set Rn not only covers our

definition of the rank, rj0 , in the sense of (1), but also any other “reasonable” definition of the rank

in the sense that

P
{
Rj0 ⊆ Rcont

n

}
≥ 1− α,

where Rcont
n ≡ [min(Rn),max(Rn)] is the interval from the smallest to the largest value in the

confidence set Rn.

2.2 Marginal and Simultaneous Confidence Sets for Ranks

In light of the previous discussion, for the construction of a confidence set satisfying (1), it remains

to propose a procedure for testing the family of hypotheses Hj,k, (j, k) ∈ I, that controls FWERI .

In this section, we propose a test of the individual hypothesis Hj,k with nominal level βj,k and then

choose the constants (βj,k : (j, k) ∈ I) in a way that controls FWERI in the sense of (6).

Let Sj,k ≡ Xj + Xk. One can show that the conditional distribution of Xj given Sj,k = s is

binomial based on s trials and success probability θj/(θj + θk); a simple proof appears in the proof

of Theorem 2.2. Notice that Hj,k is equivalent to θj,k ≤ 1/2, where θj,k = θj/(θj+θk). Conditioning

on Sj,k eliminates nuisance parameters and reduces the testing problem to a one-parameter problem

of testing a binomial probability. An exact level βj,k test may be therefore be easily constructed.

In particular, the (possibly randomized) test of Hj,k defined by the critical function

φ(x, s) =


1, if x > C(s)

γ(s), if x = C(s)

0, if x < C(s)

(7)

with constants γ(s), C(s) determined by

s∑
i=C(s)+1

(
s

i

)
(1/2)s + γ(s)

(
s

C(s)

)
(1/2)s = βj,k ∀s, (8)

is an exact level βj,k test of Hj,k. The test has rejection probability equal to βj,k when θj,k = 1/2.
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Moreover, since the binomial family of distributions has monotone likelihood ratio, the test has

rejection probability strictly less than βj,k whenever θj,k < 1/2. In fact, Theorem 2.2 below shows

that, for testing Hj,k, the test φ(Xj , Sj,k) is uniformly most powerful level βj,k among all level

βj,k unbiased tests based on (X1, . . . , Xp); i.e., it is UMPU. If γ(s) > 0 and one wishes to avoid

randomization of the test, then one may simply reject Hj,k iff Xj > C(Sj,k) + 1. The p-value for

this slightly conservative approach of testing Hj,k when Sj,k = s can be written as

p̂j,k ≡
1

2s

s∑
i=Xj

(
s

i

)
. (9)

The following theorem summarizes the above discussion.

Theorem 2.2. For any (j, k) ∈ J2, j 6= k, and βj,k ∈ (0, 1), the test φ(Xj , Sj,k) defined by (7) and

(8) is a UMPU level βj,k test of Hj,k.

This theorem shows that φ defines a level βj,k test of Hj,k. To satisfy (6) one could combine

the individual tests, i.e., choose the (βj,k : (j, k) ∈ I), by a Bonferroni correction or by the Holm

procedure, for example. Theorem 2.1 then implies that the confidence set Rn, based on such a

procedure, has coverage probability no less than 1− α.

The steps necessary for construction of the proposed confidence sets for the ranks, using the

non-randomized test with p-value in (9), are summarized as follows:

Algorithm 2.1.

1. Choose the set J0 ⊆ J of categories of interest.

2. Set I equal to one of J lower, Jupper, or J two−sided, depending on whether lower, upper, or

two-sided confidence bounds on the ranks of categories in J0 are desired.

3. Test the family of hypotheses Hj,k, (j, k) ∈ I, so that FWERI is controlled. For instance:

• Bonferroni: Hj,k is rejected iff

p̂j,k ≤
α

|I|
.

• Holm: order the p-values p̂j,k, (j, k) ∈ I, from the smallest to the largest, p̂(1) ≤ · · · ≤
p̂(|I|), and denote the corresponding hypotheses by H(1), . . . ,H(|I|). Then, H(l) is rejected

iff

p̂(l′) ≤
α

|I|+ 1− l′
∀l′ ≤ l.

4. For each j ∈ J0, collect the rejected hypotheses as in (3) and (4).

5. Construct Rn, the confidence set for the ranks (rj : j ∈ J0), as in (5).
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Theorems 2.1 and 2.2 imply that the resulting confidence set for the ranks is valid in finite

samples:

Corollary 2.1. The confidence set Rn constructed by Algorithm 2.1 satisfies (1).

One important aspect to note is that we have not imposed any assumptions on the vector of

probabilities θ, besides it being the vector of probabilities associated with a multinomial distribution

for p categories. In particular, the confidence set Rn satisfies the coverage result (1) regardless of

whether any of the elements of θ are equal to each other (“ties”) or close to each other (“near-

ties”). This is an important feature of our confidence sets for the ranks because it ensures that the

coverage property does not break down when some categories are observed with equal or similar

counts. In contrast, a “naive” bootstrap confidence set is valid only in the absence of ties and

may substantially under-cover when there are near-ties (see Remark 3.6 and the simulations in

Section 5).

Remark 2.2 (Clopper-Pearson). An alternative approach to the construction of confidence sets for

the ranks that are valid in finite samples could be based on Clopper-Pearson intervals for binomial

probabilities (Clopper and Pearson (1934)). To see this, note that one could form a Clopper-Pearson

interval separately for each element of θ. With a Bonferroni correction one could then combine the

marginal confidence intervals into a simultaneous confidence set for the vector θ, which would be

valid in finite samples. Given this simultaneous confidence set for θ, one could apply the approach by

Klein et al. (2020) to form a simultaneous confidence set for the ranks of all categories, which would

also be valid in finite samples. We compare this approach with ours in the simulations of Section 5

and find that the two methods often perform similarly well, but sometimes the Clopper-Pearson

intervals are meaningfully wider. One reason why this construction may lead to wide confidence

sets is that Klein et al. (2020)’s approach implicitly tests whether two success probabilities are equal

by checking whether the Clopper-Pearson intervals for the two success probabilities overlap or not.

This construction is excessively crude compared to the use of confidence sets for the differences.

2.3 Confidence Sets for the τ-Best

Let Rn ≡
∏
j∈J0 Rn,j be a simultaneous lower confidence bound on the ranks of all categories, i.e.,

each Rn,j has upper bound equal to p and Rn satisfies (1) for J0 = J . Then, the projection

Rτ−bestn ≡ {j ∈ J : τ ∈ Rn,j} (10)

is a confidence set for the τ -best categories:

Corollary 2.2. If Rn ≡
∏
j∈J0 Rn,j is defined as in Theorem 2.1 for J0 = J and I = J lower, then

Rτ−bestn as defined in (10) satisfies (2).
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The construction of such a confidence set using the non-randomized test with p-values in (9)

can thus be summarized as follows:

Algorithm 2.2. 1. Set J0 = J and I = J lower.

2. Perform Steps 3–5 of Algorithm 2.1 to obtain Rn ≡
∏
j∈J0 Rn,j .

3. Construct Rτ−bestn as defined in (10).

Remark 2.3 (τ -Worst). A confidence set for the τ -worst categories, Rτ−worst0 ≡ {j ∈ J : rj ≥
p − τ + 1} can be constructed in a similar fashion as in Algorithm 2.2 for the τ -best. First, set

J0 = J and I = Jupper. Then perform Steps 3–5 of Algorithm 2.1 to obtain Rn ≡
∏
j∈J0 Rn,j .

Finally, construct the confidence set Rτ−worstn ≡ {j ∈ J : p− τ + 1 ∈ Rn,j}.

3 Bootstrap Confidence Sets

As was previously seen, confidence sets for ranks can be based on simultaneous tests of the hy-

potheses Hj,k with (j, k) ∈ I for an appropriate set of indices I ⊂ J2. In a similar way, inference for

ranks can also be based on simultaneous bootstrap confidence sets Cn(1− α, I) for the differences

(θj − θk : (j, k) ∈ I), which we now describe.

Let X∗ ≡ (X∗1 , . . . , X
∗
p ) denote a bootstrap draw from the the multinomial distribution with

parameters n and θ̂ ≡ X/n. Define the bootstrap estimator θ̂∗ ≡ X∗/n and

σ̂∗j,k ≡
√
θ̂∗j (1− θ̂∗j ) + θ̂∗k(1− θ̂∗k) + 2θ̂∗j θ̂

∗
k .

Consider the bootstrap statistic

T ∗lower,n(I) ≡ max
(j,k)∈I

θ̂∗j − θ̂∗k − (θ̂j − θ̂k)
σ̂∗j,k/

√
n

,

where we adopt the convention that 0/0 = 0 and c/0 = sign(c)∞ for c 6= 0, and denote by

clower,n(1−α, I) the (1−α)-quantile of T ∗lower,n(I) conditional on the data.1 We can then construct

lower confidence bounds for the vector of differences ∆I ≡ (θj − θk : (j, k) ∈ I) by

Clower,n(1− α, I) ≡
∏

(j,k)∈I

Clower,n,j,k(1− α, I)

1In a given bootstrap sample, the ratio inside the max of T ∗lower,n can have a zero denominator and/or zero

numerator. For instance, when two categories j and k both have small success frequencies in the data (θ̂j and θ̂k are
small), then it is possible that a given bootstrap sample does not contain any success for either of the two categories,
i.e., θ̂∗j = θ̂∗j = σ̂∗j,k = 0, and the denominator is zero. When θ̂j < θ̂k, then the resulting critical value clower,n(1−α, I)

equals ∞. On the other hand, when the frequencies in the data are equal (θ̂j = θ̂k), then both the numerator and
denominator of the ratio are zero and the maximum is determined by other bootstrap samples that produce a positive
ratio.
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with

Clower,n,j,k(1− α, I) ≡

[
θ̂j − θ̂k − clower,n(1− α, I)

σ̂j,k√
n
,∞

)

and σ̂j,k ≡
√
θ̂j(1− θ̂j) + θ̂k(1− θ̂k) + 2θ̂j θ̂k. As long as all θj , j ∈ J , are nonzero, this confidence

set covers the vector of true differences with probability 1−α, asymptotically as the sample size n

tends to infinity:

lim
n→∞

P{∆I ∈ Clower,n(1− α, I)} = 1− α. (11)

Appendix A provides a formal justification of this claim and further shows that the coverage

probability is no less than 1−α when some θj = 0. Let I be equal to one of the sets J lower, Jupper,

or J two−sided depending on which type of confidence set for the ranks is desired. Consider the test

that rejects Hj,k iff Clower,n,j,k(1− α, I) lies entirely above zero. Then, based on this test, form the

sets Rej−j and Rej+j as in (3) and (4). The bootstrap confidence set for the ranks of categories in

J0 can then be constructed as in (5); denote the resulting confidence set by Rboot
n ≡

∏
j∈J0 R

boot
n,j .

By an argument similar to that in Theorem 3.3 in Mogstad et al. (2020), the probability that this

confidence set covers the true ranks is bounded from below by the probability that the vector of

differences, ∆I , is covered by Clower,n(1 − α, I). Therefore, the validity of the bootstrap in the

sense of (11) implies that the bootstrap confidence set for the ranks also covers the true ranks with

probability at least 1− α in the limit as n→∞. The following result formalizes this discussion:

Theorem 3.1. For Rboot
n defined in the previous paragraph, we have

lim inf
n→∞

P
{
rj ∈ Rboot

n,j ∀j ∈ J0
}
≥ 1− α. (12)

Remark 3.1 (Exactness). It is possible to show that there exists θ such that

lim
n→∞

P
{
Rj ∈ Rboot

n,j ∀j ∈ J0
}

= 1− α,

where Rj is defined as in Remark 2.1. In this sense, the bootstrap-based confidence sets described

above are non-conservative.

Remark 3.2 (Uniformity). The validity of the bootstrap confidence set for the vector of differences

as in (11) also holds uniformly over data-generating processes in certain classes of distributions.

Such a statement could be established using the results in Romano and Shaikh (2012). One impor-

tant assumption for the applicability of their results to our setting is that the elements of θ need

to be bounded away from 0 and 1. As in Mogstad et al. (2020), uniform validity of the confidence

sets for the differences then implies uniform validity of the confidence sets for the ranks.

Remark 3.3 (Stepwise Improvements). One could use stepdown procedures from Romano and

Wolf (2005) to improve the confidence sets for the ranks. See Mogstad et al. (2020) for more

details.
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Remark 3.4 (Two-sided Confidence Sets). Suppose the goal is to construct a two-sided confidence

set for the ranks of categories in J0. Instead of testing the one-sided hypotheses Hj,k for all pairs

in the large set J two−sided with the one-sided confidence sets for the differences, one could also

test whether the differences are zero using a smaller number of two-sided confidence sets for the

differences.

To see this let Csymm,n(1− α, I) ≡
∏

(j,k)∈I Csymm,n,j,k(1− α, I) with

Csymm,n,j,k(1− α, I) ≡

[
θ̂j − θ̂k ± csymm,n(1− α, I)

σ̂j,k√
n

]
,

where csymm,n(1− α, I) denotes the (1− α)-quantile of

T ∗symm,n(I) ≡ max
(j,k)∈I

∣∣∣θ̂∗j − θ̂∗k − (θ̂j − θ̂k)
∣∣∣

σ̂∗j,k/
√
n

conditional on the data. Then, set I = Jupper and compute

N−j ≡ {k ∈ J \ {j} : Csymm,n,j,k(1− α, I) lies entirely below zero }

N+
j ≡ {k ∈ J \ {j} : Csymm,n,j,k(1− α, I) lies entirely above zero }

which indicate the categories k with probabilities strictly larger or smaller than θj . A confidence

set for the ranks of categories in J0 can then be formed as in (5), replacing Rej−j and Rej+j by

N−j and N+
j , respectively. By arguments analogous to those for the one-sided confidence sets,

the resulting confidence set for the ranks of populations in J0 then covers the true ranks with

probability approaching at least 1− α as n→∞.

Remark 3.5 (Studentization). The bootstrap procedure in Remark 3.4 may perform poorly in the

sense of under-covering the true ranks when there are many categories and all estimated probabil-

ities θ̂1, . . . , θ̂p are small. In such situations, the ratio in the definition of the bootstrap statistic

may evaluate to 0/0 on many bootstrap samples, leading to a critical value that is too small. In

addition, the bootstrap procedure may perform poorly in the sense of yielding confidence sets that

are very wide when there are two or more categories with small estimated probabilities. In such

situations, there may be bootstrap samples without any successes for categories j and k, so the

ratio in the definition of the bootstrap statistic evaluates to ∞ and the resulting critical value is

equal to ∞; see Footnote 1. For these reasons, it may be beneficial not to studentize T ∗symm,n(I),

in which case one would also remove σ̂j,k from the expression of Csymm,n,j,k(1 − α, I). These two

approaches are compared further in the simulations in Section 5.3.

Remark 3.6 (“Naive” Bootstrap). Suppose the goal is to construct a confidence set for the rank

of a single category. The confidence set Rn based on Algorithm 2.1 was shown to be valid in finite
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samples, regardless of the value of the vector θ. In particular, there may be an arbitrary number of

ties or near-ties in θ. Similarly, the confidence set Rn based on the bootstrap as proposed in this

section is asymptotically valid regardless of the number of ties or near-ties in θ. On the other hand,

the bootstrap as proposed by, e.g., Goldstein and Spiegelhalter (1996) performs poorly when, for

some k 6= j, θk is (close to) equal to θj . For concreteness, consider the following “naive” bootstrap

procedure. For a category j, denote by θ̂∗j the estimator of θj computed on a bootstrap sample

and let r̂∗j be the rank computed using the bootstrap estimators θ̂∗1, . . . , θ̂
∗
p. Confidence sets for rj

could then be constructed using upper and/or lower empirical quantiles of r̂∗j conditional on the

data. Mogstad et al. (2020) show that this intuitive approach fails to deliver the desired coverage

property when there are ties (unless p = 2). In fact, the coverage probability tends to zero as

p grows. For further discussion, see Xie et al. (2009) and Hall and Miller (2009). In contrast,

our bootstrap approach does not rely on a consistent estimator of the distribution of estimated

ranks but rather on the availability of simultaneous bootstrap confidence sets for the differences

∆I with asymptotic coverage no less than the desired level. Such simultaneous confidence sets are

available under weak conditions and, in particular, do not restrict the configuration of the vector

of probabilities θ. In comparison to Xie et al. (2009), our bootstrap procedure also circumvents

smoothing of the indicator in the definition of the ranks and thus the need for choosing such a

smoothing parameter.

4 Ranking Political Parties by Voters’ Support in the Australian

Election Study 2019

In this section, we apply the inference procedures from Sections 2 and 3 to examine the ranking of

political parties by their share of voters’ support in the Australian Election Study (AES). The AES

has fielded representative surveys after every federal election since 1987 and provides the most com-

prehensive source of evidence on political attitudes in Australia (Cameron and McAllister, 2019).

We use AES data from 2019 with address-based stratified random sampling from the Geocoded

National Address File (G-NAF)(Bean et al., 2019).2 Table 1 shows a total of 3,944 sampled eligi-

ble voters from all fifteen Australian territories resulting in 1,211 respondents. In the subsequent

analysis we work with respondents and refer to them as “sample”.

To examine which political parties are on the top and the bottom of the ranking in each

Australian territory, we use respondents’ answers to the survey question “Generally speaking, do

2The original sampling methodology description reads: “Within the parameters outlined above, the new AES
sample was selected from the G-NAF database using a stratified sample design in accordance with the geographical
distribution of the Australian residential population aged 18 years and over. GNAF sample selections were supplied
by the MasterSoft Group. A total of 3,944 sample records were randomly generated within 15 geographic strata (see
Table 2) to ensure sufficient sample was utilised to achieve the desired number of responses for the AES”(Bean et al.,
2019). We interpret this sampling as being i.i.d. within territories.
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Territory Sampled Voters Respondents Categories

Greater Sydney 816 238 8
Greater Melbourne 780 234 7
Rest of New South Wales 445 144 8
Rest of Queensland 402 121 10
Greater Brisbane 378 115 8
Greater Perth 319 93 7
Rest of Victoria 248 82 8
Greater Adelaide 217 81 9
Rest of Western Australia 87 26 7
Australian Capital Territory 67 24 4
Rest of South Australia 63 17 4
Rest of Tasmania 47 16 3
Greater Hobart 35 12 4
Greater Darwin 24 6 3
Rest of Northern Territories 16 2 2

Total: 3944 1211

Table 1: Australian Election Study 2019 G-NAF stratified random sample of 3,944 eligible voters
resulting in 1,211 respondents. In the subsequent analysis we work with respondents and refer to
them as “sample”. The last column shows the number of categories with positive support share
in each territory measured by answers to AES2019 survey question “Generally speaking, do you
usually think of yourself as Liberal, Labor, National, Greens or other(specify)?”. The answers
include political parties, “Skipped” and “No answer” categories that we group in a single “No
answer” category; “Independent”, “Swing Voter” and “No party” categories that we group in a
single “No party” category.

you usually think of yourself as Liberal, Labor, National, Greens or other (specify)?”. The answer

categories include political parties; “Skipped” and “No answer” categories that we group in a single

“No answer” category; “Independent”, “Swing Voter” and “No party” categories that we group in

a single “No party” category. For more populous territories, we observe between seven and ten

categories with positive support shares.

By applying the inference procedures from Sections 2 and 3 we compute (i) the marginal con-

fidence set for the rank of a particular political party and (ii) the simultaneous confidence set for

the ranks of all parties. Thus, (i) is relevant if one is interested whether a particular party is on

the top (bottom) of ranking by the voters’ support, and (ii) is relevant if one is interested in the

entire ranking of parties.
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4.1 Marginal Confidence Sets for the Ranks of Political Parties in Greater

Melbourne

Consider first a particular territory, Greater Melbourne. Figure 1 shows the point estimates and

standard errors for voters’ support share for each category with positive number of supporters. The

leftmost panel in row A shows considerable variation in point estimates across categories from 0.371

for the most supported (Labor Party) to 0.004 for the least supported (National Party). Support

shares on the top and the bottom of the ranking are close to each other, while the shares in the

middle are better separated.

The middle panel in row A of Figure 1 presents the 95% marginal confidence sets for the rank

of each category implemented using five procedures: the exact Holm (“exactHolm”) described

in the Algorithm 2.1, Clopper-Pearson (“CP”) as in Remark 2.2, non-studentized (“boot”) and

studentized (“bootStud”) versions of the bootstrap as in Section 3 and the “naive” bootstrap

(“naive”) as in Remark 3.6. The first two methods have been shown to be valid in finite samples,

and the studentized and non-studentized bootstrap are motivated by asymptotic validity. The

“naive” bootstrap is asymptotically valid in the absence of (near-)ties (see Remark 3.6), but invalid

otherwise.

The resulting confidence sets exhibit four pronounced patterns. First, the “naive” bootstrap

confidence sets are the tightest. As indicated in Remark 3.6, the “naive” bootstrap produces

confidence sets that fail to cover the true ranks with the desired probability when there are (near-)

ties. Our simulations in Section 5 confirm that, in datasets like the one from Greater Melbourne, the

“naive” bootstrap does indeed produce short confidence sets at the expense of its coverage frequency

lying substantially below the desired nominal level. Second, the exact Holm procedure produces

weakly shorter confidence sets than Clopper-Pearson and the studentized and non-studentized

bootstraps. For example, the exact Holm confidence sets for the ranks of the categories “No

party” and “Greens” contain only ranks three and four, respectively, while Clopper-Pearson and

the studentized and non-studentized bootstraps produce confidence sets containing at least two

ranks. Third, both the studentized and non-studentized bootstrap confidence sets are wide in the

middle of the ranking. Their length for the 4th category, “Greens”, is equal to four compared to

the maximum possible length of six. Fourth, the studentized bootstrap produces extremely wide

confidence sets at the bottom of the ranking for the last two categories. These confidence sets

cover the entire ranking and correspond to infinite critical values. In contrast, the length of the

finite-sample valid confidence sets for the last two categories is two. These patterns suggest that the

finite-sample valid confidence sets for parties in Greater Melbourne are informative, and the exact

Holm procedure is the most informative among the valid procedures (i.e., excluding the “naive”

bootstrap).

As discussed in Footnote 1, the studentized bootstrap confidence sets are wide when the ratio
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in the bootstrap test statistic has a denominator that is equal to zero and a positive numerator in a

substantial fraction of the bootstrap samples. This circumstance arises when at least two categories

have small but positive shares in the data so that, in the bootstrap samples, θ̂∗j = θ̂∗k = σ̂∗j,k = 0

while, in the data, |θ̂j − θ̂k| > 0. One solution is to group the categories with small shares together.

The leftmost panel in row B of Figure 1 shows support shares when we group “National Party”, “One

Nation” and “No answer” into a single category “Other”. The middle panel in row B shows that in

the middle or at the bottom of the ranking, both the studentized and non-studentized bootstraps

no longer produce confidence sets as wide as in row A. Notably, the exact Holm confidence sets are

still tighter than Clopper-Pearson confidence sets.

An alternative solution to the division by zero in bootstrap samples is to reduce the confidence

level. The rightmost column of Figure 1 shows the 90% marginal confidence sets for the ranks

using both the original set of categories in row A and with the three smallest categories grouped in

row B. Indeed, with lower confidence level we no longer observe studentized bootstrap confidence

sets covering the entire ranking. However, both finite-sample methods still produce weakly smaller

confidence sets than both types of bootstrap. Furthermore, the panel with grouped small categories

in row B shows that the exact Holm confidence sets for “Greens” are less informative than for the

original categories, regardless of whether the confidence level is 90% or 95%.

4.2 Marginal Confidence Sets for the Eight Most Populous Territories

Next, we move beyond the example of Greater Melbourne and consider all fifteen Australian territo-

ries. Appendix Figures 6a and 6b show the point estimates for support shares in all territories, and

Appendix Figures 7a and 7b show the 95% marginal confidence sets for the rank of each category

in each territory computed using the same five procedures as for Greater Melbourne. Similar to

our illustration for Greater Melbourne, both bootstrap procedures produce wide confidence sets in

the middle and at the bottom of the ranking in the majority of populous territories. Due to small

sample sizes the seven least populous territories have mostly uninformative confidence sets for all

categories. Therefore, we focus our analysis on the eight most populous territories.

Figure 7a shows that none of the valid methods produce tighter confidence sets than all other

valid methods uniformly across all categories in all territories. For example, the finite-sample valid

confidence sets are weakly tighter than both types of bootstrap confidence sets for each category

in Greater Melbourne. In comparison, the bootstrap confidence sets are weakly tighter in the top

part of the ranking in Greater Sydney. We summarize this finding in the top panel of Table 2

that shows the percentage of category×territory cases across the eight most populous territories

where each method produces strictly wider 95% marginal confidence sets for the rank than other

methods. For example, the first row shows that the exact Holm confidence sets are strictly wider

than Clopper-Pearson confidence sets in 6.2% of category×territory cases, strictly wider than the
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Percentage of Wider 95% Marginal CS, Row vs Column

Original Set of Categories

exactHolm CP boot bootStud

exactHolm 6.2 12.3 1.5

CP 3.1 9.2 0.0

boot 29.2 27.7 0.0

bootStud 47.7 49.2 41.5

Small Categories Grouped

exactHolm CP boot bootStud

exactHolm 2.5 22.5 2.5

CP 10.0 22.5 0.0

boot 7.5 0.0 0.0

bootStud 15.0 5.0 27.5

Table 2: Each cell shows the percentage of pairwise comparisons across all categories in the eight
most populous territories where the inference procedure in a row produces wider 95% marginal
confidence sets for the ranks than the procedure in a column. The top panel shows results for the
original set of categories in each territory. The bottom panel shows results when we group all
categories except “Liberal”, “Labor”, “Greens” and “No party” into a single category “Other”.

non-studentized bootstrap confidence sets in 12.3% of cases, and strictly wider than the studentized

bootstrap confidence sets in 1.5% of cases. The first column shows that Clopper-Pearson confidence

sets are strictly wider than the exact Holm confidence sets in 3.1% of category×territory cases, the

non-studentized bootstrap confidence sets are strictly wider than the exact Holm in 29.2% of cases,

and the studentized bootstrap confidence sets are strictly wider than the exact Holm confidence

sets in 47.7% of cases. Notably, the share of cases where the studentized and non-studentized

bootstrap confidence sets are strictly wider than Clopper-Pearson or the exact Holm confidence

sets is substantially larger than the share of cases where Clopper-Pearson and the exact Holm

confidence sets are strictly wider than both types of bootstrap confidence sets.

The bottom panel of Table 2 shows the same comparisons when we group all categories except

“Liberal”, “Labor”, “Greens” and “No party” into a single category “Other”. As discussed above,

this grouping prevents zeroes in the bootstrap test statistic denominator and excessively wide

bootstrap confidence sets. As a result, the percentage of cases in rows 3 and 4 where both types of

bootstrap confidence sets are strictly wider than the finite-sample valid confidence sets decreases.

Interestingly, the percentage of cases where the exact Holm confidence sets are strictly wider than
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Clopper-Pearson confidence sets is lower with grouping, and the percentage of cases where Clopper-

Pearson confidence sets are wider than the exact Holm confidence sets is larger.

4.3 Marginal Versus Simultaneous Confidence Sets

The analysis of marginal confidence sets answers questions about the rank of a particular party,

but one may be interested in the ranking of all parties described by simultaneous confidence sets.

Figure 2 compares 95% marginal confidence sets for the ranks to 95% simultaneous confidence sets

for the ranks produced by the exact Holm, Clopper-Pearson, the studentized and non-studentized

bootstrap procedures for categories in Greater Melbourne. Naturally, simultaneous confidence sets

are weakly wider than marginal confidence sets for each procedure. This feature is more pronounced

for the studentized bootstrap confidence sets due to infinite critical values in the bootstrap test

statistic for categories at the bottom of the ranking. In contrast, the finite-sample valid simulta-

neous confidence sets are still informative, and the exact Holm produces weakly tighter confidence

sets than all other procedures. Appendix Figure 8 shows that with confidence level reduced to 90%

we no longer observe studentized bootstrap confidence sets as wide as on Figure 2 since the critical

value becomes finite.

The top panel of Table 3 shows that our findings hold in the eight most populous Australian

territories with the original set of choice categories. The studentized bootstrap almost always

produces strictly wider 95% simultaneous confidences sets than other methods and never produces

tighter confidence sets. The exact Holm simultaneous confidence sets are never strictly wider than

Clopper-Pearson or the studentized bootstrap confidence sets, and are strictly wider than the non-

studentized bootstrap confidence sets in only 9.2% of category×territory cases. In contrast, both

Clopper-Pearson and the non-studentized bootstrap simultaneous confidence sets are strictly wider

than the exact Holm confidence sets in 26.2% of category×territory cases.

In the bottom panel of Table 3 we group all categories except “Liberal”, “Labor”, “Greens”

and “No party” into a single category “Other”. As a result, both types of bootstrap confidence sets

become tighter. In particular, the non-studentized bootstrap simultaneous confidence sets are never

strictly wider than the confidence sets produced by any other inference procedure. The exact Holm

confidence sets, however, are still never wider than Clopper-Pearson or the studentized bootstrap

confidence sets and are strictly wider than the non-studentized bootstrap confidence sets in only

5% of category×territory cases.
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Greater Melbourne, 234

95% Marginal CS 95% Simultaneous CS

Labor

Liberal

No party

Greens

No answer

One Nation

National Party

1 2 3 4 5 6 7

exactHolm

1 2 3 4 5 6 7

CP

Labor

Liberal

No party

Greens

No answer

One Nation

National Party

1 2 3 4 5 6 7
Rank

boot

1 2 3 4 5 6 7
Rank

bootStud

Figure 2: 95% marginal and 95% simultaneous confidence sets for the ranks of categories in Greater
Melbourne.

5 Simulations

In this section, we examine the finite-sample performance of the following approaches to construct-

ing confidence sets for ranks:
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Percentage of Wider 95% Simultaneous CS, Row vs Column

Original Set of Categories

exactHolm CP boot bootStud

exactHolm 0.0 9.2 0.0

CP 26.2 23.1 0.0

boot 26.2 21.5 0.0

bootStud 87.7 83.1 76.9

Small Categories Grouped

exactHolm CP boot bootStud

exactHolm 0.0 5.0 0.0

CP 20.0 25.0 0.0

boot 0.0 0.0 0.0

bootStud 32.5 20.0 37.5

Table 3: Each cell shows the percentage of pairwise comparisons across all categories in the eight
most populous territories where the inference procedure in a row produces wider 95% simultaneous
confidence sets for the ranks than the procedure in a column . The top panel shows results for
the original set of categories in each territory. The bottom panel shows results when we group
all categories except “Liberal”, “Labor”, “Greens” and “No party” into a single category “Other”.

“exactBonf”: the confidence set computed through Algorithm 2.1 using the Bonferroni correc-

tion.

“exactHolm”: the confidence set computed through Algorithm 2.1 using the Holm correction.

“CP”: the confidence set based on Clopper-Pearson confidence sets for binomial probabilities as

described in Remark 2.2.

“boot”: the bootstrap (not studentized) confidence set based on two-sided confidence sets for

the differences as described in Remark 3.5.

“bootStud”: the bootstrap (studentized) confidence set based on two-sided confidence sets for

the differences as described in Remark 3.4.

“naive”: the “naive” bootstrap confidence set as described in Remark 3.6.

All simulations are based on 1, 000 Monte Carlo samples and nominal coverage of 95%. Boot-

strap confidence sets are based on 10, 000 bootstrap samples except in Section 5.2, where for
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computational reasons we use 1, 000 bootstrap samples. Coverage is defined as in Remark 2.1, i.e.,

coverage of the set of possible ranks Rj .

We consider three different designs, starting with one that is calibrated to the dataset on which

the empirical application is based. Second, we investigate whether the confidence sets exhibit

erratic behavior in coverage frequencies similar to that reported for confidence sets for binomial

proportions (Brown et al. (2001)). The first two designs consider only data generating processes

with three or seven categories to be ranked. In the final simulation design, we analyze the behavior

of the confidence sets as the number of categories increases.

5.1 AES Design

The simulation design in this subsection is calibrated to the AES data for Greater Melbourne as

in Section 4.1. The estimated vector of success probabilities is

θ̂AES = (0.372, 0.321, 0.179, 0.090, 0.026, 0.009, 0.004)

and the number of respondents is nAES = 234. The vector of success probabilities employed in the

simulations, θ, is parametrized as

θ = (1− κ)
1

p
ι+ κθ̂AES ,

where ι denotes a vector of ones and κ ∈ [0, 1]. So, when κ = 1, then the vector of probabilities is

the same as in the data set. When κ = 0, then all probabilities are equal, and values of κ between

0 and 1 generate probabilities between the two extremes. A parameter τ ∈ {0.5, 1, 2} is introduced

to vary the sample size as n = τ nAES . So, when τ = 1, then the sample size in the simulation is

equal to the one in the data set, but we also consider half and double that sample size.

We begin by recalling the four main findings about 95% marginal confidence sets for the ranks

of categories in Greater Melbourne from Section 4.1:

1. naive bootstrap confidence sets are the tightest

2. exactHolm confidence sets are weakly tighter than confidence sets produced by all other valid

procedures (i.e. all except the naive bootstrap)

3. boot and bootStud confidence sets are very wide in the middle of the ranking

4. bootStud confidence sets are very wide at the bottom of the ranking

Below we explore each of these findings in depth by focusing on lengths and empirical coverage
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frequencies of confidence sets for the rank of the 1st (top of the ranking), 4th (middle of the ranking)

and 7th (bottom of the ranking) categories in Table 4.

First, naive bootstrap confidence sets are the tightest for all three categories in all simulations.

Table 4 shows that this tightness comes at the cost of severe under-coverage for the 1st and the

7th categories. For the 7th category naive bootstrap confidence sets under-cover in all but two

simulations, and empirical coverage frequency may be as low as 59.5%. Note that even for κ = 1

the success probabilities for the bottom categories are not well separated, which explains more

pronounced under-coverage for the 7th category. In contrast, finite-sample methods (exactHolm

and CP) cover the rank with the frequency no smaller than the desired level for all parametrizations

and sample sizes. Both boot and bootStud confidence sets cover the 1st category with the frequency

close to the nominal level, especially when success probabilities are equal (κ = 0) and the sample

size is small (τ = 0.5). When the categories are better separated (κ = 1) as in the dataset, then

both finite-sample and bootstrap procedures cover the true rank with probability (close to) one.

Second, in contrast to our finding for Greater Melbourne, the finite-sample valid confidence sets

are not uniformly tighter than the bootstrap confidences sets in simulations. In most parametriza-

tions where boot and bootStud confidence sets are tighter, however, the difference in the size of the

average confidence sets is below 0.1 and never exceeds 0.3, where the reference size of the confidence

set covering the entire ranking is 6.0.

Third, both CP and exactHolm methods produce much tighter confidence sets than both types

of bootstrap for the 4th category when κ = 1, i.e., when success probabilities are equal to point

estimates from Greater Melbourne respondents’ sample. Specifically, the average length of exac-

tHolm confidence sets is less than one-third of the average length of boot and bootStud confidence

sets when τ = 1 and less than one-quarter of their average size when τ = 2. Furthermore, the

average length of exactHolm confidence sets is more than 20% lower than the average length of

CP confidence sets in both instances. Despite the shorter average length, exactHolm confidence

sets’ empirical coverage frequency is above the desired level. Notice that both finite-sample valid

confidence sets are of length zero in the majority of simulations with κ = 1 and τ = 2 and contain

only a single value 4. In contrast, most boot and bootStud confidence sets are of length one or

above, meaning that they contain at least two values and are not as informative as finite-sample

valid confidence sets.

Fourth, when the success probabilities are equal to point estimates from the respondents’ sample

of Greater Melbourne (κ = 1), CP and exactHolm produce much tighter confidence sets for the

7th category than bootStud. For τ = 0.5 and τ = 1 the average length of CP and exactHolm

confidence sets is more than two times smaller than the average length of bootStud confidence set.

The difference becomes less pronounced with the increase in sample size, but the average length of

the exactHolm confidence set is still more than 50% smaller than the average length of bootStud

confidence set for τ = 2. Furthermore, the exactHolm confidence set is substantially shorter than
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the boot and CP confidence sets for all values of τ . Tighter exactHolm confidence sets for the 7th

category still provide empirical coverage frequency above the desired level.

Table 4 also highlights common features of the inference procedures. For equal success probabil-

ities (κ = 0) the set of ranks Rj is [1, 7] for all categories j, and the average length of all confidence

sets barely decreases for larger sample sizes τ . When success probabilities differ (κ > 0) larger sam-

ple size τ means differences in success probabilities are easier to detect, and all confidence sets for

the rank decrease in length. Similarly, the average length of all confidence sets except for bootStud

for 7th category decreases as we increase κ, which means differences in success probabilities are

larger and thus, again, easier to detect. For bootStud at the bottom of the ranking, the effect of

better separation for κ > 0 is mitigated by decreasing success probabilities leading to more frequent

division by zero events in bootstrap test statistics and thus larger critical values.

Finally, in addition to the five confidence sets we used in Section 4 we include exactBonf in all

simulations. Table 4 shows that, as expected, exactBonf confidence sets are uniformly wider than

exactHolm confidence sets, but the difference in the average length is not substantial.

5.2 Erratic Coverage

Brown et al. (2001) found that coverage frequencies of some confidence intervals for binomial pro-

portions may vary in highly non-monotonic ways with the sample size and the success probability.

Furthermore, they found that coverage frequencies may be far below the desired level, especially

for small sample sizes and/or small success probabilities. Motivated by this “erratic” behavior

of coverage in the binomial case, in this subsection, we compare our confidence set (exactBonf),

which is valid in finite samples, with the bootstrap confidence sets (boot and bootStud), which

are justified by asymptotic validity. In particular, we are interested in their coverage properties

in small samples and/or scenarios with small success probabilities. To this end we consider three

categories and set the vector of success probabilities as θ = (π, π, 1−2π), where π is varied between

1/100 and 1/3. The sample size is varied between 10 and 100.

For the different values of π, Figure 3 shows the frequencies of the confidence set Csymm,n(1−
α, I) simultaneously covering all differences involving the first category, ∆I , where I = J two−sided

with J0 = {1}. The coverage frequencies are plotted as functions of the sample size n for the

bootstrap with (panel (a)) and without (panel (b)) studentization. Both bootstrap approaches

lead to simultaneous confidence sets for the differences that significantly under-cover for small

sample sizes and or small probabilities π, analogously to the findings in Brown et al. (2001). The

coverage probability for π = 1/100 can be even lower than 0.4 when sample sizes are small (n ≤ 20).

Figure 4 shows the coverage frequencies of the resulting confidence sets for the rank based on the

two bootstrap approaches (panels (a) and (b)) and, for comparison, also the coverage frequencies

of the finite sample method (panel (c)). Perhaps somewhat surprisingly, the coverage frequencies

25



20 40 60 80 100

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(a) simul. coverage of differences (boot)

n

pi=0.01
pi=0.05
pi=0.1
pi=0.33

20 40 60 80 100

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(b) simul. coverage of differences (bootStud)

n

pi=0.01
pi=0.05
pi=0.1
pi=0.33

Figure 3: Frequencies of simultaneously covering all differences involving the first category, i.e., the
frequency of ∆I ∈ Csymm,n(1 − α, I). The horizontal dashed line marks the desired coverage level
1− α.
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Figure 4: Coverage frequencies for the rank of the first category. The horizontal dashed line marks
the desired coverage level 1− α.

for the bootstrap methods are above 1− α in all scenarios, even when success probabilities and/or

sample sizes are small. Hence, under-coverage of the differences observed in Figure 3 does not

lead to under-coverage of the rank. The reason for this phenomenon is that correct coverage of

the rank only requires that the confidence sets for the differences do not lead to incorrect claims

about the signs of the differences. While not necessarily covering the true values of the differences,

the bootstrap confidence sets for the differences lead to the correct determination of their signs

and thus to coverage of the rank. As expected, the finite-sample method covers the rank with the

desired probability even for small samples sizes and/or small success probabilities.
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5.3 Larger Number of Categories

In this subsection, we consider a simulation design in which the success probabilities are all equal,

i.e. θj = 1/p for all j = 1, . . . , p, and we increase p from 5 to 50. For the different values of p,

Figure 5 shows the coverage frequencies of the different confidence sets as functions of the sample

size n.

First of all, the finite-sample methods exactBonf, exactHolm, and CP cover the rank with

coverage frequencies close to one in all scenarios. As expected the naive bootstrap fails to cover

the true rank with the desired probability. Its coverage may be significantly below 0.4 and even

approaches zero when there are many categories. Interestingly, however, the bootstrap method

based on the studentized statistic also significantly under-covers when there are (moderately) many

categories. For instance, with p = 20 categories, its coverage frequency can be well below 0.8 for

small sample sizes. For more categories (p = 50), the under-coverage occurs up to larger sample

sizes.
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Figure 5: Coverage frequencies for different n and p.
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Length: Coverage Frequency:

κ τ
exact
Bonf

exact
Holm

CP boot
boot
Stud

naive
exact
Bonf

exact
Holm

CP boot
boot
Stud

naive

1st category:

0 0.5 5.971 5.970 5.962 5.944 5.927 5.089 0.985 0.985 0.980 0.960 0.950 0.741
1 5.965 5.965 5.957 5.949 5.934 5.107 0.985 0.985 0.980 0.967 0.957 0.714
2 5.963 5.962 5.955 5.938 5.943 5.103 0.988 0.988 0.984 0.970 0.973 0.727

0.5 0.5 3.223 3.120 3.043 3.001 3.622 1.757 1.000 1.000 1.000 0.994 1.000 0.989
1 1.895 1.797 1.778 1.689 1.965 1.252 1.000 1.000 1.000 0.999 1.000 0.997
2 1.258 1.210 1.197 1.130 1.252 0.960 1.000 1.000 1.000 1.000 1.000 1.000

1 0.5 1.490 1.430 1.362 1.302 1.476 1.051 1.000 1.000 1.000 1.000 1.000 0.998
1 1.046 1.003 0.957 0.897 0.995 0.826 1.000 1.000 1.000 0.999 1.000 0.999
2 0.926 0.889 0.841 0.774 0.854 0.731 1.000 1.000 0.999 0.998 1.000 0.998

4th category:

0 0.5 5.977 5.977 5.971 5.944 5.935 5.094 1.000 1.000 1.000 1.000 1.000 0.982
1 5.957 5.955 5.950 5.925 5.924 5.105 0.999 0.998 0.998 0.997 0.996 0.975
2 5.951 5.951 5.940 5.924 5.916 5.090 1.000 1.000 1.000 1.000 1.000 0.971

0.5 0.5 5.203 5.192 5.116 4.867 5.130 3.553 1.000 1.000 1.000 0.999 1.000 0.993
1 4.232 4.192 4.141 4.159 4.388 2.734 1.000 1.000 1.000 1.000 1.000 0.998
2 3.274 3.170 3.239 3.503 3.761 1.882 1.000 1.000 1.000 1.000 1.000 1.000

1 0.5 2.540 2.472 2.595 3.782 3.953 0.941 1.000 1.000 1.000 1.000 1.000 1.000
1 1.007 0.861 1.036 2.771 3.353 0.355 1.000 1.000 1.000 1.000 1.000 1.000
2 0.233 0.171 0.222 0.821 1.314 0.058 1.000 1.000 1.000 1.000 1.000 1.000

7th category:

0 0.5 5.968 5.966 5.959 5.914 5.910 5.079 0.985 0.985 0.983 0.984 0.982 0.672
1 5.970 5.968 5.961 5.946 5.937 5.112 0.985 0.985 0.981 0.985 0.984 0.672
2 5.967 5.967 5.959 5.951 5.948 5.185 0.985 0.985 0.980 0.986 0.985 0.728

0.5 0.5 4.315 4.288 4.267 3.994 4.253 3.036 0.995 0.995 0.995 1.000 1.000 0.908
1 3.393 3.345 3.366 3.354 3.550 2.537 0.996 0.994 0.996 1.000 1.000 0.943
2 2.802 2.748 2.799 2.865 3.018 2.214 0.998 0.998 0.999 1.000 1.000 0.964

1 0.5 2.331 2.331 2.393 2.777 5.097 1.220 1.000 1.000 1.000 1.000 1.000 0.595
1 1.892 1.879 1.930 2.247 3.926 1.237 1.000 1.000 1.000 1.000 1.000 0.856
2 1.525 1.492 1.630 2.003 2.277 1.034 1.000 1.000 1.000 1.000 1.000 0.986

Table 4: Average lengths and empirical coverage frequencies from 1000 Monte Carlo samples for
the 95% marginal confidence sets for the rank of the 1st (top panel), 4th (middle panel) and
7th (bottom panel) categories.
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A Asymptotic Validity of the Bootstrap

For the arguments in this section, we slightly change notation by indexing population quantities by

P , the underlying probability mechanism that specifies the multinomial sampling probabilities. For

instance, let θ ≡ θ(P ) ≡ (θ1(P ), . . . , θp(P ))′ denote the probabilities of a particular P and similarly

∆I(P ) ≡ (∆j,k(P ) : (j, k) ∈ I) ,

where

∆j,k(P ) ≡ θj(P )− θk(P )

and I ⊆ J2. As in the main text let

σ̂2j,k ≡ θ̂j(1− θ̂j) + θ̂k(1− θ̂k) + 2θ̂j θ̂k (13)

define the cumulative distribution functions

Llower,n(x, I, P ) ≡ P

{
max
(j,k)∈I

θ̂j − θ̂k −∆j,k(P )

σ̂j,k/
√
n

≤ x

}
, (14)

Lupper,n(x, I, P ) ≡ P

{
max
(j,k)∈I

∆j,k(P )− (θ̂j − θ̂k)
σ̂j,k/

√
n

≤ x

}
, (15)

Lsymm,n(x, I, P ) ≡ P

{
max
(j,k)∈I

|θ̂j − θ̂k −∆j,k(P )|
σ̂j,k/

√
n

≤ x

}
. (16)

Let P̂n be an estimate of P , where P̂n specifies the empirical frequencies θ̂ = (θ̂1, . . . , θ̂p) . Then

the bootstrap quantiles can be written as

cl,n(1− α, I) = L−1l,n(1− α, I, P̂n)

for l ∈ {lower,upper, symm}. Here, it is understood that, for a cumulative distribution function

F (x) on the real line, the quantity F−1(1 − α) is defined to be inf{x ∈ R : F (x) ≥ 1 − α}.
The bootstrap simply replaces the unknown frequencies θ with its empirical counterpart θ̂, i.e.

θ̂ = θ(P̂n).

Consider the rectangular confidence set for the vector of differences ∆I(P ) defined by

Cl,n(1− α, I) ≡
∏

(j,k)∈I

Cl,n,j,k(1− α, I)

30



where Cl,n,j,k(1− α, I) could be defined in various ways:

Clower,n,j,k(1− α, I) ≡

[
θ̂j − θ̂k − clower,n(1− α, I)

σ̂j,k√
n
,∞

)
. (17)

Cupper,n,j,k(1− α, I) ≡

(
−∞, θ̂j − θ̂k + cupper,n(1− α, I)

σ̂j,k√
n

]
, (18)

Csymm,n,j,k(1− α, I) ≡

[
θ̂j − θ̂k ± csymm,n(1− α, I)

σ̂j,k√
n

]
, (19)

Cequi,n,j,k(1− α, I) ≡ Clower,n

(
1− α

2
, I
)⋂

Cupper,n

(
1− α

2
, I
)
. (20)

The following lemma shows that these bootstrap confidence sets are asymptotically valid in the

sense that they cover the true vector of differences with probability approaching 1− α:

Lemma A.1. For any l ∈ {lower,upper, symm} and any I ⊂ J2,

lim
n→∞

P {∆I(P ) ∈ Cl,n(1− α, I)} ≥ 1− α

with equality if θj(P ) > 0 for all j ∈ J .

Proof. We begin by considering the case where θj(P ) > 0 for all j ∈ J . First, consider the joint

behavior of (
√
n(θ̂j − θ̂k)/σ̂j,k) for all

(
p
2

)
distinct pairs (j, k) with j 6= k. Toward this end, let

Jn(P ) denote the joint distribution of
√
n(θ̂1 − θ1(P ), . . . , θ̂p − θp(P )). By the multivariate Cen-

tral Limit Theorem, Jn(P ) converges in distribution to J(P ), the multivariate normal distribution

with mean 0 and covariance matrix Σ = Σ(P ), where Σ has (j, k) entry θj(P )(1− θj(P )) if j = k

and −θj(P )θk(P ) if j 6= k. Moreover, in a triangular array setup, if Pn is a sequence of multi-

nomial probabilities with θ(Pn) → θ(P ), then Jn(Pn) converges in distribution to J(P ). To see

why, apply the Cramér-Wold device and the Lindeberg CLT. Since, θ(P̂n) → θ(P ) almost surely

(componentwise, by the Strong Law of Large Numbers), it follows that

ρ
(
Jn(P̂n), Jn(P )

)
→ 0 almost surely ,

where ρ is any metric metrizing weak convergence in Rp. Next, let J ′n(P ) denote the joint distri-

bution of
√
n[(θ̂j − θ̂k)− (θj(P )− θk(P ))]

for all j < k. So J ′n(P ) is a distribution on Rp′ , where p′ =
(
p
2

)
. (The pairs can be ordered in any

fashion, but for the sake of argument, they are ordered as (1, 2), . . . (1, p) followed by (2, 3), . . . , (2, p),

etc.) By the Continuous Mapping Theorem, J ′n(P ) converges in distribution to J ′(P ), the multi-

variate normal distribution with mean 0 and covariance matrix Σ′ = Σ′(P ). Note Σ′ can easily

be obtained from Σ, but its exact form is not actually required. Again, this convergence is locally
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uniform in the sense that J ′n(Pn) converges in distribution to J ′(P ) whenever θ(Pn)→ θ(P ). Since

θ(P̂n)→ θ(P ) almost surely, we have

ρ′
(
J ′n(P̂n), J ′n(P )

)
→ 0 almost surely ,

where ρ′ metrizes weak convergence on Rp′ . Finally, we can consider the joint distribution of

studentized differences; to this end, let J∗n(P ) denote the joint distribution of the p′ variables

√
n[(θ̂j − θ̂k)− (θj(P )− θk(P ))]

σ̂j,k
, (21)

where σ̂2j,k is given in (13). Under P , θ(P̂n) → θ(P ) almost surely, and so σ̂2j,k converges almost

surely to σ2j,k(P ) given by

σ2j,k(P ) = θj(P )(1− θj(P )) + θk(P )(1− θk(P )) + 2θj(P )θk(P ) .

by a multivariate Slutsky Theorem (or the Continuous Mapping Theorem), J∗n(P ) converges in

distribution to J∗(P ), the multivariate normal distribution with mean 0 and covariance matrix

Σ∗ = Σ∗(P ), where Σ∗ is easily obtained from Σ′ (as Σ∗ is the correlation matrix corresponding

to the covariance matrix Σ′). Under Pn with θ(Pn) → θ(P ), it also follows that σ̂j,k converges

almost surely to σj,k(P ). To see why, first show θ̂j converges to θj with probability one under Pn;

since θ̂j can be viewed an average of bounded i.i.d. variables, this convergence follows easily by the

well-known 4th moment argument and the Borel-Cantelli Lemma. Hence, under Pn, we also have

J∗(Pn) converges in distribution to J∗(P ), and then for the same reasons as for Jn and J ′n, we also

have

ρ′
(
J∗n(P̂n), J∗n(P )

)
→ 0 almost surely

and

ρ′
(
J∗n(P̂n), J∗(P )

)
→ 0 almost surely.

All of these results carry over if we consider a subset I ⊂ J2, by the Continuous Mapping Theorem.

For example, if J∗n(I, P ) refers to the joint distribution of the variables (21), but only for (j, k) ∈ I,

then it follows that

ρ′
(
J∗n(I, P̂n), J∗n(I, P )

)
→ 0 almost surely .

Bootstrap consistency of the distributions (14)–(16) now follows by the Continuous Mapping

Theorem. Indeed, for any Pn with θ(Pn)→ θ(P ),

Llower,n(x, I, Pn)→ Llower,n(x, I, P ) for all x,

where Llower,n(·, I, P )) is the distribution of max(j,k)∈I Zj,k and Z = (Zj,k : (j, k) ∈ I) is multivariate
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normal with distribution J∗(I, P ). Note that this distribution is continuous everywhere and strictly

increasing. Hence, since θ(P̂n)→ θ(P ) almost surely, we also have, for all x,

Llower,n(x, I, P̂n)→ Llower,n(x, I, P ) almost surely .

It also follows that bootstrap quantiles are consistent in the sense that

L−1lower,n(1− α, I, P̂n)→ L−1lower,n(1− α, I, P ) almost surely .

By Slutsky,

P

{
max
(j,k)∈I

θ̂j − θ̂k −∆j,k(P )

σ̂j,k/
√
n

≤ L−1lower,n(1− α, I, P̂n)

}
→ 1− α .

By “inverting” this probability statement, we can conclude the intervals[
θ̂j − θ̂k −

σ̂j,k√
n
L−1lower,n(1− α, I, P̂n), ∞

)
jointly cover the true θj(P )− θk(P ) with asymptotic probability 1− α. The arguments for upper

and two-sided confidence bounds are analogous.

The above argument maintained the assumption that θj(P ) > 0 for all j ∈ J . We now consider

the case where that need not be true. To this end, first suppose that θj(P ) = θk(P ) = 0 for all

(j, k) ∈ I. In this case, θ̂j = θ̂k = σ̂j,k = 0 for all (j, k) ∈ I. But then, bootstrap samples from

P̂n also satisfy θ̂∗j = θ̂∗k = σ̂∗j,k = 0 for all (j, k) ∈ I. Hence, our convention that 0/0 = 0 and

c/0 = sign(c)∞ for c 6= 0, implies that L−1lower,n(1− α, I, P̂n) = 0 w.p.1. It follows that

P{∆I(P ) ∈ Clower,n(1− α, I)} = 1 .

Now suppose that θj(P ) > 0 or θk(P ) > 0 for some (j, k) ∈ I. The same argument implies that

P{θj(P )− θk(P ) ∈ Clower,n,j,k(1− α, I)} = 1

for any (j, k) ∈ I with θj(P ) = θk(P ) = 0. To complete the proof, it suffices to show that

lim inf
n→∞

P{θj(P )− θk(P ) ∈ Clower,n,j,k(1− α, I) for all (j, k) ∈ I∗} ≥ 1− α, (22)

where

I∗ = {(j, k) ∈ I : θj(P ) > 0 or θk(P ) > 0}.

Since

L−1lower,n(1− α, I, P̂n) ≥ L−1lower,n(1− α, I∗, P̂n),

the desired convergence in (22) can be established simply by arguing as in the first part of the
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theorem.

B Proofs of the Main Results

Proof of Theorem 2.1. We prove the theorem for the two-sided case (I = J two−sided), but the

derivations are very similar for the one-sided cases. Define

S− ≡
⋃
j∈J0

S−j with S−j ≡ {(j, k) ∈ I : j 6= k and θj ≤ θk}

S+ ≡
⋃
j∈J0

S+
j with S+

j ≡ {(j, k) ∈ I : j 6= k and θj ≥ θk}

and

R− ≡
⋃
j∈J0

R−j with R−j ≡ {(j, k) ∈ I : j 6= k, reject Hk,j , and claim θj < θk}

R+ ≡
⋃
j∈J0

R+
j with R+

j ≡ {(j, k) ∈ I : j 6= k, reject Hj,k, and claim θj > θk}

Suppose S− ∩R+ = ∅ and S+ ∩R− = ∅. Then:

∀j ∈ J0 : S−j ∩R
+
j = ∅ and S+

j ∩R
−
j = ∅

⇒ ∀j ∈ J0 : θj > θk ∀(j, k) ∈ R+
j and θj < θk ∀(j, k) ∈ R−j

⇒ ∀j ∈ J0 : θj > θk ∀k ∈ Rej+j and θj < θk ∀k ∈ Rej−j

⇒ ∀j ∈ J0 : rj ≤ p− |Rej+j | and rj ≥ 1 + |Rej−j |

The third implication uses the fact that the number of pairs (j, k) in R+
j (or R−j ) is equal to the

number of of k in Rej+j (or Rej−j ). Therefore,

P {rj ∈ Rn,j ∀j ∈ J0} ≥ P
{
S− ∩R+ = ∅ and S+ ∩R− = ∅

}
= 1− FWERI

and the desired result follows from (6).

Proof of Theorem 2.2. We first show that the distribution of Xj given Sj,k = s is binomial based

on s trials and success probability θj/(θj + θk). To see this note that

P{Xj = x|Sj,k = s} ∝ P{Xj = x and Xk = s− x} = P{Xj = x}P{Xk = s− x|Xj = x},

where the symbol ∝ means there is a constant out in front that can depend on s and θj , θk (which
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we’ll see depends on θj and θk through θj/(θj + θk)). Continuing,

P{Xj = x|Sj,k = s} ∝
(
n

x

)
θxj (1− θj)n−x

(
n− x
s− x

)(
θk

1− θk

)s−x(1− θj − θk
1− θj

)n−s

∝
(
s

x

)
(θj/θk)

x ∝
(
s

x

)(
θj

θj + θk

)x( θk
θj + θk

)s−x
,

which is the binomial family of distributions with univariate parameter θj,k = θj/(θj +θk). Clearly,

a test of Hj,k is equivalent to a the hypothesis specifying θj,k ≤ 1/2. As is well known, this family of

distributions has monotone likelihood ratio. Therefore, by Corollary 3.4.1 of Lehmann and Romano

(2005) and conditional on Sj,k, there exists a UMP level βj,k test for testing Hj,k given by (7) with

constants γ(s) and C(s) determined by

Eθk [φ(Xj , Sj,k)|Sj,k = s] = βj,k ∀s.

Here, Eθk [·] refers to the expectation under which θj = θk. It is easy to see that the equation

determining the constants can be written as in (8), which shows that the test has exact rejection

probability (conditional on Sj,k) equal to βj,k. By monotone likelihood ratio (and still conditional on

Sj,k), the (conditional) power function of the test is nondecreasing, and so the conditional rejection

probability is bounded above by βj,k for all θj and θk satisfying θj,k ≤ 1/2

Thus far, we have shown that φ(Xj , Sj,k) is the UMP level βj,k test, conditional on Sj,k. In

order to argue that it is UMPU level βj,k among all level βj,k unbiased tests (unconditionally),

consider the boundary of the parameter space ωj,k = {(θ1, . . . , θp); θj = θk}. The family of

distributions of (X1, . . . , Xp) still is multinomial, but now T = (Sj,k, Xi, i 6= j, i 6= k) is complete

and sufficient for ωj,k. Hence, any test, say ψ, that is similar on ωj,k, i.e., it satisfies that the

rejection probability is equal to βj,k for all θ ∈ ωj,k or Eθ(ψ) = βj,k for all θ ∈ ωj,k, must satisfy

that it is conditionally level βj,k given T or Eθ(ψ|T ) = βj,k for all θ ∈ ωj,k. In other words, all similar

tests have Neyman structure, by Theorem 4.3.2 in Lehmann and Romano (2005). Therefore, the

optimal unconditional level βj,k test must be obtained by finding the optimal conditional level βj,k,

conditional on T . Finally, note that specifying the conditional distribution of the data (X1, . . . , Xp)

given T is equivalent to specifying the conditional distribution of Xj given Sj,k, since conditionally

all other Xi with i 6= j and i 6= k are now fixed. But, we have found the optimal conditional test

above based on the conditional distribution of Xj given Sj,k. (Note that we could have argued by

writing the family of distributions in the canonical multiparameter exponential form discussed in

Section 4.4 of Lehmann and Romano (2005), but the notation becomes messy, stemming from the

fact that the rank of the multinomial family is p − 1 and not p, and consequently the argument

gets obscured.)

Proof of Theorem 3.1. First, by an argument analogous to the one in Theorem 3.3 in Mogstad et al.
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(2020),

P
{
rj ∈ Rboot

n,j ∀j ∈ J0
}
≥ P {∆I ∈ Clower,n(1− α, I)} ,

where I is equal to one of the sets J lower, Jupper, or J two−sided, which was used to construct Rboot
n .

The desired result therefore follows from Lemma A.1.
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C Supporting Results for the Empirical Application

Point Estimates for All Categories
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Figure 6a: Point estimates of categories support shares in fifteen Australian territories from
AES2019 and ±1.96se.
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Point Estimates for All Categories
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Figure 6b: Point estimates of categories support shares in fifteen Australian territories from
AES2019 and ±1.96se.

38



95% Marginal Confidence Set for the Ranks
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Figure 7a: 95% marginal confidence sets for the ranks of categories in fifteen Australian territories
ranked by their support share in AES2019. Each panel shows the confidence sets for the ranks
computed by five methods for each party.
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95% Marginal Confidence Set for the Ranks
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Figure 7b: 95% marginal confidence sets for the ranks of categories in fifteen Australian territories
ranked by their support share in AES2019. Each panel shows the confidence sets for the ranks
computed by five methods for each party.

40



Greater Melbourne, 234
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Figure 8: 90% marginal and 90% simultaneous confidence sets for the ranks of categories in Greater
Melbourne.
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