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Abbreviations: 

AUC, area under the curve; EP, ependymoma; GTR, gross total resection; LASSO, least absolute shrinkage and 

selection operator; LR, logistic regression; PFA, Group A posterior fossa ependymoma; PFB, Group B posterior 

fossa ependymoma; STR, subtotal resection 
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Abstract 

Background: The risk profile for posterior fossa ependymoma (EP) depends on surgical and molecular status 

[Group A (PFA) versus Group B (PFB)]. While subtotal tumor resection is known to confer worse prognosis, 

MRI-based EP risk-profiling is unexplored. We aimed to apply machine learning strategies to link MRI-based 

biomarkers of high-risk EP and also to distinguish PFA from PFB. 

 

Methods: We extracted 1800 quantitative features from presurgical T2-weighted (T2-MRI) and gadolinium-

enhanced T1-weighted (T1-MRI) imaging of 157 EP patients. We implemented nested cross-validation to 

identify features for risk score calculations and apply a Cox model for survival analysis. We conducted 

additional feature selection for PFA versus PFB and examined performance across three candidate classifiers. 

 

Results: For all EP patients with GTR, we identified four T2-MRI-based features and stratified patients into 

high- and low-risk groups, with 5-year overall survival rates of 62% and 100%, respectively (p < 0.0001). Among 

presumed PFA patients with GTR, four T1-MRI and five T2-MRI features predicted divergence of high- and low-

risk groups, with 5-year overall survival rates of 62.7% and 96.7%, respectively (p = 0.002). T1-MRI-based 

features showed the best performance distinguishing PFA from PFB with an AUC of 0.86. 

 

Conclusions: We present machine learning strategies to identify MRI phenotypes that distinguish PFA from 

PFB, as well as high- and low-risk PFA. We also describe quantitative image predictors of aggressive EP tumors 

that might assist risk-profiling after surgery. Future studies could examine translating radiomics as an adjunct 

to EP risk assessment when considering therapy strategies or trial candidacy.   

 

 

 
 
Key Words 

ependymoma; machine learning; molecular subgroup; posterior fossa tumor; radiomics 
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Key Points 

 T1- and T2-MRI features consistently predict for EP and high-risk subgroups  

 PFA are with a more heterogeneous, and nodular texture on contrast-enhanced T1-MRI 

 Expansile tumors exhibit decreased overall survival even after gross total resection 
 

 

Importance of the Study 

The transition to a molecularly-based, WHO classification for ependymoma represents an exciting opportunity 
for personalized care but presents new challenges for routine subgrouping in pathology labs, as molecular 
testing is resource-intensive and not uniformly accessible. We present the first radiomics machine learning 
analysis on genetically profiled posterior fossa ependymoma using a large, multinational cohort of over 150 
patients. We identify imaging features from routine pre-operative MRI that can (1) distinguish Group A and 
Group B posterior fossa ependymoma and (2) be used to distinguish high-risk cases, even within a molecular 
subgroup. The interpretation of such features can help various providers and families throughout the clinical 
workflow including intra-operative planning, prognosticating survival, and clinical trial selection. 
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Introduction 

Ependymoma (EP) is the third most common pediatric brain tumor. It has highly variable outcomes, ranging 

from cure with aggressive surgical resection and local radiation, to progressive disease and death.
1
 Research 

suggests at least two distinct molecular groups of posterior fossa EP, Group A (PFA) and Group B (PFB) with 

unique molecular pathogenesis and highly divergent clinical outcomes.
2-4

 Specifically, studies have reported 

progression-free and overall survival rates of 24% and 48%, respectively, for PFA as well as 92% and 98%, 

respectively, for PFB tumors.
2
 PFA may show higher rates of lateralization and act as invasive tumors that recur 

and metastasize.
2
  

 

Even within PFA and PFB subgroups, molecular variants exist with unique prognostic and therapeutic 

implications.
2,3,5

 While majority of EP are balanced tumors, specific chromosomal aberrations can further 

characterize PFA and PFB variants. These chromosomal imbalances, most notably 1q gain and 6p loss of the 

PFA group carry their own specific risks.
2,6

 For instance, a 5-year progression-free survival after surgery and 

chemoradiation for PFA patients with both 1q gain and 6p loss is reportedly as low as 0%.
5
 

 

Current means of molecular subgroup analysis incur costs as well as labor, and thus, are not widely 

available.
3,7-9

 Histology and immunohistochemistry markers can assist with classification but may lack 

interrater reliability and therefore, present a weaker basis for prognostication.
10,11

 Magnetic Resonance 

Imaging (MRI) serves as the primary method for diagnosis, surgical guidance, and surveillance of EP. Thus, MRI 

biomarkers predictive of EP molecular subgroups or other risk-relevant features, could facilitate precision in 

therapy, surveillance strategies, and family counselling.  

 

Machine learning can automate real-time, quantitative tumor characterization at the MRI voxel level and could 

potentially augment presurgical evaluation. Recent studies have applied computational strategies on MRI to 

distinguish posterior fossa tumors; however, no study has examined MRI-based risk profiles of posterior fossa 

EP, including underlying molecular subgroups.
12-14

 Here, we investigate the radiogenomic link between MRI 

and EP molecular subgroups and also identify the key MRI features of high-risk EP. 

 
 
Methods 

Data collection 

We performed a multi-center, retrospective study after institutional review board approval (No. 51059) at 

participating institutions with waiver of consent (Supp. Table 1). Stanford served as the host institution and 

executed site-specific data use agreements. We included patients aged ≤ 19 years with pre-operative MRI that 

included gadolinium-enhanced T1-weighted (T1-MRI) or T2-weighted (T2-MRI) sequences as well as with 

surgical specimen for pathologic confirmation. 

 

We obtained data through an international collaboration of 11 institutional centers including Stanford 

Children’s Hospital in Stanford, California (ST), Seattle Children’s Hospital in Seattle, Washington (SE), Primary 

Children’s Hospital in Salt Lake City, Utah (UT), Dayton Children’s Hospital in Dayton, Ohio (DY), Indiana 

University Riley Hospital for Children in Indianapolis, Indiana (IN), Great Ormand Street Hospital in London, 

United Kingdom (GO), Lurie Children's Hospital of Chicago in Chicago, Illinois (CG), NYU Langone Medical 

Center in New York City, New York (NY), The Hospital for Sick Children, Toronto, Canada (TO), Centre 

International Carthage Medical, Monastir, Tunisia (TU), and Tepecik Health Sciences in Izmir, Turkey (TK). We 

obtained data use agreements at all participating sites. 
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Molecular Labeling 

We determined the two distinct EP molecular subgroups on the basis of gene-expression profiling using a 

nanoString-based assay as previously described.
2
 Qualified pathologists performed the molecular analysis with 

formalin-fixed paraffin-embedded tissue from surgically acquired specimens at the original diagnosis. 

 

Imaging Acquisition 

We collected images in DICOM format from all participating institutions. Brain MRIs were acquired at 1.5 or 3T 

using the following vendors: GE Healthcare, Waukesha, WI; Siemens AG, Erlangen, Germany; Philips 

Healthcare, Andover, MA; and Toshiba Canon Medical Systems USA Inc., Tustin, CA. The T2-weighted MRI (T2-

MRI) scans were: T2 TSE clear/sense, T2 FSE, T2 propeller, T2 blade, T2 drive sense (TR/TE 2475.6-9622.24/80-

146.048); slice thickness 1-5 mm with 0.5 or 1mm skip; matrix ranges of 224-1024 x 256-1024. T1-MRI scans 

included T1 MPRAGE, T1 BRAVO, T1 FSPGR, T1 SPGR, and T1 SE: slice thickness 0.8-1.2 mm, matrix (256-512) x 

(256-512). 

 

Feature extraction  

Tumor volume boundary was delineated on T2-MRI and T1-MRI scans by a blinded board-certified 

neuroradiologist (KWY) and quality control performed by a neurosurgeon (SHC). We then extracted radiomic 

features from the resulting segmentations via the Quantitative Image Feature Pipeline implementation of the 

PyRadiomics software (version 2.2.0.post7+gac7458e).
15,16

 For each imaging modality, 900 features were 

extracted, for a combined total of 1800 features. The families of features include first order statistics, 2D/3D 

Shape, Gray Level Co-occurrence Matrix, Gray Level Run Length Matrix, Gray Level Size Zone Matrix, 

Neighboring Gray Tone Difference Matrix, and Gray Level Dependence Matrix on the original, wavelet, and 

Laplacian of Gaussian filtered images. Parameters for feature extraction included resampling to isotropic 

voxels (1 mm), intensity values normalization (normalize scale = 100), and a bin width of 10.  

 

Survival analysis 

We implemented a nested cross-validation scheme (Figure 1). The elastic net mixing parameter (alpha) was set 

to 0.999 for numerical stability. Each inner loop was repeated 100 times to reduce variance, and the resulting 

error curves were averaged. We selected the lambda leading to the most regularized model within 1 standard 

error of the minimum error of the averaged curves. LASSO feature selection was performed in each of the four 

folds of the outer loop. Cox models were subsequently trained on recurring features and evaluated using a 

single loop cross validation approach. Patients in the testing group with risk scores less than or equal to the 

median risk score in the training group were deemed low-risk. We used the risk classifications to generate 

cross-validated Kaplan Meier curves as described by Simon et al.
17

 We performed the same training and testing 

process on T1-MRI features only, T2-MRI features only, and combined T1/T2 features. We included patient 

gender and age at diagnosis with each set of radiomic features. Feature selection and survival analysis was 

performed using the R package glmnet (version 4.0.2).
18,19

 

 

We performed survival analysis on all patients who obtained GTR regardless of molecular status. We also 

conducted survival analyses on a presumed PFA cohort. The presumed PFA cohort comprised the following: 1) 

all patients with molecular confirmation of PFA; and 2) if without molecular diagnosis, patients aged < 10 years 

at diagnosis, and thus highly likely to be PFA based on prior epidemiological reporting that have shown PFB 

rarely presents < 10 years age.
3,5,20

 Within this presumed PFA cohort, we conducted outcomes analyses on 

both GTR and STR/GTR groups. 
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Molecular classification 

We used the same inner-loop strategy described for survival analysis to develop a molecular classifier, 

replacing the Cox model with a logistic regression model for feature selection. Candidate classifiers included 

logistic regression (LR), support vector machine and random forest models. Receiver operating characteristic 

curves were generated to evaluate the models. Analysis was performed on T1-MRI features only, T2-MRI 

features only, and combined T1/T2 features. Patient gender was included in the initial feature set. We 

excluded age given its strongly predictive contribution and to maximize focus on radiomic predictors. Classifier 

models were trained and evaluated in Python using Scikit-learn (version0.22.2.post1) with default parameters.  

 

 

Results 

 

Data  

We collected survival data from 157 patients. Table 1 summarizes demographics, surgical status [gross total 

resection (GTR) versus subtotal resection [STR]), and other clinical variables.  

 

Survival analysis 

We first focused on patients with GTR to exclude confounding elements that could lead to STR (i.e. surgeon 

experience or late presentation). We performed survival analyses on patients with T1-, T2- and combined 

T1/T2-MRI (103, 90, and 88 patients, respectively). Using the selected T2 radiomic features appearing in all 

four folds, the Cox model separated patients into high- and low-risk groups that exhibited a statistically 

significant difference in survival (p < 0.0001, Figure 2A). Among selected T2 features, four features appeared in 

all four folds, and nine features appeared in three of four folds (Figure 2B). The highest risk feature was T2-

Small Area Low Gray Level Emphasis, and the strongest protective feature was T2-Maximum Intensity. Among 

features selected in all four folds, T2-Elongation had the largest effect size. Survival curves for cohorts 

predicted based on T1 and T1/T2 features were not significantly different. 

 

We subsequently explored if high-risk PFA variants could be identified within the presumed PFA cohort. T1-, 

T2-, and combined T1/T2-MRI features (derived from 88, 76, and 74 patients with GTR, respectively) all 

separated presumed PFA patients into high- and low-risk groups with a statistically significant differences in 

survival (p = 0.029, p = 0.0039, p = 0.002, Figure 3A, Supp. Figure 1, Supp. Table 2). In the full T1/T2 model (N 

= 74), 5-year overall survival rates for high- and low-risk groups based on T1/T2 imaging were 62.7% and 

96.7%, respectively. Here, nine features were selected in three of four folds, four from T1-MRI and five from 

T2-MRI (Supp. Figure 1). Two features were identified in all four folds, T1-Kurtosis and T1-Median (Figure 3B). 

We separately evaluated a cohort of presumed PFA with either STR or GTR (N = 105) and found the analysis for 

T1/T2 features also significantly differed (p = 0.039, Supp. Figure 2, Supp. Table 2) 

 

Molecular classification 

Using a cohort with molecular confirmation (PFA or PFB), then developed molecular classifiers based on T1-, 

T2- and combined T1/T2-MRI (77, 60, and 58 available patients, respectively). An LR classifier trained on T1 

features achieved the highest performance, yielding an AUC of 0.86 (Figure 4A). The T1-MRI feature most 

predictive of PFB was T1-Small Area Low Gray Level Emphasis, and the most predictive of PFA was T1-Mean 

Intensity (Figure 4B). Sample probability outputs are shown in Figure 5. 
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Discussion 

Surgery plays a key therapy role in posterior fossa EP.
21,22

 While MRI serves as the cornerstone for operative 

planning, imaging clues of high-risk EP remain sparse and mostly unexplored.
23-26

 Further, no prior study has 

examined quantitative, high-dimensional MRI features of EP that either relate to underlying molecular 

subgroups or prognosis. Here, we apply machine-enabled strategies on MRI to identify high-risk profile of 

posterior fossa EP tumors. Specifically, we link computational image features unique to PFA and PFB molecular 

subgroups, known to carry divergent clinical behavior, as well as risk profiles within presumed PFA group, as 

well as cohort amenable to GTR regardless of molecular status.
3,4

 While GTR is desirable, pre-surgical 

knowledge on EP risk factors may facilitate therapy planning that incorporates risk-benefit profiles to reduce 

post-operative complications, and further, enhance family discussions.  

 

Identifying High-Risk PFA: Feasibility of a Radiogenomics Classifier  

The machine learning classifiers, trained to distinguish the two molecular subgroups of EP (PFA and PFB), 

produced a high performance with an overall AUC of 0.86 across three different models, using T1-MRI. We 

suspect that the superiority of the T1-MRI-only model compared either to T2-MRI or combined T1/T2-MRI 

likely relates to its larger available sample size, which comprised routine gadolinium-enhanced 2D, as well as 

3D T1-weighted navigation scans (e.g., stereotactic MRI). 

 

Within the recurring, reduced feature set, we find relatively few quantitative features (out of 1800 total 

features extracted from T1- and T2-MRI) contribute to PFA versus PFB distinction. This might suggest 

complexity of PFA and PFB phenotypes, potentially more difficult to capture using naked eye. Within the 

tumor voxels extracted from T1-MRI, we find that small patches of distinct voxel intensities (T1-Small Area 

Emphasis) of a brighter probability distribution (T1-Maximal Correlation Coefficient) were more prevalent in 

PFA compared to PFB. Such “speckling” also tended to occur over a balanced gray-level landscape, as 

suggested by the narrow T1-Mean Intensity. They might reflect irregular or stippled foci of uneven 

enhancement superimposed on more homogeneous-appearing tumor background, enhancing or non-

enhancing. Supp. Figure 3 illustrates some of the PFA and PFB tumor enhancement patterns.  

 

Interestingly we see risk predictions within presumed PFA that are consistently supported in our survival 

analyses. PFA is strongly distinguished from PFB by age and a distinct set of chromosomal imbalances.
3,5

 

Although these imbalances, most prominently 1q gain and 6p loss, compose a minority of PFA variants, they 

consistently portend worse prognoses. Merchant et al. in the ACNS0121 experience, reported a 5-year OS of 

64.3% and 91.6% for those with and without PFA 1q gain following STR or GTR and conformal RT.
27

 Recent 

work by Baroni et al. also reaffirmed 1q gain and 6p loss were with worse 5-year progression-free survival 

rates (32% and 7.3% respectively, relative to 50% among balanced tumors).
5
 Moreover, 6p loss was the most 

important predictor of overall survival on multivariate regression, controlling for extent of resection.
5
 Here, 

our 5-year overall survivals for high- and low-risk groups within presumed PFA (59.7% and 85.1%, respectively, 

Supp. Table 2) undergoing either STR or GTR closely parallel the ACNS0121 experience. We believe this is the 

first evidence that radiomics can capture both known and undiscovered cytogenomic drivers of ependymoma 

risk to match clinically validated stratification. 

 

Tumor Growth Profile as Proxy for Aggressiveness 

Limited prior work has described how posterior fossa EP morphology can pose an elevated risk. U-King-Im et 

al. described prepontine extension and neurovascular encasement as risk factors for residual tumor, as they 

suggest greater difficulty with complete resection.
28

 Indeed, extent of resection remains a critical 

prognosticator, with more favorable outcomes achieved by GTR.
22

 Consistent with the literature, our STR 

cohort showed shorter survival (p < 0.0001, Supp. Figure 4). Previously, Witt et al. reported that EP molecular 

group status offers prognostic value, with an overall 5-year overall survival of 69% and 95% for PFA and PFB, 
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respectively regardless of extent of resection.
2
 In a validation cohort, EP with GTR similarly saw a 5-year overall 

survival of 52% and 100%, for PFA and PFB, respectively.
2
 Here, when we stratify those in GTR status by 

median projected risk scores, we find quantitative features predictive of survival outcomes that closely parallel 

molecularly-based survival.  Specifically, using presurgical MRI features alone, we show similar prognostic 

values, with a 5-year overall survival rate of 62% and 100% for computationally derived high- and low-risk 

groups, respectively. 

 

We find T2-MRI features that quantitatively describe “fine” regions with low gray signal (Small Area Low Gray 

Level Emphasis) and complexity of texture (Zone Entropy) were selected in the high-risk profile. Interestingly, 

the quantitative Shape feature of T2-Elongation, with its highest logistic coefficient, was also a significant 

contributor. Elongation is a calculated feature based on the two longest principal component axis and inverse 

to true elongation.
29

 Thus, high-risk patients had tumor shapes that were calculated as more spherical. A 

typical posterior fossa ependymoma is thought to adapt to the shape of its container.
24

 Such tumors would 

preferentially occupy the cranial-caudal extent of the fourth ventricle with some tumor components that 

protrude into foramina Luschka and Magendie. We suspect that within the GTR cohort, larger, radially-

expansile tumors behave more aggressively with less respect for tissue boundaries at macroscopic or 

microscopic levels. Examples of high- and low-risk tumors are shown in Supp. Figure 5. Prior studies have 

suggested more infiltrative properties of more aggressive PFA tumors.
2,30,31

 

 

Limitations 

While we aimed at expanding our cohort through multi-center collaboration, small sample size, particularly EP 

molecular groups, remains a limitation, in part due to the rarity of this tumor pathology and lack of widespread 

molecular analysis. Therefore, we were limited to a cross-validation approach and further validation of the top 

models is warranted. While the addition of diffusion or perfusion features could potentially contribute to 

predictive model performance or offer interesting insight, it was not feasible without the risk of overfit due to 

small available DWI or perfusion datasets.  Model generalizability is an intrinsic limitation to all computer 

vision tasks in artificial intelligence. Thus, we pooled data from multiple centers in order to identify 

computational features robust to heterogeneity in scanners or imaging protocols.  

 

 

Conclusion 

Image-based risk profiles of posterior fossa EP is unexplored. Here we demonstrate the feasibility of 

radiogenomics to classify PFA and PFB. We also describe image-based predictors of aggressive EP tumors that 

might assist risk profiling after GTR as well as within PFA tumors. While MRI will not replace tumor histology or 

molecular analysis, its major strength is its capacity to pre-operatively interrogate the whole tumor—not just 

tissue specimen subject to sampling error. With advances in computer vision, it is now possible to probe high-

dimensional digital features for prognostic modeling of EP tumors that might more precisely inform clinicians. 

Future studies could examine radiomics as an adjunct to EP risk assessment when considering therapy 

strategies or trial candidacy.   
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Figure Legends 

Figure 1: Diagram showing cross-validation workflow. A 5-fold inner-loop was used to select features via 

LASSO, and a 4-fold outer-loop was to train and evaluate the Cox models. The inner loop was repeated 

100 times to reduce variance. 

 

Figure 2. A. Cross-validated Kaplan Meier curves generated from Cox models trained on T2-MRI features 

selected in all cross-validated folds. The yellow curve corresponds to high-risk patients and the blue 

curve corresponds to low-risk patients. Patients are stratified into risk groups based on the median risk 

score in the training set. B. Bar plot of T2-MRI feature coefficients, averaged across all selected folds, for 

survival analysis. Larger absolute values of coefficients imply larger effect size. Positive values indicate 

higher risk of death. 

 

Figure 3. A. Receiver operating curves generated from logistic regression models trained on features 

selected by LASSO for T1-, T2- and T1/T2-MRI features. B. Bar plot of T1-MRI feature coefficients, 

averaged across all selected folds, for molecular classification. Positive coefficients are predictive of PFB. 

 

Figure 4.  Sample probability outputs from logistic regression model for PFA and PFB classification.  

Examples of both correct (white text) and incorrect (gray text) model outputs are shown.  Quantitative 

features, such as bright foci of voxel intensities were more prevalent in PFA that might suggest irregular 

foci of enhancement.  Although it is difficult to appreciate on naked eye mathematical expression MRI 

tumor features, these machine-enabled probability outputs could potentially augment future 

neurosurgical workflow.    
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Table 1: Summary of cohort clinical features. 

Experiment N 
Molecular 

(PFA/PFB/NA) 

Surgery Type  

(GTR/STR) 

Sex 

(M/F) 

Months at Diagnosis 

[Mean (Range)] 

Classification      

T1 77 62 / 15 / 0 49 / 28 46 / 31 115.3 (5, 806) 

T2 60 50 / 10 / 0 39 / 21 38 / 22 117.6 (5, 806) 

T1 and T2 58 48 / 10 /0 38 / 22 37 / 21 118.8 (5, 806) 

Survival Analysis 
     

T1 103 42 / 7 / 54 103 / 0 66 / 37 67.5 (3, 670) 

T2 90 33 / 6 / 51 90 / 0 60 / 30 69.7 (3, 670) 

T1 and T2 88 32 / 6 / 50 88 / 0 58 / 30 69.4 (3, 670) 

F, female; GTR, gross total resection; M, male; NA, not available; PFA, posterior fossa ependymoma Group A; PFB, posterior fossa 

ependymoma Group B; STR, subtotal resection 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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