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Summary for Social Media If Published

1. If you and/or a co-author has a Twitter handle that you would like to be tagged, 
please enter it here. (format: @AUTHORSHANDLE).

@sandhitsu

2. What is the current knowledge on the topic?  (one to two sentences)

People who have Alzheimer’s disease pathology in their brain have varying 
amount of injury to brain tissue. Understanding this variability may provide insight 
unto multiple underlying causes driving symptoms.

3. What question did this study address? (one to two sentences)

This study attempts to quantify the variability between of burden of tau pathology 
in the brain and resulting neurodegeneration and their regional patterns as a way 
to characterize different factors influencing patient outcome.

4. What does this study add to our knowledge?  (one to two sentences)

The study shows that explicitly modeling the spatial patterns of variability of 
amount of neurodegeneration in the brain relative to the burden of pathology can 
help identify copathology and protective factors.

5. How might this potentially impact on the practice of neurology? (one to two 
sentences) 

This approach can help stratify patients for clinical trial and help with prognosis 
based on what the pattern of variability is present in an individual.
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Abstract (250 words; limit 250)

Objective: Tau neurofibrillary tangles (T) are the primary driver of downstream 

neurodegeneration (N) and subsequent cognitive impairment in Alzheimer’s disease (AD). 

However, there is substantial variability in the T-N relationship – manifested in higher or 

lower atrophy than expected for level of tau in a given brain region. The goal of this study 

was to determine if region-based quantitation of this variability allows for identification of 

underlying modulatory factors, including polypathology.

Methods: Cortical thickness (N) and 18F-Flortaucipir SUVR (T) were computed in 104 gray 

matter regions from a cohort of cognitively-impaired, amyloid-positive (A+) individuals. 

Region-specific residuals from a robust linear fit between SUVR and cortical thickness 

were computed as a surrogate for T-N mismatch. A summary T-N mismatch metric defined 

using residuals were correlated with demographic and imaging-based modulatory factors, 

and to partition the cohort into data-driven subgroups.

Results: The summary T-N mismatch metric correlated with underlying factors such as 

age and burden of white matter hyperintensity lesions. Data-driven subgroups based on 

clustering of residuals appear to represent different biologically relevant phenotypes, with 

groups showing distinct spatial patterns of higher or lower atrophy than expected.

Interpretation: These data support the notion that a measure of deviation from a normative 

relationship between tau burden and neurodegeneration across brain regions in 

individuals on the AD continuum captures variability due to multiple underlying factors, 

and can reveal phenotypes, which if validated, may help identify possible contributors to 

neurodegeneration in addition to tau, which may ultimately be useful for cohort selection 

in clinical trials.
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Introduction (491 words; limit 500)

In a shift towards a biological, rather than clinical, definition of Alzheimer’s Disease (AD), 

the National Institute on Aging – Alzheimer’s Association (NIA-AA) recently formalized a 

biomarker driven classification referred to as the A/T/(N) framework1.  Following this 

system, individuals receive dichotomous designations for the presence (+) or absence (-) 

of Beta-amyloid plaques (A), tau-based neurofibrillary tangles (T), and neurodegeneration 

(N).  To be classified as AD, one must be both A+ and T+ paralleling the pathological 

criteria for AD neuropathologic change (ADNC).  Neurodegenerative markers are meant 

to support biological staging of disease. 

     Neurofibrillary tangles (NFT) are more tightly linked to downstream neurodegenerative 

change than amyloid plaques2–6.  As such, the A/T/(N) framework posits that 

neurodegeneration without NFTs (T-) is due to the presence of suspected non-AD 

pathophysiology (SNAP) regardless of the presence or absence of amyloid7,8.  

     While the dichotomous designation of these biomarkers provides a simplicity in 

interpretation, it may blunt the information provided about an individual’s underlying 

disease status.  In particular, T and N imaging biomarkers provide continuous and spatially 

varying information that are likely important for understanding phenotype.  As NFTs are 

the putative primary driver of neurodegeneration in AD, T is expected to be tightly linked 

to N.  Thus, discordance between T and N suggests additional non-AD modulators.  While 

the extreme of T- and N+ supports SNAP, even in a T+ individual, a relatively larger 

magnitude of N than the magnitude of T also may support concomitant SNAP.  Further, 

the spatial pattern of this discordance may support different underlying non-AD 

pathologies, given the differential loci of greatest neurodegeneration with these 

conditions9.  For example, greater anterior temporal atrophy than expected for the amount 

of local NFT pathology may suggest concomitant limbic-predominant age-associated 
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TDP-43 encephalopathy (LATE)10,11 which often co-occurs with AD and primarily affects 

this region.  Alternatively, less neurodegeneration than expected for a given degree of T, 

may suggest resilience to AD pathology, or brain reserve12.

     Given that co-pathology with AD is common13 and has implications for clinical 

interventions and prognosis, and that definitive biomarkers for non-AD molecular 

pathology are lacking14, approaches that can operationalize the presence of co-pathology 

are critical, as are measures that capture resilience.  The current study attempts to provide 

greater precision to the A/T/(N) framework by treating T and N as continuous variables 

and then determining their relationship in a way that is “spatially aware”. We first establish 

the normative relationships between T and N at regions of interest (ROIs) across the 

cortical mantle in people on the AD continuum (A+). Deviation from this relationship at 

each ROI constitutes mismatch. We predicted that a quantitative measure of this T-N 

mismatch would be associated with factors that may reflect non-AD neurodegeneration, 

such as the presence of cerebrovascular disease or age, as well as with cognitive 

performance. Further, we examined whether using data-driven clustering based on spatial 

pattern of these T-N mismatch metrics would produce distinct groups that would offer 

insight into the presence of different concomitant pathologies or brain reserve/resilience.  

            

Materials and Methods:

Participants:

Data used in the preparation of this article were obtained from the ADNI database. The 

current study included 137 A+ cognitively impaired participants with diagnosis of MCI or 

dementia. The number of datasets were based on data available for download in January 

2020. A summary of participants’ demographic characteristics and basic psychometric 

measures are reported in Table 1. They included 80 MCI (age 76.1  7.5 years, 38 Female, 
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15.8  2.7 years of education, MMSE score of 27.1  2.4), and 57 Dementia cases (age 

77.7  9.5 years, 27 Female, 15.9  2.5 years of education, MMSE score of 22.5  4.1).

Image acquisition:

ADNI  MR imaging included a T1-weighted structural scan of resolution 1.0×1.0× 1.2 mm3, 

and a FLAIR MRI acquired in the same session with variable spatial resolution as 

prescribed in the ADNI protocol. Tau PET imaging consisted of a continuous 30-minute 

brain scan (six 5-minute frames) started 75 minutes following injection of approximately 

10 mCi of 18F-Flortaucipir injection. Most patients (N=106) had an amyloid PET scan, with 

a 20 min brain scan (four 5-minute frames) performed 50 min after an approximately 10 

mCi injection of the radiotracer 18F-Florbetapir. The rest of the participants received an 

18F-Florbetaben Amyloid PET scan.  After an injection of approximately 8.1 mCi of 18F-

Florbetaben and a 90 min uptake phase, a 20 min brain scan (four 5-minute frames)  was 

performed. The respective PET scans acquired closest in time to the structural MRI were 

analyzed. PET images were downloaded from the ADNI data archive in the most fully pre-

processed format with the image description of “Coreg, Avg, Std Img and Vox Siz, Uniform 

Resolution”. 

Image processing:

The pre-processed PET images were aligned with the anatomical MRI via rigid registration 

using the ANTs normalization software15 with a mutual information metric. The anatomical 

MRI was parcellated into ROIs including cortical, subcortical and cerebellar ROIs using a 

multi-atlas segmentation method16. The parcellation scheme is described elsewhere17. 

Mean tracer uptake in cerebellar gray matter and gray+white matter was used as 

reference to generate an SUVR map for the entire brain for 18F-Flortaucipir and 18F-

Florbetapir/18F-Florbetaben, respectively.  A composite ROI consisting of middle frontal, 
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anterior cingulate, posterior cingulate, inferior parietal, precuneus, supra marginal, middle 

temporal and superior temporal cortex was used to compute a global SUVR for Amyloid 

PET scans.  Thresholds of SUVR ≥ 1.11 and 1.08 for 18F-Florbetapir and 18F-Florbetaben 

respectively, were then used to determine Amyloid-β status, as previously described18. 

Composite SUVR provided by ADNI are now available for all but one participant (variable 

SUMMARYSUVR_WHOLECEREBNORM) and had a correlation of r=0.97 with those 

used here. Amyloid-β status was identical in all participants.

The T1-weighted structural MRI was processed using the ANTs cortical thickness 

pipeline19 that implements a diffeomorphic registration-based thickness estimation 

method20.  ROI-based measures of tau (T) and neurodegeneration (N) were then 

computed as average 18F-Flortaucipir SUVR and cortical thickness respectively within 104 

bilateral ROIs (52 from each hemisphere).

White matter hyperintensity masks were computed from FLAIR images using a 

previously validated deep learning-based  method that was the top performer in the WMH 

segmentation challenge21. The masks were visually examined by a trained rater and 

edited as necessary before computing volumes.

Modeling of Tau (T) – Neurodegeneration (N) relationship: a T-N mismatch metric

Tau-Neurodegeneration relationship was modeled using average gray matter thickness 

(N) and 18F-Flortaucipir SUVR (T) for 104 bilateral ROIs in each subject.  A  robust linear 

regression22 was performed at each ROI. To mitigate effects of a skewed distribution of 

SUVR, the common logarithmic transform was applied to T. Additionally, a bi-square 

weighting function which can further minimize the influence of outliers was used for robust 

regression.  An example is shown in Figure 1.(a). 
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For each individual, a summary measure, T-N mismatch metric, was calculated by 

taking the difference between the number of ROIs that had residuals below 1.5 x standard 

deviation from the regression line (indicating greater than expected N for the given level 

of T load) and number of ROIs that had residuals above 1.5 standard deviation from the 

regression line (indicating less than expected N for the given level of T load). Thus, a 

positive T-N mismatch metric suggests generally more atrophy than expected for tau (i.e 

more vulnerable) while a negative T-N mismatch metric suggests greater cortical 

thickness than expected for tau burden (i.e. resilience or brain reserve). The relationship 

of this metric with demographic variables and cognitive performance scores were 

analyzed.

Clustering for phenotype discovery

The regression residual for each ROI was discretized into a two-element binary vector 

based on whether it was farther than 1.5 standard deviation away from the regression line 

and if the residual was negative or positive. These binary vectors were then entered into 

Ward’s hierarchical agglomerative clustering method23 to generate data-driven groupings 

of subjects. The number of clusters (6) was specified empirically by the elbow method 

proposed by Thorndike24 that uses the percentage of variance explained as a function of 

number of clusters and optimizes within-cluster similarity.
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Results

Pearson correlation between the summary T-N mismatch metric, defined as the difference 

in number of ROIs with negative versus positive residuals of greater than 1.5 x standard 

deviation, and age and WMH volume were calculated (Table 2).1, Figure 1 (b),(d)). As 

expected, age (r=0.38, P<10-5) and WMH volume (r=0.35, p<0.0001) were strongly 

correlated with the mismatch metric, such that older age and greater WMH volume were 

associated with a higher T-N mismatch metric.  In other words, these factors were 

associated with more atrophy than expected for a given level of tau pathology within this 

study population.  Moreover, when the relationship between WMH volume and T-N 

mismatch was covaried for age, the correlation remained significant (r = 0.31, p<0.001).  

     

To determine whether the T-N mismatch metric was associated with the degree of 

tau pathology, we examined correlations with 18F-Flortaucipir uptake in areas typically 

affected by AD: entorhinal cortex, inferior temporal cortex, precuneus, and angular gyrus.  

We found no significant relationship of the T-N mismatch metric to tau deposition in these 

regions, supporting the notion that T-N mismatch is not a reflection of AD severity, as 

determined by tau PET.

We also examined the relationship of this summary T-N mismatch metric with 

performance in various cognitive tasks, with age, gender, years of education and IT tau 

SUVR as covariates. The latter, an early region of tau pathology, was used as a surrogate 

measure of tau load to determine the degree to which mismatch influenced performance 
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beyond AD NFT pathology. Cognitive tasks included a global measure (MMSE), measures 

of memory (Logical Memory and AVLT delayed recall), language (category fluency), 

visuomotor speed (Trailmaking Test A) and executive function (Trailmaking Test B). These 

results are summarized in Table 32. Significant correlations were found with MMSE, AVLT, 

category fluency scores and Trailmaking Test A while Trailmaking Test B was borderline.

Correlational analyses between T-N mismatch metric and demographic, imaging, 

and cognitive performance measures reported above were repeated with an additional 

covariate of composite amyloid PET SUVR. Amyloid SUVR was not a significant predictor 

for any of the analyses.

Data driven clustering of participants based on T-N mismatch metric

Participants were grouped into six clusters using hierarchical clustering. They appear to 

represent different imaging phenotypes with distinct spatial topography, which may be a 

proxy for underlying disease phenotypes, as summarized in Table 43. Overall, the groups 

differed in age, burden of white matter hyperintensity (WMH), clinical status, and MMSE. 

However, they did not differ in tau burden in key AD ROIs (e.g. inferotemporal cortex, 

precuneus, angular gyrus) based on 18F-Flortaucipir uptake.

 

Group 1 was the largest group (n=61) and had atrophy and tau load measures 

closest to the regression line. We labeled this group “canonical” since it defines the 

expected relationship between neurodegeneration and tau burden. Group 2 (n=24) 

displayed greater atrophy than expected for 18F-Flortaucipir uptake particularly in anterior 

temporal/temporal limbic regions (Figure 2).  The group was slightly older than the 

canonical group with significantly greater WMH burden (p=0.01) and slightly lower MMSE.  
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A number of cases in Group 2 had particularly severe anterior hippocampal/temporal polar 

atrophy suggestive of temporal lobe pathology such as concomitant TDP-4310,11 or 

hippocampal sclerosis25, as described in autopsy studies. Alternatively, Group 3 (n=13) 

appeared to be a resilient imaging phenotype with less atrophy relative to tau, particularly 

in lateral cortical regions (Figure 2). While Group 3 was significantly younger than the 

canonical group (p=0.01), this group did include older individuals who appeared to have 

minimal atrophy despite significant 18F-Flortaucipir uptake as illustrated by the case in 

Figure 2.  This group also had higher mean MMSE scores than the canonical group.  

Group 4 (n=3) was quite small and had severe, diffuse atrophy greater than expected for 

tau in both limbic and cortical regions.  This group was marked by being the oldest (age 

range of 82-94).  Group 5 (n=25) displayed resilience, particularly in temporal and frontal 

regions.  This group was similar in age to the canonical group but had less WMH.  However, 

Group  5 did not have significant difference in MMSE from the canonical group.  Finally, 

Group 6 (n=11) had widespread higher atrophy relative to tau.  This group was marginally 

older than the canonical group, but displayed significantly higher WMH volume (p=0.01) 

and lower MMSE.  Some individuals within this group had quite severe WMH, as 

exemplified by the case in Figure 2. The entirety of the T-N regression residual data used 

for clustering is shown in Figure 3, along with a summary of measure of percentage of 

participants that had a suprathreshold residual for each ROI.

We also performed an analysis of longitudinal changes in MMSE across the groups 

using linear mixed effects model. Followup period of cognitive data used was between 1-

4 years and a maximum of 4 time points. Time*cluster interaction was entered as a 

predictor and participants as random effect; covariates included age, gender and years of 

education. Time*cluster interaction was significant (p = 0.04) indicating the groups differed 

in their rate of decline.
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Sensitivity analyses

We conducted the following sensitivity analyses to assess the robustness of the proposed 

residual-based approach: 1) When T and N measures were averaged across left and right 

hemispheres, the T-N mismatch metric had a correlation of r=0.99 with that using unilateral 

measures, and clustering produced groups with similar characteristics, with the vast 

majority of subjects continuing to be clustered together. This is pictorially shown in a 

tanglegram display in Figure 5(top), 2) When non-discretized residuals were directly fed 

into hierarchical clustering, again qualitatively similar groups were obtained, as shown in 

the tanglegram display in Figure 5(bottom), 3) When we weighted the contribution of each 

ROI (# of suprathreshold residuals) with ROI size, the resulting T-N mismatch metric was 

still highly correlated (r=0.97) with those without such weighting.  

Discussion: (14121473 words; limit 1500)

Explicitly modeling the variability in the relationship between tau burden and 

neurodegeneration can be a useful tool for understanding phenotype and may provide 

important clues to additional factors that modulate neurodegeneration and cognitive 

decline. Determining such factors, e.g., the presence of co-pathology, is essential in both 

clinical research and practice to achieve a precision-based approach to diagnosis, 

prognosis, and management. While the dichotomous designation of biomarkers in the 

A/T/(N) framework has proven to be a powerful concept for AD classification, it fails to 

utilize the continuous and spatially varying information that in-vivo multimodal imaging can 

provide. Here we demonstrate that a measure of deviation from a normative relationship 
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between tau burden and neurodegeneration across brain regions in individuals on the AD 

continuum captures variability due to multiple underlying factors.  

     The basic conceptual principle motivating the approach described here is that NFT  

pathology is tightly linked to AD-related neurodegeneration, as has been demonstrated in 

numerous in vivo and ex vivo studies26–30.  In contrast, measures of beta-amyloid plaque 

pathology do not strongly correlate with neurodegeneration31.  Thus, the load of NFT 

pathology in the setting of AD (i.e. presence of amyloid and tau pathology as defined by 

the A/T/(N) framework) should provide an estimation of the degree to which brain structure 

would be expected to be affected specifically by AD.  Deviation from this expectation would 

suggest that additional factors such as co-pathology or brain reserve are modulating this 

relationship. While this assumption may only approximate reality and more complex 

relationships may be present, the basic notion is likely to be correct and is consistent with 

the findings of this study.         

T-N mismatch metric has meaningful associations

As presented in Tables 21 and 32, a simple scalar measure summarizing the degree of 

mismatch between the amount of tau pathology and neurodegeneration across the whole 

cerebrum is a useful metric to study underlying factors that may contribute to the 

heterogeneity of AD. This scalar measure used spatial information to account for the 

extent of this mismatch across the brain (i.e. the number of ROIs), but is insensitive to the 

spatial pattern.  Nonetheless, we found that the T-N mismatch metric was significantly 

correlated with two factors that are likely to be drivers of atrophy beyond that of AD-related 

pathology; age32 and cerebrovascular disease33,34, as measured by WMH burden35. 

Moreover, the extent of this mismatch was associated with the degree of cognitive 

impairment across several domains, even after controlling for age and 18F-Flortaucipir 
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uptake in the inferior temporal cortex, a surrogate for NFT burden.  As one would predict, 

more atrophy than expected for a given level of tau was associated with poorer cognition 

while less atrophy was associated with better performance in the face of the same tau 

burden. The fact that the T-N mismatch metric did not correlate with 18F-Flortaucipir uptake 

in key AD-related regions supports the notion that our measure of mismatch is not 

confounded by disease severity in a non-linear relationship with structural 

neurodegeneration.   

     The current result supports a prior study by Ossenkoppele et al.36 which used a global 

measure of T and N, whole cortical 18F-Flortaucipir uptake and mean cortical thickness, 

respectively, and a global cognitive measure, MMSE, to calculate a brain and cognitive 

reserve metric. Consistent with our findings, Ossenkoppele et al. reported that brain 

reserve was associated with age, such that younger individuals had more brain reserve, 

and that cognitive reserve was related to cortical thickness. Additionally, they found that 

female sex was associated with higher brain reserve.  We also found a trend towards sex 

related to our continuous measure of mismatch. Thus, the findings here provide 

convergence in an independent dataset, but also demonstrate that these relationships 

occur independent of overall tau burden.  Further, the sensitivity analyses using non-

discretized residuals and bilaterally averaged ROI measures points to the robustness of 

the general approach of using T-N residuals.

T-N mismatch metric can potentially reveal phenotypes

The scalar T-N mismatch metric captures the extent of, but not the spatial pattern of 

mismatch. This pattern may provide additional insights, particularly related to the presence 

of co-pathology in cases with more neurodegeneration than expected for a level of tau 

pathology.  To explore this, we used a data-driven approach to cluster individuals based 

on the spatial pattern of T-N mismatch. The clustering yielded six groups with the largest, 
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not surprisingly, demonstrating little T-N mismatch that we referred to as a canonical 

group.  Three groups (2,4, and 6) displayed greater neurodegeneration than expected for 

the level of tau, but differed in spatial patterns. One group in particular (Group 2) had 

excessive atrophy in temporal-limbic structures, particularly anterior hippocampus and 

temporal pole. While requiring pathologic confirmation in future work, this group had a 

pattern of atrophy suggestive of concomitant TDP-43 pathology consistent with 

descriptions of limbic-predominant age-associated TDP-43 encephalopathy10,11, or TDP-

43 Type C pathology which is associated with semantic dementia37.  The two other groups 

with higher levels of neurodegeneration had differing degrees of severity, but were 

generally diffuse with one group associated with high levels of WMHs.  Post-hoc analysis 

of longitudinal changes in MMSE also found a significantly steeper rate of decline in these 

groups compared to the canonical group, further supporting the notion that they represent 

vulnerable phenotypes.

     While we expected evidence of resilience as well, we found two different groups based 

on pattern of regions that had greater cortical thickness than expected. These groups may 

be explained by having higher brain reserve, or relative resistance to the presence of NFT 

pathology, perhaps through less neuropil or neuronal dropout38. The separation of these 

two groups may reflect different mechanisms of resilience that if studied on a larger scale 

could provide important insights into environmental or genetic factors that could contribute 

to reducing risk or slowing disease progression.  

     This data-driven approach needs to be validated using post-mortem pathological 

analysis, to determine if the imaging phenotypes found indeed map on to disease 

phenotypes. Nonetheless, it has implications for clinical interventions and prognosis, 

particularly as a surrogate for neurodegenerative pathologies for which no in-vivo 

biomarkers exist39. On the other hand, this approach can also help researchers identify 
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and study resilience or brain reserve as a phenotype. If validated with longitudinal 

cognitive data, this also may be a valuable prognostic tool for clinicians.

Heterogeneity of underlying phenotypes is a significant factor that reduces power 

in clinical trials40. As an increasing number of new therapies that specifically target 

pathological tau species are tested41, this approach may help exclude trial participants that 

might have significant non-tau co-morbidity (such as vascular disease or other 

proteinopathy) that might be driving their neurodegeneration. This could potentially reduce 

cost and provide a clearer understanding of the efficacy of a potential therapy.

Limitations and future work

The approach presented here for utilizing the richer spatial, continuously varying, 

information about T and N biomarkers to study variability is necessarily limited by the 

composition of the study cohort. The current composition of the ADNI research cohort has 

relatively strict inclusion criteria that limits the number of underlying factors that can be 

examined, including a relatively restricted range of disease severity. Future work will apply 

this framework to more heterogeneous cohorts that encompass a more diverse  

phenotypic landscape, including earlier onset disease42, non-amnestic presentations, and 

greater inclusion of groups with comorbidities, such as vascular risk factors such as 

diabetes.  

Alternative approaches to defining a T-N mismatch metric could also be 

considered. The use of ROI-based regression residuals, as we have done, is easy to 

operationalize and implement. One could use a similar approach using voxel-level 

regressions instead. Another way to estimate a mismatch would be to first build a model 

of direct image-to-image (tau PET to MRI) translation using deep neural networks43,44 

instead of using biomarker measurements from both modalities as we have done here, 
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and then use a metric of deviation from the predicted model output as a mismatch 

measure. 

Any data-driven clustering approach is exploratory in nature, and the results will 

likely vary depending on cohort composition and the underlying disease phenotypes. 

Nonetheless, it is encouraging that the clusters that emerged based on T-N residuals 

appear to differ from each other based on underlying factors other than the pair of imaging 

measurements used to derive them. These factors included those likely related to 

vulnerability and resilience, e.g. a marker of vascular disease (white matter hyperintensity) 

and age respectively.  

Finally, the relatively small cohort used here limits strong conclusions about the 

stability of these groups, but does provide a proof-of-principle that accounting for the 

relationship of T and N provides phenotypic groupings sensitive to biological modifiers of 

these relationships. In addition to more heterogeneous populations, future studies will 

need to apply this approach to larger cohorts and study longitudinal outcomes to 

determine the clinical significance of mismatch.  Ultimately, the study of cross-modality 

relationships of different biological constructs, including A, T, and N, may allow for 

quantitative assessments linked to disease heterogeneity45.  
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Table 1: Summary of  demographic and imaging variables within tertiles of  T-N 
mismatch metric and its correlation

Variable Lower 
tertile
(resilient) 

Middle
tertile 

Upper
tertile
(vulnerable)

Pearson 
r/chi-
square

p-value

Age (Years) 73.3 76.4 80.9 0.38 < 10-5

Gender (F/M) 26/20 24/22 15/30 5.53 0.06

ApoE4 status (0/1/2 
allele)

12/14/12 10/18/8 16/18/5 4.88 0.29

MMSE 26.2 25.9 23.5 -0.30 0.0005

WMH volume
(log mm3)

1.30 1.21 2.25 0.35 < 0.0001

ERC tau  
(18F-Flortaucipir 
SUVR)

1.35 1.34 1.31 0.03 0.69

IT tau  
(18F-Flortaucipir 
SUVR)

1.43 1.45 1.46 0.003 0.96

Precuneus tau 
(18F-Flortaucipir 
SUVR)

1.25 1.26 1.32 0.04 0.63

Angular gyrus tau 
(18F-Flortaucipir 
SUVR)

1.38 1.34 1.39 0.01 0.88

Mean (age, MMSE, WMH volume and regional tau burden) or categorical counts (gender and ApoE4 
status) for participants trichotomized into tertiles of T-N mismatch metric.  Upper tertile has the highest 
relative atrophy than expected for tau (vulnerable). Rightmost columns show Pearson correlation of 
age, MMSE and the imaging measures with the T-N mismatch metric is also shown. For the two 
categorical variables gender and ApoE4 status, the two result of chi-square test between the three 
tertiles are shown instead.
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Table 2: Correlation of cognitive scores with T-
N mismatch metric with age, gender, years of 
education and IT tau uptake as covariates

Cognitive test Pearson r p-value

MMSE -0.30 0.0005

Logical Memory 
Test (Delayed 
Recall)

-0.15 0.09

AVLT 5-min 
Delayed Recall

-0.24 0.006

Category fluency -0.23 0.01

Trailmaking Test A 0.19 0.03

Trailmaking Test B 0.17 0.06
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Table 3 Characteristics of groups defined by data-driven clustering of residuals from T-N. Bottom row 
indicates variables that differ significantly between groups. * indicates significant group difference 
compared with Group 1 (two-sided t-test).

Group (N) Description Diagnosis
MCI/
Dementia

Age Gender 
(F/M)

Log 
White
Matter
Hyper-
intensity 

Hyper-intensity 

MMSE IT Tau 
SUVR

T-N 
Mismatch
Metric
(median)

Group 1 
(61)

Canonical 
(low 
residuals)

38/23 76.88.0 32/29 8.38 25.83.2 1.430.4 -2

Group 2 
(24)

High 
temporal/ 
limbic 
atrophy 
(pattern 
suggestive 
of TDP-43)

9/15 79.97.5 10/14 9.47* 24.23.7 1.460.4 10

Group 3 
(13)

Resilient 
(less atrophy 
relative to 
tau in lateral 
cortical)

10/3 69.78.8* 9/4 8.02 27.03.4 1.460.4 -14

Group 4 
(3)

High 
temporal/lim
bic and 
diffuse 
atrophy 
(oldest 
group; ?TDP 
+ vascular + 
age-related 
change)

1/2 87.26.1 0/3 7.88* 23.05.6 1.460.2 43

Group 5 
(25)

Resilient 
Temporal

18/7 75.16.8 11/14 7.70 25.14.4 1.460.3 -14

Group 6 
(11)

High diffuse 
atrophy 
(lowest 
cognition, 
high WMH)

4/7 79.310.
2

3/8 9.73* 22.66.0 1.450.5 27

Group
Difference 

p < 0.05 p< 0.01 p=0.15 p = 0.06 p<0.05 p> 0.05 -
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Figure 1. Scatter plots showing (a) Tau tracer SUVR vs. cortical thickness in the right inferior temporal gyrus 
ROI along with robust regression fit and  1.5 standard deviation lines, (b) T-N mismatch metric vs. age, 

(c) T-N mismatch metric vs. MMSE scores, and (d) T-N mismatch metric vs. WMH volume. 
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Figure 2: Median ROI-wise group residual maps (columns 1-3). More saturated color represents higher 
residual, indicating higher (red) or lower (blue) atrophy relative to tau burden. Column 4 shows 

representative examples with arrows indicating features characteristic of the group. 
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Figure 3. T-N regression residuals for each ROI and each participant visualized on a heatmap. ROIs on the x-
axis are sorted by lobes, participants on the y-axis are sorted by clusters. Shades of red show positive 

residuals (more atrophy) and shades of blue show negative residuals (more tau). Stacked bar graph in the 
top panel shows percentage of ROIs showing “mismatch”, as defined by the residual being greater than 1.5 

standard deviation away from the regression line. 
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Figure 4. Trajectory of cognitive decline for different groups of participants. Slopes shown for each group is 
estimated by linear mixed-effects model. Groups 2 and 6 are the vulnerable groups showing steeper decline 

than group 1 (canonical). Groups 3 and 5 are the resilient groups. Group 4 is not shown because of the 
small group size. Note that the variable maximum time periods for different groups reflect differences in 

duration of followup data available. 
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Figure 5. Tanglegram displays comparing cluster memberships. Top panel: comparison memberships 
between using left and right hemispheric ROI measures separately (left) vs. using averaged measures 
(right). Bottom panel: comparison using discretized regression residuals (left) vs. the raw continuous 

regression residuals (right). In both panels, color for each cluster on the right was chosen to be similar to 
the cluster on the left that had the most overlap in membership for ease of visualization. Cluster labels (1-6) 

are arbitrary, as output by the clustering algorithm. 
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