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Abstract
This paper proposes surrogate models (or metamodels) mapping the param-
eters controlling the dynamic behaviour of inelastic single-degree-of-freedom
(SDoF) systems (i.e., force-displacement capacity curve, hysteretic behaviour)
and the parameters of their probabilistic seismic demandmodel (PSDM, i.e., con-
ditional distribution of an engineering demand parameter [EDP] given a ground-
motion intensity measure [IM]). These metamodels allow the rapid derivation
of fragility curves of SDoF representation of structures. Gaussian Process (GP)
regression is selected as the metamodelling approach because of their flexibil-
ity in implementation, the resulting accuracy and computational efficiency. The
metamodel training dataset includes 10,000 SDoF systems analysed via cloud-
basednon-linear time-history analysis (NLTHA)using recorded groundmotions.
The proposed GP regressions are tested in predicting the PSDM of both the
SDoF database (through ten-fold cross validation) and eight realistic reinforced
concrete (RC) frames, benchmarking the results against NLTHA. An applica-
tion is conducted to propagate such modelling uncertainty to both fragility and
vulnerability/loss estimations. Error levels are deemed satisfactory for practical
applications, especially considering the low required modelling effort and anal-
ysis time. Regarding single-building applications enabled by the proposed meta-
model, this paper presents a first attempt at a direct loss-based design procedure,
which allows setting a target loss level for the designed structure (shown for a
realistic RC frame). An earthquake risk model involving dynamic exposure and
vulnerability modules is illustrated as an example of building portfolio applica-
tions. Specifically, the proposed application considers a retrofit-based seismic
risk-reduction policy for a synthetic building portfolio, for which it is possible
estimating the loss evolution over time.
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1 INTRODUCTION ANDMOTIVATION

Building-level seismic fragility is defined as the probability of reaching or exceeding various damage states (DSs) as a
function of a hazard intensity measure (IM). DSs are usually expressed in terms of engineering demand parameter (EDP)
thresholds, such as inter-storey drift limits. In the realm of analytical (or numerical) fragility analysis methods, non-
linear time-history analysis (NLTHA) of refined structural models is the best practice when it comes to building-specific
applications.1,2 On the other hand, NLTHA of equivalent single degree of freedom (SDoF) systems is commonly used to
characterise a building vulnerability class,2 with the results being used for building-portfolio earthquake risk analysis.3
This reflects the trade-off between simplicity and accuracy that different stakeholders generally tolerate on the matter:4
private owners likely need a detailed assessment of individual buildings or small building portfolios, while governmental
agencies or (re)insurance companies generally look at large portfolios accepting larger uncertainties and a lower analysis
refinement level.
The above-mentioned analysis methods, respectively targeted at single-building and building-portfolio applications,

allow an analyst to easily overcome computational issues, especially considering the excellent performance of ordinary
modern computers. However, at least arguably, some applications may still be computationally unaffordable if using the
above approaches. An example of such applications related to single buildings may be loss-based conceptual seismic
design. This would require calculating a loss metric (e.g., the expected annual loss [EAL]) for (several) tentative struc-
tural configurations, considering a specific seismic hazard profile: only the configurations complying with the target loss
level will be used to continue the detailed design process. Even considering SDoF-based NLTHA, the required analysis
time may not be compatible with such a preliminary/conceptual design process, which requires pseudo-instantaneous
analysis results. Lower-refinement results may suffice, and more refined analysis methods can be applied in the subse-
quent phases of the design. Considering building portfolios, the design of regional policies for seismic risk reduction (e.g.,
based on structural retrofit and/or seismic insurance) may be computationally unaffordable using SDoF NLTHA. In fact,
this may require an earthquake risk model with many exposure scenarios (which may also be time-dependent), allowing
selecting the optimal policy using one or more loss metrics.
Metamodelling approachesmay be suitable for the applicationsmentioned above. Ametamodel is “amodel of amodel”:

it defines a (statistical) relationship between a given set of inputs and outputs (obtained through numerical simulations).
In this particular case, metamodels mapping the parameters controlling the dynamic behaviour of inelastic SDoF systems
(e.g., force-displacement capacity curve, hysteretic behaviour) and their probabilistic seismic demand model (PSDM; i.e.,
conditional probability distribution of an EDP given an IM) seems suitable. In fact, those can easily lead to building-level
fragility curves for a set of structure-specific DSs, enabling the computation of various riskmetrics/decision variables (e.g.,
economic losses, casualties, downtime). Different metamodels were proposed in the literature for the seismic response of
structures, often referring to refinedmulti-degree-of-freedom (MDoF) structures (e.g., ref. 5,6). For the scope of this paper,
themost relevant example of suchmetamodels is SPO2IDA,7 surrogating the different percentiles of incremental dynamic
analysis (IDA) curves of SDoF systems from their piecewise static pushover (SPO) curve, which include elastic, hardening
and degrading branches. This parametricmodel is based on regressions, and it is reasonably accuratewithin the range of its
training dataset. However, the authors highlight its limitations related to the low number of ground-motion records (i.e.,
30) and the single hysteresis model (moderately pinching) adopted for the training of the model. The authors provide a
methodology to extend the training dataset to other periods by using their proposed functional forms. Although a similar
methodology may be applied to extend the range of applicability of SPO2IDA to different parameters (e.g., considering
other hysteresismodels), a fixed functional formmay fail to capture the complex interaction between the input parameters
and the parameters of the resulting PSDMs. An example of this process is presented in ref. 8.
In this paper, a metamodelling approach is proposed to surrogate SDoF PSDMs while addressing the above issues,

enabling efficient seismic risk assessment applications. First, it is recognised that most widely adopted DS descriptions
(e.g., ref. 9–11) often cover DS levels up to the so-called “near collapse.” This generally involves a structural deformation
level corresponding to the peak of the pushover curve or to a 20% post-peak strength drop (which can be reasonably
close to the peak, depending on the softening branch of the pushover). In this context, characterising PSDMs above such
deformation levels may be avoided by accepting an approximation of the results. Restricting the PSDM characterisation
to pre-peak deformation levels allows drastically reduce the number of SDoF systems in the training set. Moreover, a
cloud-based analysis approach12 is herein preferred to IDA, to use a higher number of seed ground-motion records at a
lower computational cost. Most importantly, a Gaussian Process (GP) regression is adopted since it does not require any
prior definition of the output functional form (a GP regression is a non-parametric model). Not only this approach would
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F IGURE 1 Steps for the calibration of the proposed surrogate model

ensure high accuracy and flexibility in implementation for earthquake engineering applications (e.g., ref. 13–15), but it
will also result in an infinitely scalable surrogate model. In fact, it will be possible to add new case studies to the training
dataset (e.g., adding more hysteresis models or damping ratios) and re-fit the GP regressions without the need to change
the metamodel structure.
After describing the metamodelling strategy (Section 2), its accuracy is shown in Section 3, considering both SDoF

systems and eight reinforced concrete (RC) frame case studies. Finally, Section 4 shows two use cases for the provided
metamodel: direct loss-based seismic design (DLBD) and scenario-based dynamic earthquake loss modelling for risk-
informed decision making.

2 METAMODELLING STRATEGY

The mapping between the parameters controlling the dynamic behaviour of the considered inelastic SDoF systems and
their PSDM consists of three phases (Figure 1). First, a number of input parameters directly affecting the PSDM are
selected, together with their desired range (described in detail in Section 2.1). Plain Monte Carlo sampling is performed to
generate a database of case-study SDoF systems. Second, each SDoF system is analysed via cloud analysis adopting a suite
of 100 ground-motion records. A PSDM is constructed for each SDoF sample in the training dataset (described in detail
in Section 2.2). A GP regression is finally fit to surrogate the complex relationship between the input SDoF parameters
and the output PSDM ones (Section 2.3). It is worth mentioning that the GP regressions are tested with a ten-fold cross
validation (Section 3).
The code implementing the proposed metamodel is freely available (https://github.com/robgen/surrogatedPSDM). In

addition, the same repository includes the adopted training datasets and the code to train the GP regressions so that users
can filter, extend or modify the training dataset and update the fitting.

2.1 Generation of the SDoF database

The selected input parameters defining each SDoF system (Figure 1A) are the considered hysteresis model “ℎ𝑦𝑠𝑡,” gov-
erning stiffness degradation under unloading-reloading conditions; the fundamental period, 𝑇, controlling the elastic
stiffness; the yield shear strength (normalised to the total weight), 𝑓𝑦; the hardening ratio. ℎ. It is worth mentioning that
no within-cycle strength degradation is considered since the surrogated PSDMs will not be used for predictions exceeding
the ductility at the peak pushover strength. For the same reason, no explicit limit for the ductility (or displacement) at
peak capacity is considered.

https://github.com/robgen/surrogatedPSDM


4 GENTILE and GALASSO

Five different hysteresis models are adopted for the model training (Figure 1A):

∙ Kinematic hardening, KIN, showing no stiffness degradation, mimicking the response of steel structures. Such an inter-
pretation implicitly neglects the Bauschinger effect, which is likely not relevant for deformation levels smaller than the
peak pushover response;

∙ Modified Takeda “fat,”16 MTf, appropriate for structures with a non-linear response dominated by members with low
axial load (e.g., newly-designedRC frames dominated by beambehaviour). The unloading (𝛼) and reloading (𝛽) stiffness
coefficients are respectively equal to 0.3 and 0.6;17

∙ Modified Takeda “thin,” MTt, appropriate for structures with a non-linear response dominated by members with large
axial load (e.g., soft storey-like RC frames; RC bridge piers). The 𝛼 and 𝛽 stiffness coefficients are respectively equal to
0.5 and 0;17

∙ Modified Sina, MS, appropriate for existing structures exhibiting pinching response (e.g., RC frames dominated by
joint failure; timber structures dominated by the failure of their connections). The unloading and reloading stiffness
coefficients are respectively equal to 0.3 and 0.6, while pinching is defined by a closing force equal to 25% of the yield
force;17

∙ Flag shape, FS, appropriate to simulate the behaviour of hybrid pre-stressed structures with re-centring behaviour. The
energy dissipation coefficient (𝛾), controlling the force level where the re-centring action starts, is equal to 0.5.

In fitting the GP regression, the hysteresis type is considered a categorical (i.e., non-numerical) variable, as opposed to
explicitly mapping the response of the SDoF systems to the numerical parameters of the hysteresis models (e.g., 𝛼 and
𝛽 for the MT). This is done for three reasons: (1) because the hysteresis-parameter types are different for each hysteresis
model; (2) to avoid excessive interpolation error (e.g., between the two sets of MT hysteresis parameters); (3) to avoid a
high increase in the number of required SDoF case studies (to consider more hysteresis-parameters sets).
For each hysteresis model, 2,000 realisation of the parameters (𝑇, 𝑓𝑦, ℎ) are sampled via a plain Monte Carlo approach,

adopting uniformdistributions. As discussed inRasmussen andWilliams,18 this is an appropriate assumptionwhen adopt-
ing GP regressions as the focus is the input-output mapping rather than onmodelling the specific distribution of the input
parameters. The specific parameters of the assumed distributions, clearly defining the scope of the final metamodels, are
𝑇 ∼ 𝑈(0.2𝑠, 1.5𝑠); 𝑓𝑦 ∼ 𝑈(0.05, 0.6); ℎ ∼ 𝑈(0, 0.3).

2.2 Seismic response analysis and PSDM

Each SDoF system in the dataset is analysed to derive a cloud of points in the EDP vs IM space. The selected EDP in this
study is the ductility demand 𝜇. The selected IM is the pseudo-spectral acceleration at the SDoF period, normalised to the
yield base shear coefficient, 𝑅 = 𝑆𝐴∕𝑓𝑦 . Although more advanced IMs are available (e.g., ref. 19), such a simple choice
may simplify the hazard analysis in practical applications or even exploit existing hazard models.
A set of 100 natural (i.e., recorded) ground motions is selected from the SIMBAD database, “Selected Input Motions

for displacement-Based Assessment and Design.”20 As per ref. 13, the three-component 467 records in the database are
ranked according to their peak ground acceleration, PGA, values (by using the geometric mean of the two horizontal
components) and then keeping the horizontal component with the largest PGA value. The first 100 records are arbitrarily
selected, characterised by moment magnitudes in the range 5–7.3, station-to-source distance smaller than 35 km; and
PGA ranging between 0.29 and 1.77 g. Such an ground-motion selection approach is consistent with the adopted response
analysis method (i.e., cloud analysis). Hazard-consistent, site-specific record selection is outside the scope of this work
since the aim is to calibrate a flexible metamodel of the PSDM for a large number of hazard/site conditions.
NLTHAs are conducted scaling the records to ensure non-linear response (𝜇 > 1) for every case study (which show a

wide range of period of vibration and yield strength), considering 100 guesses target values of ductility demand, equally
spaced between 1 and 6. The equal displacement rule (𝜇 ≈ 𝑅) is used to derive reasonable guesses of the scale factors
(𝑆𝐹): (1) a record and a guess ductility demand are randomly selected (without repetition) from the relevant sets; (2)
the scale factor is calculated assuming that the scaled spectral acceleration is equal to 𝑓𝑦𝜇𝑔𝑢𝑒𝑠𝑠, and using the spectral
acceleration for the unscaled record at the SDoF period. The adopted scale factors range between 0.20 and 5.6, keeping
the bias introduced in the response analyses to acceptable levels.21 It is worth mentioning that a recent study22 suggests
that this level of scaling might create bias in estimating collpase probability. Therefore, for some specific applications,
this aspect should be further checked and possibly corrected by using procedures available in the literature (e.g., ref. 23).
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The ductility demand of each analysis is checked against the guessed value. Analysis results leading to a ductility demand
outside of the target range are excluded from the PSDM fit described below, ensuring that at least 70 records are adopted
for each cloud.
The adopted bi-linear PSDM (Figure 1, step 2) is defined according to Equation 1. Bi-linear PSDMs have been demon-

strated effective in previous work (e.g., ref. 24). Clearly, the PSDM in Equation 1 does not imply the equal displacement
rule. Characterising the behaviour in the elastic range is trivial and follows from the definition of an elastic SDoF (𝜇 = 𝑅),
not requiring any analysis for its calibration. The inelastic range is obtained performing a linear regression in the logarith-
mic space, where 𝜎ln(𝜇−1)|𝑅−1 (henceforth simply called 𝜎) is the logarithmic standard deviation of the pairs 𝜇 − 1 versus
𝑅 − 1, and 𝜀 is a standard normal variable. Therefore, the median relationship is the line 𝜇 = 𝑎(𝑅 − 1) + 1, where 𝑎 is
its slope. Such a model choice, compatible with other literature studies (e.g., ref. 7), implies a lognormal distribution
of the residuals, which is desirable in calculating lognormal fragility curves (see Section 2.4). Such model also implies
homoscedasticity for 𝜇 > 1. As demonstrated previously,12 this assumption is deemed satisfactory for a variety of engi-
neering systems (including SDoF systems).{

𝜇 = 𝑅 𝜇 ≤ 1

ln(𝜇 − 1) = ln(𝑎) + 𝑙𝑛(𝑅 − 1) + 𝜀𝜎𝑙𝑛(𝜇−1)|𝑅−1 𝜇 > 1
(1)

Depending on the considered practical applications, the SDoF parameters may be affected by a degree of variability.
Although this is out of the scope of this paper, both the provided GP regressions and/or the training data can be used to
appropriately account for the effect of such variability on the predicted seismic response (e.g., ref. 25).

2.3 Gaussian process regressions for the (𝒉𝒚𝒔𝒕, 𝑻, 𝒇𝒚, 𝒉) – (𝒂, 𝝈) map

For each SDoF realisation depending on a vector of input parameters 𝒙 = {ℎ𝑦𝑠𝑡, 𝑇, 𝑓𝑦, ℎ}
𝑇 , the methodology in Sec-

tion 2.2 allows defining two PSDM output parameters (𝑎, 𝜎). Two independent training datasets, (𝑋, 𝒚), are composed by
the matrix 𝑋 collecting the input vectors for all the SDoF realisations, and the vector 𝒚 which includes the related 𝑎 or 𝜎
outputs. Based on such training datasets, a GP regression is fitted for each PSDM parameter. This takes a vector of unique
inputs (𝒙) and produces an output/target 𝑦 = 𝑓(𝒙) using a statistical model, while being computationally cheaper than
the methodology shown in Section 2.2. Based on a training dataset made of inputs (covariates) and known outputs, a GP
regression is fitted so that it is possible to make predictions for any input vector outside the training dataset.
Although a detailedmathematical description of GP regressions (and their fitting) is outside the scope of this paper, it is

worth providing a general, high-level perspective on the matter. Rasmussen andWilliams18 present an exhaustive mathe-
matical description/derivation of GP regression. A step-by-step mathematical description for an earthquake engineering
application is provided, for example, ref. 13
In a GP regression, 𝑓(𝒙) is regarded as a realised value of a GP. A GP is a generalisation of the Gaussian probability

distribution model, describing the distribution of functions 𝑓(𝒙) rather than scalars or vectors. Its mean and covariance
functions fully specify aGP.According to aBayesian framework, the first step in aGP regression is to set a prior distribution
for all the possible functions 𝑓(𝒙), reflecting the starting knowledge about the output before having any data. This is done
by assigning some properties of the mean and the covariance functions (e.g., smoothness). Then, the prior distribution is
converted into a posterior distribution (over functions) based on the observed data, and such a posterior distribution is used
for predictions. The properties of the output function 𝑓(𝒙)—with particular reference to its smoothness—are governed
by the covariance function, which captures the correlation among different input vectors and reflects it in the output. The
training of a generic, scalar-input function is shown in Figure 2.
The structure of the covariance function is selected by the GP user and should reflect the expected behaviour of the

output. A popular choice of covariance function is the squared exponential covariance—also adopted in this study—
since it reflects the “stability” of the involved physical quantities (i.e., a small perturbation of the input SDoF parameters
produces a slight change in the output PSDMparameters). The covariance function parameters are called hyperparameters
since they are not assigned (aGP regression is a non-parametricmodel) but inferred from the training dataset (usuallywith
a maximum likelihood estimator). Given the hyperparameters, the posterior predictive distribution of the GP is obtained
by conditioning the prior distribution to the training dataset. The expected value of the posterior distribution is adopted
to make predictions.
With regard to the GP regression fitting for this particular study, a constant basis function is assumed for the posterior

distribution of the mean function. In addition, a squared exponential covariance function with separate length scales is
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F IGURE 2 Example of Gaussian process regression for a generic 𝒚 = 𝒇(𝒙) relationship. (A) Prior distribution; (B) posterior distribution

adopted. This is done to have a reasonable amount of hyperparameters while reflecting themechanics of the phenomenon
under investigation. A quasi-Newton method26 is adopted to optimise the hyperparameters, including the noise variance.

2.4 Seismic fragility and loss analysis

Once the PSDM parameters (𝑎, 𝜎) are evaluated using the trained GP regressions, it is possible to derive fragility functions
to perform seismic risk and/or loss analysis. Building-level fragility curves are calculated for a set of structure-specific DSs,
identified by the thresholds 𝐸𝐷𝑃𝐷𝑆 . One possibility involves choosing four DSs, slight, moderate, extensive and complete
damage, as defined according to HAZUS.9 Other definitions of the DSs are possible,11,27 and the proposed framework is
independent of their particular choice.
According to the properties of the adopted PSDM (Equation 1), lognormal fragility curves for each DS, representing the

DSs’ exceeding probability, 𝐹𝐷𝑆𝑖
= 𝑃(𝜇 ≥ 𝜇𝐷𝑆𝑖

𝑅), are completely specified by their median 𝜂𝐷𝑆 and logarithmic standard
deviation 𝛽 (simply called dispersion), which are specified in Equation 2 both for the elastic and inelastic ranges. It is
worth mentioning that collapse cases (corresponding to ground motions leading to dynamic instability of the analysis or
exceedance of a conventional 10% drift threshold) are not expected since the SDoF systems are only subjected to pre-peak
ductility demand levels.

𝜇𝐷𝑆𝑖
≤ 1;

{
𝜂𝐷𝑆𝑖

= 𝜇𝐷𝑆𝑖

𝛽 = 0
𝜇𝐷𝑆𝑖

> 1;

{
𝜂𝐷𝑆𝑖

=
𝜇𝐷𝑆𝑖

−1

𝑎
+ 1

𝛽 = 𝜎
(2)

Loss analysis is based on vulnerability curves, which can be derived using a building-level consequence model relating
the repair-to-replacement cost to structural and non-structural DSs. This involves defining the expected building-level
damage-to-loss ratios (𝐷𝐿𝑅𝑠) for each DS. The (mean) loss ratio (𝐿𝑅) for a given IM value is defined according to Equa-
tion 3, allowing deriving a mean vulnerability curve (involving the difference between the exceeding probability of the
(𝑖 + 1)𝑡ℎ and 𝑖𝑡ℎ DSs). More advanced, component-based fragility/loss methodologies are available (e.g., ref. 28), which
are appropriate for more refined applications, such as the detailed seismic loss estimation of individual buildings, for
instance.

𝐿𝑅 (𝐼𝑀) =

4∑
𝑖=1

(
𝐹𝐷𝑆𝑖−1

(𝐼𝑀) − 𝐹𝐷𝑆𝑖 (𝐼𝑀)
)
𝐷𝐿𝑅𝐷𝑆𝑖 (3)

One of the relevant loss metrics commonly adopted in practice is the EAL. Assuming a hazard curve, this is calculated
according to Equation 3, where 𝜆𝐼𝑀 is the mean annual frequency of exceeding a given value of the IM.

𝐸𝐴𝐿 =

∞

∫
0

𝐿𝑅 (𝐼𝑀)
||||𝑑𝜆𝐼𝑀𝑑𝐼𝑀

||||𝑑𝐼𝑀 (4)
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F IGURE 3 PSDM parameters: (A) Surrogated (GP regression) versus modelled (SDoF cloud analysis) plot; (B) Surrogated versus
modelled ratio histograms. NRMSE: normalised root mean squared error

3 RESULTS AND DISCUSSION

3.1 Surrogated-vs-modelled error and cross-validation of the GP regressions

The trained GP regressions are subjected to various tests to investigate their predictive power. First, the PSDM parame-
ters are predicted for the entire SDoF database, measuring the surrogate-vs-modelled normalised rootmean squared error,

NRMSE (
𝑚𝑒𝑎𝑛(

√
(𝑠𝑖−𝑚𝑖)

2
)

𝑚𝑒𝑎𝑛(𝑚𝑖)
). Figure 3A shows that the surrogated-vs-modelled points are particularly close to the 𝑦 = 𝑥 line,

with the NRMSE being equal to 2.5% for the slope and 6.2% for the logarithmic standard deviation of the PSDMs. Consid-
ering the various sources of uncertainty commonly involved in seismic performance assessment or risk/loss models, such
error levels are deemed satisfactory for practical applications.
To test the predictive power of the GP regressions outside the training set, ten-fold cross validation is carried out. This

first involves randomly dividing the training dataset into ten subsets made of 1,000 SDoF samples each. Then, ten new
GP regressions are fitted alternatively, excluding one subset from the new training dataset. For each subset, the fitted GP
regressions are used to make (in-fold) predictions for the subset kept out of the training dataset. The in-fold prediction
errors for each of the ten sub-sets are used to calculate the in-fold NRMSE, which is 0.1% higher than the previously
calculated one for both PSDM parameters, thus confirming the validity of the error estimates. It is worth mentioning that
such error estimates are consistent with the results in ref. 7, which, for the case studies most similar to those in this paper,
report a 3%–6% error on the PSDM estimation (although those are based on 30 ground-motion records).
As expected for GP regressions, Figure 3B shows that the prediction errors (herein quantified as surrogated-vs-modelled

ratios) follow aNormal distributionwith amean equal to 1.0001 and 1.0002 (for 𝑎 and 𝜎) and standard deviation essentially
equivalent to theNRMSE. This result is particularly important to infer the propagation of such error in fragility or risk/loss
estimations, as discussed below in this Section.
The surrogated PSDMs for the entire SDoF dataset are used to estimate seismic fragility curves. Those are derived for

two DSs related to ductility thresholds, respectively, equal to 3 and 4, representing DS3 (extensive damage according to
HAZUS) and DS4 (complete damage according to HAZUS). Elastic DSs are not considered since, according to Equation 2,
no error is expected for those. Figure 4A shows the surrogated vs modelled plot for the median of the fragility curves, also
indicating a satisfactory NRMSE, respectively equal to 2.0% and 2.2% for DS3 and DS4. Consistently with the definition
of the PSDM (Figure 1 and Equation 1), a specified error in the slope parameter 𝑎 propagates to higher error levels for the
fragility median as the ductility threshold increases. It is worth mentioning that no further discussion is needed for the
fragility dispersion since this is exactly equal to the PSDM logarithmic standard deviation. Also in this case, as expected,
the surrogated-vs-modelled ratios for the median of the fragility curves (Figure 4B) follow a Normal distribution (with
mean equal to 0.9993 and standard deviations equal to 0.018 and 0.02 for DS3 and DS4, respectively). Quantifying how
the uncertainty on the SDoF parameters affects the prediction of the PSDM and fragility ones is considered out of scope
herein. However, after characterising the probability distribution of the SDoF parameters (and their correlation), a user
can adopt the proposed GP regressions to carry out the above uncertainty quantification.
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F IGURE 4 DS3-DS4 fragility medians: (A) surrogated (GP regression) versus modelled (SDoF cloud analysis) plot; (B) Surrogated versus
modelled ratio histograms. NRMSE: normalised root mean squared error

F IGURE 5 Propagation of fragility error on the calculated expected annual loss

The last step of this error-propagation exercise involves calculating both vulnerability curve and EAL for two illustra-
tive (arbitrary) case-study SDoF systems with an elastic period equal to 0.5s. Once again, both systems are characterised
according to the four structure-specific DSs qualitatively defined according to HAZUS and quantitativelymeasured on the
SDoFs backbones. The median of the fragilities for the elastic-range DSs is the same for both case studies and is equal to
0.04 g and 0.1 g for DS1 and DS2, respectively. The first case study represents a structure with poor seismic performance;
thus, the DS3 andDS4medians are equal to 0.12 g and 0.16 g, respectively. For the second case study, showing considerably
higher performance, the DS3 and DS4 medians are equal to 0.36 g and 0.44 g, respectively. A fragility dispersion equal
to 0.24 is adopted for all DSs (both elastic and inelastic) for both case studies. A detailed motivation to assume the same
dispersion for both the elastic and inelastic ranges is given in Section 3.2.
DLRs equal to 2%, 10%, 43.5%, and 100% of the total reconstruction cost (DS1 to DS4) are adopted for this example,

consistentlywith the assumptions in ref. 13. Vulnerability curves are calculated according to Equation 3. Finally, the EAL is
calculated according to Equation 4, assuming the hazard curve appropriate for L’Aquila, a high-seismicity town in central
Italy. Such a curve is consistent with the official Italian hazardmodel (Stucchi et al.29), implemented in the current Italian
building code.30 Although the absolute values of the hazard curve are deemed less relevant for this error-propagation
exercise, the adopted hazard model is consistent with those used in Section 4.1.
Starting from the “baseline” fragility curves described above, a plain Monte Carlo approach is used to simulate 30,000

new realisations of the fragility parameters such that 𝜂𝑠𝑖𝑚 = 𝐸𝑟𝑟𝜂 ∗ 𝜂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝛽𝑠𝑖𝑚 = 𝐸𝑟𝑟𝛽 ∗ 𝛽𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. The variables
𝐸𝑟𝑟𝜂, 𝐸𝑟𝑟𝛽 are consistent with the empirical distributions of the surrogated-vs-modelled ratios shown in Figure 4B (for
the medians) and Figure 3B (for the dispersion). By re-calculating both the vulnerability for each realisation, the fragility
error is propagated to the EAL. For both case studies, Figure 5 shows the empirical distribution of the EAL as a ratio of the
baseline EAL (the insertions in each panel show the baseline fragility curves for the case studies). The overall distribution
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F IGURE 6 Selected incremental retrofit solutions: (A) plastic mechanism at the life-safety damage state, DS3; (B) pushover curves
(modified after Gentile et al.32)

of the error is a particularly narrowNormal distribution with amean respectively equal to 1.0007 and 1.0006 and standard
deviation equal to 0.015 and 0.01 for the lower- and higher-performance case studies, respectively. In the Authors’ opinion,
such low error levels confirm the suitability of the proposed surrogate model in loss assessments involving SDoF-based
fragility curves and building-level damage-to-loss ratios (e.g., ref. 2).

3.2 Application to realistic RC frame case studies

Most practical applications involve more complex MDoF structures rather than SDoF systems. Therefore, it is crucial to
test the predictive power of the trained GP regression against realistic structures. The selected case study is the central
longitudinal frame of a three-storey RC building with rectangular plan geometry and structural details of beams, columns
and joints consistent with pre-1976 design according to an older Italian building code.31 Apart from this as-built configu-
ration, consistent with gravity-only design and neglecting any capacity-design provision, seven retrofitted configurations
providing incremental seismic performance are designed implementing the RC jacketing technique (Figure 6). Detailed
descriptions and illustrations of geometry, load analysis and structural details of the as-built and retrofitted members are
provided in ref. 32. They are not repeated here for brevity.
A 2D lumped-plasticity model (bare frame) is developed using the finite element software Ruaumoko33 for each con-

figuration. The adopted numerical modelling strategy was extensively validated against experimental results.34 Floor
diaphragms are modelled as rigid in their plane, and fully fixed boundary conditions are considered at the base. P-Delta
effects are notmodelled since they are deemed negligible for three-storey frames. A 5% tangent stiffness-proportional elas-
tic damping is assigned to all frequencies. The flexural capacity of the RC members is derived using moment-curvature
analysis. The flexural response is checked against other failuremechanisms thatmay significantlymodify the lateralmem-
ber response. The capacity model of the members included in the analysis is modified (if appropriate) to include those
failure mechanisms accordingly, considering slab-related flange effect for the negative beam moment capacity, lap splice
failure, shear capacity, bar buckling.13 The modified Takeda hysteresis model16 is used for beams and columns, with the
columns having a thinner loop. The hysteretic behaviour of the beam-column joints is modelled using the Modified Sina
model,16 which can capture their pinching behaviour. Each frame configuration is first analysed via displacement-control
pushover with a linear force profile (Figure 6). This allows quantifying four displacement thresholds (Δ𝐷𝑆𝑖) compatible
with the DS definitions in HAZUS (described in Section 2.4), to be adopted for fragility derivation. Those refer to the first
member in the frame reaching first cracking, yielding, ¾ of the near collapse drift and the near collapse drift respectively
for DS1-DS4. It is worth mentioning that the member “causing” a given DS may change for different DSs.
The as-built configuration shows a storey-level failure mode developing at the first storey (Figure 6A), characterised

by plastic hinging of the columns and shear failure of the exterior beam-column joints. Although the shear failure of the
exterior joints “avoids” the soft-storey behaviour, this failure mode results in a low strength (Figure 6A) approximately
equal to 0.2 g spectral acceleration capacity for the equivalent SDoF system, whose elastic period is 0.77s. The acceleration-
displacement capacity (Figure 6B) of the equivalent system is derived from the pushover force-displacement curve assum-
ing a (first-mode) effective mass equal to 90% of the total building mass (obtained averaging the participating mass of the
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TABLE 1 Ductility-based DS thresholds

𝝁𝑫𝑺𝟏
𝝁𝑫𝑺𝟐

𝝁𝑫𝑺𝟑
𝝁𝑫𝑺𝟒

As built 0.54 1.00 1.05 1.40
I1 0.46 1.00 1.25 1.67
I2 0.55 1.00 2.36 3.14
I3 0.71 1.00 2.76 3.68
IE1 0.52 1.00 1.40 1.86
IE2 0.58 1.00 2.65 3.54
IE3 0.65 1.00 4.45 5.93
IE3+ 0.66 1.00 4.54 6.05

case studies, ranging between 88% and 93%). Moreover, the effective height displacement is adopted as an EDP, using the
effective height formulation by Priestley et al.17
The adopted retrofit strategy has the objective of inverting the local hierarchy of strength at the sub-assembly level

and transforming such a localised failure mode into a more reliable Beam-Sway global mechanism (with flexural plastic
hinges forming in all beam ends and at the ground section of the columns). Such a goal is obtained “incrementally,”
adopting concrete column jacketing as the selected retrofit technique. This results in seven retrofit solutions, for which
Figure 6A shows the plastic mechanism at DS3 (extensive damage according to HAZUS; generally associated with life
safety). For the solutions I1, I2 and I3, only the interior columns are jacketed (respectively up to the first, second or third
storey). Similarly, the solutions IE1, IE2, and IE3 include column jacketing for both interior and exterior columns. Finally,
the IE3+ retrofit solution improves IE3 by involving enhanced jacketing for the first-storey columns to provide higher
strength for the frame. It is worth mentioning that the beam-column joints located between two jacketed columns are
reinforced with horizontal stirrups having the same layout as the jacketed columns, thus significantly enhancing their
shear capacity (and avoiding shear hinging).
The response of each frame configuration is independently analysed using two analysis methods with increased refine-

ment. The cloud capacity spectrum method (Cloud CSM,35) is first adopted: this involves applying the CSM,36 assuming
a suite of as-recorded ground-motion spectra. In this case, the set of 100 records described in Section 2.2 is adopted with-
out using any scale factors. The response (effective height displacement) for each ground motion is calculated by using
the pushover curves in Figure 6B. Moreover, by adopting the same record suite, cloud-based NLTHA12 is carried out for
each frame configuration, registering the peak effective height displacement. The spectral acceleration at the fundamen-
tal period, 𝑆𝐴(𝑇1), is finally calculated for each record and adopted as an IM. 𝑇1 ranges between 0.77s for the as built
configuration and 0.55s for the IE3+ one.
The two alternative (EDP vs IM) sets are adopted to derive the conditional mean and standard deviation of EDP

given IM and derive PSDMs for each frame configuration. Consistently with the common practice, the power-law model
EDP = 𝑝1 𝐼𝑀𝑝2 is obtained via the least square method, where 𝑝1 and 𝑝2 are the parameters of the regression. This

allows deriving fragility curves compatible with those derived using the GPs, where 𝜂𝐷𝑆𝑖 = 𝑒𝑥𝑝(
ln(

Δ𝐷𝑆𝑖
𝑝1

)

𝑝2

) and 𝛽 =
𝜎

𝑝2

.

It is worth mentioning that some ground motions led to collapse, which is herein defined as a global dynamic instability
(i.e., non convergence) of the numerical analysis, likely corresponding to a plastic mechanism (i.e., the structure is under-
determined) or exceeding the nominal threshold of 10%maximum inter-storey drift. The information carried out in these
analyses with non-numerical EDP values are included in the definition of the fragility curves according to the procedure
in ref. 37, which is described in detail in ref. 13.
The parameters of the fragility curves are finally computed using the trained GP regressions, after bi-linearising the

pushover curves,38 adopting theMTf hysteresis type (deemed appropriate for RC frames not developing a soft-storeymech-
anism), and using DS ductility thresholds consistent with the above-mentioned Δ𝐷𝑆𝑖 (Table 1). Based on the GP results,
literature formulations can be used to calculate other EDPs such as displacement profiles17 or peak floor accelerations.28
Before comparing fragility estimates of a surrogated SDoF model and an explicit MDoF model, it is worth highlighting

the various sources of error affecting it. First, the twomodels involve a different functional form of the PSDM, respectively
suited for SDoF andMDoFmodels. Moreover, the comparison adopts the spectral acceleration at the fundamental period
as IM, although more sufficient and efficient IMs are available (e.g., ref. 19). Moreover, although the same set of records
are used, those are scaled in amplitude in the metamodel training, possibly leading to further bias.21
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F IGURE 7 Surrogated versus modelled fragility median for the MDoF case study. Modelling is alternatively based on (A) capacity
spectrum method and (B) non-linear time history analysis

As shown in Figure 7A, comparing the surrogated medians with those calculated via the Cloud CSM highlights a very
low prediction error: the NRMSE is equal to 1.0%, 0.6%, 10.4%, and 11.2% for DS1, DS2, DS3, and DS4, respectively. Such
error level increase to 24.0%, 26.0%, 17.7%, and 19.0% if the benchmark analysismethod is theNLTHAof theMDoF numer-
ical models (Figure 7B). Although such an increase is substantial, it is still deemed consistent with the simplicity of the
GP metamodel as opposed to the required modelling effort and time involved in the MDoF NLTHA.
Fromaqualitative point of view, theGP regressions provide a conservative underestimation of themedians (with respect

to the NLTHA), except for the DS4 estimation for three case studies. Consequently, the GP regressions would provide
conservative overestimations in risk/loss analyses. Confirming the discussion in Section 3.1, the error levels are generally
higher for severe DSs and higher-performing structures (higher fragilitymedians). However, in risk/loss estimations, such
error levels will likely have a low impact given the lower hazard frequency related to high intensity (e.g., in Equation 4
they will be weighted down by the lower 𝜆𝐼𝑀 values as IM increases). This effect, valid for any combination of building
models and sites, is further discussed in Section 4.1, also showing an example.
On the other hand, the GP regressions show a lower predictive power in estimating the fragility dispersion. In fact, the

fragility dispersion predictedwith theGP regressions for the non-linear range lies within 0.35 and 0.4 for all the considered
frame configurations. Despite anNRMSE equal to 23.6% and 29.0%, respectively, assuming theCloudCSMand theNLTHA
as benchmark models, in both cases, the error for the single datapoints approximately ranges between 9% and 59%, and it
is generally an underestimation.
It is worth highlighting that the fragility dispersion, in turn depending on the EDP|IM standard deviation, is strongly

affected by the refinement of the model (e.g., a higher dispersion is expectable for MDoFs than for SDoF systems, e.g.,
due to higher-mode effects and lower sufficiency of the IMs). Accordingly, the adopted PSDM model for MDoFs allows
accounting for the EDP|IMuncertainty also in the elastic range, while this is not present in the SDoF response. To partially
compensate for this deficiency, it is suggested to use the GP-based fragility dispersion also for the elastic DSs (which
would have 𝛽 = 0 according to Equation 2). On the other hand, considering collapse cases in the MDoF model usually
reduces the fragility dispersion, especially if the structure develops a plastic mechanism for low seismic intensity levels.
The combination of such effects, not adequately captured in the GP regression approach, is case-dependent, and it is
arguably challenging to predict a general trend.
For this reason, although the fragility dispersion errors are numerically higher than those of the medians, those are still

comparable to those obtained explicitlymodelling an SDoF system (arguably the standard for portfolio analyses) subjected
to cloud-based NLTHA.

4 EXPLOITING THE PROPOSED SURROGATEMODEL

4.1 Direct loss-based seismic design: a first attempt

The first application relying on the proposed surrogate model is the DLBD. A first attempt DLBD procedure, among
other possible alternatives (e.g., refs. 39–41), is proposed in this Section, along with an application to a realistic RC frame
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structure analysed along one horizontal direction. This procedure is not intended as definitive, and future research work
is suggested, and underway, to refine and validate it, possibly modifying some of its steps. By analogy with the words of
Priestley,17 the fundamental philosophy of the proposed procedure is to design a structure that would achieve, rather than
be bounded by, a given loss-related metric (e.g., EAL) under the relevant site-specific seismic hazard. Moreover, the adjec-
tive “direct” refers to the ability to specify the desired level of loss as a fundamental input parameter before performing
all the relevant steps to achieve such loss level with a reasonable tolerance.
The loss estimation module in this procedure is based on building-level vulnerability curves defined in terms of IM

(Section 2.4). Although more refined approaches with vulnerability defined in terms of EDP are available, possibly at
a component-based level, the selected approach is arguably deemed more appropriate for a preliminary design phase.
For example, an EDP-based loss estimation would allow explicitly considering acceleration-sensitive non-structural com-
ponents. However, since their exact typology and number is most likely not known in the preliminary design phase, it
is preferred to make a more generic (and flexible) assumption to embed them in the definition of the DLRs. Moreover,
assumptions to include indirect losses can be embedded in the definition of DLRs, rather than needing to add specific
vulnerability functions.
The proposed DLBD can be outlined in the following steps, selecting the EAL as the fundamental loss metric for

design:

1. Select 𝐸𝐴𝐿𝑡𝑎𝑟𝑔𝑒𝑡 (e.g., 0.5% of the total reconstruction cost). This is the level of EAL that the designed structure will
achieve;

2. Retrieve an appropriate set of site-specific hazard curves in terms of SA in a wide range of periods. Also, select a
set of DSs (e.g., DS1-DS4 as defined in Section 2.4) relevant to the considered structural typology (e.g., RC frames).
Relatively to the ductility capacity at peak strength 𝜇𝑐𝑎𝑝, which is an intermediate design parameter calculated in step
5, select reasonable guesses for the DS thresholds consistent with the qualitative definition of the DSs (e.g., 𝜇𝐷𝑆𝑖 =

[0.5 1 0.75𝜇𝑐𝑎𝑝 𝜇𝑐𝑎𝑝]may be consistent with the DS definition above). The main idea is to provide 𝜇𝐷𝑆𝑖 values as close
as possible to those obtainable from the numerical pushover analysis of the final design case. Select a relevant damage-
to-loss model consistent with the involved structural typology and the adopted DSs (e.g., 𝐷𝐿 𝑅𝐷𝑆𝑖 = [7 15 50 100] %

of the total reconstruction cost);
3. Select the basic geometric and material properties of the considered structure, also according to gravity-load prelimi-

nary design. For a geometrically-regular RC frame building, the parameters to be (tentatively) set are the yield stress
and elastic modulus of steel (𝑓𝑠𝑦, 𝐸𝑠), the number of storeys and bays (𝑁𝑠𝑡𝑜𝑟𝑒𝑦, 𝑁𝑏𝑎𝑦), the centre-to-centre inter-storey
height 𝐻𝑖𝑛𝑡, the centre-to-centre length of the beams 𝑙𝑏, the depth of beams and columns (ℎ𝑏, ℎ𝑐), the seismic storey
mass𝑚𝑖 directly affecting the considered frame;

4. Select a number of combinations of yield strength and ductility capacity to define seed SDoF systems. For example,
those can be 𝑁1 equally-spaced points within 𝑓𝑦,𝑚𝑖𝑛 and 𝑓𝑦,𝑚𝑎𝑥 and 𝑁2 equally-spaced points between 𝜇𝑐𝑎𝑝,𝑚𝑖𝑛 and
𝜇𝑐𝑎𝑝,𝑚𝑎𝑥, leading to 𝑁1𝑁2 seed SDoF systems. The range for such parameters should be carefully selected based on
engineering judgement, to ensure including possible design cases. According to the relevant structural type, complete
the definition of the seed SDoF systems consistent with the GP regression inputs (i.e., bilinear backbone and expected
hysteresis type). For RC frames, for example, the yield displacement (Δ𝑦) only depends on geometry,17 and it can be
calculated according to Equation 5, where𝐻𝑖 is the height of storey 𝑖 from the ground and 𝛿𝑖 is the displacement shape
(𝛿𝑟𝑜𝑜𝑓 = 1) assumed according to Priestley et al.17 Therefore, yield strength (𝑓𝑦,𝑠𝑒𝑒𝑑) is linearly related to stiffness, and
the elastic period (𝑇𝑠𝑒𝑒𝑑) of the seed SDoF systems is calculated via Eq. 6. The hardening ratio of the seed SDoF systems
can be reasonably guessed (e.g., ℎ = 0.05 for RC frames) or alternatively included in the initial grid-based definition.
Therefore, the peak normalised based shear of the SDoF system is equal to 𝑓𝑝𝑒𝑎𝑘 = 𝑓𝑦 (1 + 𝜇𝑐𝑎𝑝ℎ). Finally select the
most appropriate hysteresis model for the analysed structure (e.g., MTf for newly-designed RC frames);

Δ𝑦 = 𝜃𝑦 𝐻𝑒𝑓𝑓 where 𝜃𝑦 =

0.5
𝑓𝑠𝑦

𝐸𝑠
(𝑙𝑏 − ℎ𝑐)

ℎ𝑏
and 𝐻𝑒𝑓𝑓 =

∑
𝑖
𝑚𝑖𝛿𝑖𝐻𝑖∑
𝑖
𝑚𝑖𝛿𝑖

(5)

𝑇𝑠𝑒𝑒𝑑 = 2𝜋

√
Δ𝑦

9.81𝑓𝑦,𝑠𝑒𝑒𝑑
(6)
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F IGURE 8 (A) Map of the expected annual loss for the trial SDoF configurations; (B) capacity spectra of the candidate design SDoF
systems

5. Using the herein-proposed GP regressions, calculate fragility curves for each seed SDoF system consistent with the
selected DS thresholds 𝜇𝐷𝑆𝑖 . According to the selected𝐷𝐿𝑅𝐷𝑆𝑖 and the hazard curve (interpolated based on 𝑇𝑠𝑒𝑒𝑑), use
Equations 3 and 4 to calculate the building-level vulnerability curve and the EAL for each seed (see Figure 8A);

6. Select all the SDoF seeds that meet the target EAL level within a set tolerance (e.g., 𝐸𝐴 𝐿𝑡𝑜𝑙 = 0.01𝐸𝐴𝐿𝑡𝑎𝑟𝑔𝑒𝑡). Clearly,
the finer the (𝑓𝑦, 𝜇𝑐𝑎𝑝) grid is, the smaller such tolerance can be. For each selected seed, run the CSMusing spectra for
each DS demand (code-based, as per Figure 8B, or site-specific ones) and disregard the cases not meeting the seismic
demand for any DS (i.e., 𝜇𝑑𝑒𝑚,𝐷𝑆𝑖 > 𝜇𝐷𝑆𝑖). In addition, calculate the frequency of exceeding the complete damage DS,
by integrating the complete damage fragility with 𝜆𝐼𝑀 , analogously to Equation 4, and disregard the cases above a
conventionally-established threshold (e.g., between 10–5 and 10–4 )42. The seed SDoF systems meeting the target EAL,
the complete damage exceeding frequency bound and complying with the code-based displacement check are equally
valid candidate design SDoF systems. One of those can be arbitrarily selected as the final design SDoF system, possibly
according to design requirements not related to seismic actions;

7. Amongmany other alternatives, the principles of displacement-based design are herein suggested to detail eachmem-
ber of the structure to comply with the design SDoF’s backbone and achieve a favourable plastic mechanism (e.g.,
plastic hinges for the base column sections and all beams’ end sections, for an RC frame). For a geometrically-regular
RC frame, the beams’ plastic drift demand (𝜃𝑏𝑖,𝑝) compatible with the displacement capacity at peak force (Δ𝑐𝑎𝑝) of
the design SDoF is calculated according to Equations 7 and 8, where 𝜃𝑖 is the inter-storey drift profile compatible with
the displacement profile Δ𝑖 . On the other hand, the drift demand on the first-storey columns (𝜃𝑐) is simply equal to
the inter-storey drift at that level. Such an approach involves a degree of error with respect to more refined, NLTHA-
based approaches. However, pros and cons of displacement-based design, including the calibration of all the involved
equations and assumptions are provided in ref. 17;

𝜃𝑏𝑖,𝑝 = 𝜃𝑖,𝑝 ∕ (1 − ℎ𝑐∕𝑙𝑏) . Where 𝜃𝑖,𝑝 = 𝜃𝑖 − 𝜃𝑦 (7)

Δ𝑖 =
Δ𝑐𝑎𝑝

𝛿𝑒𝑓𝑓
𝛿𝑖. Where 𝛿𝑒𝑓𝑓 =

∑
𝑖
𝑚𝑖𝛿

2
𝑖∑

𝑖
𝑚𝑖𝛿𝑖

(8)

8. The strength demand for the members developing inelastic behaviour is computed via an equilibrium approach. For
RC frames, this involves the overturning moment (OTM) equilibrium,17 according to Equation 9, where 𝑉𝐵(Δ𝑐𝑎𝑝) =

𝑓𝑝𝑒𝑎𝑘𝑚𝑒𝑓𝑓 is the SDoF base shear,𝑚𝑒𝑓𝑓 =
∑

𝑖 𝑚𝑖Δ𝑖

Δ𝑐𝑎𝑝

is the effective mass,𝑀𝑐,𝑘 is the base moment of column 𝑘, 𝐿𝑏𝑢𝑖𝑙𝑑
is the frame length, 𝑉𝑏,𝑖𝑗 is the shear of the beam at storey 𝑖 and bay 𝑗. Any allocation of strength to the members
developing inelastic behaviour that complies with Equation 11 would satisfy the design objective. One possible design
choice may involve assuming (Equation 10) that the contra-flexure point of the first-storey columns locates at 60% of
their height so that capacity design of the first-storey beam-column joints is ensured. Moreover, if the beams have the
same detailing in both end sections and within the frame, Equation 11 holds, where𝑀𝑏,𝑖𝑗(𝜃𝑏𝑖,𝑝) is the beam moment
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demand corresponding to its plastic drift demand. With such assumptions, it is possible to invert Equation 9 and cal-
culate the beams’moment demand𝑀𝑏,𝑖𝑗 corresponding to the target base shear𝑉𝐵(Δ𝑐𝑎𝑝). Themoment demand of the
base columns, at𝑉𝐵(Δ𝑐𝑎𝑝), can be reasonably proportioned assuming that the interior columns will be approximately

twice as strong as the exterior ones, thus𝑀𝑐,𝑒𝑥𝑡 = 0.6𝐻1
𝑉𝐵(Δ𝑐𝑎𝑝)

2(𝑁𝑏𝑎𝑦−1)+2
and𝑀𝑐,𝑖𝑛𝑡 = 2𝑀𝑐,𝑒𝑥𝑡.

𝑂𝑇𝑀
(
Δ𝑐𝑎𝑝

)
= 𝑉𝐵

(
Δ𝑐𝑎𝑝

)
𝐻𝑒𝑓𝑓 =

∑
𝑘

𝑀𝑐,𝑘

(
𝜃𝑐,𝑘

)
+ 𝐿𝑏𝑢𝑖𝑙𝑑

∑
𝑖,𝑗

𝑉𝑏,𝑖𝑗

(
𝜃𝑏𝑖,𝑝

)
(9)

∑
𝑘

𝑀𝑐,𝑘

(
𝜃𝑐,𝑘

)
=
∑
𝑗

0.6𝐻1𝑉𝑐,𝑘 = 0.6𝐻1𝑉𝐵

(
Δ𝑐𝑎𝑝

)
(10)

𝑉𝑏,𝑖𝑗

(
𝜃𝑏𝑖,𝑝

)
=

2𝑀𝑏,𝑖𝑗

(
𝜃𝑏𝑖,𝑝

)
𝑙𝑏

(11)

9. Once the theoretical deformation and strength demand of the members developing inelastic behaviour are obtained,
the structural details of suchmembers are designed. For an RC frame, this involves the demand for beams (𝜃𝑏𝑖,𝑝;𝑀𝑏,𝑖𝑗)
and first-storey columns (𝜃𝑐,𝑘;𝑀𝑐,𝑘). The structural details of such members can be designed via a moment-curvature
approach. Generally, the provided detailing will lead to a degree of deviation from the theoretical values above. Thus,
Equation 9 can be used to re-calculate the peak base shear 𝑉𝐵(Δ𝑐𝑎𝑝) provided by the design. Moreover, with a rea-
sonable assumption for the hardening (e.g., ℎ = 0.05 for RC frames), and by knowing Δ𝑦 , the entire backbone can be
calculated and compared to that of the design SDoF system (Figure 9A). Such match is particularly important since
it ensures the match between the EAL of the designed frame and the target EAL, at least under the assumptions
adopted for the fragility and vulnerability models. Possibly, a pushover analysis can be conducted to further verify the
simplified equilibrium/compatibility-based calculations;

10. Any undesired mismatch between the SDoF and the frame backbone curves may be corrected via: (a) iterations in the
member design, thus repeating step 8; (b) revising Δ𝑦 or ℎ, thus restarting from step 3; (c) based on the results of a
pushover analysis, revising the relative definition of 𝜇𝐷𝑆𝑖 with respect to the ductility capacity at peak strength 𝜇𝑐𝑎𝑝,
thus restarting from step 1;

11. As per any seismic design procedure involving non-linear behaviour, members intended to remain elastic must be
capacity protected.Moreover, somemember characteristicsmay bemodified to complywith code-based requirements.

This procedure is demonstrated for a four-storey RC case-study building in the city of L’Aquila and designed to achieve
a 0.5% EAL. According to the Italian seismic risk classification, this would correspond to a building in the A+ risk class.43
Both𝜇𝐷𝑆𝑖 and𝐷𝐿𝑅𝐷𝑆𝑖 exemplified in step 1 are adopted for the design (consistentlywith those proposed in ref. 43 for Italian
concrete buildings). The code-based Italian seismic hazard model is adopted29; thus, no ad hoc site-specific probabilistic
seismic hazard analysis is explicitly performed. For each point of a 5 km-spaced grid, the above model provides both PGA
and spectral acceleration values for nine probabilities of exceedance in 50 years. The model provides the 16th, 50th, and
84th percentiles of the spectral accelerations for 10 period values between 0.1s and 2s, assuming rock conditions. The
Italian code30 also provides analytical approximations of the uniform hazard spectra consistent with the above model,
including correction factors to obtain, among others, different soil and topography conditions. For the present illustration,
a C-type soil category according to the Italian code is assumed (shear wave velocity in the first 30 m within the range 180–
360 m/s).
The rectangular building is composed of four 9 m-spaced parallel frames with 𝑁𝑏𝑎𝑦 = 3, 𝑙𝑏 = 6𝑚, 𝐻𝑖𝑛𝑡 =

3.6𝑚, ℎ𝑏 = 0.6𝑚, ℎ𝑐 = 0.6𝑚, 𝑓𝑠𝑦 = 300𝑀𝑃𝑎, 𝐸𝑠 = 200𝐺𝑃𝑎. A storey mass approximately equal to 400𝑇𝑜𝑛 is calcu-
lated by adopting, apart from the self-weight of the structure, a superimposed dead load equal to 2𝐾𝑃𝑎 and a factored live
load equal to 0.9𝐾𝑃𝑎. Thus, the storey mass affecting one frame is𝑚𝑖 = 100𝑇𝑜𝑛.
Figure 8A shows the EAL of the seed SDoF systems, defined using a vector of 100 equally-spaced points between 0.1

and 0.4 for 𝑓𝑦 and 100 equally-spaced points within 1.5 and 6 for 𝜇𝑐𝑎𝑝, thus leading to 10000 seed SDoF systems. A linear
displacement shape is assumed for this four-storey frame,17 and the calculated yield displacement is Δ𝑦 = 0.065𝑚, with
H𝑒𝑓𝑓 = 10.5𝑚. The MTf hysteresis model is used for this case study. Among the SDoF seeds meeting the target EAL
(with a tolerance equal to 0.01𝐸𝐴𝐿𝑡𝑎𝑟𝑔𝑒𝑡), those complying with the code-based demand as per step 5 (design candidates)
are represented in Figure 8B, together with the seismic demand corresponding to respectively, 30, 50, 475, and 975 year
mean return periods. Those are related to the operability, damage limitation, life safety and near collapse DSs, defined
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consistently with HAZUS. The final design SDoF system is arbitrarily selected among those, and it is characterised by
𝑇 =0.97s (secant-to-yielding), 𝑓𝑦 = 0.27, 𝜇𝑐𝑎𝑝 = 2.65, ℎ = 0.05. The frequency of exceeding the complete damage DS for
the design SDoF system is equal to 1.4 × 10–6, which is deemed appropriate according to the above-mentioned limits.
According to the displacement capacity (at DS4) of the design SDoF system (Δ𝑐𝑎𝑝 = 0.17𝑚), steps 6 and 7 of the above

procedure returned a demand equal to 325kNm(@0.8% plastic drift) for the beams, 347kNm(@0.8% plastic drift) for the
exterior columns and 694kNm(@0.8% plastic drift) for the interior ones. Based on such theoretical values, cross-section
design is performed characterising the flexural capacity of beams and columns via moment-curvature analysis (including
gravity axial load). The model by Mander44 is used for concrete, including calculating its ultimate strain (accounting for
confinement). King et al.45 is used for steel. Plastic hinge length is calculated according to ref. 46 Such a cross-section
design required four iterations to reasonably match the SDoF design curve by appropriately balancing the (combined)
strength of the members to achieve the desired OTM.
TheRC frame is equippedwith 0.6× 0.3mbeams reinforcedwith 4𝜙22mmbars both in the tension and the compression

sides of the cross section (340kNm yield moment). The interior columns have a 0.6 × 0.4 m cross section reinforced with
4𝜙26mmbars on both sides of the section and 2𝜙26mmbars in the section centreline (729kNmyieldmoment). Finally, the
exterior columns have a 0.5× 0.3m cross section equippedwith 8𝜙22mmbars equally spaced along the perimeter (336kNm
yield moment). The transverse reinforcement of the listedmembers is composed of 𝜙12mm stirrups with 100mm spacing,
and the clear cover is equal to 30 mm. The unconfined compressive strength of the adopted concrete is equal to 30 MPa.
A pushover analysis (as per Section 3.2) is first carried out (Figure 9A). The comparison of the numerical pushover

curve (both in the refined or bi-linearised forms) to the design SDoF curve is particularly satisfactory since the curves are
essentially superimposed. The eigenvalue analysis of the frame indicates a fundamental period equal to 0.93s (secant-to-
yielding), which is satisfactorily close to the SDoF one (0.98s). As discussed in Section 3.2, the member-level pushover
results are used to identify refined DS thresholds. Figure 9A shows that the comparison of such thresholds (circular
marks) with those assumed in step 1 of the procedure (triangular marks) is satisfactory since the maximum registered
(displacement-wise) error is 11% (for DS4).
To thoroughly test the DLBD of this case study, NLTHA is conducted adopting the set of 100 records described in Sec-

tion 2.2 (without using any scale factors). As per the frames in Section 3.2, fragility and vulnerability curves are herein
derived based on the NLTHA results. In Figure 9A, such fragility curves (solid lines) are compared with those obtained
via the GP regressions (dashed lines), respectively adopting the refined and simplified DS thresholds. Similarly, to the
discussion in Section 3.2, the GP regressions generally under-estimate the median of the fragilities, with higher errors for
more severe DSs (15.3%, 11.2%, 21.2%, and 19.3% for DS1 to DS4). The fragility dispersion obtained with the GP regressions
underestimates the NLTHA-based one by 29.2% for this particular case. The fragility estimation error propagates to the
vulnerability curves, with higher errors as IM increased. However, as anticipated in Section 3.2, such error levels are less
relevant in the loss estimation since they correspond to hazard levels with lowMAF of exceedance. This is reflected in the
final calculation of EAL based on NLTHA, which is equal to 0.46% (conservatively predicted within 8% from the target
value).
The result of this practical illustration, although encouraging, cannot be regarded as general. The tentative DLBD pro-

cedure proposed here is, at least arguably, worth a more comprehensive investigation/refinement/modification involving

F IGURE 9 Design SDoF case versus design MDoF case: (A) pushover and fragility curves; (B) vulnerability and hazard curves
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different case studies (in terms of material, lateral resisting system, geometry, etc.), different hazard levels, different loss
metrics (e.g., the tail value at risk) and different target values of suchmetrics. Detailed comparison of design cases against
refined NLTHA is required (also including 3D effects). If the procedure is proved successful, a final verification against
more refined, component-by-component methodologies for loss analysis (e.g., FEMA P58, as opposed to the adopted
building-level approach) is needed to estimate the confidence with which DLBD allows to set a target loss level.

4.2 Dynamic earthquake risk modelling

A flexible and reliable surrogatemodel for the PSDMof structures (and hence for the derivation of fragility and vulnerabil-
ity curves) can enable the fast development of a high number of earthquake risk models with different scenario exposure.
Among all the possible examples falling in this category, this Section demonstrates a dynamic earthquake risk model
with exposure changing over time, representing the implementation of a retrofit-based seismic risk reduction policy for a
region.47,48
This illustrative example involves a synthetic portfolio of 100 RC buildings. In the as-built condition (time 𝑡 = 0),

the buildings SDoF parameters are simulated based on the uniform distributions of 𝑇 ∼ (0.2𝑠, 1.5𝑠), 𝑓𝑦 ∼ (0.1, 0.25),
ℎ ∼ (0.01, 0.1), and 𝜇𝑝𝑒𝑎𝑘 ∼ (1.2, 3). All the buildings are characterised by the MTf hysteresis model.
An earthquake risk model can be used to simulate the effects, in terms of portfolio economic losses, of a risk-mitigation

policy of this kind: each householder in the areamust retrofit at a time 𝑡 ∼ 𝑈(0, 15𝑦𝑒𝑎𝑟𝑠), and theymust increase the yield
strength such that Δ𝑓𝑦 ∼ 𝑈(0, 0.15) and ductility capacity such that Δ𝜇𝑝𝑒𝑎𝑘 ∼ 𝑈(0.2, 1.5). Given the inherent freedom of
the householders, the implementation of this policy may be regarded as a random retrofit process. Using the provided GP
regressions, simulating such a process to obtain the distribution of the evolving portfolio losses becomes computationally
feasible. This can be done according to Algorithm 1.

Algorithm 1. Dynamic earthquake risk model to simulate a portfolio retrofit process. 𝑹𝒆𝒕𝒔𝒊𝒎: number of simulations of the
retrofit process;𝑵𝒃𝒖𝒊𝒍𝒅: number of buildings in the portfolio; 𝒕: time;

1. procedure
2. calculate median fragility and dispersion for each building and each damage state
3. generate a stochastic event set using relevant probability distributions:
occurrence time, rupture characteristics/event location, magnitude

4. simulate spectral acceleration at a number of closely-spaced periods, 𝑆𝐴(𝑇), for each site in the portfolio
5. calculate portfolio losses at 𝑡 = 0 (as-built condition)
6. for 𝑠 = 1 to 𝑅𝑒𝑡𝑠𝑖𝑚 do
7. simulate retrofit times 𝑡𝑖 for each building; sort them in ascending order
8. for 𝑖 = 1 to 𝑁𝑏𝑢𝑖𝑙𝑑 do
9. update retrofitted building parameters (𝑇, 𝑓𝑦, ℎ, 𝜇𝑐𝑎𝑝)
10. update fragility parameters of the retrofitted building (𝑖)
11. update building losses according to the relevant 𝑆𝐴(𝑇) and the updated fragility curves
12. aggregate portfolio losses at 𝑡 = 𝑡𝑖

13. calculate median portfolio loss curve for simulation 𝑠 and time 𝑡𝑖 and the related 𝐸𝐴𝐿(𝑠, 𝑡𝑖)

14. end for
15. end for

16. Calculate empirical distributions of the median portfolio loss curve and 𝐸𝐴𝐿

17. end procedure

Figure 10 shows an application of Algorithm 1, considering one single simulation of the retrofit process described above
(𝑅𝑒𝑡𝑠𝑖𝑚 = 1). The details of the earthquake riskmodellingmethodology and related assumptions are deemed less relevant
for this illustrative application. They are only briefly introduced here, while they are described in detail in ref. 49. The
buildings in the portfolio are equally spaced in a rectangular grid (Figure 10A) in the vicinity of a case-study strike-slip
line fault. A 10,000-year stochastic catalogue is considered; for each event, 500 realisations of the groundmotion fields are
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F IGURE 10 (A) Simulated portfolio loss curves at t = 0 (as-built portfolio) and t = 15years (completed retrofit process); (B) Evolution of
the median portfolio loss curves during the retrofit process

considered. Those are expressed in terms of SA in the period range (0.2s, 1.5s) with 0.1s spacing, appropriately considering
the correlation coefficients at different vibration periods. The considered fault follows a log-linear recurrence relationship
(i.e. frequency of occurrence vs moment magnitude𝑀𝑤) for moderate (non-characteristic) events (5 ≤ 𝑀𝑤 < 6.5), and a
constant probability branch of occurrence for events with 6.5 ≤ 𝑀𝑤 ≤ 7. Any pulse-like feature of the ground motions is
neglected.
The fragility curves for each building in the portfolio are derived by adopting the fitted GP regressions. Those

are related to DSs qualitatively defined according to HAZUS and quantified by the ductility thresholds 𝜇𝐷𝑆 =

[0.5, 1, 0.75𝜇𝑝𝑒𝑎𝑘, 𝜇𝑝𝑒𝑎𝑘]. Conservatively, the dispersion related to the non-linear range (Eq. 2) has been assigned to every
DS. DLRs equal to 2%, 10%, 43.5%, and 100% of the total reconstruction cost (DS1 to DS4) are adopted. Figure 10A shows
500 simulations of the portfolio loss curves (mean annual frequency, MAF, of loss exceedance vs loss ratio) for the as-built
portfolio (𝑡 = 0) and after the full simulation of the retrofit process (𝑡 = 15𝑦𝑒𝑎𝑟𝑠), showing the significant reduction of
losses. Figure 10B shows the time evolution of the median portfolio loss curve, together with the evolution of the portfolio
EAL.

5 CONCLUSIONS

This paper proposed a metamodelling approach mapping the parameters controlling the dynamic behaviour of SDoF
systems (i.e., force-displacement capacity curve, hysteretic behaviour) and their probabilistic seismic demandmodel (i.e.,
EDP vs IM distribution). This metamodel allows rapidly calculating fragility curves of SDoF representation of structures
to be used in seismic risk and/or loss analyses.
The selected approach is the GP regression since it does not require any a priori definition of the output functional form

(a GP is a non-parametric model), and therefore, it results in an infinitely-scalable surrogate model. The dataset used to
train the GP regressions is based on a Monte Carlo sampling of 10,000 SDoF systems, each analysed via a cloud-based
NLTHA using 100 ground-motion records. The code to make predictions using the proposed set of GP regressions is freely
available (https://github.com/robgen/surrogatedPSDM), together with the adopted training datasets.With the same code,
the users are also allowed to filter, extend or modify the training dataset and customise the fitting.
The results of this study can be highlighted as follows:

∙ Within the training dataset, the GP predictions for the slope of the PSDMs show an NRMSE equal to 2.5%, while this
is equal to 6.2% for the logarithmic standard deviation. Such error estimates increase by 0.1% if a ten-fold cross valida-
tion test is conducted. Estimates of the median of the fragility curves consistent with DS3 and DS4 show an NRMSE
respectively equal to 2.0% and 2.2%, while the error on the fragility dispersion remains equal to 6.2%.

∙ By selecting two baseline case-study SDoF systems, the distribution of the above fragility errors is propagated
to the EAL. Simulating 30,000 realisations of the fragility parameters affected by such errors, the resulting

https://github.com/robgen/surrogatedPSDM
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simulated-over-baseline EAL error follows a Normal distribution with mean equal to 1 and standard deviation equal to
0.015 and 0.01, respectively for the two case studies.

∙ The GP-based fragility predictions are tested against eight realistic RC frames with different levels of seismic perfor-
mance. The NRMSE of such predictions is equal to 24.0%, 26.0%, 17.7%, and 19.0% for the DS1, DS2, DS3, and DS4medi-
ans, respectively, if compared to NLTHA-based results. On the other hand, the inherent simplicity of the metamodels
leads to a higher estimation error for the fragility dispersion, despite the NRMSE is equal to 29%.

∙ Considering the various sources of uncertainty typically involved in the seismic performance or risk/loss models, often
not captured due to the simplified nature of the models themselves, the error levels introduced by using the proposed
GP regressions are deemed satisfactory for practical applications, especially considering the low modelling effort and
time required for the GP-based predictions.

∙ The proposed metamodels enable the development of a direct loss based design, for which a tentative procedure is
proposed. This allows designing structures complying with a given target EAL, which is a fundamental input selected
by the designer. The procedure consists of two phases: (1) the GP regressions are used to quickly select a design SDoF
system complying with both the selected EAL target and the code-based demand at different DSs; (2) the members
composing the lateral resisting system of the structure are designed (via equilibrium and compatibility principles) by
matching the force-displacement curve of the designed structure with a target SDoF backbone. A realistic 2D RC frame
is designed to achieve 0.5% EAL. Adopting an NLTHA-based approach and a building-level damage-to-loss model, the
same parameter is measured to be 0.46%, thus showing an 8% error. Although this result is encouraging, the procedure
requires further validations, refinement and/or modifications before it can be regarded generality.

∙ The proposed GP-regression approach also enables the fast development of a high number of earthquake risk models
to be used in scenario-based decision making. This paper demonstrates a dynamic-exposure earthquake risk model
representing the implementation of a retrofit-based seismic risk reduction policy for a region, inwhich householders are
required to improve the performance of their buildings within a given time frame. By using the providedGP regressions,
simulating such a random retrofit process becomes computationally feasible, thus allowing to obtain the distribution of
the evolving portfolio losses. A seismic risk-mitigation policy implementation for a synthetic portfolio of 100 buildings
is analysed for illustration purposes.
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