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Abstract. The one-particle density matrix γ(x, y) is one of the key objects in the
quantum-mechanical approximation schemes. The self-adjoint operator Γ with kernel
γ(x, y) is trace class but no sharp results on the decay of its eigenvalues were previously
known. The note presents the asymptotic formula λk ∼ (Ak)−8/3, A ≥ 0, as k → ∞,
for the eigenvalues λk of the operator Γ, and describes the main ideas of the proof.

1. Introduction and main result

1.1. Introduction. Consider on L2(R3N) the Schrödinger operator

H =
N∑
k=1

(
−∆k −

Z

|xk|

)
+

∑
1≤j<k≤N

1

|xj − xk|
,(1)

describing an atom withN particles (e.g. electrons) with coordinates x = (x1, x2, . . . , xN),
xk ∈ R3, k = 1, 2, . . . , N , and a nucleus with charge Z > 0. The notation ∆k is used for
the Laplacian w.r.t. the variable xk. The operator H acts on the Hilbert space L2(R3N)
and it is self-adjoint on the domain D(H) = H2(R3N), since the potential in (1) is an
infinitesimal perturbation relative to the unperturbed operator −∆ = −

∑
k ∆k, see e.g.

[22, Theorem X.16]. Note that we do not need to assume that the particles are fermions,
i.e. that the underlying Hilbert space consists of anti-symmetric L2-functions. Our results
are not sensitive to such assumptions. Let ψ = ψ(x), x = (x̂, xN), x̂ = (x1, x2, . . . , xN−1),
be an eigenfunction of the operator H with an eigenvalue E ∈ R, i.e. ψ ∈ D(H) and

(H − E)ψ = 0.

We define the one-particle density matrix as the function

γ(x, y) =

∫
R3N−3

ψ(x̂, x)ψ(x̂, y) dx̂, (x, y) ∈ R3 × R3.

We do not discuss the importance of this object for multi-particle quantum mechanics
and refer to [10], [20], [21] for details and futher references. Our focus is on spectral
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properties of the self-adjoint non-negative operator Γ with the kernel γ(x, y), which we
call the one-particle density operator. Note that the operator Γ is represented as a product
Γ = Ψ∗Ψ where Ψ : L2(R3) → L2(R3N−3) is the operator with the kernel ψ(x̂, x). Since
ψ ∈ L2(R3N), the operator Ψ is Hilbert-Schmidt, and hence Γ is trace class. The purpose
of this note is to present the asymptotic formula (4) for the eigenvalues λk(Γ) > 0, k =
1, 2, . . . , of the operator Γ, labelled in descending order counting multiplicity. Apart from
being a mathematically interesting and challenging question, spectral asymptotics for
the operator Γ are important for quantum-mechanical computations. All computational
methods of quantum chemistry rely on finite rank approximations of the operator Γ, see
e.g. [16] and [9] for discussion. The rate of decay of λk(Γ) as k → ∞ determines the
precision of these approximations. It was shown in [16] that Γ has infinite rank. The
results of [9] suggest that λk(Γ) = O(k−8/3), which is confirmed by the formula (4).

We assume throughout that ψ decays exponentially as |x| → ∞:

|ψ(x)| . e−κ0|x|, x ∈ R3N .(2)

Here κ0 > 0 is a constant, and the notation “.” means that the left-hand side is bounded
from above by the right-hand side times some positive constant whose precise value is
of no importance for us. This notation is used throughout the paper. For the discrete
eigenvalues, i.e. the ones below the bottom of the essential spectrum of H, the bound
(2) follows from [12]. The exponential decay for eigenvalues away from the thresholds,
including embedded ones, was studied in [11], [17]. For more references and detailed
discussion we quote [23].

1.2. Main result. To state the main results we need the sharp qualitative result for ψ
obtained in [15]. In order to write all the formulas in a more compact and unified way,
we use the notation x0 = 0. As before, x = (x1, x2, . . . , xN) ∈ R3N .

Denote

Sls = Ssl = {x ∈ R3N : xl 6= xs}, l 6= s, l, s = 0, 1, 2, . . . , N.

Since the Coulomb potential |x|−1 is real analytic for x 6= 0, by elliptic regularity, the
function ψ is real-analytic away from the particle coalescence points xj = xk, i.e. on the
set

U =
⋂

0≤l<s≤N

Sls.

For each j = 0, 1, . . . , N − 1, we are interested in the behaviour of ψ on the set

Uj =
⋂

0≤l<s≤N−1

Sls
⋂

0≤s≤N−1
s 6=j

SsN .

The set Uj includes the coalescence point xj = xN , j = 0, 1, . . . , N − 1, but excludes all
the others. Our main focus will be on the function ψ near the “diagonal” set

U
(d)
j = {x ∈ Uj : xj = xN}.
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Observe for completeness that the sets Uj,U
(d)
j are of full measure in R3N and R3N−3

respectively, and that they are connected.
The following property follows from [15, Theorem 1.4].

Proposition 1. For each index j = 0, 1, . . . , N − 1, there exists an open connected set

Ωj ⊂ Uj, such that U
(d)
j ⊂ Ωj, and two uniquely defined functions ξj, ηj, both real analytic

on Ωj, such that for all x ∈ Ωj the following representation holds:

ψ(x̂, x) = ξj(x̂, x) + |xj − x|ηj(x̂, x).(3)

Note that the above proposition does not claim that the functions ξj and ηj are smooth
on the closure Ωj. Moreover, Proposition 1 does not give any information on the inte-
grability of ξj and ηj over Ωj. Our first, “preparatory” theorem establishes integrability
of ηj, which is necessary for the main asymptotic formula. To state this result introduce
the notation

x̃j = (x1, . . . , xj−1, xj+1, . . . , xN−1),

and write x̂ = (x̃j, xj), x = (x̃j, xj, xN). Thus the function ηj(x̂, x) on the diagonal U
(d)
j

can be written as ηj(x̃j, x, x).

Theorem 2. If N ≥ 3, then for each j = 1, 2, . . . , N −1 the function ηj( · , x, x) belongs
to L2(R3N−6) a.e. x ∈ R3 and the function

H(x) =

[N−1∑
j=1

∫
R3N−6

∣∣ηj(x̃j, x, x)
∣∣2dx̃j] 1

2

,

belongs to L
3
4 (R3).

If N = 2, then the function H(x) = |η1(x, x)| belongs to L
3
4 (R3).

Having at our disposal this theorem, we can now state the main result:

Theorem 3. Suppose that the eigenfunction ψ satisfies the bound (2). Then the eigen-
values λk(Γ), k = 1, 2, . . . , of the operator Γ satisfy the asymptotic formula

lim
k→∞

k
8
3λk(Γ) = A

8
3 ,(4)

with the constant

A =
1

3

(
2

π

) 5
4
∫
R3

H(x)
3
4dx.(5)

One should remark that there seems to be no results in the literature claiming that
at least one function ηj(x̂, x) is not identically zero on the diagonal x = xj. Thus, in
principle, the coefficient A may be equal to zero.

Theorem 3 can be also extended to the case of a molecule with several nuclei whose
positions are fixed. The modifications are straightforward.

In this note our aim is to describe the main ideas leading to the proof of Theorems 2
and 3. Complete proofs will be published elsewhere.



4 A.V. SOBOLEV

2. Ingredients of the proof

Here we list three ingredients of the proof of Theorems 2 and 3.

2.1. Regularity of the eigenfunction. The regularity of ψ has been well-studied in
the literature. As mentioned earlier, according to the classical elliptic theory, due to
the analyticity of the Coulomb potential |x|−1 for x 6= 0, the function ψ is real analytic
away from the particle coalescence points. T. Kato [19] established that the function
ψ is locally Lipschitz. Note that the representation (3) is in line with this fact. More
detailed information on ψ at the coalescence points was obtained, e.g. in [14], [15], [18].
We rely on the recent paper [13] by S. Fournais and T.Ø. Sørensen, where the following
explicit bounds for the derivatives of ψ were obtained. Let d(x̂, x) = min{|x|, |x−xj|, j =
1, . . . , N − 1}. Then

|∂mx ψ(x̂, x)| . d(x̂, x)1−|m|e−κm|x|, |m| ≥ 1,(6)

with some κm > 0. These estimates are used to derive the sharp bound (13) for the
singular values of the operator Ψ.

2.2. Compact operators. Here we collect some basic information about the classes
of compact operators relevant for the main result, see the book [8], where one can also
find further references. Let H and G be separable Hilbert spaces. Let T : H → G be
a compact operator. If H = G and T = T ∗ ≥ 0, then λk(T ), k = 1, 2, . . . , denote
the positive eigenvalues of T numbered in descending order counting multiplicity. For
arbitrary spaces H, G and compact T , by sk(T ) > 0, k = 1, 2, . . . , we denote the singular
values of T defined by sk(T )2 = λk(T

∗T ) = λk(TT
∗). We classify compact operators

by the rate of decay of their singular values. If sk(T ) . k−1/p, k = 1, 2, . . . , with some
p > 0, then we say that T ∈ Sp,∞ and denote

‖T‖p,∞ = sup
k
sk(T )k

1
p .

The class Sp,∞ is a complete linear space with the quasi-norm ‖T‖p,∞, see [8, §11.6].
For p ∈ (0, 1) the quasi-norm satisfies the following “triangle” inequality for operators
Tj ∈ Sp,∞, j = 1, 2, . . . : ∥∥∑

j

Tj
∥∥p
p,∞ ≤ (1− p)−1

∑
j

‖Tj‖pp,∞,(7)

see [1, Lemmata 7.5, 7.6], [5, §1] and references therein. For the case p > 1 see [8, §11.6],
but we do not need it in what follows.

For T ∈ Sp,∞ the following numbers are finite:Gp(T ) =
(

lim supk→∞ k
1
p sk(T )

)p
,

gp(T ) =
(

lim infk→∞ k
1
p sk(T )

)p
,

(8)
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and they clearly satisfy the inequalities

gp(T ) ≤ Gp(T ) ≤ ‖T‖pp,∞.

Observe that

gp(TT
∗) = gp(T

∗T ) = g2p(T ), Gp(TT
∗) = Gp(T

∗T ) = G2p(T ).(9)

If Gp(T ) = gp(T ), then the singular values of T satisfy the asymptotic formula

sn(T ) =
(
Gp(T )

) 1
pn−

1
p + o(n−

1
p ), n→∞.

The functionals Gp, gp were introduced by M. Birman and M. Solomyak in the 1970’s,
see e.g. [2], [7]. Together with the quasi-norm ‖T‖p,∞, the functional Gp, p < 1, also
satisfies the inequality of the type (7) (see [24, Lemma 2.2]):

Proposition 4. Suppose that Tj ∈ Sp,∞, j = 1, 2, . . . , with some p < 1 and that∑
j

‖Tj‖pp,∞ <∞.

Then

Gp
(∑

j

Tj
)
≤ (1− p)−1

∑
j

Gp(Tj).(10)

The functionals Gp and gp are continuous on Sp,∞, see [8, Corollary 11.6.5]:

Proposition 5. If T1, T2 ∈ Sp,∞, 0 < p <∞, then∣∣Gp(T1)
1

p+1 − Gp(T2)
1

p+1

∣∣ ≤ Gp(T1 − T2)
1

p+1 ,∣∣gp(T1)
1

p+1 − gp(T2)
1

p+1

∣∣ ≤ Gp(T1 − T2)
1

p+1 .

We need the following two corollaries of this fact:

Corollary 6. Suppose that Gp(T1 − T2) = 0. Then

Gp(T1) = Gp(T2), gp(T1) = gp(T2).

The next corollary is more general: it shows that the functionals Gp(T ) and gp(T ) can
be found by approximating T with a family of operators Tν ∈ Sp,∞, ν ∈ R.

Corollary 7. Suppose that T ∈ Sp,∞ and that for every ν > 0 there exists an operator
Tν ∈ Sp,∞ such that Gp(T − Tν) → 0, ν → 0. Then the functionals Gp(Tν), gp(Tν) have
limits as ν → 0 and

lim
ν→0

Gp(Tν) = Gp(T ), lim
ν→0

gp(Tν) = gp(T ).
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2.3. Singular values of integral operators. The final ingredients of the proof are
two results due to M.S. Birman and M.Z. Solomyak, investigating the membership of
integral operators in the class Sp,∞ with some p > 0.

For estimates of the singular values we rely on [5, Proposition 2.1], see also [8, Theorem
11.8.4], which we state here in a form convenient for our purposes. Let Λ ⊂ Rd, d ≥ 1,
be a bounded domain with a piece-wise C1-boundary.

Proposition 8. Let Tba : L2(Λ)→ L2(Rn), be the integral operator of the form

(Tbau)(t) = b(t)

∫
T (t, x)a(x)u(x) dx,

where a ∈ L2(Λ), b ∈ L2
loc(Rn), and the kernel T (t, x), t ∈ Rn, x ∈ Λ, is such that

T (t, · ) ∈ Hl(Λ) with some l = 1, 2, . . . , 2l > d, a.e. t ∈ Rn and the function ‖T (t, · )‖Hl

is in L2
loc(Rn). Then

sk(Tba) . k−
1
2
− l

d

[∫
‖T (t, · )‖2

Hl |b(t)|2 dt
] 1

2

‖a‖L2(Λ),

k = 1, 2, . . . . In other words, Tba ∈ Sq,∞ with

1

q
=

1

2
+
l

d
,

and

‖Tba‖q,∞ .
[∫
‖T (t, · )‖2

Hl |b(t)|2 dt
] 1

2

‖a‖L2(Λ).

The implicit constants in the above estimates are independent of the functions T, a, b or
index k, but may depend on the domain Λ.

The next result establishes the spectral asymptotics for an integral operator with a
homogeneous kernel. We do not need the most general result, but content ourselves with
a special case. The following proposition follows from [5, Theorem 10.9], see also [3], [4],
[6].

Proposition 9. Let X, Y ⊂ Rd, d ≥ 1, be bounded Borel sets. Let T : L2(Y ) → L2(X)
be the operator with the kernel

T (x, y) = ρ1(x)|x− y|αφ(x, y)ρ2(y),(11)

where α > −d, ρ1 ∈ L∞(X), ρ2 ∈ L∞(Y ), and φ ∈ C∞(X ×Y ). Then for p−1 = 1 +αd−1

we have

gp(T ) = Gp(T ) = µα,d

∫
X∩Y

|ρ1(x)φ(x, x)ρ2(x)|pdx,
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with

µα,d =
1

Γ
(
d/2 + 1

)[ Γ
(
(d+ α)/2

)
πα/2|Γ(−α/2)|

]p
, α 6= 0, 2, 4, . . . ,

µα,d = 0, α = 0, 2, 4, . . . .

3. Proof of Theorems 2 and 3

The complete proof of Theorems 2, 3 will be published elsewehere. In this note we
briefly describe its main steps.

At the heart of the proof is the factorization formula Γ = Ψ∗Ψ, where Ψ : L2(R3) →
L2(R3N−3) is the integral operator

(Ψu)(x̂) =

∫
R3

ψ(x̂, x)u(x)dx, u ∈ L2(R3).

Using the functionals (8) the formula (4) can be rewritten as G3/8(Γ) = g3/8(Γ) = A.
Thanks to the formula Γ = Ψ∗Ψ, by (9) we have

G3/8(Γ) = G3/4(Ψ), g3/8(Γ) = g3/4(Ψ).

Therefore Theorem 3 is equivalent to the following result.

Theorem 10. Suppose that the eigenfunction ψ satisfies the bound (2). Then the sin-
gular values sk(Ψ), k = 1, 2, . . . , of the operator Ψ satisfy the asymptotic formula

G3/4(Ψ) = g3/4(Ψ) = A.(12)

The proof of Theorem 10 splits into two parts.

3.1. Proof of Theorem 10: an upper bound for G3/4(Ψ). The first stage of the
asymptotic analysis is to obtain convenient upper bounds. We need the bounds for the
operator bΨa with weights b ∈ L∞(R3N−3) and a ∈ L2

loc(R3). The function a is assumed
to satisfy the condition

sup
n∈Z3

‖a‖L2(Cn) <∞,

where Cn = [0, 1)3 + n, n ∈ Z3. Thus, for any κ > 0 the functionals

Sκ(a) =

[∑
n∈Z3

e−
3
4
κ|n|‖a‖

3
4

L2(Cn)

] 4
3

, Mκ(b) =

[∫
R3N−3

|b(x̂)|2e−2κ|x̂|dx̂

] 1
2

are both finite. In the literature functionals of the form Sκ are sometimes called lattice
norms (or quasi-norms, if appropriate). Lattice norms emerge in a natural way when
one studies integral operators in classes Sp,∞ with p < 1, see e.g. [5, Section 6.4].

Theorem 11. Assume (2). Then for some κ ∈ (0,κ0] we have

G3/4

(
bΨa

)
.
[
Mκ(b)Sκ(a)

]3/4
.(13)
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The complete proof of this theorem is given in [24]. Here we present only a short
sketch illustrating the emergence of lattice norms.

Sketch of the proof of Theorem 11. Represent bΨa as∑
n∈Z3

bΨna, Ψn = Ψ1n,

where we have denoted by 1n the indicator of the cube Cn = [0, 1)3 + n, n ∈ Z3. Relying
on the bounds (2), (6) and using Proposition 8 we prove that for some κ ∈ (0,κ0], the
estimate holds:

G3/4(bΨna) .
(
e−κ|n|Mκ(b)‖a‖L2(Cn)

)3/4
, n ∈ Z3.

By (10),

G3/4(bΨa) ≤ 4
∑
n∈Z3

G3/4(bΨna) .Mκ(b)3/4
∑
m∈Z3

e−
3
4
κ|n| ‖a‖3/4

L2(Cn)
,

which leads to (13). �

3.2. Proof of Theorem 10: asymptotic relation (12) and formula (5). We conduct
the proof for the case N = 2 only. Under this assumption the proof retains all its crucial
features, but permits to avoid some tedious technical details.

The representation from Proposition 1 is of central importance:

ψ(x1, x) = ξ1(x1, x) + |x1 − x|η1(x1, x), (x1, x) ∈ Ω.(14)

Assume for simplicity that Ω1 = (R3 \ {0}) × (R3 \ {0}). Note that the kernel ψ(x1, x)
contains the homogeneous factor |x1−x| which points to the possible use of Proposition 9.
However, as mentioned earlier, Proposition 1 provides no information on the smoothness
of the functions ξ1 and η1 on the set Ω1, or on their integrability on Ω1. In order to
apply Proposition 9 we approximate ξ1 and η1 by C∞0 -functions supported in Ω1. Let
ζ ∈ C∞0 (R) be s.t. ζ(t) = 0, |t| ≥ 1, ζ(t) = 1, |t| ≤ 1/2, and let ω(t) = 1 − ζ(t). For
convenience we also assume that

ζ(t) = ζ(−t), ∀t ∈ R, and ζ is non-increasing on [0,∞).(15)

For arbitrary ε > 0, R > ε, consider now the kernel

ψε,R(x1, x) = ω(|x1|/ε)ζ(|x1|/R)ω(|x|/ε)ζ(|x|/R)ψ(x1, x).(16)

It is supported on the domain Ωε,R = {x1 : ε/2 < |x1| < R} × {x : ε/2 < |x| < R}, on
which both ξ1 and η1 are uniformly bounded together with their derivatives of arbitrary
order. Similarly to the notation Ψ, denote by Ψε,R the integral operator with the kernel
ψε,R(x1, x). An important fact is that the operator Ψε,R is an approximation of Ψ in the
following sense:

Lemma 12.

G3/4(Ψ−Ψε,R)→ 0, as ε→ 0, R→∞.(17)
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Proof. The kernel of Ψ−Ψε,R has the form

ψ(x1, x)− ψε,R(x1, x) =

[
ζ(|x1|/ε) + ω(|x1|/ε)ζ(|x|/ε) + ω(|x1|/ε)ω(|x|/ε)ω(|x|/R)

+ ω(|x1|/ε)ω(|x1|/R)ω(|x|/ε)ζ(|x|/R)

]
ψ(x1, x).(18)

Let us consider for example the functional G3/4(Tε) for the operator Tε with kernel
ζ(|x1|/ε)ψ(x1, x), which is the first term on the right-hand side of (18). By (13) with
a = 1 and b(x1) = ζ(|x1|/ε), we get

G3/4(Tε) .Mκ(b)3/4 ≤
[ ∫

R3

ζ(|x1|/ε)2dx1

] 3
8

. ε
9
8 → 0, ε→ 0.

The remaining kernels on the right-hand side of (18) are handled in a similar way with
the help of Theorem 11. In view of (10) this implies (17). �

Lemma 12, together with Corollary 7 implies that

G3/4(Ψ) = lim
ε→0,R→∞

G3/4(Ψε,R), g3/4(Ψ) = lim
ε→0,R→∞

g3/4(Ψε,R).(19)

In line with (14) the kernel (16) consists of two components. The kernel

ω(|x1|/ε)ζ(|x1|/R)ω(|x|/ε)ζ(|x|/R)ξ1(x1, x)

is infinitely smooth, and hence, by Proposition 8 the associated functional G3/4 equals
zero. Therefore, by Corollary 6, this operator gives a zero contribution to G3/4(Ψε,R).
The kernel

ω(|x1|/ε)ζ(|x1|/R)|x− x1|η1(|x1|, x)ω(|x|/ε)ζ(|x|/R)(20)

has the form (11) with

ρ1(x) = ρ2(x) = 1, φ(x1, x) = η1(x1, x)ω(|x1|/ε)ζ(|x1|/R)ω(|x|/ε)ζ(|x|/R)

and α = 1, d = 3, p = 3/4. Considering (20) as the kernel of an operator on L2(Ωε,R),
by Proposition 9 we obtain that

G3/4(Ψε,R) = g3/4(Ψε,R) = µ1,3

∫
R3

|ω(x/ε)|3/2ζ(x/R)3/2|η1(x, x)|3/4dx.

Because of the relations (19) all three terms have finite limits as ε→ 0, R→∞, and

G3/4(Ψ) = g3/4(Ψ) = A := lim
ε→0,R→∞

µ1,3

∫
R3

|ω(x/ε)|3/2ζ(x/R)3/2|η1(x, x)|3/4dx.(21)

To complete the proof of Theorem 10 (and hence of Theorem 3), we need to show that
Theorem 2 holds and that A is given by (5).

To prove Theorem 2 note that the integral on the right-hand side of (21) is bounded
uniformly in ε and R. Furthermore, ω(x/ε) → 1, ε → 0, and ζ(x/R) → 1, R → ∞, for
all x 6= 0, and by (15), this convergence is monotone. By the Monotone Convergence
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Theorem, this implies that η1 ∈ L3/4(R), which proves Theorem 2 for N = 2. Moreover,
this entails that

A = µ1,3

∫
R3

|η1(x, x)|3/4dx.

Calculating µ1,3 we obtain the formula (5) for the coefficient A, thus completing the
proof of Theorems 10 and 3.
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