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Abstract:

An adequate use of gas pulsation can create an ordered, dynamically structured bubble flow in a 

bed of Geldart B particles. A structured bed is more homogeneous, responds to external control 

and is scalable. While earlier studies have focused on describing the self-organization of the gas 

bubbles, the solid mixing and gas-solid contact patterns have remained unclear. In this work, the 

solids circulation and mixing behavior in structured and unstructured beds at various pulsation 

frequencies are compared with a traditional fluidized bed operation. The degree of lateral mixing 

is hereby quantified through an effective lateral dispersion coefficient extracted from CFD-DEM 

(discrete element modelling) simulations in a thin fluidized bed system. Mixing shows major 

quantitative and qualitative differences amongst the investigated cases. The coordinated motion of 

the gas bubbles wraps the solid flow into a series of compartments with minimal interaction, 

whereby effective lateral dispersion coefficients are an order of magnitude lower than in an 

unstructured operation. More importantly, unlike a traditional bed, dispersion in a structured bed 

is driven by advection and is no longer a diffusive process. Compartmentalization decouples the 

time scales of micro- and macromixing. Every pulse, the compartments rearrange dynamically, 

causing a level of local axial mixing that is scale-independent. While further work is necessary to 

fully understand the compartmentalization at a larger scale, the circulation described here indicates 

that a dynamically structured bed can provide a tight control of mixing at low gas velocities and a 

narrower distribution of stresses in the solid phase compared to traditional devices. 
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1. INTRODUCTION

Gas-solid fluidized beds are used for a variety of processes in the chemical, petroleum, 

metallurgical, and energy industries. They are chosen because of their excellent heat transfer and 

mixing characteristics. For catalytic processes, fluidized bed reactors can be preferred over fixed 

bed reactors because they allow to use smaller catalyst particles and because of the relative ease 

with which catalysts can be replaced. However, fluidized beds have important disadvantages, 

namely their difficult scale-up [1] and the prevalence of mass transfer limitations between the 

dense emulsion phase and the bubbles [2,3]. The latter results in an inefficient use of reactant gas 

and a reduction of the overall conversion.

Innovative fluidized bed designs consider ways to impose predictable behavior to facilitate 

scale-up, control and process integration. To control the flow patterns in the bed and increase the 

efficiency, new degrees of freedom can be introduced in the design, such as the use of internals, a 

source of external actuation, a modification to the geometry or the use of a centrifugal field. For 

operation with Geldart B particles, a reduction of the bubble size is often targeted [4], not only to 

facilitate scale-up, but also to improve interphase transfer and narrow the residence time 

distributions, which would help to increase selectivity towards desired intermediate products. One 

of the ways of introducing a certain degree of structure in a fluidized bed is by pulsating the gas 

supply. In thin fluidized beds, one can create a regular bubble flow by sinusoidally oscillating the 

gas flow. Under specific conditions, a regular bubble pattern emerges (see Figure 1) [5], whereby 

the bubbles organize into a triangular lattice characterized by a lateral wavelength ( ) that is 𝜆

independent of the system dimensions [6]. In every pulse, a new array of bubbles forms into the 

lattice at alternate positions, leading to a subharmonic pattern, i.e., recurring at a lower frequency 

than the perturbation applied, namely, f/2. In the largest systems, an ordered bubble flow survives 
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up to a height on the order of magnitude of the bed diameter, above which it is destabilized, 

breaking down into a more chaotic arrangement (not shown in the figure). To scale up the 

phenomenon observed in a thin pulsed fluidized bed to a larger bed and to optimize the mixing 

pattern and the gas-solid contact time, a better understanding of the hydrodynamics and transport 

phenomena is required.

Since the early 1990s, numerical studies based on computational fluid dynamics (CFD) have 

been increasingly used to provide insights into fluidization, as they allow to study the bed dynamics 

without disturbing the flow field [7–9]. There are two approaches for modelling gas-solid fluidized 

systems: the Eulerian-Eulerian approach, i.e., the two-fluid model (TFM), or the Eulerian-

Lagrangian approach, i.e., the discrete element method (CFD-DEM). In the former, the fluid and 

particulate phase are both treated as continuous phases, and the Navier-Stokes equations are solved 

for both phases. In the latter, only the fluid phase is modelled as a continuum by solving the Navier-

Stokes equations, while for the dispersed phase a large number of individual particles is tracked. 

It has been reported previously that a classic TFM framework fails to predict the experimentally 

observed regular lattice in a pulsed fluidized bed [10], whereas a bubble pattern can be accurately 

reproduced with a CFD-DEM approach [11]. Therefore, in the present study, CFD-DEM is 

selected as the preferred method to study the particle mixing in a pulsed gas-solid fluidized bed.

In a bubbling fluidized bed, mixing of particles is primarily caused by rising gas bubbles. To 

quantify how quickly particles are mixing in the axial and lateral direction, effective axial and 

lateral dispersion coefficients are used [12]. Understanding and quantifying solids mixing in a 

fluidized bed is important, because it is the major contributor to heat and mass transfer. Early 

studies focused on axial dispersion coefficients to assess the degree of axial backmixing, which is, 

for example, critical to assess the degree of isothermicity in a gas-solid fluidized bed [13–15]. 
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Lateral dispersion was hereby neglected, although it is an equally important input parameter in 

simple design tools for fluidized bed reactors. Therefore, recent work has dealt with deriving lateral 

dispersion coefficients [16] in order to provide engineering reactor models of gas-solid fluidized 

beds with a quantification of the lateral solids mixing, and, by extension, also lateral heat and mass 

transfer. Available literature focuses primarily on the experimental methods for estimating lateral 

dispersion coefficients [17–21] based on tracer methods, generally classified as saline, 

ferromagnetic, thermal, radioactive, carbon or phosphorescent. All these methods have limitations 

to their accuracy and resolution [22]. The results from thermal tracking can be difficult to interpret 

because heat is also transferred to the fluid phase and the walls, safety of personnel and equipment 

are a concern with radioactive tracking methods, and phosphorescent tracking methods are 

successful only in dilute fluidized beds. Furthermore, all solid tracer techniques require that 

numerous runs of experiments are carried out to guarantee repeatability of the results, which is not 

always feasible. 

The use of accurately validated simulations to study the solid flow behavior can provide a great 

level of insight into the solid mixing patterns. However, numerical studies on lateral dispersion in 

fluidized beds are still scarce. Liu and Chen [23] performed CFD-DEM simulations to evaluate 

the lateral dispersion coefficient in large-scale fluidized bed combustors. They studied the 

influence of the bed width on the lateral dispersion coefficient for a wide range of superficial gas 

velocities and concluded that the lateral dispersion in industrial-scale fluidized beds is much higher 

than that in lab-scale beds. Farzaneh et al. [24] used a Lagrangian multigrid technique to model 

fuel mixing in gas-solid fluidized beds. Oke et al. [16,22] investigated lateral solids mixing in gas-

solid fluidized beds using CFD-DEM, and found that the lateral mixing is strongly dependent on 

the applied frictional stress model and the dimensionality of the simulation. 
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Pulsation of the gas flow and vibration are ways to enhance the performance of fluidized bed 

reactors and dryers by improving flowability and heat and mass transfer [5,25,26].  To the best of 

the authors’ knowledge, lateral mixing in oscillating systems such as pulsed and vibrated fluidized 

beds, let alone the more recent dynamically structured systems, has not been quantified, either 

experimentally or computationally. A recent study investigated dispersion in a pulsed bed creating 

a periodic dynamic that is partly due to the interaction with the lateral walls in a small, confined 

space [27]. The authors found solid dispersion in those conditions to be a sub-diffusive process 

and proposed further work to analyze the behavior of larger beds that are dynamically structured. 

Since pulsation and vibration allow break-up of long force chains and particle clusters that are 

restricting flow, one might expect increased lateral dispersion under an oscillating gas flow at the 

same average superficial velocity. However, a dynamically structured bed operates in a very 

different regime with gas flow rates oscillating around the minimum fluidization velocity. The 

response of the bed to periodic cycles of fluidization and collapse results in a far denser system 

than with operation at a constant gas flow or the more common (unstructured) use of pulsation. In 

this “dynamically structured" state, a regular bubble flow (see Figure 1) is maintained at large 

scale, but it is still unclear how this pattern affects the solid circulation, what level of mixing and 

gas-solid contact time is achieved and whether the responsive bubble flow can be used to 

manipulate solid mixing. In particular, it is interesting to investigate in more detail whether the 

solids mixing behavior can be externally controlled by changes in the pulse characteristics. 

This work addresses some of these questions by investigating the solid mixing patterns via 

numerical simulations of a simplified thin fluidized bed validated with experimental bubbling 

dynamics. The paper is organized as follows. First the formulation of the CFD-DEM model and 

simulation settings are described, followed by a discussion on the methodology used for the 
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analysis of the lateral dispersion. Then, the results of the simulations are presented, including the 

comparison of a traditional operation under constant gas flow with oscillating fluidized beds at 

different pulsation frequencies and degrees of stability. A summary of the conclusions is given in 

the final section.

2. EXPERIMENTAL SET-UP

A thin rectangular fluidized bed is used to study a dynamically structured bubbling bed. Figure 2a 

depicts the setup comprising of a fluidization chamber, 0.45 m × 0.12 m × 0.01 m, and a plenum 

chamber, both made of Perspex. Ambient air is filtered, dehumidified, and delivered into the 

fluidization chamber through a sintered metal distributor plate (3 mm grade 07 Sintertech Poral 

bronze plate). A sinusoidal air flow is obtained using two parallel lines equipped with needle and 

solenoid valves (200 SLPM). During operation, the needle valve is kept at a constant aperture and 

the amplitude  and frequency  of the air flow signal are controlled by manipulating the solenoid 𝑢𝑎 𝑓

valve. The air mass flow rate is computed from the instantaneous pressure drop over the distributor, 

which is measured using GE differential sensors, flush with the wall and calibrated with mass flow 

meters under the same conditions (OMEGA flow meters, 250 SLPM). The chamber is filled to a 

static bed height of 0.045 m with Jencons-PLS spherical soda-lime Geldart B glass beads with a 

density of 2500 kg m-3 and a size range between 224-250 µm. The measured minimum fluidization 

velocity  is 0.046 m s-1. Experiments and simulations are conducted under an oscillating air 𝑢𝑚𝑓

superficial velocity : 𝑢

𝑢 = 𝑢𝑚𝑖𝑛 + 𝑢𝑎[1 + sin (2π𝑓𝑡)] (1)

where f is the frequency of the applied oscillation,  is the minimum gas superficial velocity 𝑢𝑚𝑖𝑛

and  is the amplitude of the pulse. The resulting time-averaged velocity is . 𝑢𝑎 𝑢 = 𝑢𝑚𝑖𝑛 + 𝑢𝑎

Experiments are conducted at a fixed minimum flow velocity  = 0.02 m s-1, fixed amplitude 𝑢𝑚𝑖𝑛
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 = 0.088 m s-1 and varying frequency  = 5, 6, 7 Hz. Figure 2b shows examples of the 𝑢𝑎 𝑓

experimentally observed structure and the scale of the numerical simulation box. As described 

elsewhere [28], when one operates under a structured pulsation there exists a strong correlation 

between the size of the bubbles and their separation. An increase in frequency results in a decrease 

of both the bubble size, due to the lower amount of air injected in every pulse, and the bubble 

separation, since the range of the circulation around each bubble reduces, which causes the 

organization into a narrower tessellation. Under the present set of particle and bed properties (i.e., 

size, density, friction factor, bed height), and overall gas flow ( ), the transition from an 𝑢𝑚𝑖𝑛 , 𝑢𝑎

alternating single bubble array to a triangular tessellation occurs in the frequency range 5 – 7 Hz. 

The conditions are selected to identify the possible differences in the axial dispersion of powder 

in systems with a single array dominated by nucleation and clustering phenomena, and those where 

multiple bubble arrays interact, i.e., where bubbles survive in the bed during several pulses.

3. MODEL DESCRIPTION

The simulations are performed with the open source CFD-DEM framework CFDEM®coupling 

v3.8.0 [29]. This package provides a coupling between OpenFOAM v5 [30], and LIGGGHTS 

v3.8.0 [31]. In the following, an overview is given of the governing equations, constitutive 

equations, numerical settings, and boundary conditions used in the present work.

3.1. DEM EQUATIONS

In the DEM framework, each particle in the computational domain is tracked in a Lagrangian 

way, by explicitly solving the force and torque balances that follow from Newton’s second law:

𝑚𝑝
𝑑𝒖𝑝

𝑑𝑡 = 𝑭𝑝,𝑛 + 𝑭𝑝,𝑡 + 𝑭𝑝,𝑔 + 𝑚𝑝𝒈 (2)
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𝑰𝑝
𝑑𝜔𝑝

𝑑𝑡 = 𝑻𝑝,𝑡 (3)

Herein,  is the mass [kg] of particle p,  is its velocity [m s-1],  is the normal inter-particle 𝑚𝑝 𝒖𝑝 𝑭𝑝,𝑛

contact force [N],  is the tangential inter-particle contact force [N],  is the total force [N] 𝑭𝑝,𝑡 𝑭𝑝,𝑔

exerted by the gas,  the gravitational acceleration [m s-2],  the moment of inertia [kg m2],  𝒈 𝑰𝑝 𝜔𝑝

the rotational velocity [rad s-1] and  the torque [N m] induced by the tangential inter-particle 𝑻𝑝,𝑡

contact.

Particle collisions are modelled using the soft-sphere approach proposed by Cundall and Strack 

[32] allowing for particles to overlap slightly in the collision point. Normal and tangential inter-

particle contact forces are then modelled using the Hertzian spring-dashpot contact theory. The 

normal contact force includes an elastic repulsion force and a visco-elastic damping force [33]: 

𝑭𝑝,𝑛 = 𝑘𝑛𝜹𝑛 + 𝛾𝑛𝒖𝑟,𝑛 (4)

The tangential contact force includes a shear force and a tangential damping force [34]:

𝑭𝑝,𝑡 = 𝑘𝑡𝜹𝑡 + 𝛾𝑡𝒖𝑟,𝑡 (5)

Herein,  and  are the normal and tangential elastic constants [N m-1],  and  are the normal 𝑘𝑛 𝑘𝑡 𝜹𝑛 𝜹𝑡

and tangential geometric overlap between the paired particles [m],  and  are the normal and 𝛾𝑛  𝛾𝑡

tangential visco-elastic damping constants [N s m-1], and  and  are the normal and tangential 𝒖𝑟,𝑛 𝒖𝑟,𝑡

component of the relative velocity of the two particles. The following constitutive equations are 

used for the elastic constants and visco-elastic damping constants:

𝑘𝑛 =
4
3𝑌 ∗ 𝑟 ∗ 𝛿𝑛 (6)

𝑘𝑡 = 8𝐺 ∗ 𝑟 ∗ 𝛿𝑛 (7)
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𝛾𝑛 = ―2
5
6𝛽

3
2𝑘𝑛𝑚 ∗ (8)

𝛾𝑡 = ―2
5
6𝛽 𝑘𝑡𝑚 ∗ (9)

Herein,  represents the effective Young’s modulus [Pa],  the effective shear modulus [Pa], 𝑌 ∗ 𝐺 ∗

 the effective particle radius [m],  the effective particle mass [kg], and  is a function of the 𝑟 ∗ 𝑚 ∗ 𝛽

coefficient of restitution, , given by:𝑒

𝛽 =
ln (𝑒)

ln2 (𝑒) + 𝜋2 (10)

The total force exerted by the gas, , includes contributions from the drag force, pressure 𝑭𝑝,𝑔

force and viscous force:

𝑭𝑝,𝑔 = 𝑭𝑝,𝑑 ― 𝑉𝑝∇𝑃 ― 𝑉𝑝∇ ⋅ 𝝉𝒈 (11)

where  is the particle volume [m3],  the gas pressure [Pa] and  the gas phase stress tensor 𝑉𝑝 𝑃 𝝉𝒈

[Pa]. The drag force  is discussed in Section 3.2.2.𝑭𝑝,𝑑

3.2. CFD-DEM COUPLING

3.2.1. Governing equations

The motion of the gas phase is described by the mass continuity and Navier-Stokes equations, 

which can be written as:

∂
∂𝑡

(𝜀𝑔𝜌𝑔) + ∇ ⋅ (𝜀𝑔𝜌𝑔𝒖𝑔) = 0 (12)

∂(𝜀𝑔𝜌𝑔𝒖𝑔)
∂𝑡 + ∇ ⋅ (𝜀𝑔𝜌𝑔𝒖𝑔𝒖𝑔) = ― 𝜀𝑔∇𝑃 + ∇ ⋅ (𝜀𝑔𝝉𝒈) + 𝜀𝑔𝜌𝑔𝒈 + 𝑴𝑔,𝑝 (13)
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Herein,  is the void fraction [-],  the gas density [kg m-3],  the gas velocity [m s-1],  the 𝜀𝑔 𝜌𝑔 𝒖𝑔 𝑃

gas pressure [Pa],  the gas phase stress tensor [Pa],  the gravitational acceleration [m s-2], and 𝝉𝒈 𝒈

 represents the momentum exchange with the particulate phase [N m-3]. The gas phase stress 𝑴𝑔,𝑝

tensor is given by:

𝝉𝒈 = 𝜇𝑔(∇𝒖𝑔 + ∇𝒖𝑇
𝑔) + (𝜆𝑔 ―

2
3𝜇𝑔)(∇ ⋅ 𝒖𝑔) 𝑰 (14)

where  is the gas phase shear viscosity [Pa s] and  the bulk viscosity [Pa s]. In the present 𝜇𝑔 𝜆𝑔

work, the gas phase is assumed incompressible and isothermal, i.e., the density and viscosity are 

constant and uniform.

A pressure-based solver is used to solve the above equations, using the Pressure Implicit Split 

Operator (PISO) algorithm for pressure-velocity coupling. In this approach an implicit momentum 

predictor is followed by a series of pressure solutions and velocity correctors [35]. An important 

step in the CFD-DEM coupling procedure is the calculation of the void fraction. The positions and 

volumes of the individual particles need to be translated into a volume fraction field, which is 

defined on a fixed Eulerian grid. The simplest approach to calculate the volume fraction is to take 

the sum of the volumes of all particles whose centers are located in a given cell, and to divide this 

by the cell volume. However, in the present work, the so-called ‘divided’ volume fraction 

calculation is used, whereby a particle’s volume is distributed over all cells that are (partly) 

covering it. This approach was found to give the best estimation of the minimum fluidization 

velocity, mainly because particles near the freeboard of the bed are not assigned to a single cell 

only.
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3.2.2. Gas-particle momentum exchange

The interphase momentum exchange is considered to be solely due to drag, whereas lift and 

virtual mass forces are considered negligible. The drag force is proportional to the slip velocity, 

i.e., the relative velocity of the gas to the particles, and is calculated individually for each particle. 

The drag force exerted by the gas on a particle p is given by:

𝑭𝑝,𝑑 = ―
𝑉𝑝𝛽𝑑

1 ― 𝜀𝑔
(𝒖𝑔 ― 𝒖𝑝) (15)

Herein,  is the particle volume [m3],  is the void fraction,  is the drag coefficient per unit 𝑉𝑝 𝜀𝑔 𝛽𝑑

volume [kg m-3 s-1],  is the gas velocity [m s-1] in the cell that contains the particle, and  is the 𝒖𝑔 𝒖𝑝

individual particle velocity [m s-1]. 

For numerical reasons, the gas-solid momentum exchange term is split in an implicit and an 

explicit part:

𝑴𝑔,𝑝 = 𝐾𝑔,𝑝(𝒖𝑔 ― 〈𝒖𝑝〉) (16)

where

𝐾𝑔,𝑝 = ―
∑𝑁

𝑝 = 1𝑭𝑝,𝑑

𝑉𝑐𝑒𝑙𝑙(𝒖𝑔 ― 〈𝒖𝑝〉)
(17)

Herein,  is the ensemble-averaged particle velocity [m s-1], and  is the volume of the 〈𝒖𝑝〉 𝑉𝑐𝑒𝑙𝑙

computational cell [m3].

The drag coefficient  is typically obtained from empirical correlations. In this work, drag is 𝛽𝑑

computed using Gidaspow’s model [36], which uses the Wen and Yu [37] correlation in the dilute 

regions of the bed, and switches to Ergun’s law [38] in the dense regions of the bed.

: 𝜀𝑔 > 0.8 (18)
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𝛽𝑑 =
3
4𝐶𝑑

𝜀𝑔(1 ― 𝜀𝑔)𝜌𝑔|𝒖𝑔 ― 𝒖𝑝|
𝑑𝑝

𝜀 ―2.65
𝑔

𝐶𝑑 =
24

𝜀𝑔𝑅𝑒𝑝
[1 + 0.15(𝜀𝑔𝑅𝑒𝑝)0.687]              𝑅𝑒𝑝 =

𝜌𝑔|𝒖𝑔 ― 𝒖𝑝|𝑑𝑝

𝜇𝑔
(19)

:𝜀𝑔 ≤ 0.8

𝛽𝑑 = 150
(1 ― 𝜀𝑔)2𝜇𝑔

𝜀𝑔𝑑2
𝑝

+ 1.75
𝜌𝑔(1 ― 𝜀𝑔)|𝒖𝑔 ― 𝒖𝑝|

𝑑𝑝

(20)

3.3. COMPUTATIONAL SETUP

An overview of operating conditions and computational settings is given in Table 1. The physical 

properties of the gas and the particles are adopted from a previous work by Wu et al. [11], which 

included a standard validation of the system, setting the Poisson’s ratio, , to 0.22, and the 𝜈

coefficient of restitution, , of the glass beads to 0.97 both for inter-particle and wall-particle 𝑒

collisions. An artificially small Young’s modulus (10 MPa) was used for the glass beads to avoid 

a prohibitively small DEM time step [39,40]. This is common practice to speed up DEM simulations, 

and was previously found not to have a significant impact on the bubble dynamics for non-cohesive particles 

[41–44]. The angle of repose, , was measured experimentally by piling the glass beads on a 𝜃

horizontal surface, and the friction coefficient between particles, , was set to 0.35 according to 𝜇𝐹𝑟

the approximation  obtained from the Mohr–Coulomb criterion. It was reduced to tan (𝜃) ≈ 𝜇𝐹𝑟

0.1 for particle-wall collisions, . 𝜇𝑤

The bubble pattern characteristics (bubble size and separation) are independent of the width of 

the computational domain [45]. A width of 0.1 m was chosen, since this is the minimum size to 

accommodate the formation of two alternating bubbles in a lattice, for the conditions studied in 

the present work.
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The PISO algorithm was used for pressure-velocity coupling in the gas phase. Second-order 

accurate discretization schemes were used for gradients and divergences, while a first-order Euler 

implicit scheme was used for temporal discretization. The DEM time step was set to  s, 1 × 10 ―6

which corresponds to approximately  (  denotes the characteristic collision time) and is 𝑡𝑐/50 𝑡𝑐

considered sufficient to describe the collision process [46,47]. The CFD time step of  s 1 × 10 ―4

was found to be sufficient to achieve convergence and accuracy, while still obeying the Courant-

Friedrichs-Lewy (CFL) condition at all times. 

As described elsewhere [11], the computational cost is reduced by using a narrow computational 

domain. The operation with a constant gas flow is studied at a typical superficial gas inlet velocity 

of . To provide a direct comparison with historical values of the lateral dispersion 2.5 𝑢𝑚𝑓

coefficient, the computational minimum fluidization velocity, equal to 0.056 m s-1, is used as  𝑢𝑚𝑓

for the system. A sensitivity analysis confirms that sufficient particle motion and mixing is allowed 

in a domain with a thickness of 0.002 m. Simulations with a domain thickness of 0.002 and 0.004 m 

show minor differences in the resulting , and both show a lateral dispersion coefficient in 𝑢𝑚𝑓

quantitative agreement with literature [19,21,48]. Therefore, a 0.002 m thick domain was used for 

all subsequent simulations. 

The choice of drag model, the choice of interpolation schemes, the assumption of monodispersity 

and the use of a narrower computational domain lead to a discrepancy in the computational , 𝑢𝑚𝑓

which is 18% higher than the experimental value, 0.046 m s-1. This discrepancy does, however, ~

not introduce significant errors in the prediction of bubble size and pattern in the oscillating beds. 

The superficial inlet velocity is implemented as a modified boundary condition, given by Eqn. (1), 

using the experimental values for the minimum flow velocity  = 0.02 m s-1, fixed amplitude 𝑢𝑚𝑖𝑛

 = 0.088 m s-1 and varying frequency  = 5, 6, 7 Hz.𝑢𝑎 𝑓
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4. ANALYSIS OF LATERAL DISPERSION 

Axial and lateral dispersion coefficients are often used in simplified reactor engineering models, 

to quantify how quickly particles are mixing in a fluidized bed. These are effective diffusivities, 

lumping together the effects of various mechanisms, such as bubble break-up and coalescence, 

emulsion drifting and wake transport. Here, the lateral dispersion coefficient in pulsed fluidized 

beds is derived from detailed CFD-DEM simulations, for later use in surrogate macroscopic 

models for predicting and scaling up of this type of fluidized beds. The lateral dispersion 

coefficient is often defined by an equation similar to Fick’s law of molecular diffusion [12]:

∂𝐶
∂𝑡 = 𝐷𝑠𝑟

∂2𝐶
∂𝑥2 (21)

where  represents the particles concentration [particles m-3] and  is the lateral dispersion 𝐶 𝐷𝑠𝑟

coefficient [m2 s-1]. The reasoning behind this diffusion-like mechanism for solid mixing is that 

each particle in a fluidized bed has equal chance of moving to either the left or right side, hence 

behaving similar to the molecules of a gas [22]. The thin fluidized bed case presented here is a 

simple modification of the typical case in literature whereby particles migrate between two halves 

of a 2D domain. In the case presented here, particles migrate outwards from a centrally located 

compartment defined by analysis of the bubble dynamics. To make the problem one-dimensional, 

the particle concentration is averaged over the vertical direction, so that it becomes a function of 

only the horizontal coordinate . Initially, the particles in part of the bed, corresponding to the 𝑥

lateral positions , are marked (see Figure 3a) and the concentration profile of these so- 𝑥1 ≤ 𝑥 ≤  𝑥2

called tracer particles is monitored in time. Numerically, the tracer concentration profile can be 
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obtained from the CFD-DEM simulations by dividing the bed in a number of vertical layers of 

width  [m], and calculating the tracer concentration in each layer, as follows:𝛿𝑥

𝐶𝑡(𝑥,𝑡) =
𝑛𝑡(𝑥,𝑡)

𝛿𝑥 ⋅ 𝐻 ⋅ 𝑍
(22)

Herein,  is the number of tracer particles in the layer centered around the lateral position 𝑛𝑡(𝑥,𝑡)

 at time , and  and  are, respectively, the domain height [m] and thickness [m]. The lateral 𝑥 𝑡  𝐻 𝑍

dispersion coefficient can be determined by matching the simulated concentration profile  𝐶𝑡(𝑥,𝑡)

with the analytical solution of Eqn. (21). 

Now the task remains to determine this analytical solution. The initial and boundary conditions 

characterizing the above setup are (see Figure 3a):

𝐶(𝑥,0) = 𝑓(𝑥) = {  𝐶(𝑥)         𝑥1 ≤ 𝑥 ≤  𝑥2           
    0             𝑥 < 𝑥1 and 𝑥 > 𝑥2

(23)

∂𝐶(𝑥,𝑡)
∂𝑥 = 0       𝑥 = 0  and  𝑥 = 𝑊 (24)

The solution of the system defined by Eqns. (21), (23) and (24) can be obtained by using 

Fourier’s method of separation of variables. This yields the general solution: 

𝐶(𝑥,𝑡;𝐷𝑠𝑟) = 𝐴0 +
∞

∑
𝑛 = 1

𝐴𝑛cos (𝑛𝜋
𝑊𝑥)exp ( ― 𝐷𝑠𝑟

𝑛2𝜋2

𝑊2 𝑡) (25)

The coefficients  follow from substitution of the initial condition, and are calculated as 𝐴𝑛

follows:

𝐴0 =
1
𝑊∫

𝑊

0
𝑓(𝑥)𝑑𝑥 =

1
𝑊∫

𝑥2

𝑥1

𝐶(𝑥)𝑑𝑥 (26)

𝐴𝑛 =
2
𝑊∫

𝑊

0
𝑓(𝑥)cos (𝑛𝜋

𝑊𝑥)𝑑𝑥 =
2
𝑊∫

𝑥2

𝑥1

𝐶(𝑥)cos (𝑛𝜋
𝑊𝑥)𝑑𝑥 (27)
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The integrals in Eqns. (26)-(27) are evaluated numerically. To facilitate parameter fitting, Eqn. 

(25) is spatially averaged over the lateral positions . The resulting expression depends  𝑥1 ≤ 𝑥 ≤  𝑥2

only on time and is given by:

𝐶𝑎𝑣(𝑡;𝐷𝑠𝑟) =
1

𝑥2 ― 𝑥1∫
𝑥2

𝑥1

𝐶(𝑥,𝑡)𝑑𝑥 = 𝐴0 +
∞

∑
𝑛 = 1

𝐴𝑛

𝑥2 ― 𝑥1
[sin (𝑛𝜋

𝑊𝑥2) ― sin (𝑛𝜋
𝑊𝑥1)]exp ( ― 𝐷𝑠𝑟

𝑛2𝜋2

𝑊2 𝑡) (28)

Similarly, the simulated tracer concentration profile  is averaged horizontally over the 𝐶𝑡(𝑥,𝑡)

lateral positions , resulting in the tracer concentration , which only depends on  𝑥1 ≤ 𝑥 ≤  𝑥2 𝐶𝑡,𝑎𝑣(𝑡)

time. The lateral dispersion coefficient is then obtained by least-squares fitting of this simulated 

tracer concentration  to the analytical expression for , Eqn. (28). Note that, if the 𝐶𝑡,𝑎𝑣(𝑡) 𝐶𝑎𝑣(𝑡;𝐷𝑠𝑟)

process is purely diffusion driven and Eqn. (21) holds, the obtained dispersion coefficient is 

independent of the values of  and . Typically in literature, one half of the bed is marked as  𝑥1  𝑥2

tracer particles, i.e.  and , which further simplifies the analytical solution  𝑥1 = 0  𝑥2 = 𝑊/2

[16,22,23]. However, the general solution of the diffusion equation, as given by Eqns. (25)-(28), 

allows to use any value for  and .  𝑥1  𝑥2

One must note certain ambiguity in literature as to whether the approximation of the system to 

a 1D diffusion process retains physical meaning or whether it is purely numerical. In the authors’ 

view, given that the reported coefficients are to be used in surrogate models as “diffusion” or 

“dispersion” coefficients, Eqn. (21) must be treated as a proper diffusion equation and, therefore, 

one must follow the approach above to compute concentration. However, this is not the usual 

definition found in literature for the term “tracer concentration”. For practicality and ease to 

compare with experimentally derived coefficients, most authors [16,22,23] use a void-free tracer 

concentration or mass fraction , defined as the ratio of the number of tracer particles to the total 𝑌

number of particles in each vertical layer: 
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𝑌𝑡(𝑥,𝑡) =
𝑛𝑡(𝑥,𝑡)

𝑛𝑡𝑜𝑡(𝑥,𝑡) (29)

The lateral “dispersion coefficient” is then obtained by fitting the simulated void-free 

concentration of tracer particles to the analytical solution of the following system (see Figure 3b):

∂𝑌
∂𝑡 = 𝐷′𝑠𝑟

∂2𝑌
∂𝑥2 (30)

𝑌(𝑥,0) = 𝑔(𝑥) = {  1           𝑥1 ≤ 𝑥 ≤  𝑥2           
  0           𝑥 < 𝑥1 and 𝑥 > 𝑥2 (31)

∂𝑌(𝑥,𝑡)
∂𝑥 = 0       𝑥 = 0  and  𝑥 = 𝑊 (32)

In this case, analytical expressions can be obtained for the coefficients  using Eqns. (26)-(27).𝐴𝑛

The lateral dispersion coefficients obtained with both methods,  and , will be different. 𝐷𝑠𝑟 𝐷′𝑠𝑟

Indeed, Eqns. (21) and (30) are only equivalent under the assumption that the bed density is 

constant and uniform.  This is not the case. Projecting a 3D fluidized bed on a single coordinate 

ignores the variation in bed density caused by the formation of gas bubbles. Even in a traditional 

fluidized bed, the time-averaged density shows a certain spatial distribution since bubbles 

concentrate preferentially in the central area. In a structured system, on the other hand, the bed 

density follows a much more defined spatial pattern driven by a fixed set of bubble trajectories, 

which causes the bed density to fluctuate along the x- horizontal direction. Using the void-free 

concentration of tracer particles  averages out these phenomena in both time and space, 𝑌

smoothening the otherwise more fluctuating tracer concentration profiles. In the present work, both 

definitions will be used and compared. 
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5. RESULTS AND DISCUSSION

5.1. STRUCTURED BUBBLE FLOW

Pulsating the gas supply at well-chosen conditions leads to a subharmonic flow pattern, where 

bubbles nucleate at a fixed set of positions, alternating every other pulse. Bubbles rise vertically 

with minimal lateral motion. Figure 4 illustrates how a pattern emerges during one period of the 

gas oscillation. The phase angle  is used to describe the pattern evolution during any period ( ) 𝜑 𝑇

of the oscillating gas flow. The phase angle is hereby defined as , with the initial 𝜑 = 2𝜋(𝑡 ― 𝑡0)/𝑇

flow time , in which  is an integer. The bubble pattern is a consequence of the creation of 𝑡0 = 𝑛𝑇 𝑛

dense solid-like structures in the bed. These appear in the wake and between rising bubbles. Figure 

4 shows the local particle velocity and points out the areas where solids lock in frictional contact 

at very low velocity (marked by the nondimensional velocity  ,  i.e., the 𝑣 < 10 𝑣 = 𝑣/𝑑𝑝𝑓, 

displacement per pulse measured in particle diameters). In every pulse, as the gas velocity 

increases, a horizontal channel forms at the bottom, spanning the entire width of the bed. When 

the gas velocity reaches its maximum at , the bed is fully expanded and accelerating 𝜑 ~ 0.5𝜋

upwards, but, as the gas velocity decreases, the bed loses inertia and eventually collapses at 

 when the gas velocity drops below . Solids are then collected at the distributor 𝜑 ~ 1.2𝜋 𝑢𝑚𝑓

forming a large static region, see  in Figure 4, and the horizontal channel breaks into a new set 

of bubbles. When the gas velocity increases again, the circulation of powder around each bubble 

converges onto a single point in between a new pair of rising bubbles, creating a compressed region 

or pivot that limits the mobility of the solids and stabilizes the axial motion of the bubbles, see  

in Figure 4. The solid circulation into the wake of each bubble creates another dense structure, see 

 in Figure 4, where particles lock in friction, transmitting a compressing stress onto the 
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distributor that will be responsible for the alternation of the nucleation sites in the next pulse [45], 

creating the final pattern.

From the above it is clear that, qualitatively, the formation of the pattern stabilizes the bubble 

motion and restricts the ability of the solids to traverse the bubble wakes, which is discussed further 

in Section 5.3. What follows is an evaluation of how this phenomenon affects the circulation of 

the solid phase and its lateral mobility. The smallest possible realization of this phenomenon is 

studied, consisting of the formation of approximately 1.5 bubbles in each pulse, i.e., a single full 

bubble and a smaller half bubble forming at one of the walls (see Figure 4). Mixing will be studied 

by dividing the bed laterally in compartments delimited by the lateral positions of these bubbles. 

The boundaries of the compartments are calculated as the mean position of the trajectories of the 

full central bubbles, which, in this case, results in two vertical paths (one full bubble every pulse). 

The average lateral positions of both trajectories mark the boundaries  and  of the 𝑥1 𝑥2

compartments. Figure 5 shows an example of the bubble positions for cases 5, 6 and 7 Hz. One 

observes much more variability in the structured flows for the 6 Hz and 7 Hz cases, where bubble 

trajectories do not seem as stable as for the 5 Hz case. The central compartment in the 5 Hz case 

has a span equal to half of the pattern wavelength (distance between two full bubbles in a larger 

pattern) and it roughly represents the space between one side of a bubble and its neighboring 

central pivot (region  in Figure 4). The system is symmetrical with the central compartment 

appearing perfectly centered, and yet wider (3.73 cm) than the side compartments (3.14 cm) 

meaning that, for 5Hz pulses, the computational domain is not wide enough to accommodate two 

complete half bubbles at the walls. The implications of this will be discussed further in Section 

5.3. 
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The particles inside a compartment  are marked and their positions tracked in time  𝑥1 ≤ 𝑥 ≤  𝑥2

to evaluate their dispersion into the rest of the bed. An effective lateral dispersion coefficient is 

calculated using the approach given in Section 4, for fluidized beds oscillating at different 

pulsation frequencies (5, 6, 7 Hz), as well as for a bed operated at a constant gas flow rate.

5.2. LATERAL DISPERSION

Results from simulations and experiments are compared in Table 2. CFD-DEM simulations can 

provide an accurate representation of the gas dynamics in the system, showing quantitative 

agreement in the prediction of bubble size and separation in constant and oscillating systems at all 

frequencies. Although the values of bubble size and separation are well predicted, it is clear that 

the stability of the flow structure in the experiments at 6 Hz and 7 Hz is not captured in the 

simulations. A stable pattern is responsible for the low values of the experimental standard 

deviations of the bubble size and wavelength in Table 2 and Figure 5. The simulations show a 

much higher level of lateral bubble mobility and a larger variability in size throughout the pulse. 

In the case of constant flow (f = 0 Hz) in Table 2, the bubble diameter in the simulations is 28 % 

larger than in experiments, simply because of the difference in the reference minimum fluidization 

velocity used for the experimental and the computational cases. Both experiments and simulations 

are run at a superficial gas velocity , and given that the computational minimum 𝑢 = 2.5𝑢𝑚𝑓

fluidization velocity is larger than in the experiments, a larger gas volume is available for bubble 

formation. 

The following sections analyze the solid mixing behavior for each case.
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5.2.1. Constant gas flow

Lateral dispersion in bubbling beds has been widely studied both experimentally [17–21] and 

numerically [16,22–24]. As a benchmark for the verification of the model and comparison with 

the oscillating beds, a bubbling bed at constant gas flow is simulated. A common reference is used, 

setting the gas inlet velocity to 2.5 times the minimum fluidization . As expected, this leads to 𝑢𝑚𝑓

bubbles with a wide size distribution and a chaotic spatial distribution. An effective lateral 

dispersion coefficient is derived according to the procedure in Section 4, where the particles within 

a selected region  are marked, and the concentration of these so-called tracer particles  𝑥1 ≤ 𝑥 ≤  𝑥2

is monitored in time. The average concentration, , is calculated as described in Section 4 and 𝐶𝑡,𝑎𝑣

is normalized for simplicity by the maximum initial tracer concentration over all lateral positions. 

Its time evolution is shown in Figure 6. Fitting to Eqn. (28) yields a lateral dispersion coefficient 

of 1.473 x 10-4 m² s-1. Figure 6 shows  associated to the dispersion observed in CFD-DEM 𝐶𝑡,𝑎𝑣

simulations (circles) and the corresponding fit to the theoretical model (red line), described by 

Eqn. (28). Fits using different dispersion coefficients (dashed lines) are added to illustrate the range 

of error in fitting. This error is related to the short time scale oscillations observed in the evolution 

of the average concentration, which are related to, on the one hand, fluctuations in the bed density 

and, on the other hand, rapid exchange of particles in and out of the tracked compartment.

The above methodology differs in three aspects from the one usually applied in literature. First, 

as already briefly discussed in Section 4, a strict definition of concentration is used, as opposed to 

the void-free concentration or mass fraction commonly found in literature [16,22,23]. The two 

approaches are only equivalent when the bed density is uniform, which is not the case in a bubbling 

bed. Using the void-free tracer concentration results in an artificial smoothing of the evolution of 

the concentration, see Figure 7a versus Figure 7b. A second difference is related to the initial 



23

condition. In the pulsed flow cases, one must start from a dynamic condition, meaning that the bed 

is already moving at the beginning of particle tracking. Starting at another point in time would 

result in a slightly different value for the dispersion coefficient; thus, many initial points are needed 

to obtain an average . 𝐷𝑠𝑟

The value of the fitted dispersion coefficient does not depend on the chosen values for  and 𝑥1

. By tracking half of the bed under a constant gas flow, i.e., using , as is 𝑥2 𝑥1 = 0, 𝑥2 = 𝑊/2

typically done in literature (Figure 7a), a comparable, only slightly lower value for the lateral 

dispersion coefficient is obtained. This agrees with the observations by Berruti et al. [48], who 

point to spatial non-uniformities in the particle mixing behavior that cause the lateral dispersion 

coefficient to vary, depending on the position in the bed with respect to the walls. However, given 

the variability in the evolution of  (which can only be observed with the present definition of 𝐷𝑠𝑟

concentration), the difference between the two results lies within an acceptable error margin. The 

values obtained for  are on the same order of magnitude as values calculated using the 𝐷𝑠𝑟

correlations of Shi and Fan [21], Berruti et al. [48] and Borodulya et al. [19], as shown in Figure 

8. 

5.2.2. Periodically pulsating gas flow

The pulsed cases are analyzed following the same procedure. Particles in the central 

compartment corresponding to the lateral positions  given in Figure 5 are marked and  𝑥1 ≤ 𝑥 ≤  𝑥2

their positions are monitored over time. Fitting the decay of  to the expression in Eqn. (28) 𝐶𝑡,𝑎𝑣

allows us to determine the lateral dispersion coefficients. Table 3 provides a summary of the 

compartments used and the resulting effective dispersion coefficients for constant and pulsed beds, 

and Figure 8 compares them with available correlations. The bed operated at a constant flow and 
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the beds pulsed at 6 Hz and 7 Hz all show lateral dispersion coefficients in quantitative agreement 

with the expectation for typical bubbling beds. The structured bed at 5 Hz, however, shows an 

effective diffusion coefficient 3-5 times lower than that of a bed operating at the same conditions 

without the oscillation. This abnormal behavior is linked to the compartmentalization of the solid 

flow. As will be discussed in the next section, the compartmentalization makes dispersion in these 

structured beds different from a diffusion-driven process. Hence, the effective diffusion 

coefficients in Table 3 are ill-defined and should be regarded solely as illustration for comparison 

with literature on unstructured beds.

Figure 9 shows the initial state and the resulting mixing of a set of tracer particles, comparing 

the cases at a constant flow and at a gas pulsation of 5 Hz. Note that the tracer particles were 

initially marked during the nucleation of a new set of bubbles, at . The tracer particles are 𝜑 ~ 0.8𝜋

colored black, while the remaining ones are colored grey. In the traditional bed the solids quickly 

disperse through the bed, whereas in the structured bed dispersion is much slower and shows a 

clear anisotropy. The outflow of particles from the middle compartment in the structured bed is 

not random. It occurs at the bottom of the bed, and it is driven by the nucleation phase of the 

process. The tracer particles leave the compartment via the bottom during periodic bursts. A 

horizontal channel forms at the bottom of the bed during the nucleation phase ( ) 0.6 < 𝜑 < 1.2𝜋

and it breaks into two bubbles when the bed collapses after the drop of the gas velocity below  𝑢𝑚𝑓

( ) [45]. One of these bubbles flows to the boundary of the compartment (left or right in 𝜑 ~ 1.2𝜋

alternate pulses) and the other one flows further away, in the opposite direction. The 

reconfiguration of the channel into bubbles pushes the tracer particles towards the bottom plate 

and out of the compartment in a different direction every pulse. The compartment is then 
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replenished with an influx of (non-tracer) particles entering via the top in every defluidization 

cycle.

Table 2 shows that mixing improves at higher pulsating frequency. Faster oscillations create 

smaller bubbles and reduce the amount of time that the bed defluidizes. The simulations at 6 and 

7 Hz reproduce a bubble pattern, but the size and lateral mobility of the bubbles is much larger 

than in the experiments or the oscillations at 5 Hz. This results in a breakdown of the fully 

correlated solid recirculation, creating faster mixing. The next section describes the link between 

the reduction in effective lateral dispersion coefficient, the coordinated motion of bubbles and the 

compartmentalization of the solid flow in the case at 5 Hz. This may also be applicable to higher 

pulsation frequency but the lack of accuracy in the 6 Hz and 7 Hz simulations does not allow to 

explore it further.

5.3. COMPARTMENTALIZATION

The compartmentalization is intimately linked to the solid-like structures formed during the 

oscillation. Figure 10 illustrates this phenomenon with the recirculation patterns observed in the 

bed and Figure 11 provides quantification, by reporting the decay of the average concentration in 

the monitored compartment as a function of time for the structured case at 5 Hz.

Figure 10 shows the local particle velocity, marking regions of very low velocity and the areas 

of the bed with positive or negative axial velocity  and lateral velocity . When the gas 𝑣𝑧 𝑣𝑥

superficial velocity drops below , two new bubbles are formed, and the collapsing bed creates  𝑢𝑚𝑓

a pile of defluidized powder in between the two former bubbles. When the gas velocity increases 

again, this dense structure, see  in Figure 4 and Figure 10, breaks. In the area between the existing 

bubbles,  in Figure 4 and Figure 10, the advancing front is pushed against a collapsing bed and 

the solids converge to a single point at the tip of the pile. The high solids concentration redirects 
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the gas flow into the existing bubbles, which breaks up the dense bottom structure into two 

identifiable regions: a rhomboid at the top and another in the wake of the existing bubbles,  in 

Figure 4 and Figure 10. In the latter, the solid flow converges, pushing down a new pile onto the 

distributor and flowing up into the bubble. During the bubbling phase ( ), the solids 1.2 < 𝜑 < 2.1𝜋

pushed aside into the central region at the top of the bed cannot flow across the trail of the previous 

bubbles delimited by the position of the central pivot , nor can they flow across the wake of the 

existing bubbles to the other side. This results in the formation of a fixed compartment between 

the bubble and the pivot with an influx rate of particles at the top and an axial downward flow. At 

the bottom, however, there is an exit rate. The powder contained into the central region is moved 

aside into the bubble wake first, and then pushed upwards, creating a twin neighboring 

compartment with an upwards flow. Figure 10 illustrates the recirculation loops created as visible 

areas of positive or negative lateral velocity  (green/orange, right images in Figure 10). They are 𝑣𝑥

formed when the bubbles are nucleated and remain stable throughout the pulsation. When the 

bubbles break up at the freeboard ( ) the bed is already fully expanded, but the solid 𝜑 ~2.2 ― 2.4𝜋

recirculation loops survive intact. 

Lateral mixing in a periodically structured bed shows not only a quantitative difference, but also 

a qualitative difference to the behavior of a traditional bubbling bed. A structured system cannot 

be assimilated into a 1D diffusion-like process. The evolution of the concentration given in Figure 

11a corresponds to a 1D advection-diffusion process, whereby initially drops linearly, as a 𝐶𝑡,𝑎𝑣 

result of a constant outflow rate, with an average net advection rate . An interesting phenomenon 𝑟𝑐

is observed in the evolution of related to recirculation. On top of the small-scale fluctuations 𝐶𝑡,𝑎𝑣 

owing to the rapid exchange between neighboring compartments, a structured bed shows also a 

much larger scale fluctuations with a period of approximately 8 s (secondary peaks in Figure 11a), 
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indicative of long-range recirculation in the bed. Figure 11b and c show examples of the 

trajectories responsible for the secondary peaks in Figure 11a, created by particles that come back 

to their original (middle, grey) compartment after having exited and having passed through the left 

or right neighboring compartments. Particles leave the central compartment near the bottom and 

flow into the bottom of the neighboring compartments. Here, the interaction with the bubbles 

causes them to gradually move upwards. Once they reach the top, they can be pushed back to the 

central compartment again, or further in the opposite direction into a next compartment (or, in this 

case, the side wall). In the present simulations, the side wall replaces the role of a second-

neighboring compartment. Particles near the wall travel down to the bottom where they are pushed 

to the center again and start moving upwards under the influence of the bubble column. It is 

intuitively clear that the solid axial flow in neighboring compartments has an opposite direction. 

The time for making a complete rotation in one of the loops shown in Figure 11b and c is 

approximately 8 s, which marks the period of the long-range fluctuation of the concentration in 

Figure 11a. Macromixing is, therefore, purely governed by the interaction between neighboring 

compartments through multiple repetitions of the same recirculation loop. It is worth noting that 

the characteristic size of the loop (i.e., half of the bubble separation or wavelength) is constant 

throughout a structured bed, where all bubbles maintain the same separation. This observation has 

two important consequences: it leads to homogenization of the system, and it enables direct 

external control. The size of the compartment and the recirculation loop could be modified 

externally by simply manipulating the characteristics of the pulsation, namely the frequency, the 

amplitude, and the minimum flowrate.

Figure 12 shows the same analysis in beds oscillating at 6 Hz and 7 Hz. Increasing the frequency 

results in smaller bubbles and/or multiple arrays. As described before, under the investigated 
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conditions the experimental bubble pattern can be reproduced for 6 Hz and 7 Hz, but with higher 

instability. Consequently, the recirculation areas described earlier are no longer stable and lateral 

dispersion increases. Mixing is no longer dominated by long-range circulation and the overall 

effective dispersion coefficient complies with expectations for a fluidized bed at constant flowrate, 

see Table 2 and Figure 8. However, the evolution of the concentration reveals that it is not a purely 

diffusion-dominated process, indicating that even an unstable pattern introduces a certain level of 

directionality in the solid mixing. The compartmentalization observed here is the full expression 

of the anomalous sub-diffusive process reported in smaller-scale pulsating beds, which are affected 

by wall effects [27], when the system is allowed to self-organize and structure dynamically.

This analysis shows that a structured system presents several advantages. It exposes the solids 

to a well-defined and much narrower history, limited to multiple repetitions of the same single 

recirculation loop, associated to each bubble nucleation site. Since all bubbles have the same size, 

the entire population of particles undergoes the same gas-solid contact pattern and the same stress 

history resulting from particle-particle collisions. To describe this mixing pattern with an 

engineering model, a compartmental model with advection is clearly more appropriate than a 1D 

diffusion model. Figure 13 represents the bed as an idealized system of parallel compartments, 

each consisting of a bubble zone and an emulsion zone interacting with given exchange rates  𝑟𝑒𝑏

and . Figure 13a shows the compartments delimited between the positions of the central pivots 𝑟𝑏𝑒

and the rising bubbles. In each one, the gas flows upwards, the solids flow axially in alternate 

directions in neighboring compartments, and exchange mass laterally at a rate  entering the 𝑟𝑐

system either via the top or the bottom. The central compartment shows a downwards flow of 

particles, and the two recirculation loops associated to the bubbles are shown in Figure 11b and 

schematically in Figure 13b. In a structured bed, all bubbles are equally sized, meaning the 
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exchange rate between the bubble and emulsion zone,  and , are in effect equal, and, as a 𝑟𝑒𝑏 𝑟𝑏𝑒

result, the advection rate  between neighboring compartments is also balanced. 𝑟𝑐

Figure 14 reports the instantaneous exchange rates as a function of time and phase angle for the 

structured case at 5 Hz. As expected, the average exchange rates from the bubble to emulsion 

phase, , and vice versa, , are balanced, although the latter shows a wider spread. During 𝑟𝑏𝑒 𝑟𝑒𝑏

every cycle, the bubble-emulsion exchange is fastest at , before the defluidization cycle, 𝜑 ~ 𝜋

when bubbles start to rise slowly. The instantaneous outgoing exchange rate  between 𝑟𝑜𝑢𝑡

neighboring compartments is highest after the gas flow rate reaches its maximal value, because 

then the movement of new bubbles at the bottom of the bed pushes particles from one compartment 

into the other. The incoming flux of particles is out of phase with the outgoing flux: the highest 

incoming exchange rate, , occurs when the gas reaches its minimum value, after the bed 𝑟𝑖𝑛

collapses. The time-averaged values of  and , i.e.,  and , are equal, proving that the 𝑟𝑜𝑢𝑡 𝑟𝑖𝑛 𝑟𝑜𝑢𝑡 𝑟𝑖𝑛

exchange rate between neighboring compartments is indeed in balance as suggested in Figure 13. 

In the investigated system, the side compartments show an upwards movement, but, being 

smaller in size, they are not able to accommodate a complete bubble on the outer boundary (i.e., 

the wall). Hence, a truncated loop is created, where particles fall at the walls, depicted 

schematically in Figure 13b. While this wall effect will always be present when a pattern ends at 

the wall of any real (wider) bed, it can admittedly have a larger effect on the small system studied 

here. This wall effect is likely responsible for the slight misalignment observed between the 

instantaneous positions of the pivots and the average position of the bubble nucleation sites, cf. 

the alignment of the compartment with the dense area in Figure 13a and Figure 4. Because of the 

restriction caused by the wall, the position of the central pivots is not strictly constant; it oscillates 

around the values x1 and x2, causing a small error in the definition of the compartment. The effect 
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gives rise to short-range oscillations in the evolution of the concentration in Figure 11. Therefore, 

it is important to extend this study to wider structured beds, to understand the interaction between 

multiple compartments in a single array and implement a full engineering model based on the 

measurement of residence time distributions in each compartment. Equally, the study of systems 

with multiple bubble arrays and how compartments would stage vertically remains an open 

question. 

Figure 14 reports the instantaneous exchange rates of particles across the compartments in a 

bubble pair. The average net advection rate, , can be calculated through the tracer analysis given 𝑟𝑐

in Figure 11. At time t = 0 s, only tracer particles are present in the central compartment, and  𝑟𝑐

may be computed as the time derivative of , or, in other words, the initial slope of the tracer 𝐶𝑡,𝑎𝑣

concentration profile in Figure 11a averaged over several pulsation periods. As such, by averaging 

over the five initial periods, i.e., over the first second after starting particle tracking, the value of 

 is calculated as 3.9 x 108 particles m-2 s-1
, see Table 3. It is worth noting that the  calculated in 𝑟𝑐 𝑟𝑐

this way would differ from the time-averaged values of the instantaneous exchange rates reported 

in Figure 14,  (or ), or, in other words, the derivative of the tracer concentration evolution 𝑟𝑜𝑢𝑡 𝑟𝑖𝑛

at time t = 0 s. The detail in Figure 11a illustrates the difference. The time-averaged values  𝑟𝑜𝑢𝑡

and  include all the fast short-range exchanges of particles between neighboring compartments, 𝑟𝑖𝑛

due to the particle velocity fluctuations and the oscillation of the position of the compartment as 

described above. These short-range effects are not included in the average advection rate .𝑟𝑐
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6. CONCLUSIONS

Lateral mixing in dynamically structured oscillating fluidized beds was investigated using CFD-

DEM for varying gas flow pulsation frequencies and compared with that in a traditional bubbling 

fluidized bed, with constant flowrate. The coordinated motion of the gas bubbles in a structured 

bed brings the solids into a series of mixing compartments characterized by slow axial mixing and 

minor lateral interaction. The effective lateral dispersion coefficients are an order of magnitude 

lower than in a traditional bubbling fluidized bed, but the system is clearly dominated by advection 

of particles, rather than a 1D Fickian diffusion process. Mixing in a structured bed can be described 

as a 1D advection process, where macromixing is driven by a long-range lateral circulation of 

solids that is decoupled from mixing within each compartment. Short-range circulation, or 

micromixing, is hereby related to local velocity fluctuations within a compartment, originating 

from the response to the oscillation in the gas flow and independent of the bed geometry. The long-

range circulation or macromixing, on the other hand, depends on the domain dimensions. Powder 

flows through multiple recirculation loops of a constant characteristic size that is a direct function 

of the wavelength of the bubble lattice. The net average advection rate between the different 

mixing compartments has been obtained from CFD-DEM simulations. Together with the values 

for an effective lateral dispersion coefficient, it can be used in engineering reactor models for the 

design and scale-up of pulsed fluidized bed reactors. In addition to the increase in homogeneity of 

the system, a structured bed can offer unique advantages in the design of new processes. It is 

scalable, and the degree of mixing can be controlled independently of the bed design by 

manipulating the oscillation frequency. Modifying the oscillation, it is possible to control the 

bubble size and separation that determine the volume of the mixing compartment and the 

recirculation loop. This may provide the ability to tailor the macroscopic rate of mixing and the 
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stress history in the powder. Having a way to control these parameters independently can provide 

new avenues to operate processes with highly exothermic reactions, to make use of thermally 

sensitive materials requiring control of hot spots in fixed beds, and, particularly, to accurately tailor 

applications dealing with particle formation or processing, such as coating, where it is crucial to 

obtain a narrow stress history and uniformity across the final particle product.

In this work, lateral mixing behavior in dynamically structured fluidized beds was demonstrated 

at a small scale, i.e., for a computational domain consisting of two/three alternating compartments. 

The future scale-up work must focus on larger-scale computations and establish the interaction 

between a network of compartments in larger systems, comprising of multiple bubble arrays. This 

will allow to create a full engineering model of the gas-solid contact pattern in dynamically 

structured beds, by using axial and lateral interaction rates between a series of compartments.
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NOMENCLATURE

Roman
 𝐶 Concentration [m-3]

 𝐷𝑠𝑟 Lateral dispersion coefficient [m2 s-2]

 𝑒 Restitution coefficient [-]

 𝑓 Pulsation frequency [Hz]

 𝑭 Force [N]

 𝒈 Gravitational acceleration [m s-2]

 𝐺 ∗ Effective shear modulus [Pa]

 𝐻 Domain height [m]

 𝑰 Moment of inertia [kg m2]

 𝑘 Elastic constant [N m-1]

 𝑚 Mass [kg]

 𝑚 ∗ Effective particle mass [kg]

 𝑴 Momentum exchange [N m-3]

 𝑛 Number [-]

 𝑃 Pressure [Pa]

R Particle flux [particles m-2 s-1]

 𝑟 ∗ Effective particle radius [m]

 𝑻 Torque [N m]

 𝒖 Velocity vector [m s-1]

 𝑢 Velocity magnitude [m s-1]

 𝑉 Volume [m3]

 𝑊 Width of the bed [m]

 𝑌 Void free concentration [-]

 𝑌 ∗ Effective Young’s modulus [Pa]

 𝑍 Domain thickness [m]

Greek
 𝛽𝑑 Drag coefficient [kg m-3 s-1]

 𝛾 Visco-elastic damping constant [N s m-1]
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 𝜹 Geometric overlap between paired particles [m]

 𝜀 Volume fraction [-]

 𝜆 Bulk viscosity [Pa s]

 𝜇 Dynamic viscosity [Pa s]

 𝜌 Density [kg m-3]

 𝝉 Stress tensor [Pa]

 𝜔 Rotational velocity [rad s-1]

Subscripts/superscripts
A Amplitude

be From bubble to emulsion

C Compartment

eb From emulsion to bubble

G Gas 

In Incoming 

mf Minimum fluidization

min Minimum

N Normal

Out Outgoing 

P Particle

R Relative

T Tangential, or, tracer 

Abbreviations
CFD Computational Fluid Dynamics

DEM Discrete Element Method
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Table 1: Overview of operating conditions and computational settings.
Gas properties

Density, 𝜌𝑔 1.225 kg m-3

Viscosity, 𝜇𝑔  Pa s1.8 × 10 ―5

Particle properties

Density,  𝜌𝑝 2500 kg m-3

Mean particle diameter, 𝑑𝑝 238 µm

Young’s modulus, 𝑌 10 MPa

Restitution coefficient, 𝑒 0.97

Poisson’s ratio, 𝜈 0.22

Interparticle friction coefficient,  𝜇𝑓𝑟 0.35

Particle-wall friction coefficient,  𝜇𝑤 0.1

Computational domain

Bed width, 𝑊 0.1 m

Initial bed height, 𝐻0 0.045 m

Total domain height, 𝐻 0.1 m

Bed thickness, 𝑍 0.002 m

Grid dimensions, 𝑛𝑊 × 𝑛𝑍 × 𝑛𝐻 50  1  50× ×

Time step size

Gas phase  s1 × 10 ―4

Particle phase  s1 × 10 ―6

Gas phase boundary conditions

Side walls No-slip

Inlet Superficial inlet velocity 𝑢
𝑢 = 𝑢𝑚𝑖𝑛 + 𝑢𝑎[1 + sin (2π𝑓𝑡)]

Constant OscillatingOscillation frequency, 𝑓

0 Hz 5 Hz 6 Hz 7 Hz

Minimum velocity, 𝑢𝑚𝑖𝑛  (*)2.5 𝑢𝑚𝑓 0.0205 m s-1

Oscillation amplitude, 𝑢𝑎 - 0.0877 m s-1

Time-averaged velocity, 𝑢 = 𝑢𝑚𝑖𝑛 + 𝑢𝑎  (*)2.5 𝑢𝑚𝑓 0.1082 m s-1

Outlet Fixed pressure, 0 barg
(*)  and  for experiments and simulations, respectively. 𝑢𝑚𝑓 = 0.046 m s ―1 0.056 m s ―1
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Table 2: Equivalent bubble diameter, , pattern wavelength, , boundaries of the 𝒅𝒆𝒒 𝝀
monitored compartment,  and .𝒙𝟏 𝒙𝟐

 [Hz]𝑓  [10-2 m s-1]𝑢  [10-2 m]𝑑𝑒𝑞  [10-2 m]𝜆  [10-2 m]𝑥1  [10-2 m]𝑥2

Experimental

5 Hz 10.82 2.74 ± 0.25 6.84 ± 0.46 n/a n/a

6 Hz 10.82 1.91 ± 0.32 6.17 ± 0.51 n/a n/a

7 Hz 10.82 1.53 ± 0.22 3.57 ± 0.57 n/a n/a

0 Hz 11.5 0.85 ± 0.24 n/a n/a n/a

Computational

5 Hz 10.82 2.80 ± 0.11 7.46 ± 0.15 3.14 6.86

6 Hz 10.82 1.76 ± 0.55 6.06 ± 1.05 1.90 4.92

7 Hz 10.82 1.33 ± 0.47 4.49 ± 1.60 5.76 7.99

0 Hz 14.0 1.20 ± 0.43 n/a 0 5.0

0 Hz 14.0 1.20 ± 0.43 n/a 3.13 6.86

Table 3: Compartments, effective lateral dispersion coefficients and advection rate.

 𝑓
[Hz]

𝑢
[10-2 m s-1]

 𝑥1
[10-2 m]

 𝑥2
[10-2 m]

  (*)𝐷𝑠𝑟
[10-4 m2 s-1]

 (*)𝐷′𝑠𝑟
[10-4 m2 s-1]

 𝑟𝑐

[particles m-2 s-1]
5 Hz 10.82 3.14 6.86 0.302 0.306 3.9 x 108

6 Hz 10.82 1.90 4.92 0.626 0.432 n/a

7 Hz 10.82 5.76 7.99 0.788 0.901 n/a

0 Hz 14.0 0 5.0 1.047 1.053 n/a

0 Hz 14.0 3.13 6.86 1.473 1.612 n/a
(*) These effective lateral dispersion coefficients are for comparison purposes only. They are 
not to be used in combination with the advection rate.
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Figure 1: Thin bed of glass beads fluidized with an oscillating air flow showing regular, 
subharmonic bubble patterns of different scale, characterized by their bubble size, 

tessellation angle θ and horizontal wavelength .𝝀
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Figure 2: (a) Experimental setup of an oscillating thin fluidized bed. (b) Snapshots of 

experimental results for two consecutive pulses, t0 and t1, at frequencies of 5, 6 and 7 Hz; λ 
denotes the wavelength. Scale of the simulation box is marked in red.
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Figure 3: Schematic representation of the initial state of the bed, using (a) the actual 
concentration of tracer particles [particles m-3], and (b) the void-free concentration of 

tracer particles [-].
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Figure 4: Snapshots of the simulated bubble pattern for increasing phase angle  in two 𝝋
consecutive periods (top and bottom) for a pulsating gas at 5 Hz. Black velocity vectors for 

all particles with . Particles with   are marked as static in grey.𝒗 = 𝒗 (𝒅𝒑𝒇) > 𝟏𝟎 𝒗 < 𝟏𝟎
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Figure 5: Examples of bubble positions in alternate pulses. Top: obtained from image post-
processing of the CFD-DEM results. Bottom: experimental data. (a, d) 5 Hz, (b, e) 6 Hz, (c, 
f) 7 Hz. Only fully formed bubbles are shown, i.e., bubbles for which the axial position of 
the center y > 1.75 x 10-2 m, for a range of x positions that identifies the bubbles nucleated 

in alternate pulses.
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Figure 6: Average, normalized tracer concentration   [-] in the monitored part of the  𝑪𝒕,𝒂𝒗
bed ( ) as a function of simulation time, for the constant flow case. The  𝒙𝟏 ≤ 𝒙 ≤  𝒙𝟐

boundaries are  m. The circles indicate the CFD-𝒙𝟏 = 𝟑.𝟏𝟑 ×  𝟏𝟎 ―𝟐, 𝒙𝟐 = 𝟔.𝟖𝟔 ×  𝟏𝟎 ―𝟐

DEM results, while the lines indicate the theoretical average tracer concentration resulting 
from the solution of Eqns. (21),(23)-(24) with the indicated dispersion coefficient . The 𝑫𝒔𝒓

figure insets show the initial tracer concentration profile.
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Figure 7: (a) Average normalized tracer concentration   [-] and (b) average void-free  𝑪𝒕,𝒂𝒗
tracer concentration   [-] in the monitored part of the bed ( ) as a function  𝒀𝒕,𝒂𝒗  𝒙𝟏 ≤ 𝒙 ≤  𝒙𝟐

of simulation time, for the constant flow case. The boundaries are 𝒙𝟏 = 𝟎, 𝒙𝟐 = 𝟓.𝟎 ×  𝟏
 m. The circles indicate the CFD-DEM results, while the lines indicate the theoretical 𝟎 ―𝟐

average resulting from the solution of, respectively, Eqns. (21), (23)-(24) and Eqns. (30)-
(32) with the indicated dispersion coefficients,  and . The figure insets show the 𝑫𝒔𝒓 𝑫′𝒔𝒓

initial concentration profile.
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Figure 8: Comparison of lateral dispersion coefficients according to 1D Fickian diffusion 
fitted in this work with correlations available in literature by Shi and Fan [21], Berruti et 

al. [48] and Borodulya et al. [19]. The simulated umf was used in this analysis. 
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Figure 9: Snapshots of the particle bed at (top) a constant superficial gas inlet velocity, and 
(bottom) an oscillating flow at 5 Hz, see conditions in Table 1. Initially, a region in the 
middle of the bed is marked as tracer particles between  m and 𝒙𝟏 = 𝟑.𝟏𝟑 ×  𝟏𝟎 ―𝟐  𝒙𝟐

 m. = 𝟔.𝟖𝟔 ×  𝟏𝟎 ―𝟐
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Figure 10: Compartmentalization. Local particle velocity (left: axial velocity , right: 𝒗𝒛
lateral velocity ) as a function of phase angle. Low velocity areas are marked as particles: 𝒗𝒙

 (black),  (color). High velocity areas are marked with vectors, 𝒗 = 𝒗 (𝒅𝒑𝒇) < 𝟏 𝟏 < 𝒗 < 𝟏𝟎
for particles with  (color) and  (white, scaled down x 4). Color 𝟏𝟎 < 𝒗 < 𝟏𝟎𝟎 𝒗 > 𝟏𝟎𝟎

indicates direction of velocity components (orange , green  Conditions from 𝒗 > 𝟎 𝒗 < 𝟎).
Table 1, for an oscillating flow at 5 Hz.
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Figure 11: Compartmentalization, when pulsating the gas at 5 Hz. (a) Average scaled 
tracer concentration  [-] in the monitored section ( ) as a function of  𝑪𝒕,𝒂𝒗  𝒙𝟏 ≤ 𝒙 ≤  𝒙𝟐

simulation time. The circles indicate the CFD-DEM results; lines indicate the theoretical 
 resulting from the solution of Eqns. (21), (23) and (24) with the least-squares fitted  𝑪𝒕,𝒂𝒗

dispersion coefficient (red) and with the dispersion coefficient for the constant flow case 
(green). The figure inset shows the initial value. (b) and (c) Solids circulation: trajectories 
of sets of individual particles with the bullet indicating the starting position at time t = 0 s, 

and the triangle indicating the position at t = 20 s. Particles return to the initial 
compartment after one (b) or two (c) long-range circulations periods or ~8 s. The grey zone 
corresponds to the monitored section. Conditions from Table 1, for an oscillating flow at 5 

Hz.
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Figure 12: Average normalized tracer concentration  [-] in the monitored section ( 𝑪𝒕,𝒂𝒗  𝒙𝟏
) as a function of simulation time, when pulsating the gas supply at 6 Hz (a) and 7 ≤ 𝒙 ≤  𝒙𝟐

Hz (b). For nomenclature, see Figure 11.
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Figure 13: (a) Monitored region, with alternation of the bubble sites in two consecutive 
pulses and associated rates. For key to velocity map, see Figure 10. (b) Solid circulation 

across compartments. (c) Simplified surrogate model for a dynamically structured 
fluidized bed.
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Figure 14: Advection in a structured flow when pulsating the gas supply at 5 Hz: 
instantaneous exchange rates between the compartments as a function of time.

Highlights

 Dynamically structuring a fluidized bed compartmentalizes the solids circulation.

 Effective solid lateral dispersion coefficients decrease tenfold in structured bed.

 Dispersion in a structured bed is driven by advection and is not diffusion-like.

 Compartmentalization decouples the time scales of macro- and micromixing. 

 Mixing compartments interact through a unique and controllable circulation loop.


