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Fig. 1. Motivation: As a result of community-level bans, users from affected communities may choose to
(a) participate in other communities on the same platform or (b) migrate to an alternative, possibly fringe
platform where their behavior is considered acceptable. Scenario a, on which most prior work has focused, is
more amenable to data-driven analysis. The present paper, on the contrary, focuses on the harder-to-analyze
scenario b.

1 INTRODUCTION

Warning: this work quotes slur terms that some may find offensive.

The term “content moderation” is commonly associated with the process of screening the

appropriateness of user-generated content, as well as imposing penalties on users who break

the rules [44]. However, social networking platforms sometimes host entire communities that
systematically defy regulations. There, host platforms oftentimes ban or limit the functionalities of

one or several online communities. This has happened, for example, when Reddit decided that not

all communities were welcome on the platform [13] and banned subreddits like r/FatPeopleHate
and r/transfags. Also, more recently, following the 2021 storming of the United States Capitol,

groups supporting far-right ideologies and the QAnon movement have been banned across different

mainstream social media platforms [5].

The extent to which platforms should be the judges, juries, and executioners of these interventions

is a topic of heated debate and has prompted experiments of governance models with societal

participation [10]. There, platforms outsource some of their policy decisions—e.g., should we ban

an online movement from our platform?—to a panel of experts (e.g., journalists, politicians, lawyers)

representing the public interest [1].

Nonetheless, we are still left with answering a preceding question: is community-level moderation

effective to begin with? We argue why this is not obvious, visually, in Fig. 1, depicting possible

decisions (a and b) that users (the black dots) associated with a recently banned toxic
1
community

may take. The users may (a) continue to be active on the same platform and participate in other

groups and communities there, or (b) abandon the platform altogether and migrate to a different

platform. In both scenarios, community-level moderation could have unintended consequences. In

scenario a, the moderation measure could set loose an army of trolls across the platform, creating

issues in other communities or new problematic communities [7]. In scenario b, the ban could

unintentionally strengthen an alternative platform (e.g., 4chan or Gab) where problematic content

goes largely unmoderated [31]. From the new platform, the harms inflicted by the toxic community

on society could be even higher.

1
We use ‘toxic’ as an umbrella term to refer to socially undesirable content: sexist, racist, homophobic, or transphobic posts,

targeted harassment, and conspiracy theories that target racial or political groups.
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Previous work has addressed the “within platform” concern. Chandrasekharan et al. [7] and

Saleem and Ruths [48] studied what happened following Reddit’s 2015 bans, finding that users who

remained on the platform drastically decreased their usage of hate speech and that counter-actions

taken by users from the banned subreddits were promptly neutralized. More broadly, Rajadesingan

et al. [38] showed that, when “toxic users” migrate to healthy communities, they reduce their

toxicity levels.

Nevertheless, the concern that migrations to an alternative platform would strengthen the toxic

communities or make them more ideologically radical is still largely unexplored. Existing work

suggests that, in the wake of community-level moderation, users actively seek out, and migrate to,

alternative websites where their speech will not be censored [33, 50]. However, partly due to the

data collection challenges posed by cross-platform studies, quantitative work on the consequences

of community-level moderation across platforms has remained at the simulation level [24].

Present work. This paper presents an observational study of the efficacy of community-level

moderation across platforms. We examine two popular communities that were originally created

and grew on Reddit, r/The_Donald and r/Incels. Faced with sanctions from the platform, they

created their own standalone websites—thedonald.win and incels.co—and encouraged their Reddit

user base to mass migrate to the new websites. To assess whether community-level moderation

measures were effective in reducing the negative impact of these communities (which we refer to

as TD and Incels, respectively), we study how they progressed following their platform migrations.

More specifically, we ask:

RQ1 Have the communities retained their activity levels and their capacity to attract new members

following the migration to a new platform?

RQ2 Have the communities become more toxic or ideologically radical following the migration to

a new platform?

Both dimensions are crucial to assess whether community-level moderation measures were truly

effective. If the communities simply “changed addresses” and grew larger and more toxic on the

new platforms, the moderation measures may have actually increased their capacity to harm society

as well as their own members; e.g., outside of Reddit, these communities might orchestrate online

harassment campaigns more effectively or disseminate more hate speech.

Materials and methods. To study how migrations affect communities, we leverage over 6 million

posts made by more than 138 thousand users pooled across the platforms before (Reddit) and after

(standalone websites) the migration event. We extract activity-related signals, such as the number of

posts, active users, and newcomers, as well as content-related signals, such as algorithmically derived

“toxicity scores,” that aim to identify behaviors indicative of user radicalization, such as fixation and

group identification [11]. Employing quasi-experimental setups, including matching and regression

discontinuity analysis, we study these signals from a community-level perspective, analyzing how
daily activity and overall content changed, and from a user-level perspective, examining how the

behavior of individual users changed following platform migrations.

Summary of findings. Analyzing activity levels and the inflow of newcomers to the communities

(RQ1), we find that the moderation measures significantly reduced the overall number of active

users, newcomers, and posts in the new communities compared to the original ones. However,

individually, users posted more often on the alternative platforms. A closer look at the users whom

we managed to match before vs. after the migration suggests that this increase in relative activity
is due more to self-selection rather than behavior change. Users who migrated were more active in

the original platform, and their activity dropped on a user level.
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Analyzing changes in the content being posted in the communities following the migration

(RQ2), we find evidence that users in the TD community became more toxic, negative, and hostile

when talking about “objects of fixation” (e.g., democrats, leftists). Changes in the usage of third-

person plural (e.g., “they”) and first-person plural (e.g., “we”) pronouns also indicate an increase in

ingroup identification and in othering language. For the Incel community, we find that changes

tend to be statistically non-significant.

Implications. Our analysis suggests that community-level moderation measures decrease the

capacity of toxic communities to retain their activity levels and attract new members, but that

this may come at the expense of making these communities more toxic and ideologically radical.

Therefore, as platforms moderate, they should consider their impact not only on their own websites

and services, but in the context of the Web as a whole. Toxic communities respect no platform

boundary, and thus, platforms should consider being more proactive in identifying and sanctioning

toxic communities before they have the critical mass to migrate to a standalone website. Overall,

we expect that our nuanced analysis will aid stakeholders to take moderation decisions and make

moderation policies in an evidence-based fashion.

2 BACKGROUND AND RELATEDWORK
2.1 Community-level moderation on Reddit
Reddit employs two community-wide moderation measures: quarantining and banning. When a

community is quarantined, it stops appearing in Reddit’s search results and front page. Moreover,

users who attempt to access quarantined subreddits (directly through their URLs) are met with

a splash page warning them of the shocking or offensive content contained inside. In contrast,

banning a community makes it inaccessible and removes all its prior posts. Quarantining frequently

precedes banning, so in practice, it serves as a warning for the subreddit to reform itself.

The history of community-level moderation in Reddit dates back to 2015 when Reddit banned

five subreddits for infringing their anti-harassment policy [13]. Newell et al. [33] studied how these

bans led users to migrate towards alternative platforms (e.g., Voat). Using a mix of self-reported

statements and large-scale data analysis, they identified reasons why users left Reddit and found

that alternative platforms struggled to attain the same diversity of communities as Reddit. The

effects of these bans within Reddit were also extensively studied [7, 48], as previously discussed.

Overall, findings from these studies suggest that the bans worked for Reddit: they led to sustained

reduced interaction of users with the Reddit platform; users who stayed became less toxic after they

migrated to other communities within Reddit; and counter-actions taken by users (e.g., creating

alternative subreddits) were not effective.

2.2 Communities of interest

TD. The r/The_Donald subreddit (TD) was created on 27 June 2015 to support the then presidential

candidate Donald Trump in his bid for the 2016 U.S. Presidential election. The discussion board,

linked with the rise of the Alt-right movement at large, has been denounced as racist, sexist, and

islamophobic [29]. Its members often engaged in “political trolling,” harassing Trump’s opponents,

promoting satirical hashtags, and creatingmemeswith pro-Trump and anti-Clinton propaganda [14].

TD is also known for spreading unsubstantiated conspiracy theories like Pizzagate [34] and the

Seth Rich murder conspiracy [16].

We depict important events in TD’s history in Fig. 2. The subreddit was quarantined in mid-June

2019 for violent comments, and on 26 February 2020, Reddit administrators removed a number of

TD’s moderators, and the community was placed under a “restricted mode,” which removed the
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r/The_Donald
 27 Jun 15

Created

26 Jun 19

Quarantined

26 Feb 20

Restricted

thedonald.win

29 Jun 19

Created Migration

r/Incels

02 Aug 13

Created

27 Oct 17

Quarantined Banned

07 Nov 17

incels.co
Created+Migration

Fig. 2. Timelines: We depict the dates of creation, quarantining, and banning for the two communities
studied here.

ability of most of its users to post. Months after the subreddit became inactive, it was banned in late

June 2020. While these moderation measures were taking place, TD users were actively organizing

a “plan B.” In 2017, its members were already considering migrating to alternative platforms [45],

and in 2019, after getting quarantined, moderators created a backup site, thedonald.win, that was

promoted in the subreddit using stickied posts [47] (i.e., always shown among the first in the

feed for the community). TD users continued using the subreddit until the community became

“restricted.” Then, they largely flocked to the alternative website [55]. Note that, although TD was

eventually banned, we focus here on its “restriction,” since it was this measure that halted user

participation and ignited the community migration.

Incels. The r/Incels subreddit was created in August 2013. Short for involuntary celibates, it was a

community built around “The Black Pill,” the idea that looks play a disproportionate role in finding

a relationship and that men who do not conform to beauty standards are doomed to rejection and

loneliness [17, 28]. Incels rose to the mainstream due to their association with mass murderers [21]

and their obsession with plastic surgery [20]. The community has been linked to a broader set

of movements [28, 40] referred to as the “Manosphere,” which espouses anti-feminist ideals and

sees a “crisis in masculinity.” In this world view, men and not women are systematically oppressed

by modern society. Lately, specialists have also suggested that these communities may play an

important role in radicalizing disenfranchised men and producing ideological echo chambers that

promote violent rhetoric [21].

The r/Incels subreddit grew swiftly in early 2017, reaching over 3,000 daily posts [40]. Shortly

after, in late October 2017, it was quarantined and then banned two weeks later [51]. In an interview

for a podcast [25], one of the subreddits’ former core members, seargentincel, mentions that he had

already discussed moving the community outside of Reddit with moderators. According to him,

when the subreddit was banned, he created the standalone website incels.co, and former r/Incels

members quickly organized the migration in Discord channels. Again, we provide exact dates for

relevant events in Fig. 2.

Choice of communities. We study these two communities for two main reasons. First, due to

their importance: they have a large number of members and have impacted society at large, e.g.,

w.r.t. conspiracy theories [16] and real-world violence [21]. Second, these are communities whose

migrations were backed by community leaders, and that migrated to other public websites. Had

the members of these communities spread to a loosely connected network of private channels (e.g.,

on Telegram), there would be several additional technical and ethical research challenges.
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2.3 Toxicity and radicalization online
Internet platforms experience a myriad of toxic behaviors such as incivility [4], harassment [3, 23],

trolling [9] and cyberbullying [26]. In recent years, researchers have explored the dynamics of

such behaviors online aided by automatic methods [31, 40]. Broadly, the methods employed fall

under one of two categories. They either (a) count hate-related or toxicity-related words (e.g., using
HateBase [19]); or (b) deploy machine-learning based methods to classify comments as toxic or as

hateful (e.g., Google’s Perspective API [36]). Methods differ in what they intend to measure: some

aim to measure “hate speech,” while others “toxicity.” While these concepts differ tremendously,

research has suggested that measuring hate speech through text is difficult due to its contextual

nature, and that machine learning classifiers struggle to distinguish between offensive and hateful

speech [12, 41].

Intertwined with online toxicity are movements and ideologies that engage in harassment

campaigns and real-world violence, as well as espouse hateful views towards minorities [27, 30].

Social networks have been identified as places where individuals are exposed and eventually adhere

to such fringe movements [42]. In this direction, the work of Grover and Mark [18], also on Reddit,

is particularly relevant, as their work suggests that behaviors indicative of radicalization such as

fixation and group identification may be captured through automated text analysis. We extend

their methodology to assess the changes in user-generated content following the migrations, using

the same word categories (derived from Linguistic Inquiry and Word Count, or LIWC [35]) and

developing, for the Incel and TD communities, custom-built “fixation dictionaries” that contain

terms serving as objects of fixation in the communities (e.g. leftist for TD, feminism for Incels).

Additionally, we use the Perspective API to measure how toxicity in these communities changed

post-migration.

The suitability of using models from the Perspective API as toxicity sensors has been explored in

previous work. Rajadesingan et al. [38] found that, for Reddit political communities, the performance

of the classifier is similar to that of a human annotator, while Zannettou et al. [56] found that

Perspective’s “Severe Toxicity” model outperforms alternatives like HateSonar [12]. Perspective has

been shown to be biased against comments mentioning marginalized subgroups and for comments

posted in African American English [49]. We find no compelling reason to believe that these biases

may impact the post-migration changes in the toxicity of the communities studied.

Lastly, it is worth stressing that the utility of understanding toxicity in online communities

goes beyond the study of fringe or troublesome communities. In the context of peer production

communities, Carillo and Marsany [6] have discussed toxicity drawing notions from ecology and

toxicology: exposure to “toxic” content without the appropriate “defense mechanisms” would harm

the productivity of online communities. In this paradigm, efforts to understand, pro-actively detect,

and quickly act against antisocial or toxic behavior would be key in maintaining healthy online

communities, directions that have been empirically explored by previous work [8, 39, 57].

2.4 Relation with prior work
Overall, previous research discussed above has examined the efficacy of community-level mod-

eration within Reddit [7, 48] and analyzed cross-platform migrations that ensued [33]. Our work

takes a significant step further, by assessing the efficacy of these interventions in a new direction.

Given that communities do migrate following moderation measures, we study if these measures are

effective when considering the development of the communities outside of their original platform.

To do so, we draw from a rich literature of existing work on online toxicity and its relationship with

behaviors indicative of radicalization [18], as well as on previous studies analyzing the communities

at hand [14, 40].
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Table 1. Overview of our datasets.

Platform Community Submissions Comments Users

Reddit

/r/Incels 17,403 340,650 18,088

/r/The_Donald 251,090 2,703,615 80,002

Websites

Incels.co 25,138 385,765 2,270

thedonald.win 280,156 2,390,641 38,510

3 MATERIALS AND METHODS
3.1 Data collection
We collect data from both Reddit (for the period before migrations) and standalone websites (for

the period after).

Reddit. To collect Reddit data, we use Pushshift [2], a service that performs large-scale Reddit

crawls. We collect all submissions and comments made on r/The_Donald and r/Incels, starting from

120 days before the moderation measure, and until its date. Specifically, for r/Incels, we collect data

between 10 July 2017 and 7 November 2017; for r/The_Donald, between 29 October 2019 and 26

February 2020. Overall, we collect around 3 million comments in 260K submissions (or “threads”)

from both subreddits (see Table 1).

Standalone websites.We additionally implement and use custom Web crawlers to collect data

from the standalone websites (incels.co and thedonald.win). For each, we collect all submissions and

comments posted for a period of 120 days after the community-level moderation measure. Specifi-

cally, for incels.co, we collect data between 7 November 2017 and 6 March 2018; for thedonald.win,

between 26 February 2020 and 24 June 2020. Overall, we collect over 2.5 million comments and

submissions from thedonald.win and over 400K comments and submissions from incels.co. In the

rest of the paper, to ease presentation, we refer to both submissions and comments as “posts.”

3.2 User analysis
We briefly describe our methods for matching users across platforms and for analyzing newcomers.

Matched Users. To better understand changes at the user-level, we also carry out analyses with

matched users, finding pairs of users with the exact same username on both Reddit and the

standalone websites. We consider that these users are the same individuals in the two platforms,

an assumption backed by anecdotal evidence from within the communities (thedonald.win even

had a feature to reserve your Reddit username [54]) and by previous research [33]. Allowing

for upper/lower-case differences, using this method, we were able to match 8,651 users between

r/The_Donald and thedonald.win (around 20% of the user base of the latter) and 286 users between

r/Incels and incels.co (around 13%).

Newcomers. We estimate the inflow of newcomers in each community considering both the pre-

and post-migration period by counting the daily number of posts with usernames never before

observed. For instance, if a user X posted in thedonald.win on the 1st of March of 2020, and no user

with such username posted before in either thedonald.win or r/The_Donald, we would consider

him or her a newcomer. Note that here, if we used only the data from 120 days before and after

the migration, we would observe a spike in newcomers at the beginning of the study period. To

prevent that, for each community, we additionally download all history available in Pushshift to

act as a buffer.
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Table 2. Fixation dictionaries.

Incels female(s) normie(s) chad(s) virgin whore(s) girl(s) rope gf girlfriend women beta cunt

suicide pussy woman bitch(es) cuck(s) feminism

TD trans commie dem(s) democrat(s) deep communist diversity leftist communism antifa

socialist left socialism libs gender

3.3 Content analysis
To understand the impact of platform migration on the content being produced by the communities,

we use text-based signals associated with toxicity and user radicalization [18, 31].

Fixation dictionary. We generate a fixation dictionary for each of the communities, selecting

terms related to their “objects of fixation.” More specifically, we: (1) select terms that are more likely

to occur in the communities of interest as compared to Reddit in general, and (2) manually curate

these terms, selecting those that are related to these communities’ objects of fixation (e.g., women
and feminism for Incels). To obtain the list of terms, we extract words from the communities of

interest and from a 1% random sample of Reddit for a period of one month (immediately prior to

the study period previously described). We exclude bot-related messages (e.g., auto-moderation),

stop-words, and words that occurred fewer than 50 times, and calculate the log-ratio between the

frequency of a keyword in the communities being studied and on Reddit in general. From this,

we obtain, for each community, the 250 terms that have the highest relative occurrence. Then,

to build the fixation dictionary, three authors of this paper (all familiar with the communities at

hand) discussed each term and came to an agreement on whether or not that term was an object of

fixation. Table 2 reports the terms in our fixation dictionary for each community; be advised that

the terminology in this table is offensive.

Toxicity score. To analyze content toxicity, we use Google’s Perspective API [36], an API consisting
of machine learning models trained on manually annotated corpora of text. More specifically, we

employ the “Severe Toxicity” model which allows us to assess how likely (on a scale between 0 and

1) a post is to be “rude, disrespectful, or unreasonable and is likely to make you leave a discussion.”

This model is also trained specifically to not classify benign usage of foul language as toxic.

LIWC. We measure changes in word choice using the Linguistic Inquiry and Word Count (LIWC)

tool [52]. LIWC consists of various dictionaries (in total 4.5K words) to classify words into over 70

categories, including general characteristics of posts (e.g., word count), linguistic components (e.g.,

adverbs), psychological processes (e.g., cognitive processes), and non-psychological processes (e.g.,

pronouns). In this work, we study changes for the following (aggregated) LIWC 2015 categories:

(1) Negative Emotions: sum of the Anger, Anxiety, and Sadness LIWC categories; (2) Hostility: sum

of Anger, Swear, and Sexual LIWC categories. (3) Pronouns: we focus on the usage of third-person

plural (e.g., “they”), and first person plural (e.g., “we”) pronouns.

Mapping signals to warning behaviors. These different signals, as well as their combinations,

have been described as warning behaviors of ideological radicalization. We focus on two warning

behaviors described by Cohen et al. [11]: (1) Fixation: a pathological preoccupation with a person or

cause that is increasingly expressedwith negative and angry undertones; and (2)Group Identification:
strong identification and moral commitment to the ingroup and distancing from the outgroup.

To study changes in fixation, we analyze our fixation dictionaries along with Toxicity scores and
the word categories Negative Emotions and Hostility. To study changes in group identification, we
study changes in the usage of pronouns as measured by LIWC. These choices were motivated, as

discussed earlier, by previous work by Grover and Mark [18].
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3.4 Ethics and reproducibility
In this work, we only used data publicly posted on the Web and did not (1) interact with online

users in any way, nor (2) simulate any logged-in activity on Reddit or the other platforms. When

we matched users on Reddit and the fringe platforms, we did not attempt to gain any information

about users’ personal identities. Anonymized reproducibility data and code are available at https:

//doi.org/10.5281/zenodo.5171068 We stress that the data is provided without the usernames or the

actual text posted (i.e., only the signals extracted). We believe that this makes de-anonymization

harder than crawling the standalone websites and downloading existing Reddit dumps. These steps

follow previous work studying toxic communities on Reddit [38], and we believe they minimize

the potential harms associated while ensuring the study is reproducible. Additionally, we note that

we only do exact matching on publicly available data, while not singling out any individual user,

and thus we believe we are not infringing on reasonable privacy expectations.

4 CHANGES IN ACTIVITY LEVELS
In this section, we measure how the community-level moderation measures changed posting

activity levels and the capacity of the two communities to attract newcomers (RQ1). We do so from

two different perspectives. First, we aggregate our data on a daily basis, inspecting community-level
changes in the number of posts, active users and newcomers. Next, we zoom in to the user-level
and examine how individual users’ behavior changed post-migration.

4.1 Community-level trends
Fig. 3 shows the daily number of newcomers, posts, and active users in each community before and

after the migrations for both the TD and the Incel community. Note that we consider data from

both the subreddit and the fringe platform users migrated towards.

To gain a better understanding of the overall trends, we perform a regression discontinuity

analysis for each statistic in each community. We employ a linear model:

𝑦𝑡 = 𝛼0 + 𝛽0𝑡 + 𝛼𝑖𝑡 + 𝛽𝑖𝑡𝑡, (1)

where 𝑡 is the date, which takes values between −120 and +120 and equals 0 in the day of the

moderation measure; 𝑦𝑡 is statistic we are modeling; and 𝑖𝑡 is an indicator variable equal to 1 for

days following the moderation measure (i.e., 𝑡 > 0), and 0 otherwise. Our model assumes that daily

activity levels (for the different metrics) can be approximated by a line (defined by coefficients 𝛼0
and 𝛽0), which, post-migration, can change both its intercept (𝛼) and its slope (𝛽). We analyze these

changes to understand the impact of platform migrations on the communities at hand.

We exclude data from a “grace period” of 15 days before and after the moderation measure.
2

This accounts for the bursty behavior happening on user activity metrics in the days around the

migration. For example, for newcomers, many of the users who migrated to the new website

(thedonald.win or incels.co) choose new usernames, which creates a spike in the metric. However,

this initial spike is not interesting to capture the overall trend of newcomers in the website, and

the grace period addresses that. Additionally, there were a few days on which the Pushshift ingest

had problems or where there was a large volume of spam-like content. The values for the statistics

on these dates are depicted as gray crosses in Fig. 3 and were not considered to fit the models. Both

coefficients and 95% CI for each parameter in the regressions are shown in Table 3.

Newcomers. The first row of Fig. 3 shows the number of daily newcomers in each community

(as described in Sec. 3.2). We find that, for both communities, there was a significant decrease in

2
We stress that our results are robust to changes in this parameter: we have experimented with different window sizes (e.g.

7 and 21 days), obtaining largely the same results

https://doi.org/10.5281/zenodo.5171068
https://doi.org/10.5281/zenodo.5171068
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Fig. 3. Activity levels: Daily activity statistics for the TD community (left) and the Incel community (right)
120 days before and after migrations. Dots represent the daily average for each statistic, and the blue lines
depict the model fitted in the regression discontinuity analysis. The migration date and a grace period around
it (used in the model) are depicted as solid and dashed gray lines, respectively. Gray crosses represent days
where the Pushshift ingest had issues, or where there was a large volume of spam-like content. On top
of each subplot, we report the coefficients associated with the moderation measure in the model (𝛼 and
𝛽). Coefficients for which 𝑝 < 0.001, 0.01, and 0.05 are marked with ***, **, and *, respectively. For the TD
community, we mark the killing of George Floyd (on 25 May 2020), with a red cross (×) close to the x-axis.

the influx of newcomers following the migration. The TD community saw a significant decrease

of around 78 daily newcomers (𝛼 = −77.8). This represents a percent change of around −30%
of the Mean Value Before the community-level Intervention (referred to as MVBI henceforth),
i.e., the drop represents roughly 30% of the average daily value in the pre-migration period. The

decrease was even more substantial for the Incel community, which experienced around 215 fewer

newcomers a day (𝛼 = −215.4), roughly −150% of theMVBI (note that the drop was, therefore, bigger
than the pre-migration average). Furthermore, the Incel community had a significant increasing

trend before the migration (𝛽0 = 0.9), which was weakened in the post-migration period (𝛽 = −0.9).
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Posts and users. The second and third rows of Fig. 3 show that both the total number of daily

posts and daily posting users dropped significantly post-migration. TD experienced a decrease of

around 14.4k daily posts (𝛼 = −14416, −55% of the MVBI ) and of around 4.7k daily active users

(𝛼 = −4774, −65% of the MVBI ). In both cases, the slope became steeper after the migration, with a

significant increase of around 121 new posts a day (𝛽 = 120.6), and around 14 additional active users

a day (𝛽 = 13.7). A possible explanation for this increase is that the killing of George Floyd (25 May

2020) and the demonstrations that ensued may have boosted participation on the platform, since

the date coincides with a sharp rise in both statistics. Repeating the regression analysis excluding

the period after 24 May 2020, we find non-significant decreases in the slope (𝛽) for both statistics,

which strengthens this hypothesis. We further discuss this confounder in Sec. 6.

For the Incel community, there were significant decreases of around 2.6k posts a day (𝛼 = −2651,
−73% of the MVBI ), and of around 777 daily active users (𝛼 = −777.4, −116% of the MVBI ). Looking
at the trends for the number of active users, we find a significant positive trend across the whole

period (𝛽0 = 3.9, see Table 3) but the slope decreases significantly after the migration (𝛽 = −3).
Posts per user. The fourth row of Fig. 3 shows the daily average of the posts per user ratio. Here,

we find that the moderation measure significantly increased relative activity. The TD community

showed an increase in the number of daily posts per user of around 1 extra posts per user (𝛼 = 1.1,

31% of the MVBI ); for Incels, the increase was of around 7 extra posts per user (𝛼 = 7.4, 123% of the

MVBI ). In both cases there is also a significant increase in the trend (𝛽 = 0.009 for TD, and 𝛽 = 0.04

for Incel). This adds nuance to the overall scenario: although the activity in the communities is

reduced, relative to the number of users, it increases.

4.2 User-level trends
The analyses done so far paint a comprehensive picture of the changes in activity due to migration

at the community-level. Yet, they do not disentangle the effects happening at the user-level. We

found that relative activity increased (i.e., fewer users posted more often), but the underlying

mechanism for this change is still unclear. Users’ activity may have indeed increased after the
migration, i.e., individually, each user who migrated might post more often on the fringe website,

but the increase could also be due to self-selection: users who migrated following the moderation

measure might have been more active to begin with.

Understanding the reason behind this (relative) activity increase is important to evaluate the

efficacy of the moderation measure. If the increase occurred because users became more active,

the subset of users “ignited” by the moderation measure could cause even greater harm in the

new platform. However, if the increase was only due to self-selection, we might consider the

measure successful in decreasing the activity and reach of the communities. To better understand

the mechanism behind this activity increase, we perform an additional set of analyses inspecting

what changed at the user level post-migration. To do so, we analyze the set of users before and after

the migration, and additionally, the set of matched users described in Sec. 3.2.

Comparing posts-per-user distributions.We begin by comparing the distribution of posts from

matched users and the general population of users both before and after the migration. Fig. 4

depicts the complementary cumulative distribution function (CCDF) of the number of posts for all

users (solid line) and for matched users (dashed line) both in the fringe communities (in red) and

on Reddit (in blue).

Considering all users (solid lines), the CCDFs confirm our previous analysis, showing that users

are more active in the fringe websites, since the red solid line is consistently above the blue solid

line. This is also captured by the mean of user activity in fringe communities, which is of 73 posts
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Fig. 4. CCDFs of posts per user: For each community, we depict the complementary cumulative distribution
function (CCDF) of the number of posts per user for: (1) all users who posted in the 120 days before (solid
blue) and after the moderation measure (solid red), and (2) users we managed to match based on username
while they were still on Reddit (dashed blue) and on the fringe platform (dashed red). The plot also depicts
the mean value for each one of these populations as vertical lines in the same color/style scheme. Recall that
the CCDF maps every value in the 𝑥-axis to the percentage of values in a sample that are bigger than 𝑥 (in
the 𝑦-axis).

per user (95% CI: [70, 76.3]
3
) for the TD community, and of 180.6 (95% CI: [155.1, 209.3]) for Incels.

These values are significantly higher than in Reddit, where there are, on average, 37.3 posts per user

(95% CI: [36.2, 38.5]) in the TD community, and 19.8 (95% CI: [18.2, 21.5]) in the Incel community.

Comparing the number of posts per user on Reddit in general (blue line) with users we managed

to match (dashed blue line), we find that matched users are more active than users in general. In

Reddit, matched users had an average of 127.3 posts (95% CI: [120.2, 135]) in the TD community, and

319.9 posts (95% CI: [264.7, 381.8]) in the Incel community, significantly higher than the average

user in Reddit in each community (reported above).

Matched comparisons. The above analysis suggests that users who migrated were more active

than average on Reddit, which could lead to an increase in relative activity due to self-selection.

To further investigate this, we compare, for each matched user, the change in number of posts

before and after the migration. More specifically, we analyze the log-ratio of posts before vs. after

the migration for each matched user, defined as log
2

# posts after

# posts before
. Note that this metric provides an

intuitive interpretation of the change in activity for a user: if the numbers of posts before and after

the migration are the same, the log-ratio will be 0; if the user posted twice as much, it will be 1;

and if the user posted half as much, −1.
In Fig. 5, we depict the mean value of the log-ratios for all users in the first column and, in the

next four columns, for users stratified by their activity in the pre-migration period. We divide users

in quartiles according to how much they posted in the pre-migration period
4
and then report the

mean for each quartile.

3
Confidence intervals were calculated through bootstrapping.

4
For the TD community, the quartile ranges for the number of posts before the migration were𝑄1 = [1, 7) ,𝑄2 = [7, 27) ,
𝑄3 = [27, 101) ,𝑄4 = [101,∞) ; for Incels,𝑄1 = [1, 19) ,𝑄2 = [19, 116) ,𝑄3 = [116, 398) ,𝑄4 = [398,∞) .
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Fig. 5. User-level change in number of posts:Mean log-ratios between the number of posts before and
after the migration for each user. In the first column, the mean is calculated for all users, while for the last four,
we stratify users according to their level of pre-migration activity. The horizontal line depicts the scenario
where the number of posts remained the same (log-ratio = 0). Error bars represent 95% CIs.

Considering the complete set of matched users (first column of Fig. 5), we find that the mean

activity log-ratios are significantly smaller than zero for both communities: -0.81 (95% CI: [-0.86,

-0.75]) for the TD community and -0.53 (95% CI: [-0.96, -0.10]) for the Incel community. This result

provides further evidence for the self-selection hypothesis: not only did we find the group of

matched users to be more active, but, within this group, activity has decreased.
Analyzing the users stratified by their activity (in the last four columns of Fig. 5), we find that

this decrease in activity is stronger for users who were the most active in the pre-migration period.

The mean log-ratios for each quartile in TD are, respectively, 𝜇𝑄1 = 1.1, 𝜇𝑄2 = −0.7, 𝜇𝑄3 = −1.5, and
𝜇𝑄4 = −2.0. This shows that users in the least active quartile (Q1) became around twice (2

1.1
) as

active, while those in the most active quartile (Q4) decreased their activity to around one-quarter

(2
−2.0

). For the Incel community, we observe a similar pattern, with mean log-ratios of 𝜇𝑄1 = 1.9,

𝜇𝑄2 = −0.8, 𝜇𝑄3 = −1.3, and 𝜇𝑄4 = −1.9. Overall, these findings mitigate the concern that a core

group of extremely dedicated users was “ignited” by the migration.

4.3 Take-aways
Our analysis suggests that community-level moderation measures significantly hamper activity

and growth in the communities we study. For both communities, there was a substantial decrease

in the number of newcomers, active users, and posts after the moderation measure. Yet, this tells

only part of the story: we also find an increase in the relative activity for both communities: per

user, substantially more daily posts occurred on the fringe websites.

A closer look into user-level indicates that this relative increase in activity is due to self-selection,

rather than an increase in user activity post-migration. Not only do we find that users we managed

to match were more active on Reddit before the migration, but they even reduced their overall

activity after they went to the new platform.

5 CHANGES IN CONTENT
In this section, we use the signals described in Sec. 3.3 to analyze whether the communities and

their users became more toxic and ideologically radical following the migrations. We again analyze

community- and user-level trends separately.
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Fig. 6. Content signals:Daily content-related statistics for the TD community (left) and the Incel community
(right) 120 days before and after migrations. For the Fixation Dictionary and the LIWC-related metrics, black
dots depict, for each day, the percentage of words belonging to each word category. For Toxicity, they depict
the daily percentage of posts with toxicity scores higher than 0.80. For Toxicity, Negative Emotions, and
Hostility, we limit our analysis to posts that contain at least one word in our fixation dictionaries. We again
show the output of our model as solid blue lines, and the coefficients related to the moderation measure (𝛼
and 𝛽) on top of each plot (marking those for which 𝑝 < 0.001, 0.01, and 0.05 with ***, **, and *, respectively).
For the TD community, we mark the killing of George Floyd, with a red cross (×) close to the x-axis.
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5.1 Community-level trends
To study community-level trends, we use a regression discontinuity design similar to Equation (1);

however, we add an extra term to control for changes in length associated with the migration.
5

The model now takes on this form:

𝑦𝑡 = 𝛼0 + 𝛽0𝑡 + 𝛼𝑖𝑡 + 𝛽𝑖𝑡𝑡 + 𝛾𝑙𝑡 , (2)

where 𝑙𝑡 represents the median length of posts (in characters) on day 𝑡 . We add this covariate

to ensure that changes in the intercept (𝛼) and the slope (𝛽) following the intervention are not

confounded by changes in the way people post on the new platform (e.g., longer posts). Note that

a consequence of this added term is that when we plot the number of posts (on the 𝑦-axis) per

day (on the 𝑥-axis), we no longer get a straight line since changes in the median length (which

varies with time) may impact the outcome of the regression. Thus, for the plots, we fix the value

of the length as the average value through the entire period in order to isolate the effect of the

intervention and simulate that there is no length change. For descriptions of the other coefficients,

see Equation (1). Again, all coefficients for the regression analysis, along with confidence intervals,

are shown in Table 3.

Fixation dictionary. We begin by inspecting the prevalence of the fixation dictionary terms over

time, as depicted in the first column of Fig. 6. For the TD community, we observe a significant drop

of 𝛼 = −0.2 percentage points in the usage of terms in the fixation dictionary (−44% of the MVBI ).
For the Incel community, following the intervention, we also see a decrease of around 𝛼 = −0.4
percentage points in the usage of words in the fixation dictionary (−21% of theMVBI ). In both cases,

we observe a positive increase in the trend after the intervention (𝛽 = 0.002 for both communities).

Fixation-related signals. Next, we study changes in Toxicity, Negative Emotions, and Hostility.
We limit this analysis to the set of posts containing at least one word in the fixation dictionary (see

Table 2) since we are particularly interested in how the communities are talking about their objects

of fixation. We consider a comment to be toxic if it has a toxicity score above 80% and calculate, for

each day, the fraction of toxic posts. This threshold has been used as a default in other papers [56]

and production-ready applications that use the API [37]. For the other LIWC-based metrics, we

calculate the proportion of words in the specific dictionaries used per day.

The second column in Fig. 6 shows the changes in the percentage of toxic posts for both

communities. For the Incel community, we find no significant change following the interventions.

For TD, there is a significant increase right after the intervention of around 𝛼 = 0.9 more toxic

posts containing the fixation dictionary (42% of theMVBI ). However, we see a significant decreasing
trend of around 𝛽 = −0.006 fewer toxic posts containing words in the fixation dictionary per

day. This decrease in the overall trend does not necessarily mean that the average percentage of

toxic posts will return to the pre-migration levels. After the sharp increase in toxicity following the

moderation measure, the daily toxicity levels may settle at a new baseline higher than pre-migration

values.

The third and fourth columns in Fig. 6 depict changes in Negative Emotions and Hostility,

respectively. We find that in most cases these two metrics experience a decrease in the intercept

following community level interventions, although effects are not always significant (𝑝 > 0.05).

Pronoun usage. In the fifth and sixth columns of Fig. 6, we report the usage of two types of

personal pronouns: first-person plural pronouns (e.g., “we,” “us,” “our”) and third-person plural

pronouns (e.g., “they,” “their”). For the Incel community, we see no significant change in the usage

5
We find significant changes in the average post length pre- vs. post-migration: 131.7 vs. 118.0 for Incels, and 129.2 vs. 141.2

for TD.
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Fig. 7. User-level change in content: We depict the mean user-level log-ratio for each of the content-
related signals studied. A green horizontal line depicts the scenario of no change (log-ratio = 0). Error bars
represent 95% CIs.

of either type of pronoun following the migration. For TD, however, there are interesting changes

in their usage. For first person plural pronouns, following the intervention, we find a significant

increase in usage of around 𝛼 = 0.3 percentage points (33% of the MVBI ), and a significant decrease
in the slope, 𝛽 = −0.002. For third-person plural pronouns, we find the opposite. Following the

intervention, we find a significant decrease of 𝛼 = −0.3 percentage points (−18% of the MVBI ),
followed by a significant increase in the trend, 𝛽 = 0.005.

First-person plural pronouns capture group identification and third-person plural pronouns have

been associated with extremism [11, 18, 35]. Thus, for the TD community, the intervention seems

to have transiently increased group identification immediately after the ban, and later, attention

seems to have shifted to the outgroup. The reduced focus on the outgroup following the community

intervention could also be related to the way words in the fixation dictionary were used after

migration. There too, we observe a similar pattern: a sharp drop followed by a gradual increase in

usage.

Overall, these findings suggest that the community migrations heterogeneously impacted the

communities at hand. While not much changed for the Incel community, we find that for TD, there

were significant increases in signals related to both the fixation warning behavior (Toxicity) and the
group identification warning behavior (both first- and third-person plural pronouns). Again, here

a potential confound is the death of George Floyd on 25 May 2020, which impacted user activity

(see Fig. 3) and coincides with increases in some of the metrics studied (e.g., third-person plural

pronouns). By repeating the analysis for TD excluding the period after 24 May 2020, we still find

that these changes hold.

5.2 User-level trends
Similar to our content-level analysis, the reasons behind the increase in some of the signals related

to online radicalization are important. Here, again, it could be that the subset of users who migrated

to the fringe platform was more radical to begin with or that the users became more radical after

the migration. Thus, it is important to analyze changes at the user level. Luckily, the sample of

matched users gives us the opportunity to control for self-selection since we can measure, e.g., the

percentage of toxic posts before vs. after the migration for the same group of matched users.
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Matched comparison. To disentangle self-selection from user-level increases following the mi-

gration, we compare changes in each of the signals for the set of matched users. We calculate, for

each user, the fraction of toxic posts (Toxicity higher than 0.8) and the percentage of words used

in each of the defined categories (Hostility, We, etc.) both before and after the migration. Then,

similar to Fig. 5, we compare the log-ratio between the signals associated with each user before and
after the migration. However, here, calculating the log-ratio may involve dividing by 0, e.g., for a

user who posted no toxic posts before the migration and 2 after. Thus, for each individual signal,

we limit our analysis to users with positive values for that signal before and after the migration.

Therefore, when comparing the changes in toxic posts, we consider only users with at least one

toxic post before and one toxic post after the migration. Similarly, for the LIWC-related signals, we

consider only users who used words in the given category at least once before and at least once

after the migration. We report the mean log-ratio across matched users for each signal in Fig. 7.

For the TD community, we again observe significant increases for Toxicity (𝜇 = 0.41, which

represents an increase of around 32% since 2
0.41 ≈ 1.32), We (𝜇 = 0.26, 20% increase), and They

(𝜇 = 0.11, 8% increase). This suggests that the increases previously observed were not caused merely

by self-selection. For the Incel community, there were non-significant increases in Toxicity (0.14, 10%
increase) and small non-significant decreases in the usage of both pronoun-related categories. For

both communities, we again significant decreases in the usage of words in the fixation dictionary

(𝜇 = 0.15 for TD and 𝜇 = 0.14 for Incels, around 11% increase in both cases). We also find significant

increases in signals that we did not observe in the community-level analysis. Namely, for both

communities we find significant increases in Hostility (8% increase for TD and 10% for Incels), and

for TD, we find a significant increase in Negative Emotions (8% increase).

Regression discontinuity analysis. The previous analysis indicates that there were significant
changes in the radicalization-related signals for the matched sample, some of which we did not

observe in the community-level analysis. To better understand the matched sample, and the

differences between the results at the community-level and the user-level, we repeat the regression

discontinuity analysis done for the signals of interest using only posts from the matched user

sample. We use exactly the same model as in Equation (2), changing only the data: there we used
all posts by all users, here we use all posts by matched users. In Fig. 8, we plot the regression lines

for the analysis done with all users in blue and for matched users in orange. Coefficients along

with confidence intervals are again presented in Table 3.

For several signals, the results in this reduced sample are very similar to the previous analysis.

For example, for TD, we have almost exactly the same coefficients for the usage of the fixation

dictionary (𝛼 = −0.2, and 𝛽 = 0.002) and of third-person plural pronouns (𝛼 = −0.3, and 𝛽 = 0.004).

Yet, for some of the signals, we do find significant differences following the community migrations.

More specifically, for TD community, following the migration, we find significant increases in the

trends for Negative Emotions (𝛽 = 0.002) and we find no significant decrease in the trend for the

Toxicity signal (which used to be the case). Additionally, for Incels, we find significant increases in

the trend for Negative Emotions (𝛽 = 0.004) and Hostility (𝛽 = 0.01).

Overall, this analysis confirms the results previously discussed in Fig. 7 and suggests that users

in the matched sample were impacted by the community-level intervention. This is different from

what we observed when looking at activity levels. There, when we zoomed in on matched users,

we found that they had decreased their activity (even though the number of posts per user grew).

Here, on the contrary, we find that these users seem to have become more radical.



18 Horta Ribeiro et al.

-120 0 +120
0.2%

0.5%Fixation dict.

TD

Matched users All users

-120 0 +120
1.0%

2.0%

Incels

-120 0 +120
0.8%

1.0%

1.2%

We

-120 0 +120

0.5%
0.8%

-120 0 +120
1.5%

2.0%They

-120 0 +120

1.0%

1.5%

-120 0 +120

2.0%

4.0%
Toxicity

-120 0 +120
5.0%

10.0%

15.0%

-120 0 +120

2.5%

3.0%Hostility

-120 0 +120
4.0%

6.0%

-120 0 +120
Days after migration

2.0%

2.5%Neg. emotions

-120 0 +120
Days after migration

2.5%
3.0%
3.5%

α=−0.2∗ ∗ ∗  β= 0.002∗ ∗ ∗

α= 0.2∗ ∗ ∗  β=−0.002∗ ∗ ∗

α=−0.3∗ ∗ ∗  β= 0.004∗ ∗ ∗

α=−0.4∗ ∗ ∗  β= 0.001

α=−0.2∗ ∗ ∗  β=−0.001

α=−0.2∗ ∗  β= 0.001

α= 0.7∗ ∗  β=−0.002

α=−0.1  β= 0.003

α=−0.1  β= 0.002∗

α=−1.7∗ β= 0.01

α=−0.5∗ β= 0.01∗ ∗ ∗

α=−0.3∗ β= 0.004∗

Fig. 8. Daily content signals for matched users:We repeat the same analysis from Sec. 5.1 considering
the sample of matched users. We show the regression lines considering all users (in blue) and only matched
users (in orange). Above each plot, we show the coefficients related to the moderation (𝛼 and 𝛽) for the model
considering only matched users. For additional details, see Fig. 6.

5.3 Take-aways
Altogether, our analysis shows that, for TD, community-level interventions and the migrations

that ensued are associated with significant increases in radicalization-related signals. A closer look

at the matched user sample indicates that these increases were not merely due to self-selection,

since we also observe significant user-level increases. Furthermore, analyzing the matched sample,

we find that the migration may have impacted these users more substantially, since the differences

for them are more substantial.
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A second important result of our content-level analysis is that communities were heterogeneously

impacted. When comparing how the activity in the two communities changed (Sec. 4), we found

the same patterns overall; whereas, when comparing how the content changed, we found rather

distinct behaviors across the two communities. Unlike the TD community, for Incels, there were

often decreases in signals related to radicalization following community migration.

6 DISCUSSION & CONCLUSION
Our work paints a nuanced portrait of the benefits and possible backlashes of community-level

interventions. On the one hand, we found that the interventions were effective in decreasing

activity and the capacity of the community to attract newcomers. Moreover, we found evidence

that relative increase in activity (i.e., fewer users posting more) is likely due to self-selection: the

users who migrated to the new community were more active to begin with. On the other hand,

we found significant increases in radicalization-related signals for one of the communities studied

(TD), even when controlling for self-selection. In fact, these increases were even more substantial

for the set of matched users studied.

An interesting angle to consider the changes observed in communities pre- vs. pos- migration,

is through the lens of characteristics and affordances of large online platforms such as Reddit,

YouTube and Facebook. According to Gillespie [15], online platforms differ from traditional media

outlets in that they provide the means of distribution, but not the content (which is user generated).

Moreover, a key component of online platforms is that they moderate and gatekeep content, despite

best efforts to present themselves as neutral “facilitators.”

In that context, the migration of online communities from mainstream platforms to fringe,

alternative websites provoke shifts associated with how content is distributed and moderated,

two important roles of online platforms. The decrease in activity observed after communities

migrated emphasizes the power of the distribution of online platforms such as Reddit. Since Reddit

has thousands of highly popular subreddits, toxic communities inhabiting the platform are easily

discoverable, and consuming the content they produce is convenient. Using a similar line of

reasoning, the increase in toxicity observed when members of r/The_Donald migrated out of the

subreddit can be associated with the power of the moderation of online platforms. Toxicity may be

understood as a proxy for content that would likely clash with Reddit’s content policy
6
. Therefore,

the rise in toxicity following the ban can be understood as a consequence of the removal of platform

moderation.

Overall, our results strengthen the hypothesis that platforms are largely responsible for our

online information ecosystem [15]. Besides determining what kinds of content flourishes [32],

platforms allow communities to exploit their affordances to recruit new members, and are able

to influence the content being posted in toxic communities. In the remainder of this section, we

discuss the implications of these results for platforms and future research, as well as the limitations

of our study.

6.1 Limitations and future work

Communities. Our work focuses on two communities: TD and Incels. However, Reddit has sanc-

tioned many other communities that may have migrated to new fringe websites. The implications

of such sanctions for migration may differ based on the specifics of each community. That said, the

communities we study are among the most prominently sanctioned subreddits, and our analysis

provides early insight into the consequences of such sanctions. In the future, similar analysis on

6
https://www.reddit.com/r/reddit.com/wiki/revisions/contentpolicy
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other sanctioned communities would help disentangle how contextual factors including community

size, topic, and the design of the alternative platform may affect migration patterns.

Migrations and dispersion. We consider the effects of migration to only one fringe website

per each of the sanctioned communities we study. In both cases, the migrations to the websites

we analyze were officially endorsed by the subreddits’ moderators, and, for r/The_Donald, the

subreddit promoted the migration to the new site while it could. However, users may have migrated

to other platforms as well. For example, on Reddit, after r/Incels was banned, an old subreddit called

r/Braincels reportedly became popular (until eventually being banned too). Also more broadly,

some community-level interventions may not result in “successful” coordinated migration. Rather,

users can be dispersed through a variety of other platforms (e.g., Gab, 4chan, Parler, etc.). Studying

what happens in these cases is an important direction to completely understand the impact of

deplatforming communities. For example, one could try to measure the activity boost experienced in

each of these platforms whenever a toxic community in a mainstream platform (e.g. r/The_Donald)

gets banned. A challenge here would be to obtain data for a variety of fringe communities and to

control for other confounders, such as geopolitical events.

Confounders. The responsiveness of these communities to real-world events creates confounders.

This is particularly true for the TD community, where we found significant changes in the content-

and activity-related signals in reaction to the killing of George Floyd. While our quasi-experimental

research design controls for linear trends, sudden bursts in content-related signals can partially

impact our results. Controlling for these trends is hard since the reaction of these communities

to real world changes is inherently linked to the harms they pose to society. However, in our

specific case, we find that the effects observed held even when limiting the period of the regression

discontinuity analysis to before the event (i.e., George Floyd’s killing). Another possible set of

confounders are changes to rules and moderation actions that could have changed pre- vs. post-

intervention. Although we did not explicitly incorporate these changes into our analysis, we

carefully analyzed the set of rules before (Incels: [43], TD: [46]) and after (Incels: [22], TD: [53])

the migration and did not find any substantial changes.

Matched Users. Another limitation of the work at hand is that user-level analyses are made on

a set of users matched according to their usernames. These users tend to be more active than

the average user (cf. Fig. 4), and may differ from users who migrated and did not change their

username. Although important, we argue that this bias is not impactful to the external validity

of our results. The main purpose of looking at matched users is to distinguish between behavior

change and self-selection. When studying changes in activity, analyzing matched users provides

us with the useful insight that, although the number of posts per user increases after migration

(cf. Fig. 3), on a user-level this is not the case (cf. Fig. 5). For the sample bias to be an issue here,

reverting or weakening the results, it would be necessary that users who migrated and did not keep

the same username became more active after the ban while those who kept the same username

did not, which is unlikely. When studying changes in the content, we find that community-level

trends on the set of matched users are very similar to community-level changes considering all

users (cf. Fig. 8), weakening concerns that there would be a strong difference between the nature of

the content posted by these users. An interesting direction to further understand these matched

users (and explore user-level trends) would be to additionally analyze users with known usernames

pre- vs. post- ban in other subreddits.

Mapping signals to externalities. Our analysis relies on user activity and signals derived

from user-generated content to analyze online toxic communities. Our main result suggests that

community-level interventions may involve a trade-off: less activity at the expense of a more radical
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community elsewhere. Yet, the relationship between these activity- and content-related signals

from toxic online communities and their real-world harms is still fuzzy. It is unclear, for instance,

whether a reduction of 50% in posting activity where each user is 10% more “toxic” is desirable or

not. While such a fine-grained assessment of the consequences of a moderation intervention is

out of the scope of this paper, further study of the causal links between toxicity, user activity, and

real-world harm is an important research direction to improve the quality of moderation decisions.

6.2 Implications for online platforms
Our analysis of migration dynamics highlights that community-wide moderation interventions

do not happen in a vacuum. When platforms sanction an entire community, as opposed to taking

user-level actions, communities may migrate en gros to a different platform. Platforms have difficult

decisions to make: they need to consider the effects of community-wide sanctions not only on their

own backyard, but on other online and offline spaces as well. Our results suggest that there may

be a trade-off associated with this decision: banning a community from a mainstream platform

may come at the expense of a smaller but more extreme community elsewhere. However, this

take-away should be handled with nuance, since our work is limited to two communities, and since

the increase in toxicity was only observed in one of the two communities.

Nevertheless, a practical implication that follows from our results is that, given that a community

eventually gets banned, the time the said community was allowed to flourish in a mainstream

platformmay increase its potential for harm post-banning. The reasoning is simple: since community

growth is halted by the deplatforming, the earlier the community is banned, the fewer members a

possible spin-off community would have. In that context, if banning is a commonly used practice

in a given platform, it is advantageous to employ the measure proactively rather than reactively.

Lastly, the methodological framework we use in this paper may also be used in other contexts

and platforms to evaluate the effectiveness of moderation interventions. Platforms have at their

disposal abundant data that can help further clarify the trade-offs we discussed here. We hope that

extensions of this work will yield more precise guidelines on how to handle problematic online

communities.
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Table 3. Coefficients for all regression discontinuity analyses done throughout the paper, including 95%
confidence intervals. Coefficients for which 𝑝 < 0.001, 0.01, and 0.05 are marked with ***, **, and *, respectively.
The value [10−3] at the beginning of a cell indicates that the value of the cell as well as the confidence
intervals presented should be multiplied by 10

−3. This may cause slight differences in the numbers in this
table and the ones presented in the plots, since here we present the results at higher precision. Note that this
table contains the regression results for three different analysis carried out throughout the paper and depicted
in Fig. 3, Fig. 6, and Fig. 8. For presentation reasons, we omit the confidence intervals for the intercept across
the whole period (𝛼0), which is significant (𝑝 < 0.001) across all of the models.
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