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Abstract Humans regularly interact with their surround-
ing objects. Such interactions often result in strongly
correlated motions between humans and the interacting
objects. We thus ask: “Is it possible to infer object
properties from skeletal motion alone, even without seeing
the interacting object itself?” In this paper, we present
a fine-grained action recognition method that learns to
infer such latent object properties from human interaction
motion alone. This inference allows us to disentangle
the motion from the object property and transfer object
properties to a given motion. We collected a large number
of videos and 3D skeletal motions of performing actors
using an inertial motion capture device. We analyzed
similar actions and learned subtle differences between
them to reveal latent properties of the interacting objects.
In particular, we learned to identify the interacting
object, by estimating its weight, or its spillability. Our
results clearly demonstrate that motions and interacting
objects are highly correlated and that related object latent
properties can be inferred from 3D skeleton sequences
alone, leading to new synthesis possibilities for motions
involving human interaction. Our dataset is available at
http://vcc.szu.edu.cn/research/2020/IT.html.
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1 Introduction
Digitizing and understanding our physical world
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are important goals of both computer graphics and
computer vision. In natural environments, humans
regularly interact with surrounding objects, and
such interactions result in strongly correlated motion
between humans and these objects. Researchers in
experimental psychology show that observers not only
can recognize motion categories, but also infer object
properties by observing corresponding human motion
alone, even without directly seeing the object itself [1].
For example, we humans regularly estimate object
properties like weight, spillability, path width, or
shape, by observing either the real action of a human
or even a pantomimed or virtual avatar action [2–4].

One way to computationally exploit such correlated
human–object interaction motions would be to
learn object properties by learning correlation with
human skeletal motion over time. However, the
available datasets for human activity recognition
[5, 6] are RGB-D videos, which in general contain
significant occlusions that hamper the extraction of
unseen acting skeletons. While these videos can
be used to broadly classify different actions [7], we
still lack suitable datasets specifically designed for
inferring fine-scale variations of object properties.
Unlike previous work on action recognition, we
analyze similar actions and hence have to learn
subtle differences between actions of the same type
that reveal latent properties of interacting objects.
Inspired by previous work on motion style transfer,
which transform an input motion into a new style
while keeping its content, we use these latent
properties to edit a given motion. For example, given
the skeletal motion of a person walking on a wide
path, we would like to synthesize the person’s skeletal
motion when walking on a narrow path.

In our work, we focus on eight typical types of
human–object interaction, including lifting a box,
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Fig. 1 An actor is lifting a box from the table. Can skeletal motion tell us whether the box being lifted is light or heavy?

moving a bowl, and walking on a path. We collected
video and 3D skeletal motions of actors using an
inertial motion capture device, which do not suffer
from the occlusion that is unavoidable in video-based
recording. For these interactions, we learn to infer
latent properties of the interacting object from the
3D skeleton sequences alone. In particular, we learn
to identify the interacting object, by estimating its
property values, such as 0 kg, 15 kg, or 25 kg for box
weight, or empty or full for bowl spillability.

For the inference task, we treat object latent
property estimation as a fine-grained classification
problem by analyzing similar input skeletal motions.
Although some properties (e.g., the weight) may
vary continuously, treating it as a regression problem
requires more training samples. We represent a
skeleton sequence as a time sequence of graph
structures, which encodes the position and speed
information of all joints with temporal dynamics.
After analyzing per-joint features, we feed it into
a recurrent network to recognize the latent object
properties. The results obtained demonstrate that
the interaction motions and interacting objects are
highly correlated, allowing object property values to
indeed be inferred, to a certain accuracy, by just
observing human movements. We will show that, in
comparison to existing works on action recognition,
our method achieves higher inferencing accuracy.

For the synthesis task, we develop a network
architecture to disentangle object properties from
the abstract motion, which allows us to create novel
skeletal motions by mixing new object properties with
target skeletons. We train a deep neural network with
a simple encoder–decoder structure to perform the
disentanglement, i.e., the latent space encodes the
motion content without object property. A motion
can then be synthesized given a specific property
value.

In summary, we claim the following contributions:
• learning subtle differences between motions of the

same type, of humans interacting with an object,
• a property and motion disentanglement network

that allows motion synthesis conditioned on target
interactions, and

• a public, extensive, interaction dataset for
inferring object properties from motions with 4k+
samples collected from 100 participants, including
eight everyday interactions: lifting a box, moving
a bowl, walking, fishing, pouring liquid, bending,
sitting, and drinking.

2 Related work
Our work analyzes human interaction motion to
detect object properties. Therefore, we briefly
describe previous approaches that exploit human–
object interaction in visual inputs, with a focus on
object property inference. Since we use skeleton
sequences to represent motions, we also review related
works on skeleton-based action recognition.

2.1 Human–object interaction
Human–object interaction detection is an important
scientific problem [8] with wide practical uses. Recent
methods can successfully detect <human, verb,
object> triplets from visual inputs [9, 10].

A variety of techniques in shape analysis have been
developed to extract functional information about
objects and scenes using human–object interaction as
cues. An appropriate human pose or action map can
be created from an input object [11–13] or scene [14,
15]; see the survey in Ref. [16] for more information.

Hidden human context has been used as a cue
for labeling and arranging scenes [17, 18]. However,
there is no work yet solving the inverse problem:
inferring object properties from human motions
and/or interactions alone.
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The spatial relationship between the characters and
objects in the environment captures the semantics of
interactions. Ho et al. [19] introduced an interaction
mesh structure to explicitly represent this spatial
relationship for motion retargeting. Later this
representation was used for motion comparison [20].

2.2 Object property inference
Researchers in psychology have reported that
observers can make fine distinctions when presented
with human motions in visual form. The weight
of a box can be seen by observing another person
lifting and carrying it [2], and the elasticity of
a supporting surface can be judged by observing
a person walking on it [21]. Vaina et al. [4]
demonstrated that the weight of an object can be
robustly estimated, while size and shape are harder
for observers to estimate. Recently, Podda et al. [3]
showed that participants are able to identify the
weight of a grasped object from both occluded real
and pantomimed movements, solely using available
kinematic information. Observers seem to focus
most on the duration of the lifting movement to
perceptually judge weight [22]. Some findings suggest
observers may integrate multiple sources for object
property inference; for example, shape, motion, and
optical cues are used when inferring stiffness [23].
Still, we focus on inference from motion alone in this
work.

Koppula et al. [24] proposed a method to learn
human activities from RGB-D video by jointly
modeling human sub-activities and associated object
affordances. Object classes and their 3D locations
can be recovered from motion by exploiting human–
object spatial relations, and used for synthetic scene
reconstruction [25] and scene arrangement recovery
[26]. There has been little effort to automatically
infer other properties. Davis and Gao [27] presented
a computational framework that can label the
effort of an action corresponding to the perceived
level of exertion by the performer. Gupta and
Davis [28] classified objects as heavy or light based
on the velocity of ballistic motions detected in
video. Integrating a 3D physics engine is another
way to infer physical properties, including mass,
position, 3D shape, and friction, from real-world
videos [29, 30].

2.3 Action recognition and motion style
transfer

With the availability of large-scale skeleton datasets,
deep learning is popular for action recognition.
Skeleton sequences are time series of joint positions.
Recurrent neural networks, designed to model long-
term temporal dependency problems, have been well
exploited for skeleton sequences [31–33]. The skeleton
is also a special graph structure representation, and
thus graph convolution networks can be utilized as
well for action recognition [34].

CNN models are able to extract high-level
information and have also been used to deal with
skeleton sequences. A skeleton sequence can be
converted into an image or a 3D tensor, and then fed
into a CNN to recognize the underlying action. These
methods vary most in the representations of skeleton
sequences and network structures. Ke et al. [35]
represented a skeleton sequence as several images to
encode different spatial relationships between joints,
and then applied a pre-trained VGG to extract the
features. Li et al. [36] represented a skeleton sequence
as a 3D tensor, and modeled global co-occurrence
patterns with a CNN. Most recently, Aristidou et
al. [37] used a triplet loss network to map short motion
clips to an embedding space, where the distances
represent similarity between motion clips. We also
utilize graph convolution and an RNN to learn object
properties from skeletal motions. Nonetheless, we use
sub-categorical properties to effectively distinguish
fine-grained differences between motions of the same
class.

Another related topic is motion style, which usually
represents the mood or identity of a particular
character’s motion. By analyzing differences between
performances of the same content in different styles,
researchers have proposed methods to transform an
input motion data into new styles [38–40]. Bellini
et al. [41] introduced a method to enhance the
rhythm of a dancing performance video by detecting
motion beats and synchronizing them with music
beats. Object properties and actions are significantly
correlated. A particular object property can be
only observable in a particular action type, which
makes the existing motion style transfer techniques
unsuitable for our synthesis task.
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3 Interaction motion dataset collection
3.1 Considerations
Traditionally, human motion is captured using optical
marker-based systems with markers placed on the
performer. With recent success of deep learning, 2D
poses [42–46] and 3D poses [47–52] can be extracted
directly from RGB or RGB-D video sequences. Large-
scale skeletal motion datasets, such as CMU [53],
NTU RGB+D [5], and PKU-MMD [6], are available
as driving forces for motion recognition, retrieval,
and synthesis. However, although these datasets
contain human–object interaction motions, the object
information is usually unlabeled, and the (partial)
joint trajectories are insufficient to reliably infer
3D object properties. For example, some limbs
are very likely to be occluded by the interacting
objects. Such occlusion makes it very difficult to
robustly extract high-quality skeletal motions from
monocular or RGB-D videos, even with state-of-the-
art pose detection methods. This is particularly true
in our setting where we seek subtle motion differences.
Therefore, we use inertial measurement units (IMUs)
to obtain 3D human motions that are totally occlusion
free.

3.2 Data modalities
We utilized multiple data modalities to construct
our dataset. When performing actions, each subject
wore an Xsens MVN inertial motion tracking suit to
capture high-quality 3D skeleton information at 240
frames per second. Each subject was also required to
wear a head-mounted camera to capture ego-centric
video. Further, we used three uncalibrated cameras to
record the subject from three different views, storing

three videos at 50 frames per second. For each
interacting object, in addition to measuring its size
and weight, we also scanned its geometric shape.
Figure 2 presents our capturing scenario and the data
modalities of each motion sample collected. Although
in this work we only use 3D skeletal information to
infer object properties, we believe that these data
modalities will be useful for future research.

3.3 Subjects and object interactions
We carefully selected human–object interactions
to depict the correlation between human motions
and properties of objects. For a good candidate,
object property values could be inferred easily from
the whole interaction motion alone, but only with
difficultly from a single static frame. Following this
rule, we chose eight daily interactions: Walking for
estimating the width of the path, Fishing for the
length of a fishing rod, Pouring for the type of liquid,
Bending for the stiffness of a power twister, Sitting
for estimating the softness of a chair being sat on,
Drinking for estimating the amount of water inside a
cup, Lifting a box for the weight of an object being
lifted, and Moving a bowl for the spillability of an
object. These motions are shown in Fig. 3. We used
100 different subjects during data collection. They
varied in age (20–35), gender (M or F), height (150–
195 cm), and strength (weak–strong). Here we briefly
describe the setting of Walking; see the Appendix for
other interactions.

Walking. Each subject was asked to walk back
and forth on three straight paths of different widths.
We delimited the width of a path using line markers,
and asked the subjects to not cross the edges. This
gave a total of 3 × 2 × 100 = 600 motion samples.

Fig. 2 For each sample, we capture a 3D skeleton sequence using an inertial motion tracking suit, an ego-centric video by a head-mounted
camera, two other videos by two cameras placed outside, and the object’s geometry along with its properties.
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Fig. 3 Eight interaction motions represented in our dataset, which contains 4k+ interaction captures across 100 different participants.

4 Object property inference
4.1 Skeleton sequence representation
The input skeleton data is a sequence of multi-frame
tree structures with 3D joints as nodes that form an
action. As shown in Fig. 4, a skeleton sequence is
represented by a 3D tensor of size T × J × D, with
T representing the frame length, J = 23 the total
number of joints, and D the feature dimension of
each joint, respectively.

Representing a skeleton sequence by joints in xyz

locations is common [5, 35, 36]. Some researchers
also represent the joints using 3D angles [37]. In our
case, the object properties that we aim to estimate
are highly correlated with the dynamic properties of
motions. As we show later, joint trajectories (position
and velocity representations) can overall help with
object property inferencing.

Each joint is represented by the x, y, and z

coordinates in a local body coordinate system with
its origin on the pelvis (indicated by a blue dot in
Fig. 4). The local coordinate frame has the z axis
perpendicular to the floor, and the x axis parallel
to the 3D vector from the right shoulder to the left
shoulder. For each frame, we use the xyz position
relative to the current pelvis joint. Note that in
this representation, we ignore the movement of the

Fig. 4 We represent a skeleton sequence as a tree sequence. The
input feature of each joint is represented by its xyz location and
velocity in local body frame coordinates. The cyan point indicates
the root (pelvis) of the tree. Each block indicates the joint’s feature
in a frame.

pelvis in the sequence. We also explicitly encode
the velocities of joints. Let the ith joint’s position
in frame t be J t

i . Then, the velocity of joint St
i is

approximated by the temporal difference between two
consecutive frames:

St
i = (J t+1

i − J t
i )/δt

where δt represents the corresponding time interval.

4.2 Object property classifier
4.2.1 Overview
In practice, our object property classifier consists
of two graph convolution layers, a GRU layer [54],
and then two fully connected (FC) layers for the
final classification, i.e., making the object property
inference; see Fig. 5. The graph convolution layer
computes per-joint features taking into account the
known human body skeleton topology. The GRU
layer with attention accumulates the information from
all frames and computes the importance of each joint.
The combination of graph convolution layers and
GRU units enables us to better infer object property
values from the same types of motions.
4.2.2 Graph convolution layer
Graph convolution usually deals with an undirected
graph. As the skeleton is a hierarchical tree structure,

Fig. 5 We represent a skeleton sequence by a 3D tensor of size
T × J × D, T representing the frame length, J the number of joints,
and D the feature dimension of each joint. Our classifier for object
property values is made of graph convolution layers, GRU, and fully
connected layers. The size of the tensor after each layer is indicated
in the figure with nC denoting the number of classes for an object
property, e.g., nC = 6 when the input is a lifting motion and the
object property is the weight of box being lifted.
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for a given joint, we only consider its parent, instead
of all neighbors, to apply a convolution. Formally,
for the ith joint of frame t, its feature after graph
convolution x′

t,i is

x′
t,i = Relu

(
Wg

[
xt,i

xt,j − xt,i

]
+ bg

)
(1)

where xt,i represents the feature of this joint
fed to this layer, j is its parent’s index, and
Wg, bg are the learnable weights for a graph
convolution layer. Experiments clearly show that
using skeleton topology information can improve
inferencing accuracy; see, e.g., Fig. 10. We use this
asymmetric edge function as suggested in Ref. [55].
4.2.3 GRU layer with attention
Attention mechanics is widely used in skeleton-based
action recognition. It can improve action recognition
and discover the relative importance of joints and
frames. For example, Zhang et al. [56] used an
element-wise attention gate to an RNN block to
improve action recognition. We also add a joint-
wise gate to the RNN cell. The attention value of
each joint in frame t is computed based on the hidden
state of the RNN cell Ht−1:

at,i = sigmoid(WhHt−1 + Wxxt,i + ba) (2)

where xt,i represents the feature of the ith joint fed
to the RNN cell, and Wh, Wx, ba are the learnable
weights for an attention convolution layer. Then, the
input fed to the RNN cell is updated using x̃t,i =
(1 + at,i)xt,i, where at,i represents the importance of
the ith joint in frame t.
4.2.4 Implementation details
For all experiments presented here, we use J = 23
major body joints. We use classical cross entropy
loss as we have a classification problem. For
skeletal representation, we apply a normalization pre-
processing step. The lengths of collected motion
samples vary from 3 to 6 s. Additionally, we used
data augmentation to increase the number of samples
and to remove rotation bias. We rotated each
sequence along the z axis 10 times and cropped 10 sub-
sequences from each original and rotated sequence.
The rotation angles were drawn from a uniform
distribution between [0, π), and the cropping ratios
were drawn from a uniform distribution U [0.9, 1].
This data augmentation enlarged the size of our
skeletal motion dataset 100 times. We down-sampled
each sub-sequence to 30 frames. We used TensorFlow

with the network initialized using the Adam optimizer
with a batch size of 32 and a learning rate of 0.0001.
Training was stopped after 60 epochs by default.

5 Object property-aware motion transfer
In synthesis, our goal is to use target object property
values to guide motion transfer for a given actor.
Given an interaction skeletal motion x whose object
property value is y, and a new target object property
value y′, we want to generate new skeletal motion x′

that matches the given target property value y′.
Inspired by Refs. [57, 58], we use an encoder–decoder

structure to perform this motion retargeting; see
Fig. 6. The encoder E converts an input motion to a
latent space z = E(x), and the decoder D synthesizes
a new motion conditioned on the target property
value, denoted D(E(x), y′). To train the network,
we use a loss function consisting of two terms: a
reconstruction loss and a contrastive loss.

The reconstruction loss aims to constrain the
encoder and decoder. We want the output motion
to be similar to the motion performed by the same
subject under the target property value y′, denoted
by x̂. When y′ equals y, x̂ equals x. We use
the Euclidean loss in the local coordinate frame to
measure the quality of the reconstruction:

Lrec(E, D) = Ex,y′‖D(E(x), y′) − x̂‖2
2 (3)

The exact choice of the reconstruction loss is
not fundamental here. Other formulations of
reconstruction loss especially designed for motion
frames, such as geodesic loss measuring the 3D
rotation errors of joints [59], could be used.

Another loss is a contrastive loss that ensures that
E(x) does not have residual information about the
input object property [60]:

Lctr(E) =Ex,x+‖E(x) − E(x+)‖2
2

+ Ex,x−
[
α − ‖E(x) − E(x−)‖2

]2
+ (4)

To help disentanglement, we constrain the distance
in latent space between different motion samples.
Taking an anchor motion x, we compare it with
a positive motion x+ that comes from the same
performer under a different object property value,
and a negative motion x− coming from a different
performer under the same property value. The
dissimilarity between the anchor motion and negative
motion should be larger than a margin α, and the
distance between the anchor motion and positive



Inferring object properties from human interaction and transferring them to new motions 381

motion should be small. The full objective function
to optimize the encoder E and decoder D is a
combination of two terms:

L(E, D) = Lrec(E, D) + λLctr(E) (5)
where λ is a hyper-parameter that controls the
relative importance of contrastive loss compared to
reconstruction loss. We use λ = 0.1, α = 5 in all our
experiments.

Here the skeleton sequence for motion transfer is
represented by local and global motion as suggested
in Ref. [57], which is slightly different from that for
object property inference. For local motion, we use
joints in xyz locations of local frame coordinates, just
as for property inferencing. Global motion consists
of the root’s global velocity and foot contact labels.
See Fig. 6; the rows represent the location of a joint over
time. We down-sample the motion to 64 frames.

The encoder is composed of 4 1D convolutional

Fig. 6 Network for motion transfer driven by object properties. By
changing the object property value y, we may generate human motions
that match the given property value well.

Fig. 7 Given a fishing motion with a long rod (green), we transfer
the rod from long to short to get a new motion (blue).

layers with stride size two for down-sampling the
time axis. The decoder is composed of 4 nearest-
neighborhood up-sampling followed by convolution
with stride 1 to restore the motion; see Fig. 6.

All models were trained using Adam with β1 = 0.9
and β2 = 0.999. The batch size was set to 32 for all
experiments. We trained all models with a learning
rate of 0.00001. Training takes about 10 minutes on
a server with an Intel Xeon 2.20 GHz CPU 10 cores,
256 GB memory, and a NVIDIA TitanXP GPU.

6 Results and evaluation

6.1 Evaluation of object property inferencing

6.1.1 Basis
To measure model performance on object property
inferencing, we conducted a cross-subject evaluation.
We split the 100 participants into training (60),
validation (20), and testing (20) groups, respectively.
Thus, testing is done with different people to the
ones who were employed for training and validation.
During training, we selected the network parameters
with the smallest validation error over all iterations.
Then, we evaluated and reported performance on the
testing group.

We implemented several variants to evaluate the
impact of different skeleton representations. As
using both position and speed achieves the best
performance, we applied this representation in other
tests. We report the object property inferencing
accuracy on all eight types of motion. To evaluate, to
set a baseline, we used a state-of-the-art method
for action recognition based on skeletons. We
also evaluated the utility of the graph convolution
layer and GRU units with attention. Furthermore,
we tested the inferencing accuracy regarding the
sensitivity to object property differences.

Table 1 shows the object property inferencing
accuracy (%) for the cross-subject settings. The
performance looks unimpressive at first glance.
Nonetheless, in consideration of the subtle differences
between motions under different object properties,
we believe this accuracy is reasonable. Furthermore,
in most cases, our method outperforms the baseline.
We describe lifting motion in detail in the following
as an example. We wish to estimate weight from a
lifting motion. We trained a classifier that outputs 6
classes corresponding to weights from 0 to 25 kg in
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Table 1 Object property inferencing accuracy (%) on the cross-
subject settings. Weight has 6 classes (0, 5, 10, 15, 20, and 25 kg).
Spillability has 3 levels, reflected by moving without spilling an empty
bowl, a bowl full of rice, and a bowl full of water. The width of
the path, length of the rod, type of the liquid, stiffness of the power
twister, and water amount in the cup also have 3 levels. The softness
of the chair has 4 classes

Object property
Accuracy (%)

Ours ST-GCN
Lifting a box for weight (6) 61.8 57.3

Moving a bowl for spillability (3) 77.5 78.9
Walking for path width (3) 83.9 73.8

Fishing for length of rod (3) 80.7 77.2
Pouring for type of liquid (3) 62.8 62.1

Bending for stiffness (3) 71.6 44.7
Sitting for softness of chair (4) 73.7 66.4

Drinking for amount of water inside a cup (3) 62.5 57.0

steps of 5 kg. The accuracy is about 62% on the cross-
subject setting. As the weight differences between
the classes are relatively small and the lifting motion
is also highly related to the strength of the performer,
the resulting estimation accuracy is acceptable for
such subtle changes.
6.1.2 Baseline
We used a state-of-the-art method for action recognition
based on skeletons [34] (denoted ST-GCN) as baseline
to evaluate fine-grained motion inferencing. ST-
GCN consists of 9 layers and has about 0.3 million
parameters, about ten times more than our model.
The original network performed very poorly probably
due to the small size of our motion dataset. Setting
the number of layers to three achieved the best
performance during tuning. We thus reduced the
original ST-GCN to three layers. This also leads to a
similar parameter setting to ours. We also used both
position and speed to represent the skeletal motion.
The last column in Table 1 shows performance in the
cross-subject setting. Overall, our proposed method
has achieved higher inferencing accuracy.
6.1.3 Choice of skeleton representation
To evaluate the impact of skeleton representations,
we tried several variants. A skeleton sequence
was represented by the positions of joints, or the
orientation of bones. Similarly, motion dynamics
were measured by joint speeds or bone angular
speeds. We represented the skeleton sequence in
different forms, and then evaluated their performance
on object property inferencing for three different
motions: lifting, walking, fishing. All other settings
were exactly the same. Table 2 shows that the best

Table 2 Impact of different skeleton representations on inferencing
accuracy (%) in the cross-subject setting

Lifting (6) Walking (3) Fishing (3)
Position 57.82 76.84 84.21

Euler angles 43.38 81.58 73.68
Speed 59.93 79.82 69.4

Angular speed 47.46 73.16 63.51
Position, Euler angles 55.70 79.65 71.58

Position, speed 61.81 83.93 80.70
Position, angular speed 64.58 79.47 77.54

Speed, angular speed 55.70 84.39 76.49
Speed, Euler angles 50.56 70.00 66.67

Euler angles, angular speed 56.06 80.53 72.28
Position, Euler angles, 50.35 78.42 70.18

angular speed
Position, speed, angular speed 62.32 82.98 78.95

Position, Euler angles, speed 56.55 81.58 71.93
Position, Euler angles, speed, 58.73 82.98 78.95

angular speed

representation varies for different object properties.
Overall, using both position and speed is a good
option, so this representation was used in other
experiments.
6.1.4 Graph convolution
To evaluate the impact of the graph convolution layer
regarding per joint features, we fixed other layers
and only changed the two graph convolution layers,
and reported the performance on object property
inferencing; see Fig. 10. We evaluated in different
settings: ignoring the connections between joints and
only considering each joint itself to compute per joint
features (as in PointNet [61]), or treating the skeleton
as a tree whose root is the pelvis (a directed graph), or
treating it as an undirected graph. We also considered
different numbers of ancestors (from 1 to 3) of each
joint. For an undirected graph, we also considered its
k-degree neighborhoods using k = 1, 2, 3, or all nodes
(FC-Graph) in our tests. Figure 10 shows that though
the inferencing performance varies across the types
of motions, considering a joint’s parent to compute
its feature is a good option.
6.1.5 Joint-level attention
The learned attentions marginally improved object
property inferencing, especially for rod length
inferencing in Fishing and softness of chair inferencing
from Sitting: both increased by about 4%. We
visualized the attention weights on joints by color.
For better visualization, we linearly mapped the
squared attention values to colors to highlight their
importance. Figure 8 shows the attention weights



Inferring object properties from human interaction and transferring them to new motions 383

Fig. 8 Estimating the joint-level importance of a fishing motion for inferring the object property. Note that here the color of magenta to cyan
indicates the importance from high to low.

on the two arms are large for the fishing motion,
consistent with our human intuition.
6.1.6 Weight and water amount sensitivity
To evaluate inferencing accuracy with respect to
sensitivity to object property differences, we trained
and tested the model with several different subsets
of motion samples, i.e., using samples with only
certain specific property values. For example, when
evaluating the model’s ability to distinguish 5 kg from
10 kg, only motion samples with these two weights
were used. All other settings were exactly the same.

Table 3 shows that inferencing performance is
related to the weight label distribution. Note that 2-
class classification accuracy drops dramatically from
94.7 down to 78.7 when classifying 10 and 15 kg
boxes instead of 5 and 25 kg, even lower than the
3-class classification accuracy when classifying 5, 15,
and 25 kg. We argue that this is mainly caused by

Table 3 Object weight and water amount inferencing accuracy (%)
doe different configurations: two, three, or six classes

Lifting (kg) Drinking

5/25 (2) 10/15 (2) 5/15/25 (3) (6) Empty/full (2) (3)
94.7 78.7 81.7 61.8 86.8 62.5

the small dynamic motion differences when lifting
boxes are close in weight. The water amount label
distribution also shows a similar trend.

6.2 Video comparison
6.2.1 Property inferencing only from video
We additionally evaluated the weight and spillability
inferencing performance using different input sources.
In particular, we tested the performance using 2D
skeleton sequences directly extracted from videos that
were recorded from a fixed view. We used OpenPose
detector [42] to extract 25 body keypoints in 2D to get
image-space skeletons using videos. Due to the fixed
camera view and the occlusion of interacting objects,
extracted 2D skeletons may have large missing parts
in some frames; see, e.g., Fig. 9(top). We chose
the most representative 17 body joints, and replaced
the 3D IMU skeletons with corresponding 2D video
skeletons. Now the skeleton sequences have only x

and y positions without z coordinates. The speed
and acceleration attributes are not used as there
are unavoidable flickers in video sequences and they
cannot be easily lifted to 3D.

Figure 11 presents the evaluation of 6-class weight
classification and 3-class spillability inferencing on

Fig. 9 We show some 2D skeletons extracted from our recorded video at the top, where missing parts are highlighted with red boxes. In
comparison, 3D IMU skeletons captured at the corresponding frames are shown underneath, which are clean and complete.
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Fig. 10 Parallel coordinate representation of inferencing accuracy
for different ways of computing per-joint features in the two graph
convolution layers. Each vertical axis represents the inferencing
accuracy for a type of motion. Each line represents a setting.
Considering all motion types, it seems good to use the parent of
a joint to compute joint features (red solid line).

Fig. 11 Left: average predicted weights by our model and human
observers for both 2D and 3D skeletal cases, where the weights are one
of 0, 5, 10, 15, 20, and 25 kg. The 6-class weight predictions by our
model using 3D skeletons are much closer to ground truth indicated by
the slanting black line. Right: the F1 score per class of the spillability
estimate by our model and human observers. For both 2D and 3D
skeletal cases, our method (see red and blue marks) achieves better
results.

cross-subject settings, using our model trained on
2D and 3D skeletons and human observers. Using
2D skeletons instead of 3D causes some drop in
inferencing accuracy in both weight and spillabi-
lity estimation: see the red and blue lines. We
believe this is mainly due to joint estimation errors,
missing depth information, and kinematic flickering
artifacts.
6.2.2 Property inferencing from video enhanced by

3D skeletons
The small size of unoccluded 3D skeleton motion
samples may generate thousands of rendered 2D
skeletons. Here we show that these 2D projections
of 3D data can effectively improve the performance
of property value estimation from 2D video. We
generated these virtual 2D samples by projecting the
3D joint positions of 3D skeleton sequences according
to different camera viewing angles. For the virtual

camera setting, we used a weak-perspective camera
model, as suggested by Ref. [58], which generates 2D
projections of synthetic 3D skeleton sequences. For
every 3D sequence, we used 8 fixed views, placed a
camera every 22.5◦ around the actor (covering 180◦

in total); all cameras were horizontal (pitch angle 0◦).
Table 4 presents the evaluation of 6-class weight

classification and 3-class spillability inferencing in
the cross-subject setting, using models trained on
2D skeletons extracted from video only, or on 2D
extracted skeletons and rendered 3D skeletons. The
trained models were tested only on 2D extracted
skeletons. In the second case, the ratio of extracted
and rendered skeletons was 1:8. Clearly using
additional virtual skeletons can effectively improve
performance.

Table 4 When adding rendered skeletons to training data, the object
inferencing accuracy (%) from video (such as the weight lifted and
spillability) is improved significantly

Lifting (6) Moving (3)

Without 51.6 62.9

With 61.4 71.4

6.3 Evaluation of property-aware motion
transfer

6.3.1 Setting
We again split the 100 subjects into training (60),
validation (20), and test (20) groups, respectively.
During training, we selected the network parameters
with the smallest validation error over all iterations.
We evaluate and report performance on the test
groups.
6.3.2 Latent space visualization
Figure 14 shows the latent space of motion samples
after projecting the latent features to a 2D image
using t-SNE. Each point represents a motion sample
of a subject lifting a 0 or 25 kg box. The leftmost
figure shows that they are clustered according to
object property values without contrastive loss. This
is due to the motion differences between different
subjects being smaller than those for lifting 0 and
25 kg boxes. With contrastive loss, the features start
to disentangle from object properties and become
more related to the subjects.
6.3.3 Results
Figures 12, 13, and 15 show three generated motions
after changing object property values. Please also
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Fig. 12 Given a motion sequence for an unseen subject walking on the wide path (green), we can generate a new sequence that looks like the
subject was walking on a narrow path (blue).

Fig. 13 Given the motion sequence shown in Fig. 1, we can generate a new sequence that looks like the subject was trying to lift a heavy box,
but it was too heavy to lift. The generated motion is similar to the ground truth as shown in a sequence of RGB images below.

Fig. 14 Latent variables projected to 2D space after encoding of several lifting motions with 0 and 25 kg boxes: (a) without contrastive loss,
(b) with contrastive loss, (left) colored by object properties, (right) colored by subject.

refer to the Electronic Supplementary Material for
further examples. Given a walking motion on a wide
path by an unseen subject, we transfer their motion
to walking on a narrow path, like a catwalk model.
Given a motion sequence of an unseen subject lifting
a light box from a table to a cupboard, we generate
a new sequence that looks like the box is too heavy
to lift; see Fig. 13.

In Fig. 15, we show a generated sequence of drinking
from an empty cup, given an unseen motion sequence
of using two hands to drink from a cup full of water.

As the unseen motion differs considerably from the
training set, the generated motion deviates from
the input. However, sometimes the correct motion
can be ambiguous. Note that during training, we
constrain the synthesized motion conditioned on a
target property value to be similar to the motion
performed by the same subject for a given object
property. Multiple options may likely match the
desired motion property value. It would be desirable
if we could synthesize the one most similar to the
input motion.
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Fig. 15 Given an unseen motion sequence of drinking from a cup full of water using two hands, we generate a new sequence of drinking from
an almost empty cup (blue skeletons in the second row). In the training set, all subjects drink water using one hand. Right: corresponding
RGB images of the actor for clarity.

6.4 User study
We conducted two user studies. The first investigated
a human observer’s perception of the weight and
spillability inferencing from skeleton sequences. We
considered both the 3D skeletons captured and 2D
skeletons extracted from video. The second user study
evaluated property-aware motion transfer on sitting
and walking sequences.
6.4.1 First user study
In this study, the test consisted of watching a video
of skeletal motion of an actor lifting a box or moving
a bowl, then predicting the unseen object’s property
by choosing an answer from multiple choices. For
Lifting a box sequence, six choices were provided:
0, 5, 10, 15, 20, and 25 kg. For Moving a bowl
sequence, three choices were provided: empty, fully
filled with rice, and fully filled with water. There
were a total of 12 tests. To help answer the questions,
4 samples with correct answers were shown before the
tests started. These motion samples were randomly
chosen from the testing group. Each video was about
3–6 s long. All participants had full control over
these videos: start, pause, stop, navigate in time,
etc. A total of 60 participants were recruited. Each
participant undertook the user study twice. The
first time, they predicted the weight from videos of
rendered 3D skeletons, and the second time, they
predicted the weight from 2D video skeletons. Note
that the 2D video skeletons have large missing parts
in certain frames due to occlusion by the human body
or the objects themselves, while the rendered ones
have much less occlusion, caused by bones. These
skeletons were drawn with the same color encoding.

The total study time for each participant was around
10 minutes.

Figure 11(left) shows the average weights predicted
by users and by our model, for boxes of different
physical weights. The weights estimated by our model
using 3D skeletons as input were much closer to the
physical ground truth than other values. Note that
our reported human performance is slightly lower
than that reported in Runeson and Frykholm’s work
[2]. A possible reason is that a smaller weight step
(5 kg) and more weight classes (6) were used in our
user study. Figure 11 (right) displays the F1 scores of
user study and our model on spillability inferencing.
It is challenging to distinguish an empty bowl from a
bowl full of rice, but still, our model outperformed
on both 2D and 3D skeletal cases.

6.4.2 Second user study
A total of 60 participants were recruited and divided
into two groups, watching the sitting and walking
sequences, respectively. Every participant undertook
12 tests, and 4 samples with correct answers were
played before the tests started. A test contained
two parts. The first task was to judge if the given
motion was synthetic or captured. The second
task was to select the associated object property
of the given motion, while only 2 choices were
provided: for example, to select whether the path
being walked on was wide or narrow, or the chair
being sat on was soft or hard. Other settings were
similar to the first user study. Figure 16 shows the
performance of participants on motion source and
object property inferencing. The lightness of a square
encodes the number of participants with a particular
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Fig. 16 Scatter map of participants’ accuracy (%) on guessing the
motion’s source (synthesized or captured), and on object property
inferencing. Left: sitting; right: walking. Shades of blue indicate the
number of participants, darker being higher.

inference accuracy, the darker the higher. For most
participants, source inferencing accuracy was about
60%, while property inferencing accuracy was above
90%, indicating that our synthesized motions are
quite close to real captured ones.

7 Conclusions and future work
7.1 Summary
The primary goal of this work was to study human
interaction motions represented by skeleton sequences.
The aims were to investigate whether and how well a
machine can learn to infer the properties of unseen
interacting objects, and to what extent we can control
synthesis of motions with target object properties.
We have built a large multi-modal dataset for such
object property inferencing from fine-grained human
interaction motions with 4000+ samples, consisting of
100 participants performing 8 different tasks, related
to 8 different object properties.

Using 3D skeleton sequences alone, we have learned
to infer the properties of interacting objects by
treating it as a classification problem, and have
evaluated our trained model in various settings.
The collected 3D skeleton sequences allow data-
driven learning, and help achieve better inferencing
accuracy compared to using other data sources or
even human observers. We have presented a network
to disentangle object properties from motion. The
disentangling, in turn, allows the synthesis of modified
motions with a target object property. This control
over the actions enriches the dataset on one hand,
and permits the specific animation of particular
individuals on the other.

7.2 Limitations
Due to the design, our target problem is limited to

defined scenarios with pre-defined human motions and
object properties. Inferencing and transfer tasks are
solved separately, while exploiting features extracted
during inferencing to guide synthesis might work
better. The main techniques used in both inferencing
and transfer tasks are well established.

Separate classifiers have to be trained for different
types of motions, and accuracy is mediocre. We
focus only on the intra-class characteristics for object
property inferencing, but it might be better to address
action recognition and object property inferencing
together, as action types provide further global
content information.

Our object property-aware motion transfer employs
an encoder–decoder structure with 1D convolution
layers, which might not fully capture the spatial-
temporal information of other human motions, in
particular, complex ones. More advanced network
structures, such as STRNN [62], could be used to
better transfer in-between independent actions.

7.3 Future work
Exciting research directions lay ahead as we are only
starting to exploit the collected motion data. We
have made a large-scale interaction dataset public.
We believe that this dataset will stimulate further
research, and in future, we will strive not only to
increase the number of samples, but also the types
of human–object interaction. Previous works have
shown that some other properties, e.g., size and
geometric shape, are quite hard to estimate from a
pantomimed action [4]. To be able to deal with more
diverse object properties, we are also considering
fusing other visual inputs, e.g., video and depth
sequences, with 3D skeletal motions.

Another promising direction is to discover exactly
which parts of the skeleton are critical for each specific
object property, by considering more sophisticated
attention models or computing more advanced
skeletal features. Further exploration could also
focus on designing new networks that can learn and
encode skeletal motions in a learned latent space,
instead of explicitly providing a parameterization. It
is certainly more exciting if we can directly predict
object properties from 2D video input with large
occlusions with high accuracy using a model trained
on 3D skeletal motions, eventually leading to new
modes of authoring video sequences.
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Appendix Interaction motion dataset
collection
Walking. The experiment on Walking aims to
estimate the width of the path. Each subject was
asked to walk back and forth on three straight paths
of different widths. We simulated the width of a
path using line markers to indicate path borders, and
asked the subjects to not cross the borders. We have
a total of 3 × 2 × 100 = 600 motion samples.

Fishing. The experiment on Fishing aims to
estimate the length of a fishing rod. Each subject was
asked to use a fishing rod to “catch” a magnetic object
placed in front of them. The object would attach to
the rod’s end when touched. Each subject performed
3 tasks, with rods of three different lengths. We have
a total of 3 × 3 × 100 = 900 motion samples.

Pouring. The experiment on Pouring aims to
estimate the type of liquid. Each subject was asked
to pour liquid from one cup to another. Each subject
did 3 tasks with three different substances (water,
shampoo, and rice). The pouring motions were
affected by the viscosity or particle granularity.

Bending. The experiment on Bending aims to
estimate the stiffness of a power twister. Each subject
was asked to bend a power twister with three different
settings, from easy to hard.

Sitting. The experiment on Sitting aims to estimate
the softness of a chair. Each subject was asked to
sit on four chairs of the same height but different
softness. The hardest chair is made of plastic, and
the softest one is a yoga ball.

Drinking. The experiment on drinking aims to
estimate the amount of water inside a cup. Each
subject was asked to take a cup from a table and take
a sip of water. Each subject performed 3 tasks while
the amount of water in the cup changed from almost
full, to half full, and to almost empty.

Lifting a box. The experiment on Lifting a box
aims to estimate the weight of an object from human
interaction. Each subject was asked to sequentially
perform four different tasks: (i) lifting a box from the
ground to a sofa, (ii) lifting the box from the sofa to a
table, (iii) lifting the box from the table to the top of
a cupboard, and finally (iv) putting the box back on
the floor. Without telling the subject, the weight of
the box was randomly changed by concealing different

weights in the box, ranging from 0 to 25 kg in steps
of 5 kg. Each subject performed 6 tasks and did
not know if he/she would lift a heavy or light box
before each trial, so all captured motions are naturally
close to what happens in real life. This experiment
provides 1343 motion samples in total, all annotated
with the specific task and weight. When a subject
failed to lift a heavy box to somewhere high, he/she
did not need to perform the following tasks with the
same weight.

Moving a bowl. The experiment on Moving a bowl
aims to judge the spillability of an object from human
interactions. While the weight is a physical property,
spillability is a more empirical property. Each subject
was asked to perform the same four tasks in a row
as described above, but to move a bowl rather than
lifting a box. Three uncovered bowls of the same
kind were used: one empty, one filled with rice, and
one filled with water. Thus, each subject performed
3 tasks and could see the different states of these
three bowls. They were all required to try their
best to move the bowls without spillage. We expect
this to capture how cautious the subject was, and
how much that correlated to his/her motion in the
corresponding trial. The degree of caution should be
highest when moving a bowl full of water, and the
lowest when moving an empty bowl, corresponding
to the spillability. All action samples were annotated
with one of the three levels of spillability.
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