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Highlights
Mutations ofmitochondrial DNA (mtDNA)
cause disease with a wide range of pre-
sentations and severity. The relationships
between genotype and phenotype are
not understood.

Mitochondrial heteroplasmy is the
presence of more than one type of
mitochondrial DNA within cells and
tissues: notably mtDNA with a muta-
tion and wild-type mtDNA.
Mitochondria generate the energy to sustain cell viability and serve as a hub for
cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative
phosphorylation. Mutations of mtDNA cause major disease and disability with
a wide range of presentations and severity. We review here an emerging body
of data suggesting that changes in cell metabolism and signalling pathways in
response to the presence of mtDNAmutations play a key role in shaping disease
presentation and progression. Understanding the impact of mtDNAmutations on
cellular energy homeostasis and signalling pathways seems fundamental to
identify novel therapeutic interventions with the potential to improve the progno-
sis for patients with primary mitochondrial disease.
Disease severity broadly correlates with
the burden of mutant mtDNA (mutant
load). A biochemical ‘threshold effect’
dictates that people with lower mutant
burden may even be asymptomatic.

Individual mtDNA mutations lead to
distinct metabolic remodelling asso-
ciated with or driven by alterations
in cell signalling pathways.

Understanding the interactions between
mtDNA mutations, cell signalling path-
ways and energy homeostasis opens
new horizons for potential therapeutic
interventions to improve the outlook for
patients with these diseases.
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Mitochondrial biology
Mitochondria perform a central role in bioenergetic homeostasis in eukaryotic cells and are also
involved in extensive diverse functions, acting as gatekeepers for apoptosis, as biosynthetic
machines, and as a hub for cell signalling pathways [1]. Human mitochondria contain a circular
plasmid-like DNA (mtDNA) (seeGlossary) encoding 13 peptides of theoxidative phosphorylation
(OxPhos) system subunits and 24 RNAs essential for mitochondrial protein synthesis [1–8]. Unlike
nuclear DNA (nDNA), mtDNA is maternally inherited and there are multiple copies (up to
thousands) in each cell, packaged into ‘nucleoids’ and distributed throughout the mitochondrial
network [7]. Mitochondria provide the bulk of adenosine triphosphate (ATP), which is required
tomaintain cellular energetic homeostasis through OxPhos. Subunit peptides of OxPhos, translated
from genes encoded either in nDNA or mtDNA, assemble in the mitochondrial inner membrane
and perform respiratory function, during which electrons from NADH and FADH2, generated mainly
by the tricarboxylic acid (TCA) cycle, are transferred along a series of four multi-polypeptide
respiratory complexes [1–5,9]. This oxygen-dependent process is coupled with the generation of
the mitochondrial membrane potential (ΔΨm) by actively pumping protons from themitochondrial
matrix into the intermembrane space, providing the energy that ultimately drives the synthesis of
ATP by the F1Fo-ATP synthase. The fundamental importance of energy homeostasis for cellular,
tissue, and organismal health is reflected by a wealth of processes that have evolved to ensure
mitochondrial quality control. This umbrella term encompasses mitochondrial dynamics (fusion,
fission, trafficking), the balance of biogenesis and mitophagy, and expression of mitochondrial
chaperones, which are shaped by the mitochondrial unfolded protein response [UPRmt; or
integrated stress response (ISR)] [1–5,9,10]. Notably, a low level of mtDNA mutations can be
found in healthy humans and can accumulate with age, possibly causing biochemical defects asso-
ciated with ageing and age-related disease: metabolic disorders, cancer, and neurodegenerative
diseases [5,7,9,11–13]. Therefore, it is important to understand the underlying cellular mechanisms
that maintain mitochondrial homeostasis and mtDNA stability. In this review, we focus on how
mutations of mtDNA interact with cell signalling pathways, influencing mitochondrial quality control
mechanisms and shaping the presentation and progression of the associated primary mitochondrial
diseases.
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Glossary
Adenosine triphosphate (ATP): a
central metabolite in cellular metabolism,
consisting of a nitrogenous base, a
ribose sugar, and three phosphate
groups.
Primary mitochondrial disease and mtDNA mutations
Mitochondrial diseases, a primary mitochondrial pathophysiology, result frommutations of genes
for the organelle components encoded by either mtDNA or nDNA [2–4]. Among them, inherited
mtDNA mutations, such as point mutations or large-scale mtDNA deletions/rearrangements
(Table 1) [4,5,8], affect roughly 1 in 4300 of the population and there is still no effective treatment
Table 1. Clinical disorders caused by common mtDNA mutations

mtDNA-associated
clinical disordersa

Associated pathogenic
mtDNA mutations and
gene name

Common clinical characteristics and features Refs

MELAS m.3243A>G (MT-TL1)
m.3271T>C (MT-TL1)
m.3251A>G (MT-TL1)
m.13042G>A (MT-ND5)

• Myopathy, encephalopathy, lactic acidosis, stroke-
like episodes, diabetes, and sensorineural deafness

• Expressed with variable severity
• Frequently heteroplasmic

[9–11,16,17]

Leigh syndrome m.8993T>G/C
(MT-ATP6)
m.9176T>C (MT-ATP6)
m.12706T>C (MT-ND5)

• Lactic acidosis, cardiomyopathy, progressive neuro-
logic deterioration, seizures, hypotonia, loss of
appetite, vomiting, and irritability

• Apparent during infancy/childhood
• Expressed with variable severity
• Frequently heteroplasmic

[12,13,18,19]

KSS mtDNA large-scale
deletion

• Progressive ophthalmoplegia, pigmentary retinopathy
• Onset before 20 years of age
• Sporadic condition and not inherited
• Frequently heteroplasmic

[4,7,20]

MERRF m.8344A>G (MT-TK)
m.13042G>A (MT-ND5)

• Myoclonic epilepsy, ataxia, and lipoma developments
around the neck area characterised by ‘reg ragged
fibres’ on muscle biopsy

• Expressed with variable severity
• Frequently heteroplasmic

[4,17,21]

Pearson syndrome mtDNA large-scale
deletion

• Equivalent to KSS presenting in individuals that
survive past infancy

• Expressed with variable severity
• Frequently heteroplasmic

[15]

CPEO mtDNA large-scale
rearrangements

• Ophthalmoplegia, myopathy, central nervous system
dysfunction, and diabetes

• Expressed with variable severity
• Frequently heteroplasmic

[4,7,15,21]

NARP m.11778G>A (MT-ND4)
m.8993T>G (MT-ATP6)
m.9176T>G/C
(MT-ATP6)

• Neurogenic weakness, ataxia, retinitis pigmentosa,
sensory neuropathy, seizures

• Frequently heteroplasmic

[7,15,22]

LHON m.11778G>A (MT-ND4)
m.14484T>C (MT-ND6)
m.3460G>A (MT-ND1)

• Optic atrophy-loss of vision
• More prevalent in males than females
• Frequently homoplasmic

[23,24]

MIDD m.1555A>G
(MT-RNR1)
m.3243A>G (MT-TL1)

• Sensorineural hearing loss and diabetes
• Childhood onset
• Expressed with variable severity
• Frequently heteroplasmic

[25,26]

Exercise intolerance m.14849T>C (MT-CYB) • Muscle weakness, fatigue
• Frequently heteroplasmic

[27]

Sensorineural
hearing loss

m.1555A>G
(MT-RNR1)

• Deafness
• Frequently homoplasmic

[7,28]

Myopathy and
diabetes

m.14709T>C (TRNE) • Myopathy, diabetes, weakness
• Frequently heteroplasmic and homoplasmic

[28]

aAbbreviations: CPEO, chronic progressive external ophthalmoplegia; KSS, Kearns-Sayre syndrome; LHON, Leber’s hereditary
optic neuropathy; MELAS, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes; MERRF, myoclonic ep-
ilepsywith red ragged fibres;MIDD,maternally inherited diabetes and deafness; NARP, neuropathy, ataxia, and retinitis pigmentosa
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Cybrid cells: a cell line generated from
fusion of one cell, which has had the
mitochondrial DNA depleted but still
retains nuclear DNA, with another
enucleated cell that still retains
mitochondrial DNA. The resulting cell line
can be used as a mitochondrial disease
model.
Electron transport chain (ETC): a
series of complexes through which
electrons are transferred to drive the
generation of ATP.
F1Fo-ATP synthase: a protein that
catalyses the formation of ATP from
adenosine di-phosphate (ADP).
Glycolysis: metabolic pathway that
converts glucose into pyruvate,
producing a net gain of two ATP.
Heat shock proteins (HSPs): a family
of proteins that are induced upon
conditions of stress.
Hypoxia-inducible factors (HIFs):
dimeric regulatory protein and
transcription factor that responds to low
levels of oxygen in the cellular
environment.
Integrated stress response (ISR): a
signalling pathway found in eukaryotic
cells that responds to stress stimuli.
Intermembrane space: the space
occurring between two membrane
regions.
Metabolomics: the study of
metabolites that are present within cells
and tissues of an organism.
Mitochondrial matrix: the space
within the inner mitochondrial
membrane.
Mitochondrial DNA (mtDNA): a
maternally inherited DNA located in the
mitochondria of eukaryotic cells.
Nuclear DNA (nDNA): DNA
contained within the nucleus of
eukaryotic cells.
Nucleoids: the region that contains
most of the genetic material within a
prokaryotic cell.
Oxidative phosphorylation
(OxPhos): an electron transfer chain
driven by substrate oxidation that is
coupled to the synthesis of ATP through
an electrochemical transmembrane
gradient.
Oxygen consumption rate (OCR):
the amount of oxygen consumed in a
given time.
.
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Reactive oxygen species (ROS):
highly reactive signalling molecules that
can provoke cellular damage.
Tricarboxylic acid cycle (TCAcycle):
a series of chemical reactions that allow
energy to be released.
Unfolded protein response (UPRmt):
a transcriptional response that increases
mitochondrial localised molecular
chaperones and proteases to promote
the recovery of organellar protein
homeostasis (proteostasis).
[2,5]. Numerous pathogenicmtDNAmutations have been identified since the discovery of mtDNA
in the 1960s (Table 1). More comprehensive information regarding mtDNA mutation-related
mitochondrial diseases can be found on https://www.mitomap.org/foswiki/bin/view/MITOMAP/
WebHome. Disorders of mtDNA show unique variability in clinical phenotypes and can present
across any age in any organ, with highly variable severity [5], and with remarkable heterogeneity
in patient symptoms even associated with a single pathogenic mtDNA mutation [3–5]. It is often
stated that mitochondrial dysfunction primarily affects the central nervous system and neuromus-
cular systems as tissues with a high dependence on OxPhos and a high energy demand [5–7].
However, if the fundamental problem was only bioenergetic insufficiency, all mitochondrial
diseases would appear similar, and so the underlying mechanisms that define the phenotype of
these disorders must be more complex. Furthermore, the pathophysiology associated with
mtDNA mutations in many mitochondrial diseases is complicated by the multiple copies of
mtDNA found in all cells, giving rise to heteroplasmy: tissues contain some normal (or so-called
wild-type) copies of mtDNA and some that carry the mutation. The net resulting mitochondrial
dysfunction is itself a complex function of the nature of the mutation and of the mutant to wild-
type mtDNA ratio, referred to as the mutant load or burden [5,14,15]. Therefore, the challenge re-
mains to understand the mechanisms that define the variability in clinical presentations caused by
different pathogenic mtDNA mutations and within the same mtDNA mutation but with varying
heteroplasmic mutant burden. Further understanding this relationship between phenotype and
genotype is integral in identifying potential therapeutic strategies for these devastating diseases
(Table 1) for which at present there is no cure.

The role of mtDNA heteroplasmy as a determinant of disease pathophysiology
The presence of heteroplasmy associated with most (but not all) pathogenic mtDNA mutations
further complicates research efforts to investigate the pathophysiological mechanisms associated
with these mutations, because different ratios of mutant and wild-type mtDNA substantially affect
disease expression and severity, even between patients with the samemtDNAmutation. Similarly,
a biochemical ‘threshold effect’ has been identified with regards to levels of mtDNA heteroplasmy
[3,5,7,14,29], so that people with a low mutant burden may even be asymptomatic.

Although the exact mechanisms that determine the mutant mtDNA levels are not fully under-
stood, the positive correlation between mutant mtDNA burden in a heteroplasmic population
and disease severity has been extensively documented [3,5,15,30]. In the case of the
m.3243A>G mtDNA mutation, a mutant load of 20–30% measured in cord blood is associated
with mild clinical manifestations such as diabetes [31]. Conversely, the substantial impairment
of complex I of the electron transport chain (ETC) and the onset of more severe symptoms,
such as cardiomyopathy, has been associated with a higher mutant load of 50–80% [31].
Similarly, in a family with the m.8993T>G mtDNA mutation, one member of the family carried
an 85% mutant load in peripheral blood and suffered from severe symptoms, including ataxia,
retinitis pigmentosa, and severe mental retardation, while two other family members who had
greater than 90% mutant load died in infancy [32,33]. Other members of the same family who
had a mutant load less than 60%, showed milder symptoms, including migraines and visual
impairment and some were even asymptomatic [33]. These observations highlight the
importance of the burden of heteroplasmic mutant mtDNA as a determinant of disease patho-
physiology and presentation. It is also important to note that the level of heteroplasmy alone is
insufficient to completely account for the phenotypes and progression of mtDNA disorders.
The remaining proportion of wild-type mtDNA also plays an important role in determining the
severity of mtDNA disease, as altering levels of wild-type mtDNA can influence disease severity
and presentation [34]. Thus, understanding the mechanisms that determine the mutant burden
and the ratio of wild-type to mutant mtDNA may have therapeutic potential, because even a
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modest reduction in mutant load and increasing the copy number of wild-type mtDNA could have
a disproportionate benefit for patients.

Metabolic phenotypes of diseases caused by mtDNA mutations
PathogenicmtDNAmutations in genes encoding respiratory chain proteins disturb function of the
complexes, while mutations of genes encoding mitochondrial tRNAs and rRNAs cause defects in
mitochondrial translation andmay therefore affect multiple components of the OxPhosmachinery
[8,35]. Intuitively, mtDNA mutations affect key variables of OxPhos, such as mitochondrial
oxygen consumption rate (OCR), ΔΨm, NADH:NAD+ ratio, ATP synthesis capacity and
generation of reactive oxygen species (ROS), as well as altering the concentrations of interme-
diate metabolites of the TCA cycle [8,35]. In consequence, changes in these factors, as potential
signal transducers, may further alter the cell dependence on carbon sources, promote epigenetic
modifications, and influence nutrient-related cell signalling pathways and mitochondrial quality
control process [8,35].

Systematic characterisation of the metabolic phenotypes of cells with specific mtDNA mutations
are limited in the literature. Therefore, we have reviewed themetabolic phenotypes of mtDNAmu-
tations described across the literature (Table 2), including changes in OCR, ΔΨm, NADH:NAD+

ratio, ATP level, ROS production, cell dependence on carbon sources, and some features of
metabolomic profiles. Decreased OCR and ATP synthesis, as well as increased ROS production,
although to different extents, appear to be universal features among different mtDNA mutations,
while changes in ΔΨm and metabolic remodelling vary hugely. However, even the same phenome-
non could have different origins. For example, either mitochondrial hyperpolarisation or dysfunction
of individual ETC subunits may increase ROS production [35]. Recently, another example of
differential activation of cell signalling pathways due to different metabolic states and nature of the
mitochondrial defect has been seen in healthy myoblasts and myotubes exposed to different mito-
chondrial inhibitors [36]. Moreover, the primary defects caused by specific mtDNA mutations and
secondary cell adaptations to the mutations complicate the metabolic phenotypes. For example,
enhanced ROS production is accompanied by an upregulation of antioxidant defence in cells with
the m.3243A>G mutation [37,38], while in cells with mutations causing LHON, it is associated
with a reduction in expression of antioxidant enzymes [39,40].

Recently, metabolomics analyses have been applied to mouse models and patient samples,
such as urine, plasma, and muscle, in a search for biomarkers of mitochondrial diseases [41–44].
Nonetheless, detailed studies of the metabolic remodelling with specific mtDNA mutations in
molecular and cell biology are still limited. Two reports applying metabolomics have shown that
reductive carboxylation of glutamine supports cell survival and maintains redox balance in the
m.8993T>G mutation cell models [45,46]. In contrast, glucose anabolism is increased in the
m.3243A>G mutant cells and these cells are dependent on glucose (and not glutamine) for cell
survival and proliferation [38]. These distinct profiles of metabolites argue that mtDNA mutations
cannot be treated as one disease. Thus, applying metabolomics to characterise metabolic
remodelling caused by mtDNA mutations should be encouraged and may provide insight into the
biochemical basis of pathogenesis of these diseases.

Altered cell signalling and mitochondrial quality control in cells with mtDNA
mutations
Changes in key parameters of metabolism, such as ADP:ATP and NADH:NAD+ ratio, ROS,
redox status, and intermediates in the TCA cycle, are known to serve as signalling transducers,
affecting cell pathophysiology [70]. The mechanisms by which different pathogenic mtDNA
mutations cause distinct metabolic and cell signalling remodelling, resulting in different clinical
4 Trends in Cell Biology, Month 2021, Vol. xx, No. xx
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presentations, remain elusive (Figure 1). Manipulating altered cell signalling pathways in animal
models of primary mitochondrial diseases with nDNA mutations alleviates or even rescues
disease phenotypes, even though the mutation is (obviously) still present [38,60,71–73].
These data highlight the principle that the disease phenotype may be largely determined
by the activity of signalling pathways over and above (or in addition to) the impact of the
Table 2. Metabolic phenotypes of cells with common heteroplasmic mtDNA mutationsa,b

Mutations of
mtDNA
(diseases)

Mitochondrial
oxygen
consumption
rate (OCR)

Mitochondrial
membrane
potential
(ΔΨm)

NADH:
NAD+

ratio

ATP
synthesis

ROS
production

Cell dependence on carbon
sources and features of cell
metabolomic profiles

Experimental models

m.3243A>G
(MT-TL1,
tRNALeu;
MELAS, MIDD,
CPEO)

↓ ↓ ↓
[38,47,48]

↓~ ↓ ↓ ↓
[38,48–50]

↑
[38,49]

↓ ↓ ↓
[37,47,51]

↑ ↑ ~ ↑ ↑ ↑ ↑
[37,38,50,52]

Increased glycolysis and
glucose dependence [38];
lactate ↑ ↑ ↑ ↑ [38,47,48];
glucose uptake ↑↑ [38]; alanine
and serine ↑↑ [38,42]; NADH
reductive stress [43,44]

Cybrid cell lines [38,47,48];
patient fibroblasts [38,47,48];
patient blood [43,44] and urine
samples [43,44];
patient-derived iPSCs [50]

m.8993T>G/C
(MT-ATP6,
complex V;
NARP, Leigh
syndrome)

↓↓ (T>G)
[46,47]
↓ (T>C) [47]

↑↑ [32,53,54] ↑
[45,46]

↓ ↓ ~ ↓ ↓ ↓ ↓
(T>G)
[32,47,53,54]
↓ (T>C)
[32,47]

↑ ↑ ~ ↑ ↑ ↑ ↑
[32,54]

Increased glutaminolysis and
glutamine dependence [45,46];
alanine and lactate ↑↑
[45,46,55]; no difference in
lactate and pyruvate [47]

Cybrid cell lines [46,47]; patient
lymphocytes [32,53,54] and
platelets [32,53,54];
patient-derived iPSC and
iPSC-derived neural progenitor
cells and neurons [55]

m.8344A>G
(MT-TK,
tRNALeu;
MERRF)

↓~ ↓ ↓ ↓
[47,48,56,57]

↓ ↓ ↓ [48,49] ↑ ↑ ↑
[49]

↓ ↓ ↓ ↓
[47,51,56]

↑ ↑ ~ ↑ ↑ ↑ ↑
[56,57]

Increased glycolysis [57];
lactate ↑ ↑ ~ ↑ ↑ ↑ ↑ [47,57]

Cybrid cell lines [46,47]; patient
fibroblasts [38,47,48]; iPSCs
and iPSC-derived
cardiomyocytes and neural
progenitor cells [46,47]

Large-scale
deletion of
mtDNA (KSS,
CPEO,
Pearson
Syndrome)

↓ ↓ ↓ ↓ [47] ↓ ↓ ↓ [58,59] NF ↓ ↓ ↓ ↓ [47] ↑ ↑ ↑ ↑ [58] Decreased utilization of fatty
acids [41]; lactate ↑ ↑ ↑ ↑ [47];
altered one-carbon metabolism
[41,60]; changes in the methyl
cycle and glutathione
metabolism [42]

Cybrid cell lines [46,47];
Deletor mice [46,47,60,61];
patient muscle biopsies [46,47]
and blood samples [43,44]

m.11778G>A
(MT-ND4,
complex I;
NARP, LHON)

↓↓ [62,63] No difference
[40]; ↓↓
[62,64]

↑ [61] ↓ ↓ ~ ↓ ↓ ↓
[62,64]

No difference
[62]; ↑ ↑ ↑ ↑
[40,65]

Decreased glycolysis [65];
increased glucose dependence
[66]; glutamate uptake ↓ ↓ ↓
[61]; no difference in lactate
[61,67]; decreased alanine,
serine, aspartate, and glutamine
and increased
phosphatidylcholine [67,68]

Cybrid cell lines [46,47]; patient
lymphoblasts [46,47],
peripheral blood mononuclear
cells (PBMCs) [46,47] and
fibroblasts [46,47]

m.3406G>A
(MT-ND1,
complex I;
LHON)

↓↓
[39,63]

No difference
[40];↓↓ [64]

NF ↓↓ [64] ↑ ↑ ↑ ↑
[40,65];

Increased glucose dependence
[66]; glutamate uptake ↓ ↓ ↓ ↓
[65]; no difference in lactate
[67]; decreased alanine, serine,
aspartate, and glutamine and
increased phosphatidylcholine
[67,68]

Cybrid cell lines [46,47]; patient
lymphoblasts [46,47], PBMCs
[46,47], and fibroblasts [46,47]

m.14484T>C
(MT-CYB,
complex III;
LHON)

No difference
[39,63];
↓↓

↓ ↓ ~ ↓ ↓ ↓ ↓
[64,69]

NF ↓↓ [64] ↑ ↑ ↑ ↑
[65,69]

Increased glucose dependence
[66]; glutamate uptake ↓ ↓ ↓
[65]; no difference in lactate
[67]; decreased alanine, serine,
aspartate, and glutamine and
increased phosphatidylcholine
[67,68]

Cybrid cell lines [46,47]; patient
lymphoblasts [46,47], PBMCs
[46,47] and fibroblasts [46,47]

aSymbols: ↓, decrease <25%; ↓ ↓ , decrease 25–50%; ↓ ↓ ↓ , decrease 50–75%; ↓ ↓ ↓ ↓ , decrease 75–100%; ↑, increase <25%; ↑ ↑ , increase 25–50%; ↑ ↑ ↑ , 50–75%; ↑ ↑
↑ ↑ , >75%.
bAbbreviation: NF, information not found in literature.
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Figure 1. Overview of the main features from four different mtDNA mutations. The ‘deletor’ mice or patients carrying mtDNA deletions (top left) are
represented by the enhanced ISR/UPRmt activation, altering one-carbon metabolism, mitochondrial quality control, and proteostasis [41,42,58–60]. The
constitutive activation of the PI3K-Akt-mTORC1 axis associated with NADH:NAD+ imbalance, excess ROS generation, and upregulated glycolytic flux is shown as
characteristics of the m.3243A>G point mutation (MT-TL1, tRNALeu); it is still unclear whether activation of the axis impairs mitochondrial quality control process,
especially mitophagy (top right) [38,42–44,47–52]. Glutamine dependence is highlighted in the m.8993T>G/C mutation (MT-ATP6, complex V); however, the link
between the respiratory defects led by the mutation (increased ROS production, ΔΨm and NADH:NAD+ ratios, as well as decreased ATP synthesis) and
increased glutaminolysis is missing (bottom left) [32,46,47,53–55]. The decrease in glycolysis is a feature of the m.11778G>A mutation (MT-ND4, complex I) but
there have been few studies of the underlying mechanisms leading to the metabolic phenotype (bottom right) [40,46,47,61–68]. This figure was created using
BioRender (https://biorender.com/). Abbreviations: ISR, integrated stress response; ROS, reactive oxygen species; TCA, tricarboxylic acid; UPR, unfolded protein
response; WT, wild-type.
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bioenergetic defect itself. Altered signalling pathways in cells or animals with mtDNA mutations
play a critical role in sustaining levels of heteroplasmy [38,74,75], suggesting that these
pathways may shape the progression of mtDNA diseases (Table 3). The specific roles of
these pathways in primary mitochondrial diseases, the mechanisms that regulate these signal-
ling pathways, or the time course over which their status is altered all remain very poorly
6 Trends in Cell Biology, Month 2021, Vol. xx, No. xx
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Table 3. Altered cell signalling pathways in mtDNA mutations

Signalling pathwaysa Mutations of mtDNA

ISRmt and UPRmt
• Deleterious mtDNA (uaDf5) in a heteroplasmic Caenorhabditis elegans strain [74,75].
• Deletor mice and patient muscle biopsies with heteroplasmic mtDNA deletions [72].

The PI3K-Akt-mTORC1 axis • Conplastic mouse strain with a low level of heteroplasmic mtDNA [76].
• Deletor C57BL/6 mice [72,73].
• Patient-derived fibroblasts, A549 cybrid cells, and muscle biopsies carrying the

m.3243A>G heteroplasmic mutation [38].
• Patient muscle biopsies carrying the m.14674T>C homoplasmic mutation [77].
• Patient-derived induced pluripotent stem cells (iPSCs) and the iPSC-derived neurons

carrying nearly homoplasmic the m.8993T>G mutation [55]

Mitochondrial dynamics and
mitophagy

• Deleterious mtDNA in a heteroplasmic C. elegans strain [78,79].
• A heteroplasmic lethal mtDNA deletion in adult Drosophila muscle [80].
• Human cybrid cells carrying mtDNA deletions or depletion [59].
• Patient-derived fibroblasts, A549 cybrid cells, and muscle biopsies carrying the

m.3243A>G heteroplasmic mutation [38].
• Human cybrid cell carrying the COXI heteroplasmic mutation [81].
• Patient-derived primary fibroblasts carrying the m.13514A>G heteroplasmic mutation [82]

Hypoxic pathway • Mouse cybrid cells carrying the m.13997G>A heteroplasmic mutation [83].
• Human cybrid cells carrying the m.3243A>G heteroplasmic mutation or mtDNA depletion [79].

aAbbreviations: ISRmt, mitochondrial integrated stress response; UPRmt, mitochondrial unfolded protein response.
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understood. Establishing links among specific mtDNA mutations, metabolic remodelling, and
altered cell signalling advances our understanding of the pathophysiology of mtDNA mutation
disorders. Therefore, in the following paragraphs, we discuss current knowledge about altered
cell signalling pathways in common pathogenic mtDNA mutations and how this may help to
identify novel therapeutic strategies.

UPR/ISRmt

Mitochondrial function and proteostasis are maintained by the UPRmt, a quality control system
that is part of the first response of the ISRmt [45]. Since only 13 mitochondrial proteins are
encoded by the mtDNA, most mitochondrial proteins are imported into the organelle and are
regulated by UPRmt. Activation of the UPRmt alters the expression of mitochondrial heat
shock proteins (HSPs), chaperones and proteases that ensure the integrity and function of
mitochondrial proteins and increase degradation of misfolded proteins.

The UPRmt was initially described in mammalian cells but the discovery of this pathway in
Caenorhabditis elegans led to the identification of genes involved in sensing mitochondrial dys-
function [84]. Recent evidence suggests that defects in mitochondrial proteostasis in
C. elegans with a heteroplasmic mtDNA deletion induces constitutive activation of the UPRmt

mediated by ATFS-1 [74,75]. Notably, prolonged UPRmt activation maintains and propagates
the mutant mtDNA [74,75] and further exacerbates mitochondrial dysfunction [73]. It is possible
that the UPRmt activation, in an attempt to maintain proteostasis and promote recovery of mito-
chondrial dysfunction, also gives a replicative advantage to mutant mtDNA molecules and thus
results in its accumulation. However, in a C. elegans model with mtDNA instability, upregulation
of the UPRmt ameliorates the mtDNA disease phenotype [78].

In mammals, studies in the ‘deletor’mouse model, generated by a mutation of the mitochondrial
helicase (TWINKLE) that leads to accumulation of mtDNA deletions, have highlighted the impor-
tance of the ISRmt, which regulates one carbon metabolism, nucleotide synthesis, and dNTP
pools. The ISRmt induction is also found in human patients with single or multiple mtDNA muta-
tions [73]. Inhibition of mTORC1 by rapamycin in the ‘deletor’ mouse downregulated the ISRmt,
reverting progression and curing hallmarks of mitochondrial myopathy [73]. However, in
Trends in Cell Biology, Month 2021, Vol. xx, No. xx 7
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mice with astrocyte-specific TWINKLE knockout, activation of ISRmt is independent of mTORC1
activity, suggesting that mTORC1 was not a direct regulator of ISRmt in this model [85]. The in-
duction of ISRmt has also been documented in human patients with single or multiple mtDNAmu-
tations [73]. Indeed, a recent report suggests that different mitochondrial defects trigger the
ISRmt, depending on the metabolic state of the cellular model, showing that there is no common
mechanism linking mitochondrial dysfunction to ISRmt activation [36]. Inhibition of Eukaryotic Ini-
tiation Factor 2 (EIF2) pathway, a major mediator of ISRmt, and activation of the PI3K-Akt-
mTORC1 pathway were both identified using transcriptomic analysis of patient-derived fibro-
blasts bearing the m.3243A>G mutation [38]. Although the crosstalk between the PI3K-Akt-
mTORC1 axis and ISRmt are still unclear, these two pathways seem to communicate and to
determine cell fate under stress [73].

AMPK and PI3K-Akt-mTORC1 pathways
The AMPK and PI3K-Akt-mTORC1 signalling are two major nutrient-sensing pathways display-
ing antagonist roles. AMPK is activated by increased AMP:ATP or ADP:ATP ratios. Once acti-
vated by energy stress, AMPK activates pathways that restore cellular energy balance by
switching on ATP-generating pathways (e.g., glycolysis and amino acid oxidation) while
switching off ATP-consuming pathways (e.g., fatty acid synthesis and gluconeogenesis) [57].
This effect on metabolic pathways has been documented in primary cultures of skin fibroblasts
carrying the m.8344A>G mtDNA mutation (MERRF), where energy metabolism shifts to anaero-
bic glycolysis as an adaptive response to oxidative stress [57].

In contrast, the PI3K-Akt-mTORC1 signalling pathway regulates anabolism and plays an impor-
tant role in cell proliferation, apoptosis, and metabolism [86]. As aforementioned, mtDNA dele-
tions in patients and mouse models elicit the ISRmt and perturb Akt and mTORC1 activity [73].
Similarly, chronic activation of mTORC1 was found in iPSC-derived neurons carrying nearly
homoplasmic m.8993T>G mutation [55], although other conflicting reports found no change or
even inhibition of the PI3K-Akt-mTORC1 axis in cybrid cells bearing the same mutation
[38,87]. Transcriptomic analysis and immunoblotting of patient fibroblasts carrying the
heteroplasmic m.3243A>G mutation revealed activation of the PI3K-Akt-mTORC1 axis, which
was further confirmed in patient muscle biopsies [38]. Although the mechanisms by which the
PI3K-Akt-mTORC1 pathway is activated in this disease are still elusive, inhibition of the PI3K-
Akt-mTORC1 pathway over several weeks reduced the mtDNA mutant burden and alleviated
the bioenergetic defects and increased cell proliferation rate [38,88].

The PI3K-Akt-mTORC1 pathway indeed seems to be a promising therapeutic target [59,89].
However, in some models, mTORC1 inhibition has shown limited benefit and may even exacer-
bate the pathology. For example, in a mouse model of Leigh syndrome (NDUFS4 knockout),
mTORC1 inhibition by rapamycin, whilst delaying the progression of the disease, failed to improve
OxPhos [60]. Similarly, in a mouse model of mitochondrial encephalomyopathy (Coq9R239X),
mTORC1 inhibition failed to improve either mitochondrial bioenergetics or survival [90]. Moreover,
mTOR may play a protective role in the reversible infantile respiratory chain deficiency (RIRCD)
caused by a homoplasmic m.14674T>C mutation in healthy carriers, where the initial activation
of ISR modulates lipid and one carbon metabolism as well as amino acid availability and the
following activation of mTOR leads to increased mitochondrial biogenesis in muscle; while in
the majority of affected carriers, additional heterozygous mutations in nuclear genes interacting
with mt-tRNAGlu, including EARS2 and TRMU, were found [77]. Therefore, nDNA genotypes
may further complicate the penetrance and presentations of mtDNA mutations and the thera-
peutic efficacy of the PI3K-Akt-mTORC1 axis inhibition may be distinct and limited to different
diseases.
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However, several studies suggest that AMPK plays a role in the progression and manifestation of
clinical phenotype [57,82,91]. Considering the antagonism between the PI3K-AKT-mTORC1 axis
and AMPK, inhibition of the axis may lead to an increase of AMPK activity [38]. Therefore,
although some studies suggest that prolonged AMPK activation triggers apoptosis, promoting
AMPK activity seems to be beneficial in some mtDNA mutation models and may further induce
catabolic processes such as autophagy.

It is well established that the AMPK and PI3K-AKT-mTORC1 pathways regulate autophagy,
which maintains cellular homeostasis through the degradation of dysfunctional cellular compo-
nents. In general, these two pathways are also crucial for mitophagy, an autophagy process
that targets dysfunctional mitochondria. The impact of mtDNA mutations or heteroplasmy on
mitophagy will be discussed in the next section.

Mitochondrial quality control: dynamics, mitophagy, and biogenesis
The mitochondrial quality control process maintains mitochondrial function and bioenergetic
cellular homeostasis, at least including mitophagy, fusion–fission dynamics, and biogenesis
[92]. Here, we discuss these mitochondrial quality control mechanisms in the context of various
mtDNAmutations and how they influence the presentation and progression of primary mitochon-
drial disease [93].

Mitophagy eliminates damaged components of the mitochondrial network. However, this
pathway fails to eliminate mitochondria containing pathogenic mutations in patients with
primary mitochondrial disease [50]. Theoretically, malfunctioning mitochondria with mutant
mtDNA would be eliminated by mitophagy, which would eventually decrease the mutation
[50]. Nonetheless, the diseases persist and experimental work confirms that mitophagy is
not necessarily upregulated in cells with mtDNA mutations, signifying that the presence
of pathogenic mtDNA itself is not sufficient to drive selection against the mutation by acti-
vation of mitophagy [50]. Although the increased activation of mitophagy was scarce in
iPSCs generated from fibroblasts harbouring the m.3243A>G mutation, the iPSCs showed
increased markers of autophagy (i.e., LC3B-II) [50], which seems to be induced as a re-
sponse to oxidative insults. Alternatively, the activation of mitophagy to remove pathologi-
cal mutant mtDNA may operate in a cell-dependent manner [94]. Investigations of two
cybrid cell lines demonstrated differences in levels of mitophagy between the cell lines,
where muscle-derived RD.Myo cells sustained the deleterious mtDNA compared with the
lung carcinoma-derived A540.B2 cells [94]. The mechanisms that dictate these differences
remain obscure, but the work emphasises the importance of studying these processes in
relevant cell types wherever possible. In a mtDNA disease model using cybrid cells carrying
either large-scale partial deletions or complete depletion of mtDNA, where loss of ΔΨm
was insufficient to activate mitophagy, mitophagy could nevertheless still be induced
through the inhibition of mTORC1 with rapamycin [59]. Other data also point to a key
role for the activity of mTORC1 and Parkin in driving mitochondrial quality control pro-
cesses to alter mutant burden. Parkin overexpression selected against a deleterious
COXI mutation in heteroplasmic cybrid cells, reducing the mtDNA mutant burden possibly
through activation of selective mitophagy [81]. When Parkin was no longer overexpressed
in the cells, mutant mtDNA reaccumulated [81].

Mitochondrial fusion–fission dynamics is also influenced by mtDNA mutations. In a study of adult
Drosophila muscle, the activation of the PINK1/Parkin pathway, stimulation of autophagy, or
decreasing the expression of mitofusin, thereby increasing mitochondrial fragmentation, all
promoted the selective decrease of a heteroplasmic mtDNA deletion by facilitating mitophagic
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clearance [81]. In this study, the role of ATPIF1, which regulates the function of the F1Fo ATP syn-
thase, was explored for its role in mitochondrial quality control. Genetic knockdown of ATPIF1
reduced the mtDNA mutant burden, presumably by limiting the ability of pathogenic mtDNA to
maintain membrane potential by reversal of the ATP synthase [80,81]. Certainly, mitochondrial
fission plays an important role in mitophagy. In Drosophila, pro-fission factors, such as Drp1,
drive the selective removal of mutant mtDNA in the germline [95,96]. These fission events isolate
mutant mtDNA, prevent complementation, and render these mitochondria accessible to removal
bymitophagy [95,96]. In a muscle-derived rhabdomyosarcoma heteroplasmic cell line harbouring
the m.3243A>G mutation, silencing of Drp1, thereby inhibiting mitochondrial fission, was able to
influence and favour the propagation of mutant mtDNA [97].

Regulation of mitochondrial biogenesis is a further process that is influenced by the interac-
tion between mtDNA mutations and signalling pathways. The biogenesis is induced through
the transcriptional coactivator PGC-1α, which operates by activating a number of transcrip-
tion factors, promoting the expression of mitochondrial transcription factor A (TFAM), NRF1,
and NRF2 [98]. Activation of the AMPK pathway has emerged as a key player in regulating
the balance between mitochondrial biogenesis and mitophagy in fibroblasts with the
m.3243A>G mutation, thereby playing a role in defining the severity of disease by improving
the pathophysiological defects [98]. In a genome-wide screen, the reduction of ‘tam’, a cat-
alytic subunit of the mtDNA polymerase gene (PLOG), reduced the propagation of patho-
genic mtDNA, potentially by increasing the copy number of wild-type mtDNA and
promoting the elimination of mutant mtDNA in a heteroplasmic Drosophila line [99]. Again,
in a mouse model with a heteroplasmic m.5024C>T mutation, the induction of biogenesis
by increasing TFAM levels, increased the mtDNA copy number and ameliorated the patho-
logical phenotypes [100]. These findings suggest that the total mtDNA copy number may
determine the severity of pathological manifestations through the modulation of biogenesis,
despite persistence of the mutant mtDNA [34,100,101].

Taken together, it is evident that the presence of mtDNA mutations and associated alterations in
signalling pathways define the mutant burden and contribute to shaping mitochondrial disease
through the modulation of mitochondrial quality control processes.

Hypoxia or oxygen-sensing pathways
The mitochondrial OxPhos system is the major consumer of oxygen for generating ATP. The
hypoxia response pathway promotes adaptation to low ambient oxygen availability, mediated
primarily by hypoxia-inducible factors (HIFs) but also other pathways (e.g., nutrient-sensing,
inflammation, and proteostasis), sensing changes in metabolite levels and ROS production bymi-
tochondria [102]. For example, a dysfunctional TCA cycle caused bymutations of nDNA encoded
mitochondrial proteins, such as fumarate hydratase or succinate dehydrogenase, induces accu-
mulation of succinate or fumarate, which activate the HIF1 pathway under normoxic conditions
[102]. Similarly, mouse cybrid cells bearing the m.13997G>A mutation (ND6) generated excess
ROS and increased HIF-1α expression [83,103]. In contrast, in human cybrid cells, the
m.3243A>G mutation and mtDNA depletion led to a decreased HIF-1α stabilisation [79]. More-
over, oxygen tension modulates levels of mtDNA heteroplasmy in a mouse embryonic stem cell
model for germline cell formation, which likely operates through reduction of mtDNA replication
but not activation of mitophagy [104]. Interestingly, mtDNA sequencing revealed that pathogenic
mutations occurred far more frequently in Tibetan highlanders who live at low ambient oxygen
tensions [105]. It could be either that these pathogenic mtDNA mutations help hosts adapt to a
hypoxic environment or that the environment allows the mutations to exist by relieving the selec-
tion pressure. However, it is still unclear how the change in hypoxia response and the mtDNA
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Outstanding questions
To what extent do genetics,
metabolism, and cell signalling
pathways regulate levels of mtDNA
heteroplasmy and what are the
detailed mechanisms that drive this
process?

How do metabolic remodelling and cell
signalling pathways affect each other in
cells bearing mtDNA mutations?

What are the underlying mechanisms
that define the phenotype associated
with a given mtDNA mutation?

Can differences in cellular signalling
pathways associated with specific
mtDNA mutations be harnessed as
pharmacological targets to reduce the
burden of mutant mtDNA for patient
benefit?
mutations or heteroplasmy affect each other and how the pathway is involved in themanifestation
and progression of mtDNA disorders.

Modulating the hypoxia response appears to be a promising strategy in treating primary mito-
chondrial diseases with nDNA mutations. While genetic or pharmacological activation of the
HIF response is protective in cultured cells and zebrafish models with dysfunctional mitochon-
dria, in the mouse model of Leigh syndrome (NDUFS4 knockout), exposure to a hypoxic envi-
ronment but not activation of HIFs proved to be beneficial [106,107]. Therefore, HIF activation
was insufficient to explain the disease rescue in response to hypoxia. On the contrary, HIF-1α
was found to be upregulated in Drosophila models of mitochondrial dysfunction (TFAM over-
expression), Leigh syndrome and Parkinson’s disease; remarkably disease phenotype was
rescued by knockdown of HIF-1α [71]. Indeed, the hypoxia response has been linked to the
UPR/ISR and mitochondrial quality control [102]. Furthermore, CRISPR screening identified
109 gene knockouts with relative fitness defects at low ambient oxygen tension, most without
a known connection to HIF or ROS [108]. Further studies are therefore needed to explore
how these genes and pathways are coordinated. These distinct roles of HIFs in a variety of
mitochondrial disease models point to varied mechanisms underlying the pathology of
mitochondrial diseases and again emphasise the complexity driving the consequences of
mitochondrial dysfunction.

Other cell signalling pathways
Changes in epigenetic regulation, calcium, and ROS signalling and associated changes in
redox state have been investigated as potential signal transducers, with the ability to alter
cell pathophysiology and mitochondrial function [109–112]. However, studies exploring
their role in mtDNA mutation disorders are few and remain largely unexplored. This review
has mainly focussed on the pathways that have been more intensively studied in the context
of mtDNA mutations (Figure 1); nonetheless, here we detail the involvement of some other
signalling pathways in mtDNA mutation disorders. A recent study showed that a decrease
in mitochondrial calcium uptake may be important in remodelling metabolism in myo-
fibroblasts in a manner that drives epigenetic changes important in differentiation [110], sug-
gesting that changes in intermediary metabolites (notably αKG) provide a mechanism that
links changes in mitochondrial calcium to cell fate and function. Alternatively, cybrid cells
expressing the m.3243A>G mutation showed changes in levels of acetyl-CoA and α-KG
that correlated with histone modifications [31]. In mouse embryonic fibroblasts, ROS pro-
duction was shown to be elevated in all mtDNA mutation carrying lines investigated, regard-
less of the level of heteroplasmy present, and was shown to reduce the efficiency of
reprogramming cells into iPSCs, as pluripotent cells negatively selected against pathogenic
mtDNA [113]. Furthermore, although in most reports the decline in mitochondrial bioener-
getics is positively correlated with mutant load [32,46,53,54], some reports suggest that
different levels of heteroplasmy of the m.3243A>G mutation in cybrid cells result in different
gene expression patterns and even in discrete changes in metabolism [114,115]. From
these studies, the potential rewiring of signalling pathways in response to the presence of
mtDNA mutations are further emphasised.

Concluding remarks
Primary mitochondrial diseases are a heterogeneous group of diseases that can manifest at any
age, affect almost any tissue, and vary radically in clinical presentation and severity. Recently,
there has been growing interest in pharmacological strategies to target primary mitochondrial dis-
eases; the development of small molecules that improve mitochondrial function and repurposing
drugs, especially using compounds that influence mitochondrial quality control pathways (Box 1).
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Box 1. Therapies and clinical trials

At present, therapeutic strategies available for most patients with primary mitochondrial disease are limited to supportive
care and symptomatic management, and licenced treatments that rescue mitochondrial biochemical function are lacking
[116]. As many primary mitochondrial diseases affect multiple organs and body systems, symptomatic management
may require combinations of medication to target different systems, presenting an additional challenge for clinicians.
Pharmacologic approaches using antioxidants like Coenzyme Q 10 are often implemented in the care plan for primary
mitochondrial disease affected patients. The rationale for the use of antioxidants is to counteract the excessive generation
of ROS associated (or assumed to be associated) with the dysfunction of the respiratory chain. However, there is still
considerable disagreement over whether antioxidants provide useful therapeutic strategies for primary mitochondrial
disease and therefore the need for alternative and more effective therapeutic strategies, specific to the mtDNA mutations,
is still evident. Recently, there has been growing interest in the development of pharmacological strategies to target pri-
mary mitochondrial diseases [3,117,118]. Research efforts have primarily focussed on finding and developing small mol-
ecules that improve mitochondrial function in these patients. Similarly, focus has also shifted to the prospect of drug
repurposing, especially using compounds that influence pathways of mitochondrial quality control, such as rapamycin
and antioxidants like idebenone, EPI1743 and sonlicromanol [116]. Currently, there are a number of small molecule com-
pounds that are moving from laboratory to clinical trials as well as therapeutic strategies, including gene therapy and en-
zyme bypass, which are moving along the translational pipeline [116].
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OPEN ACCESS
While these therapeutic strategies offer exciting promise, we suggest the added understanding of
the interplay between mtDNA mutations and cell signalling pathways can further accelerate
research efforts in this field. Traditionally, disease manifestations have, not unreasonably, been
perceived as a direct consequence of impaired energy metabolism. However, an increasing
body of data points to major roles of cell signalling pathways in shaping disease presentation
and progression. These pathways may contribute directly to altered cell function in shaping
manifestations of disease but may also feedback through mitochondrial quality control pathways
and so influence heteroplasmic mutant load. While introducing complexity to our current under-
standing of the pathophysiology of mitochondrial disease, these considerations also signpost the
potential of pharmacological manipulation of mitochondrial quality control pathways and/or of
the altered signalling pathways as novel therapeutic strategies. This opens a wealth of new
possibilities in the way that we think about management strategies for people with these awful
diseases (see Outstanding questions).
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