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Abstract—We develop a static deadlock analysis for commer-
cial Android Java applications, of sizes in the tens of millions of
LoC, under active development at Facebook. The analysis runs
primarily at code-review time, on only the modified code and
its dependents; we aim at reporting to developers in under 15
minutes.

To detect deadlocks in this setting, we first model the real
language as an abstract language with balanced re-entrant locks,
nondeterministic iteration and branching, and non-recursive
procedure calls. We show that the existence of a deadlock in this
abstract language is equivalent to a certain condition over the
sets of critical pairs of each program thread; these record, for all
possible executions of the thread, which locks are currently held
at the point when a fresh lock is acquired. Since the critical pairs
of any program thread is finite and computable, the deadlock
detection problem for our language is decidable, and in NP.

We then leverage these results to develop an open-source
implementation of our analysis adapted to deal with real Java
code. The core of the implementation is an algorithm which
computes critical pairs in a compositional, abstract interpretation
style, running in quasi-exponential time. Our analyser is built in
the INFER verification framework and has been in industrial
deployment for over two years; it has seen over two hundred
fixed deadlock reports with a report fix rate of ∼54%.

Index Terms—deadlocks, concurrency, program analysis

I. INTRODUCTION

The avoidance and detection of deadlocks in a system
is one of the most fundamental problems in concurrency.
Deadlocking is classically exemplified by Dijkstra’s "Five
Dining Philosophers” [10]: Five philosophers sit around a
table, with a fork between each pair of philosophers and a bowl
of “a very difficult kind of spaghetti” in the centre, so that each
philosopher requires both their left and right forks in order to
eat. Without any communication between the philosophers,
they will generally enter a deadlocked situation in which it is
impossible for any of them to eat (for example if each of them
immediately takes the fork to their left). More generally, in a
concurrent program, a deadlock describes a situation in which,
for some subset of that program’s threads, it is impossible that
any thread can eventually execute its next command.

In this paper, we attack the problem of detecting deadlocks
in Android Java applications under continuous development
at Facebook. These applications are typically in the tens of
millions of LoC, and undergo thousands of revisions per day.
Our main aim is to assist the developers in finding bugs
introduced by their code revisions, and thus there are two
principal desiderata of our deadlock analysis. The first is that it

must return reports to developers relatively quickly, the target
being under 15 minutes. It is impossible to analyse whole,
large programs in their entirety within such a timeframe, which
means that we need a method that works compositionally,
enabling us to focus only on the changed files and their
dependents. The second is that reports from our analysis must
actually be useful to developers, meaning that we focus on
minimising the number of false positive reports, as opposed
to providing cast-iron guarantees of deadlock absence.

Our first step is to model the real programming language as
an abstract programming language in which we can decide the
presence of deadlocks within a reasonable complexity bound.
The abstract programming language we use is based on scoped
(a.k.a. “nested”) re-entrant locks, nondeterministic iteration
and branching, and nonrecursive procedure calls; it can be
seen as an overapproximate model of Java, with all information
about variable and memory assignment abstracted away.

We show that the existence of a deadlock in our abstract
programs can be precisely characterised as a condition on the
critical pairs of their (sequential) threads. Roughly speaking,
a critical pair of a thread is a pair (X, `) such that some
execution of the thread acquires an unheld lock ` while already
holding the set of locks X . For the case of two threads, we
establish that C1 || C2 deadlocks if and only if there are critical
pairs (X1, `1) and (X2, `2) of C1 and C2 respectively such
that `1 ∈ X2 and `2 ∈ X1, with X1 ∩X2 = ∅; this condition
can be generalised to the case of arbitrarily many threads
(cf. Theorem 4.4). Similar to other deadlock conditions in the
literature for communicating pushdown automata [24], [25],
its correctness is crucially dependent on the fact that locking
is balanced in our language, in that any thread must release
locks in the reverse of the order in which they are acquired, i.e.
“last in, first out”. This is true of real programming languages
whenever scoped-locking constructs are used, such as Java’s
synchronized keyword or C++’s std::lock_guard.
Since the set of critical pairs of any thread in our language
is in fact finite and computable, the existence of deadlocks in
our abstract programs becomes decidable, and in NP.

Example 1.1. Consider a two-threaded program C1 || C2,
where C1 and C2 are sequential programs acquiring locks



(acq(−)) and releasing them (rel(−)) in reverse order:

C1 : acq(x); acq(y); skip; rel(y); rel(x)

C2 : acq(y); acq(x); skip; rel(x); rel(y)

C1 has two critical pairs, (∅, x) and ({x}, y), and similarly
C2 has two critical pairs (∅, y) and ({y}, x). By taking
(X1, `1) = ({x}, y) and (X2, `2) = ({y}, x), we can see that
the condition above is met, and indeed C1 || C2 deadlocks,
because there is an execution in which, simultaneously, C1

holds x while waiting for y, and C2 holds y while waiting
for x. Now consider the modified program C ′1 || C ′2, where
C ′1 = acq(z);C1; rel(z) and C ′2 = acq(z);C2; rel(z). C ′1
now has three critical pairs (∅, z), ({z}, x) and ({z, x}, y),
and C ′2 has critical pairs (∅, z), ({z}, y) and ({z, y}, x). In
this case, the condition above is not met, and indeed C ′1 || C ′2
does not deadlock, because z acts as a “guard lock” preventing
x and y from being accessed by C ′1 and C ′2 simultaneously.

We then leverage these theoretical results to design an
automatic deadlock analyser geared specifically towards code
changes in Android Java applications (in Section VI-B we
outline the Android-specific features of the analysis). The
core of our implementation is a context-insensitive program
analysis that computes critical pairs in abstract interpretation
style, running in quasi-exponential time in the syntactic size
of the program. Crucially, this analysis is compositional in
that the critical pairs of a procedure call depend only on
the current state of the caller and the critical pairs of the
procedure itself, which can be computed in advance. This
means that, when analysing a code revision, we do not need to
re-analyse the unchanged procedures in the program (i.e., the
overwhelming majority). These properties enable our analysis
to detect deadlocks in programs ranging in the tens of millions
of LoC: two orders of magnitude larger than the largest
programs handled by state-of-the-art static deadlock detectors.

We provide an open-source implementation of our analyser
— named starvation and included as part of the INFER
static analysis framework [1] — and describe its deployment
and impact at Facebook, where it has analysed many hundreds
of thousands of code revisions and seen over two hundred
deadlock reports fixed in the last two years.

Important note. Contrary to what many readers may well
expect, we do not undertake an experimental comparison
of our tool with others in the literature, due to two major
divergences between our tool and others. The first and most
important point of divergence is that most — if not all —
of the tools in the literature require the whole program in
order to run. Since the programs we target are so large,
these analysers might take hours or days to return a result,
or simply run out of memory. In contrast, our tool can run
relatively quickly on these programs because it only analyses
code changes, relying on compositionality of the analysis with
respect to the unchanged portions of the program. The second,
less important divergence is that, since our priority is to avoid
wasting developers’ time, we prioritise actionability of the
tool’s deadlock reports, which means that we generally prefer

to admit false negative than false positive deadlock reports. In
contrast, most tools that we know of do just the opposite.

The remainder of this paper is structured as follows.
Section II introduces our abstract concurrent programs. In
Section III we develop the key connections between sequential
program executions and their traces (of lock acquisitions and
releases). Then, in Section IV, we establish the soundness and
completeness of our deadlock condition based on critical pairs.
In Section V we show that the critical pairs of any sequential
program are computable, and so establish upper complexity
bounds on the deadlock problem. Section VI describes our
implementation of the deadlock analysis for Android Java, and
its deployment impact at Facebook. Section VII surveys the
related work, and Section VIII concludes.

For space reasons, the proofs of our theoretical results
are only sketched in the present paper. However, the entire
development has also been fully formalised in the Coq proof
assistant, in roughly 8.7K lines of code.

II. PROGRAM SYNTAX AND SEMANTICS

Syntax. We let Locks be a finite set of global lock names and
Procs a set of procedure names. We define statements C as
follows, where ` ranges over Locks and p over Procs:

C := skip | p() | acq(`) | rel(`) | C;C

| if(∗) then C else C | while(∗) do C

We assume there is a function body() : Procs → Stmt
that sends every procedure name to a statement, its body.
A function computing the callees of a statement callees(·) :
Stmt→ P(Procs) can be easily defined. We forbid recursion
in statements; i.e., for all p ∈ Procs, p /∈ callees(body(p)).

A statement is called balanced if it is generated by the
following grammar, which ensures that acq(`) and rel(`)
only appear in balanced pairs:

C := skip | p() | acq(`);C; rel(`) | C;C

| if(∗) then C else C | while(∗) do C

Moreover, balanced statements must call only balanced pro-
cedures: if C is balanced and p ∈ callees(C), then body(p)
must be balanced as well. We note that our balanced state-
ments are similar to those produced by compiling scope-based
constructs like Java’s synchronized keyword, or C++’s
std::lock_guard.

We will frequently need to reason by structural induction
over (balanced) statements. To account for procedure calls in
such proofs, we employ an extended notion of “substructure”
for statements, given as the reflexive-transitive closure of the
following condition: any sub-statement of C (according to the
grammar above) is a substructure of C, and body(p) is a
substructure of p(). Since our procedures are non-recursive,
this ordering is still well-founded.

Finally, a parallel program is an n-tuple of balanced state-
ments written C1 || . . . || Cn.

Semantics. As our programs employ only lock guards and
non-deterministic control, our program states record only
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information about locks. We treat locks as re-entrant in that
a thread already holding a lock can re-acquire it without
deadlock.

A lock state is a function L : Locks → N, recording how
many times each lock has been acquired. We use the notation
bLc for {` ∈ Locks | L(`) > 0}. If L1 and L2 are lock states
then we write L1 # L2 to mean that bL1c ∩ bL2c = ∅. We
write ∅ for the lock state sending all locks to 0. We write
L[`++] and L[`−−] for the lock states defined as L, except
that L[`++](`) = L(`) + 1 and L[`−−](`) = L(`)− 1.

A configuration is a pair 〈C,L〉, where C is a statement
and L is a lock state. A concurrent configuration is then
a pair of the form 〈C1 || . . . || Cn, (L1, . . . , Ln)〉, where
C1 || . . . || Cn is a parallel program and L1, . . . , Ln are
lock states. We may also write concurrent configurations as
〈C1, L1〉 || . . . || 〈Cn, Ln〉, or, using a “Σ-like” notation, as
||1≤i≤n 〈Ci, Li〉. We write 〈Ci, Li〉 # 〈Cj , Lj〉 to mean that
Li # Lj and, if X is a set of lock states, L # X to mean
that L # L′ for all L′ ∈ X .

In Figure 1 we define the operational semantics of our
programs by giving the small-step relations for statements
on ordinary configurations, →, and for parallel programs on
concurrent configurations,  . An execution (of statement C)
is then as usual a possibly infinite sequence of configurations
π = (γi)i≥0 (with γ0 = 〈C, _〉) such that γi → γi+1 for
all i ≥ 0. A concurrent execution is defined analogously
to an execution, by substituting concurrent configurations for
configurations and  for →.

We often represent executions (γi)i≥0 as γ0 →∗ γn, where
→∗ is the reflexive-transitive closure of→, and similarly using
 ∗ for concurrent executions.

Remark 2.1. For any concurrent execution γ1 || . . . || γn  ∗
γ′1 || . . . || γ′n there exist standard executions γi →∗ γ′i for
each 1 ≤ i ≤ n. Furthermore, if γi # γj , then γ′i # γ′j; i.e.,
no two threads can acquire the same lock simultaneously.

We define deadlock of a program to mean that at least
two of its threads are deadlocked. For this, we introduce a
notation for projecting a concurrent configuration onto a subset
of its threads. If σ = 〈C1 || . . . || Cn, (L1, . . . , Ln)〉 is a
concurrent configuration and I = {i1, . . . , im} ⊆ {1, . . . , n}
is a set of “thread indices”, we write σI to mean the concurrent
configuration 〈Ci1 , Li1〉 || . . . . . . || 〈Cim , Lim〉.

Definition 2.2 (Deadlock). A concurrent configuration, say
σ = 〈C1 || . . . || Cn, (L1, . . . , Ln)〉, is deadlocked if there is
a sequential transition 〈Ci, Li〉 → 〈C ′i, L′i〉 for each thread
(i.e. for all 1 ≤ i ≤ n) but there is no concurrent transition
σ  σ′.

A parallel program C1 || . . . || Cn is said to deadlock if
we have that 〈C1 || . . . || Cn, (∅, . . . ,∅)〉  ∗ σ and σI is
deadlocked for some I ⊆ {1, . . . , n}.

An immediate consequence is that if C1 || . . . || Cm dead-
locks and m ≤ n, then C1 || . . . || Cn also deadlocks.

Proposition 2.3. Let σ = 〈C1 || . . . || Cn, (L1, . . . , Ln)〉 be
a concurrent configuration such that Li # Lj for all i 6=
j. The configuration σ is deadlocked iff there are statements
D1, . . . , Dn and locks `1, . . . , `n such that, for all 1 ≤ i ≤ n

〈Ci, Li〉 → 〈Di, Li[`i++]〉 and `i ∈
⋃

j 6=i bLjc .

Proof. Follows from the operational semantics.

III. EXECUTIONS AND TRACES

In this section, we develop a key technical idea: any
execution of a statement (in an arbitrary lock state) can be
viewed simply as a sequence of lock acquisitions ` and releases
`, which we call the execution’s trace. Thus, for example, the
two possible executions of the statement

acq(`); if(∗) then (acq(j); skip; rel(j))

else (acq(k); skip; rel(k)); rel(`)

have respective traces ` j j ` and ` k k `, depending on which
branch of the if statement is chosen.

Traces preserve the essential information about executions,
in that the effect of an execution on any given initial lock
state can be computed from its trace. Moreover, executions
of balanced statements have traces that are essentially well-
parenthesized strings of lock acquisitions and releases; in fact
they are Dyck words in formal language theory [21].

Definition 3.1. The lock alphabet Σ is defined as the union
of two disjoint copies of Locks:

Σ := {` | ` ∈ Locks} ∪ {` | ` ∈ Locks} .

A quasi-lock state is a function in Locks→ Z. We lift the no-
tations [`++] and [`−−] from lock states to quasi-lock states
in the obvious way, and write + on quasi-lock states to denote
the pointwise sum of functions, i.e. (f + g)(x) = f(x) + g(x).
We define the function 〈·〉 from Σ-words to quasi-lock states
inductively, as follows:

〈ε〉 := ∅ 〈u `〉 := 〈u〉[`++] 〈u `〉 := 〈u〉[`−−] .

Lemma 3.2. For all u, v ∈ Σ? we have 〈u v〉 = 〈u〉+ 〈v〉.

Proof. By structural induction on v.

In any sequential execution step 〈C,L〉 → 〈C ′, L′〉 we have
L′ = L, or L′ = L[`++] or L′ = L[`−−] for some lock `.
This justifies the following definition.

Definition 3.3. Given a transition 〈C,L〉 → 〈C ′, L′〉, we
define its trace u ∈ Σ ∪ {ε} as follows:

u =


ε if L′ = L

` if L′ = L[`++]

` if L′ = L[`−−].

The trace of an execution is then defined as the concatenation
of the traces of its individual transitions. We often write
transitions and executions with their trace above the arrow,
as in 〈C,L〉 u−−→ 〈C ′, L′〉 and 〈C,L〉 u−−→∗ 〈C ′, L′〉.
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〈skip;C,L〉 → 〈C,L〉 (skip) 〈if(∗) then Ca else Cb, L〉 → 〈Ca, L〉 (if1)

〈p(), L〉 → 〈body(p), L〉 (proc) 〈if(∗) then Ca else Cb, L〉 → 〈Cb, L〉 (if2)

〈acq(`), L〉 → 〈skip, L[`++]〉 (acq) 〈while(∗) do C,L〉 → 〈skip, L〉 (while1)

〈rel(`), L〉 → 〈skip, L[`−−]〉 (L(`) > 0) (rel) 〈while(∗) do C,L〉 → 〈C; while(∗) do C,L〉 (while2)

〈C1, L〉 → 〈C′
1, L

′〉
〈C1;C2, L〉 → 〈C′

1;C2, L
′〉

(seq)
〈Ci, Li〉 → 〈C′

i, L
′
i〉 L′

i # {Lj | j 6= i}
〈C1 || . . . || Cn, (L1, . . . , Ln)〉 〈C1 || . . . || C′

i || . . . || Cn, (L1, . . . , L
′
i, . . . , Ln)〉

(par i)

Fig. 1. Small-step semantics for statements (→) and parallel programs ( ).

Proposition 3.4. For any execution 〈C0, L0〉
u−−→∗ 〈Cn, Ln〉

and statement C, we can obtain an execution 〈C0;C,L0〉
u−−→∗

〈Cn;C,Ln〉 with the same trace.

Proof. By inductively applying the semantic rule (seq).

We define the language of a statement, roughly speaking,
as the set of traces of its possible executions. Subsequent
technical results will make this correspondence precise.

Definition 3.5. The language L(C) of a statement C is defined
inductively as follows:

L(skip) := {ε} L(p()) := L(body(p))

L(acq(`)) := {`} L(rel(`)) := {`}
L(C1;C2) := L(C1) · L(C2)

L(if(∗) then C1 else C2) := L(C1) ∪ L(C2)

L(while(∗) do C) := L(C)?

Remark 3.6. L(C) is in fact a regular language over Σ.

Our next lemma establishes that the effect of an execution
is essentially determined by its trace.

Lemma 3.7. For any execution π : 〈C,L〉 u−−→∗ 〈C ′, L′〉 we
have L′ = L+ 〈u〉 and u · L(C ′) ⊆ L(C).

Proof. We first prove the lemma for a single →-step by rule
induction on the semantics. The general result then follows by
reflexive-transitive induction on →∗.

Next, we recall the notion of Dyck words over our lock
alphabet Σ — essentially the well-parenthesized words of
opening and closing “parentheses” ` and ` — and relate them
to executions of balanced statements.

Definition 3.8. The language D of Dyck words over Σ is
generated by the following grammar:

D := ε | DD | `D `.

The following lemmas establish basic properties of our
Dyck words and their relation to our mapping 〈·〉, and are
all proven by structural induction (using Lemma 3.2).

Lemma 3.9. If C is a balanced statement, L(C) ⊆ D.

Lemma 3.10. For any u ` v ∈ D, there exist words u1 ∈ Σ?

and u2 ∈ D such that u = u1 ` u2.

Lemma 3.11. For any u ∈ D we have 〈u〉 = ∅.

Lemma 3.12. For any u v ∈ D we have 〈u〉 ∈ Locks→ N.

We now establish an analogue of Lemma 3.10 for executions
of balanced statements, which will be essential later for
“disentangling” concurrent executions (see Lemma 4.3).

Lemma 3.13. Let C be a balanced statement. For any
execution of the form

〈C,∅〉 = 〈C0, L0〉 →∗ 〈Cn, Ln〉 → 〈Cn+1, Ln[`−−]〉 ,

there exists j < n such that Lj = Ln[`−−] and Lj+1 = Ln.

Proof. Follows from Lemmas 3.2, 3.7, 3.9, 3.10 and 3.11.

The final main result in this section is a kind of converse
to Lemma 3.7, albeit for balanced statements only.

Lemma 3.14. Let C be a balanced statement, and let u v ∈
L(C). For any lock state L, there is a statement D and an
execution π : 〈C,L〉 u−−→∗ 〈D,L + 〈u〉〉 such that v ∈ L(D).
If v = ε, then this statement also holds when D = skip.

Proof. By structural induction on C, making use of earlier
results. The main idea is to analyse the trace u v ∈ L(C) in
order to inductively build an execution of C with trace u.

Note that Lemma 3.14 does not hold for non-balanced
statements. E.g., ` ∈ L(rel(`)), but there are no executions
of 〈rel(`),∅〉.

Corollary 3.15. For any balanced statement C, we have

L(C) = {u | 〈C,∅〉 u−−→∗ 〈skip,∅〉} .

Proof. The ⊇ inclusion follows from Lemma 3.7 and the ⊆
inclusion from Lemma 3.14 (with v = ε).

Example 3.16. Let C be the statement from the beginning of
this section:

acq(`); if(∗) then (acq(j); skip; rel(j))

else (acq(k); skip; rel(k)); rel(`)

From Definition 3.5 we have L(C) = {` j j `, ` k k `}, and
there are exactly two possible executions of C from the empty
lock state ∅ (we omit the intermediate commands and the
skip steps):

〈C,∅〉 `−−→ 〈 _, {`}〉 ε−−→ 〈 _, {`}〉 j−−→ 〈 _, {`, j}〉 j−−→ 〈 _, {`}〉 `−−→ 〈 skip,∅〉

〈C,∅〉 `−−→ 〈 _, {`}〉 ε−−→ 〈 _, {`}〉 k−−→ 〈 _, {`, k}〉 k−−→ 〈 _, {`}〉 `−−→ 〈skip,∅〉
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The first execution has trace ` j j `, and the second has trace
` k k `. Thus indeed L(C) = {u | 〈C,∅〉 u−−→∗ 〈skip,∅〉}.

Remark 3.17. Statements can be viewed as string accepters
on Σ-words, where C accepts u iff 〈C,∅〉 u−−→∗ 〈skip,∅〉. If
C is balanced then, by Corollary 3.15, it accepts exactly L(C).
Since L(C) is a regular language, this means that balanced
statements can be viewed as finite automata.

IV. CHARACTERISATION OF DEADLOCK EXISTENCE

Here, we obtain our main theoretical result: the existence
of a deadlock in a parallel program amounts to the existence
of a (certain kind of) conflict between individual “summaries”
of its threads, called their (sets of) critical pairs. Roughly
speaking, a critical pair of a statement C is a pair (X, `) such
that some execution of C acquires the lock ` while holding
the set of locks X (which cannot already include `). Our main
correctness result is stated as Theorem 4.4.

Definition 4.1. The set Crit(C) of critical pairs of a statement
C is defined as:

Crit(C) := {(b〈u〉c , `) | ∃v. u ` v ∈ L(C) and ` /∈ b〈u〉c} .

The reason for our language-based definition of Crit(C),
as opposed to an execution-based one, is that it turns out to be
easy to compute (see Section V). The following lemma gives
an equivalent formulation in terms of executions.

Lemma 4.2. Let C be a balanced statement. We have that
(X, `) ∈ Crit(C) iff there exist statements C ′, C ′′ and a lock
state L such that 〈C,∅〉 →∗ 〈C ′, L〉 → 〈C ′′, L[`++]〉, with
X = bLc and ` /∈ X .

Proof. The (⇐) direction follows from Lemma 3.7, and the
(⇒) direction from Lemma 3.14.

Our final and most crucial lemma shows essentially that,
for balanced statements, considerations of reachability on the
concurrent transition relation can be reduced to reachability
on the sequential relation →.

Lemma 4.3. Suppose C1 || . . . || Cn does not deadlock. Then
〈C1 || . . . || Cn, (∅, . . . ,∅)〉  ∗ γ1 || . . . || γn iff, for each
1 ≤ i ≤ n, we have 〈Ci,∅〉 →∗ γi with γi # {γj | j 6= i}.

Proof. (Sketch) The (⇒) direction is immediate from Re-
mark 2.1. For the (⇐) direction, we write γi,j = 〈Ci,j , Li,j〉
for the jth configuration in the execution πi : 〈Ci,∅〉 →∗ γi.
An arbitrary concurrent configuration given by an interleaving
from these n executions is given by ||1≤i≤n γi,ji . We call
such a configuration compatible when γi,ji # γk,jk for all
k 6= i, and reachable when 〈C1 || . . . || Cn, (∅, . . . ,∅)〉  ∗
||1≤i≤n γi,ji . It then suffices to show that if ||1≤i≤n γi,ji is
compatible then it is also reachable.

We proceed by induction on J = Σ1≤i≤n ji. The
case J = 0 is trivial. Otherwise, J > 0 and we con-
sider the compatibility of the “preceding” configurations
γk,jk−1 || ||1≤i≤n,i 6=k γi,ji , where 1 ≤ k ≤ n. We then
consider two main subcases.

The first subcase is that some γk,jk−1 || ||1≤i≤n,i 6=k γi,ji is
compatible. In that case, using the induction hypothesis and
the assumption that ||1≤i≤n γi,ji is compatible, we have that
||1≤i≤n γi,ji becomes reachable by applying (par i).

The remaining subcase is then that no configuration of the
form γk,jk−1 || ||1≤i≤n,i6=k γi,ji is compatible; we can assume
without loss of generality that these configurations are defined
for the first m ≥ 2 threads and undefined otherwise. Now,
letting 1 ≤ k ≤ m, we must have Lk,jk = Lk,jk−1[`k−−] for
some lock `k, by the subcase assumption. By Lemma 3.10,
we can find hk < jk such that Lk,hk

= Lk,jk and Lk,hk+1 =
Lk,jk−1. It follows that ||1≤k≤m γk,hk

|| ||m+1≤i≤n γi,ji
is also compatible. Thus, by the induction hypothesis that
||1≤k≤m γk,hk

|| ||m+1≤i≤n γi,ji is reachable. To conclude
the proof, we show that ||1≤k≤m γk,hk

is deadlocked, and
thus C1 || . . . || Cn deadlocks, a contradiction.

If not, then ||1≤k≤m γk,hk
 σ for some σ via an

application of the rule (par i). In that case, we can de-
duce from the lock state information that Ci,hi must begin
with the command acq(`i) and so Li,hi+1 = Li,ji−1. Thus
Li,ji−1 # {Lk,hk

| k 6= i}. Since Lk,hk
= Lk,jk for each

k, this means that γi,ji−1 || ||1≤k≤m,k 6=i γi,ji is compatible,
which contradicts the subcase assumption and so completes
the proof.

We are now finally in a position to characterise deadlock
existence as a “conflict condition” on the critical pairs of its
sequential components.

Theorem 4.4 (Deadlock characterisation). A parallel program
C1 || . . . || Cn deadlocks iff, for some I ⊆ {1, . . . , n} with
cardinality ≥ 2, there are critical pairs (Xi, `i) for each i ∈ I
such that Xi ∩

⋃
j 6=iXj = ∅ and `i ∈

⋃
j 6=i Xj .

Proof. Case (⇒): Suppose C1 || . . . || Cn deadlocks, mean-
ing that 〈C1 || . . . || Cn, (∅, . . . ,∅)〉  ∗ σ and σI is
deadlocked, for some index set I; without loss of gener-
ality, we assume that I = {1, . . . ,m}, and thus σI =
〈D1 || . . . || Dm, (L1, . . . , Lm)〉. By Remark 2.1, we have for
each 1 ≤ i ≤ m a sequential execution 〈Ci,∅〉 →∗ 〈Di, Li〉
with Li # {Lj | j 6= i}.

Since σI is deadlocked and Li # Lj for all i 6= j,
we have 〈Di, Li〉 → 〈D′i, Li[`i++]〉 with `i ∈

⋃
j 6=i bLjc

for all 1 ≤ i ≤ m, by Proposition 2.3. Thus we have
executions 〈Ci,∅〉 →∗ 〈Di, Li〉 → 〈D′i, Li[`i++]〉, with
`i /∈ bLic, because `i ∈

⋃
j 6=i bLjc and Li # {Lj | j 6= i}.

By Lemma 4.2, we obtain (bLic , `i) ∈ Crit(Ci). Taking
Xi = bLic for each i, all required conditions are satisfied.

Case (⇐): We assume w.l.o.g. that I = {1, . . . ,m}, where
m ≥ 2. Let 1 ≤ i ≤ m; using (Xi, `i) ∈ Crit(Ci) we have by
Lemma 4.2 that 〈Ci,∅〉 →∗ 〈C ′i, Li〉 → 〈C ′′i , Li[`i++]〉 and
Xi = bLic and `i /∈ Xi. Moreover, since Xi ∩

⋃
j 6=iXj = ∅,

we have Li # {Lj | j 6= i}.
Now, suppose that C1 || . . . || Cm does not deadlock. In

that case Lemma 4.3 yields 〈C1 || . . . || Cm, (∅, . . . ,∅)〉 ∗
〈C ′1 || . . . || C ′m, (L1, . . . , Lm)〉, and hence the latter con-
figuration cannot be deadlocked. But because 〈C ′i, Li〉 →
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〈C ′′i , Li[`i++]〉 and `i ∈
⋃

j 6=i bLjc for each i (using the
assumption that `i ∈

⋃
j 6=i Xj), this configuration actually

is deadlocked, by Proposition 2.3. Thus, C1 || . . . || Cm

deadlocks after all, a contradiction.

The following example illustrates our deadlock condition.

Example 4.5. Define statements C1, . . . , Cn as follows:

C1 := acq(`2); acq(`1); skip; rel(`1); rel(`2);
C2 := acq(`3); acq(`2); skip; rel(`2); rel(`3);

...
Cn−1 := acq(`n); acq(`n−1); skip; rel(`n−1); rel(`n);
Cn := acq(`1); acq(`n); skip; rel(`n); rel(`1);

We have ({`(i+1)modn}, `i) ∈ Crit(Ci) for each 1 ≤ i ≤ n.
These critical pairs satisfy the deadlock condition of Theo-
rem 4.4, and indeed C1 || . . . || Cn deadlocks, by executing
the first acq(−) command in each thread. Conversely, any
smaller subset of these threads, e.g. C1 || . . . || Cn−1, does
not satisfy the deadlock condition, and indeed we can observe
that C1 || . . . || Cn−1 does not deadlock.

V. COMPUTING CRITICAL PAIRS

Having established that the existence of a deadlock in a
parallel program reduces to a condition over the critical pairs
of its threads (Theorem 4.4), our next order of business is to
show that Crit(C) is in fact computable for any balanced
statement C — something that is perhaps not immediately
obvious from Definition 4.1. Here we establish a set of useful
identities enabling us to compute Crit(C) inductively, with
the consequence that the deadlock problem for our language
is decidable and in NP (Theorem 5.5).

Proposition 5.1. The following identities hold for all balanced
statements C,C ′ and locks `:

Crit(skip) = ∅ (C1)
Crit(p()) = Crit(body(p)) (C2)

Crit(if(∗) then C else C ′) = Crit(C) ∪Crit(C ′) (C3)
Crit(C;C ′) = Crit(C) ∪Crit(C ′) (C4)

Crit(while(∗) do C) = Crit(C) (C5)
Crit(acq(`);C; rel(`)) = {(∅, `)} ∪
{(X ∪ {`}, `′) | (X, `′) ∈ Crit(C) and ` 6= `′}

(C6)

Proof. We show each identity directly from Definition 4.1,
making use of auxiliary lemmas from section III.

Example 5.2. We continue Example 3.16, where C is the
statement:

acq(`); if(∗) then (acq(j); skip; rel(j))

else (acq(k); skip; rel(k)); rel(`) .

First, using equations (C1) and (C6), we get

Crit(acq(j); skip; rel(j)) = {(∅, j)}
and Crit(acq(k); skip; rel(k)) = {(∅, k)}.

Thus, writing C = acq(`);C ′; rel(`), equation (C3) gives us
Crit(C ′) = {(∅, j), (∅, k)}. Finally, applying (C6) once again
and observing that j, k 6= `, we get

Crit(C) = Crit(acq(`);C ′; rel(`))

= {(∅, `)} ∪ {({`}, j), ({`}, k)}
= {(∅, `), ({`}, j), ({`}, k)} .

Next we undertake a brief complexity analysis. We write
#X for the cardinality of a finite set X .

Definition 5.3. For any statement C, define its size ‖C‖ by

‖C‖ := |C|+
∑

p∈callees(C) |body(p)| ,

where |C| is defined inductively as follows:

|skip| = |acq(`)| = |rel(`)| = |p()| = 1

|if(∗) then C1 else C2| = |C1;C2| = |C1|+ |C2|
|while(∗) do C| = |C|

Proposition 5.4. Crit(C) is finite and computable for any
balanced statement C, with #Crit(C) ≤ ‖C‖1+#callees(C)

and #X < ‖C‖ for all (X, `) ∈ Crit(C). If C does not
contain any procedure calls, then #Crit(C) ≤ |C|.

Proof. By structural induction on C, using Prop. 5.1.

To precisely state complexity bounds on the deadlock prob-
lem, we define the size of a parallel program as the sum of
the sizes of its threads: ‖C1 || . . . || Cn‖ =

∑
1≤i≤n ‖Ci‖.

Theorem 5.5. Whether a given parallel program deadlocks
or not is decidable, and in NP.

Proof. We just need to show how to check the deadlock
condition of Theorem 4.4 in nondeterministic polynomial time.
The NP procedure runs in three stages: (i) nondeterministically
select an index set I ⊆ {1, . . . , n} of size ≥ 2; (ii) nondeter-
ministically compute a critical pair (Xi, `i) for each i ∈ I , by
recursing on the structure of Ci and using the equations (C1)–
(C6) in Proposition 5.1; (iii) verify that Xi∩

⋃
j 6=iXj = ∅ and

`i ∈
⋃

j 6=iXj for all i, j ∈ I . The last step can be done in
polynomial time in ‖P‖ because, by Proposition 5.4, each Xi

is of size bounded by ‖Ci‖.

Remark 5.6. An immediate consequence of Proposition 5.1 is
that, for any balanced statement C, its critical pairs Crit(C)
and size ‖C‖ both remain unchanged under applications of
the following rewrite rules to substatements of C:

if(∗) then C1 else C2 7→ C1;C2

and while(∗) do C ′ 7→ C ′ .

Therefore, the deadlock problem for our language reduces
(polynomially) to the case where statements are restricted to
the ‘deterministic’ grammar:

C := skip | p() | acq(`);C; rel(`) | C;C .
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VI. IMPLEMENTATION AND IMPACT

In this section we describe our implementation of a compo-
sitional deadlock analysis tool for code changes in Android
Java applications. The core of the tool, described in Sec-
tion VI-A, is an abstract interpretation analysis for computing
the critical pairs of a method. In Section VI-B we describe our
extension of this core procedure to an interprocedural analysis
for Android Java code, and in Section VI-C we discuss its
deployment and impact at Facebook.

A. Core analysis in abstract interpretation style

The core of our implementation is an analysis that computes
the critical pairs of a statement in abstract interpretation style.
Given any statement C, we define an analysis function JCK(·)
on abstract states, which track the lock state and the set of
critical pairs accumulated during the possible executions of C.

Definition 6.1. An abstract state is a pair 〈L,Z〉, where L
is a lock state and Z ⊆ 2Locks × Locks. We define a partial
join operation t on abstract states by 〈L,Z1〉 t 〈L,Z2〉 =
〈L,Z1∪Z2〉. We often write α for abstract states, and α⊥ for
the “empty” abstract state 〈∅, ∅〉.

The function JCK(·) is then defined by structural induction
on C in Figure 2. The clauses for the control flow statements
are generic to abstract interpretation (given a suitable join
operation t), which is why we do not simply define, e.g.,
Jwhile(∗) do CKα = αtJCKα as would intuitively be implied
by equation (C5). However, this identity and similar ones can
be inferred from our correctness proof.

We draw particular attention to the clause for procedure
calls: computing the critical pairs of a procedure call p()
depends only on the current abstract state 〈L,Z〉 and the
critical pairs of the procedure body in the empty state,
Jbody(p)Kα⊥, which can be computed “once and for all” in
advance. This means that our analysis is compositional in that,
when a procedure is changed, we only require to re-analyse
that procedure and its dependents, not the whole program.

Proposition 6.2. For any balanced statement C and abstract
state α = 〈L,Z〉, the result JCKα of the analysis is given by

〈L,Z ∪ {(bLc ∪X, `) | (X, `) ∈ Crit(C) and L(`) = 0}〉 .

Thus JCKα⊥ = 〈∅,Crit(C)〉. Moreover, JCKα is computable.

Proof. By structural induction on C, making use of the
equations (C1)–(C6) in Proposition 5.4.

Example 6.3. Continuing Example 5.2, statement C is:

acq(`); if(∗) then (acq(j); skip; rel(j))

else (acq(k); skip; rel(k)); rel(`) .

Jacq(`)K〈L,Z〉 = 〈L[`++], Z ∪ Z′〉

where Z′ =

{
{(bLc , `)} if L(`) = 0

∅ if L(`) > 0

Jrel(`)K〈L,Z〉 = 〈L[`−−], Z〉

Jp()K〈L,Z〉 = 〈L,Z ∪ Z′〉
where 〈 _ , Z′′〉 = Jbody(p)Kα⊥ in
Z′ = {(bLc ∪M, `) | (M, `) ∈ Z′′ ∧ L(`) = 0}

JskipKα = α

JC1;C2Kα = JC2K(JC1Kα)

Jif(∗) then C1 else C2Kα = (JC1Kα) t (JC2Kα)

Jwhile(∗) do CKα =
⊔∞

n=0 JCKnα

Fig. 2. Abstract analysis definition.

Writing abbreviations C = acq(`);C ′; rel(`) and C ′ =
if(∗) then C1 else C2, we have by the clauses for if and
for sequential composition (;) in Figure 2:

JCKα⊥ = Jacq(`);C ′; rel(`)Kα⊥
= JC ′; rel(`)KJacq(`)Kα⊥
= Jrel(`)KJC ′KJacq(`)Kα⊥
= Jrel(`)KJif(∗) then C1 else C2KJacq(`)Kα⊥
= Jrel(`)K(JC1KJacq(`)Kα⊥ t JC2KJacq(`)Kα⊥) .

This gives us the basic structure of the computation. Next,
using the rule for acq(`) in Figure 2), we have

Jacq(`)Kα⊥ = Jacq(`)K〈∅, ∅〉
= 〈∅[`++], {(∅, `)}〉 .

We write L` for the lock state ∅[`++] sending lock ` to 1
(and all other locks to 0). Next, we have

JC1KJacq(`)Kα⊥
= JC1K〈L`, {(∅, `)}〉
= Jacq(j); skip; rel(j)K〈L`, {(∅, `)}〉
= Jskip; rel(j)KJacq(j)K〈L`, {(∅, `)}〉
= Jrel(j)KJskipKJacq(j)K〈L`, {(∅, `)}〉
= Jrel(j)KJskipK〈L`[j++], {(∅, `), ({`}, j)}〉
= Jrel(j)K〈L`[j++], {(∅, `), ({`}, j)}〉
= 〈L`[j++][j−−], {(∅, `), ({`}, j)}〉
= 〈L`, {(∅, `), ({`}, j)}〉 .

And, by a similar calculation,

JC2KJacq(`)Kα⊥ = 〈L`, {(∅, `), ({`}, k)}〉 .
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Now, using the definition of our abstract join t, we have

JC1KJacq(`)Kα⊥ t JC2KJacq(`)Kα⊥
= 〈L`, {(∅, `), ({`}, j)}〉 t 〈L`, {(∅, `), ({`}, k)}〉
= 〈L`, {(∅, `), ({`}, j), ({`}, k)}〉 .

Thus, putting everything together, we get

JCKα⊥ = Jrel(`)K(JC1KJacq(`)Kα⊥ t JC2KJacq(`)Kα⊥)

= Jrel(`)K〈L`, {(∅, `), ({`}, j), ({`}, k)}〉
= 〈L`[`−−], {(∅, `), ({`}, j), ({`}, k)}〉
= 〈∅, {(∅, `), ({`}, j), ({`}, k)}〉 .

Thus, recalling our recursive computation of Crit(C) in
Example 5.2, we can see that indeed JCKα⊥ = 〈∅,Crit(C)〉.

Lemma 6.4. Given a balanced statement C, the computation
JCKα⊥ requires at most quasi-exponential time in ‖C‖. If C
does not contain any procedure calls, the computation requires
at most quadratic time in |C|.

Proof. Follows from the fact that the computation of JCKα⊥
is linear in the size of Crit(C) (its result) and the bounds on
Crit(C) given by Proposition 5.4.

Theorem 6.5. The problem of checking whether a parallel
program P = C1 || . . . || Cn deadlocks can be solved in time
exponential in ‖P‖ and n. If the program does not contain
any procedure calls, checking for deadlocks can be solved in
time polynomial in ‖P‖ and exponential in n.

Proof. Computing Crit(C1), . . . ,Crit(Cn) can be per-
formed in exponential time in ‖P‖, by Lemma 6.4, and
they contain at most exponentially many critical pairs, by
Proposition 5.4. Then, checking the deadlock condition of
Theorem 4.4 (over all possible index sets I) can be performed
within a time bound exponential in ‖P‖ and n. If P does not
contain any procedure calls, then Lemma 6.4 and Prop. 5.4
instead yield a time bound polynomial in ‖P‖ (but still
exponential in n).

B. Analysing Android Java code changes

The requirement that the analysis targets code changes leads
to a number of design constraints, chief amongst which is that
the analysis does not have the runtime envelope to analyse
the whole program at hand; thus the analysis must work by
analysing a modest superset of the modified code in a commit.
Such a constraint can be problematic in looking for concur-
rency bugs due to their global nature. We note here techniques
for addressing those difficulties as well as differences between
implementation and theory. We also outline features specific to
Android Java which we leverage in our analysis (cf. paragraphs
on Non-deterministic control and Concurrency inference).

Balanced locking. The correctness of our analysis relies on
balanced locking. As a general rule, this is good programming
practice, supported in Java via the synchronized keyword,
and we have found very few instances of unbalanced locking
in the codebases targeted by our tool. This means that analysis

precision does not suffer and that no changes to the analysis
are needed, and is one reason we opted for a balanced-locking
language model in the first place (the other reason being
decidability). It is of course quite possible that unbalanced
locking might well be more prevalent in other domains, but
that is a matter of speculation. (Incidentally, our analyser
actually will return a result when run on non-balanced code,
but its correctness is not then guaranteed.)

Non-deterministic control. Control in Java is mostly de-
terministic, so our abstract semantics is over-approximate.
In early trials of the tool, the majority of false positives
we observed in practice stemmed from insensitivity to two
conditions: firstly, whether a lock acquisition succeeded (e.g.,
via Lock.trylock); and secondly, whether the current
thread is the UI thread. Therefore, we specialised the imple-
mentation domain to introduce partial path sensitivity on these
conditions; this eliminated most of the false positives due to
control abstraction.

Lock names. The set Locks must approximate the set of
Java objects that can be used as monitors. Rather than use
an expensive (and typically whole-program, which would
run against our main design constraint) pointer analysis, we
use access paths: syntactic expressions built with a program
variable root and iteration of field- or array-dereferencing
[22]. For example, this.f.g represents an object accessed
through dereferencing the field f of the object this. Such
a domain of abstract addresses has several trade-offs with
respect to false positives and negatives, but that is beyond
the scope of this paper.

We also classify objects into globally referenced or objects
referenced through method parameters. Objects referenced
through local variables are ignored. For globally referenced
objects, the rule for method calls in Figure 2 applies un-
changed. For parameter-referenced objects we apply a substi-
tution of argument expressions over parameters on the callee
summary before applying the procedure call rule. For instance,
if the summary of method foo(x) involves the lock x.f,
then applying the procedure call rule on foo(h.g) will result
in the substitution [h.g/x] and the resulting critical pair at the
callsite will involve the monitor h.g.f.

Concurrency inference. Since whole-program analysis is
impracticable in our setting, we cannot always observe the
spawning of execution threads, for these may happen in
methods that are unmodified and unrelated via the call graph.
As such we use an abstract domain for thread identity, where
each method can be: of unknown identity; the UI thread;
some background thread; or both (it may be executed on the
UI thread as well as background threads). We extract this
information from (a) thread annotations in Android code such
as @UiThread and @WorkerThread; (b) Android method
calls that test whether the current thread is the UI thread;
(c) upward propagation through the call graph. Every critical
pair in a method summary is decorated with the inferred thread
identity, and this information is used to determine whether
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Fig. 3. Analysis report on textbook deadlock across two Java classes.

two critical pairs can occur concurrently (two UI-thread pairs
cannot be concurrent, though any other combination can).

Detecting deadlocks non-globally. As the analysis targets
code changes, it begins by summarising all methods in the
set of changed files in a commit. By the procedure call
rule, this leads to analysing all methods transitively called
by the modified files. If we restrict deadlock detection to
this set of summaries, we will miss deadlocks due to lock
acquisitions performed by methods outside the call graph
rooted in modified files. Thus, the analysis selects additional
methods to summarise using the following heuristic.

For every method M summarised and every critical pair of
the form (L,root.f1. . . . .fn) in the summary of M, where
root is of class C, all methods of class C are also analysed (in
search of a critical pair (L′, `′) where root.f1. . . . .fn ∈ L′).
The analyser continues this process until the set of analysed
methods reaches a fixpoint.

This heuristic works well when certain Java idioms are
observed, namely when the monitors used are the this
object (for example, in synchronized methods), or they are
immutable private objects stored in object fields. For instance,
this heuristic will catch the deadlock between classes A and
B in Figure 3 (where we also illustrate a sample report to
developers) even in a commit where only A.foo is modified.
It’s worth noting that our heuristic admits false negatives,
e.g. when global locks are acquired in methods that reside
in classes not containing the globals. However, in the code we
usually analyse global locks are significantly less commonly
used than non-global objects.

C. Industrial deployment and impact

Our flow-sensitive, context-insensitive analysis is imple-
mented in OCaml (around 3kLoC) within the INFER static
analysis framework [1], [11], and is specifically targeted at
detecting 2-thread deadlocks in code changes (commits) of

Android apps within a continuous integration environment
(CI).

Deployment. INFER is deployed at Facebook through a CI
system which launches an analysis job whenever a commit is
submitted for code review. This job concurrently runs multiple
analysers on the submitted code changes and appears to the
authors of the commit as yet another reviewer commenting
on the code, based on the potential bugs found. The deadlock
analysis has been deployed on all Android code commits at
Facebook for about two years.

Fixed reports. In a non-safety-critical context such as Face-
book, an analysis engineer’s time is better spent developing
analysis features than triaging reports for false positives. Thus,
we track fixed reports (reports that code authors addressed
by submitting a new version of a commit) rather than true
positives. Since it was deployed, the deadlock analyser has
processed hundreds of thousands of commits, has issued more
than 500 deadlock reports with a fix rate of 54%.

As for the 46% of non-fixed reports, these fall into three
broad categories. First, true positives that were in fact fixed
by the developer, but not picked up by our fix tracking (e.g.
because the bug was fixed in a new commit rather than a new
version of an existing commit). Second, true positives that the
developer decided not to address (e.g. because the bug would
occur only in very rare circumstances). Third, false positives
(e.g. because the tool reports a deadlock between two methods
that will never in fact be run concurrently). Unfortunately, we
have absolutely no way of knowing how many reports fall into
each of these categories.

Analysis performance. The architecture of INFER means per-
analyser runtime is not recorded. For this reason, we report
only the total analysis time (including various other analysers),
which provides an upper bound for our analysis. Runtime for
all analysers in the last 100 days to submission had a median
of 90 seconds and an average of 213 seconds per commit. In
the same time period, INFER analysed a median of 2k methods
and on average 5k methods per commit.

VII. RELATED WORK

In this section we compare our contribution to related
work, first, on theoretical deadlock detection results based
on automata, and second, on automated deadlock detection
tools. We note that such tools are naturally classified as either
dynamic, static or hybrid, depending on whether they oper-
ate primarily on program executions, program text, or both.
Analysers that target Java programs typically rely on balanced
locking and must accurately model re-entrant locks, whereas
analysers for C code do not expect balanced locking and
assume non-reentrant locks. In addition, deadlock analysers
can be categorised according to whether they detect deadlocks
involving only two threads, or more, and whether they produce
false positives on guarded cycles.
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A. Automata-theoretical deadlock detection

There is a substantial body of work on the literature on
analysing general safety and liveness properties for commu-
nicating systems of pushdown automata, e.g. [34], [5], [20],
[17], [14], [25], [26], [23], [24], [15]. Our abstract concurrent
programs fall under this general umbrella since, as we have
already observed (cf. Remark 3.17), they can be seen as
collections of finite automata that synchronise via their shared
locks. Indeed, our model can be polynomially encoded as a
communicating pushdown system as considered e.g. in [5].
However, while arbitrary dataflow properties of even two-
threaded pushdown systems are undecidable in general [31],
our deadlock problem is decidable and thus represents a
special case, which relies crucially on the fact that locking
in our language is balanced.

The papers in this area most directly relevant to our own
work are probably [25] and [24], which both consider comuu-
nicating pushdown systems in which locks are also balanced
(there “nested”). In particular, [25] reports decidability of the
deadlocking problem for such systems, based on a cycle-
checking condition in a graph obtained by augmenting the
automaton with lock acquisition histories. This condition is
somewhat similar to (though arguably more complicated than)
our condition based on critical pairs, and the central theoretical
result on which it relies (Theorem 5) has the same essential
flavour as our similarly crucial Lemma 4.3, although the
technical machinery is quite different. In [24] this result is
strengthened to the decidability of any LTL property of com-
municating nested-lock pushdown systems, in exponential time
in the number of locks. While these papers do not explicitly
treat reentrant locks, it is shown in [26] that reentrant locks can
be modelled in such systems using only non-reentrant locks,
so this is not a serious point of difference.

Thus, although our deadlock characterisation result (Theo-
rem 4.4) is new in itself, it probably could have alternatively
been arrived at via a combination of the results in [25],
[24] and [26], by encoding our language as a communicating
nested-lock pushdown system. However, such an approach
would almost certainly be messy, unsatisfying, and no less
work than our own proof. Compared to these works, the
novelties of our approach are as follows: we characterise
deadlocks in a (simple) concurrent programming language
rather than a system of communicating automata; our deadlock
condition based on critical pairs is simpler than the automata-
theoretic condition; and we give a proof for this setting that is
entirely direct, self-contained and, we believe, quite elegant.

In a different direction, it is also worth mentioning [6]
and [16]. These both aim at deadlock avoidance (rather than
detection) in a concurrent functional language with re-entrant
locks, by developing a type system for the language such that
typable expressions are guaranteed not to deadlock. While
the earlier [6] requires locks to be balanced, [16] lifts this
restriction, and provides a prototype implementation.

B. Static analyses

Static deadlock detectors typically require a complete pro-
gram in order to run. Most are focused on soundness, where
the absence of reports implies deadlock-freedom. All analyses
discussed are interprocedural, top-down, context-sensitive and
typically non-compositional.

RACERX [12] is a path-insensitive analysis for C programs
which does not use a pointer analysis, instead using syntactic
information and types about variables, ignoring locks in local
variables. Heavy use of caching transfer functions on state-
ments is made, to improve runtimes due to context sensitivity.
The search for cycles is up to a user specified number of
threads. Many heuristics and techniques are employed to
reduce false positive reports.

[32] reports on a Java analysis which targets libraries,
thus partly dealing with the problem of identifying program
entrypoints. As such, the analysis cannot see global aliasing
information and uses a coarse, type-based memory domain.
It can detect cycles of more than two threads, up to a pre-
specified bound. The pure analysis reports too many false
positives, therefore several unsound heuristics are used.

JADE [29] is a path-insensitive Java analysis which breaks
down the problem into several sub-analyses, including reach-
ability, aliasing/escaping, reentrancy and guarded-ness. It fo-
cuses on two-thread deadlocks, and has explicit mechanisms
for rejecting guarded deadlock reports. It is expressed in
Datalog and uses an iterative refinement scheme to increase
precision, where the degree of sensitivity is increased based
on the reports found in the last iteration.

[30] reports on an analysis for an abstract language, which
reduces detection of deadlocks into race detection. A type
system captures lock dependencies, and the inferred types are
used to detect program points where a nested lock acquisition
may occur. These points are instrumented with code mutating
"race" variables. A data race detector then finds possible
deadlocks. Too many false positives are reported for deadlocks
among more than two threads, and additional checks are
made to improve precision and to filter guarded cycles. No
implementation is reported.

THREADSAFE [3] is a commercial, flow- and path-sensitive,
per-class analysis for Java. Little detail is reported on the
foundations of the analysis. It uses as entry points the public
methods of each class, or modelled Android lifecycle methods.
Only calls to private and protected methods are followed.

[27] reports on an analysis targeting C code with Posix
threads. It infers concurrency on spawn/join points through
the program graph, and contexts represent call- and thread-
creation- sites. A must-lock analysis is employed to deal with
guarded locks. Function pointer calls are inlined into case
distinctions over the calls they might resolve to.

JADA [28] is a Java bytecode analysis that uses behavioural
type rules to compositionally extract an infinite-state abstract
model from bytecode. This model is then analysed using a
context-sensitive fixpoint computation, generating reports of
cyclic dependencies. The main strength of the approach seems
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to be the ability to analyse recursive functions that spawn an
unbounded number of threads.

C. Dynamic and hybrid analyses

Analyses that work with program traces usually require the
whole program as well as appropriate test input, and tend to
be focused on completeness (most reports are true positives).

GOODLOCK [18] is an analysis for Java programs imple-
mented in Java PathFinder (JPF) [19] which maintains a lock-
tree for each execution thread, where each node represents
the lifetime of a lock acquisition and children nodes represent
acquisitions wholly contained within the parent. A warning
is reported whenever two threads have lock-trees which may
request the same pair of locks in opposite orders. Since the
whole lock-tree is available, gate locks can be detected and the
warning suppressed. MAGICFUZZER [7], MAGICLOCK [8],
UNDEAD [33] and AIRLOCK [9] all adopt and improve on
this basic approach by applying various optimisations to the
extracted lock order graph, with UNDEAD also attempting
to keep traces in memory rather than external storage as far
as possible, and AIRLOCK operating on-the-fly, running a
polynomial-time algorithm on the lock graph to eliminate parts
with no cycles before running the higher-cost algorithm to
detect actual lock cycles.

[4] describes an analysis for Java programs, also imple-
mented in JPF, that constructs a lock-order graph from an
execution trace of an instrumented program. Although the
graph edges denote dependencies between only a pair of locks,
they are also labelled by the complete lock-set and the thread
acquiring the lock. These labels are used to detect deadlocks
between more than two threads and to filter out gated cycles.

[2] presents a sound type inference mechanism for types
that ensure deadlock freedom for Java programs. Appropriate
instrumentation for the untyped parts of the program is then
used to feed an extension of the GOODLOCK algorithm to
the unbounded thread case, yielding a hybrid analysis. Further
filtering is then used to exclude gated cycles.

SHERLOCK [13] is an analysis for Java programs which
uses GOODLOCK to get a set of deadlock candidates. The
program is run on given inputs, producing an initial schedule
which is then concolically executed and permuted in repeated
steps, in search of witnessing schedules. The GOODLOCK-
based algorithm can deal with more than two threads, and the
original version can deal with gated cycles.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we provide a highly scalable, open-source
deadlock analyser for Android Java, based on a sound and
complete deadlock analysis (in NP) for an abstract concurrent
programming language. Our deadlock analyser has been de-
ployed at Facebook as part of the INFER framework for the
last two years and has resulted in hundred of potential bugs
being flagged, with an actual developer fix rate of over 50%
(and we note that this does not imply a false positive rate of
nearly 50%). The abstract programming language on which the
analysis is based contains balanced (or nested) reentrant locks,

nondeterministic control flow commands and nonrecursive
procedure calls, but with all other features — in particular
variable assignment — abstracted away. An abstraction of
this sort is of course necessary to obtain decidability, for
fundamental computability reasons. However, our overapprox-
imation of real concurrent programs turns out to be sufficiently
faithful to detect deadlock bugs in practice, and sufficiently
scalable to run on commercial Android applications.

It is natural to wonder whether and how our abstract
language might be extended while preserving the decidability
of deadlock existence. Unfortunately, it seems to us that
almost any nontrivial extension presents significant obsta-
cles. For example, allowing procedure calls to be recursive
causes problems for our approach since it is then possible to
create statements with infinite non-balanced traces (e.g. by
the procedure definition p : acq(`); p(); rel(`)); a second
difficulty is that we also cannot straightforwardly reason by
induction over the structure of statements. Allowing control
flow to be deterministic, e.g. by allowing guards to query the
lock state, is similarly problematic since the critical pairs of
a statement are then dependent on the lock state in which
it is executed, meaning that at the very least we would
require a finer abstraction in order to avoid false positives.
Finally, modelling forking and joining by allowing parallel
compositions to appear nested within statements makes the
problem much more complicated since, conceptually, it would
require that we construct abstractions of all subthreads as well
as determining which of them can run in parallel with each
other. We nevertheless consider these (and other) extensions
to be interesting potential directions for future work. It would
also be nice to establish a lower complexity bound on our
deadlock problem; we speculate that the problem is likely NP-
complete, but unfortunately we have so far failed to find a
suitable reduction.
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