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Abstract

The regression discontinuity (RD) design is a method for estimating a treatment

effect in an observational study where there is a treatment allocation guideline that

can be linked to the value of a continuous assignment variable and a pre-determined

threshold. Typically, treatment is offered to patients whose assignment variable val-

ues lie above (or below) the threshold. Patients whose assignment variable values

lie close to the threshold can be seen as exchangeable and typically, treatment ef-

fect estimation in an RD design involves comparing patients above and below the

threshold. For a continuous outcome, estimating a treatment effect usually entails

fitting local linear regression models for patients above and below the threshold. We

propose the use of the thin plate regression spline to fit flexible regression models

for patients above and below the threshold. Limited research has been done on

an RD design for binary and time-to-event outcomes. For the binary outcome, we

focused on the estimation of the risk ratio. The Wald and multiplicative structural

mean models are approaches for estimating the risk ratio that can be applied to an

RD design, however, they require additional assumptions. In this thesis, we have

proposed an alternative approach for the estimation of the risk ratio that is based on

the assumptions of the RD design. For the time-to-event outcome, the accelerated

failure time (AFT) model was considered because it has some desirable properties

in terms of interpreting causal effects. We propose an estimator of the acceleration

factor that is based on the assumptions of an RD design. In addition to this, the

structural AFT, a common approach for estimating the acceleration factor in ob-

servation studies, was discussed. Simulation studies were carried out to compare

the proposed approaches with the existing ones, the results show that the proposed

approaches compete favourably with, and in some cases, perform better than the

existing methods. In addition, we have provided Bayesian alternatives to the three

proposed approaches. Finally, we demonstrated these methods by applying them to

real datasets on statin and metformin prescriptions.
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Impact statement

With the increasing availability of large databases of observational datasets in medicine,

developing methods for treatment effect estimation is of interest. Generally, treat-

ment effect estimation from observational studies can be difficult because of the

potential effect of unobserved confounding that can lead to a biased estimate of the

treatment effect. As such, many methods of treatment effect estimation for observa-

tional studies are based on the untestable assumption of no unobserved confounding.

In this thesis, we have explored methods for estimating treatment effect in an ob-

servational study using the regression discontinuity (RD) design, which can be used

to estimate a treatment effect in the presence of unobserved confounding. An RD

design is applicable where is there is a guideline for treatment allocation that can be

linked to the value of a continuous assignment variable and a pre-specified threshold

value. In many cases, treatments are prescribed according to pre-defined external

guidelines. For instance, in the UK primary care, the National Institute for Health

and Care Excellence (NICE) is the body that provides guidelines for the treatment

of diseases and conditions for medical practitioners. As such, the RD design is ap-

plicable for treatment effect estimation in many data that are routinely collected as

part of primary care. RD designs have been primarily used in the econometric liter-

ature, where methods for treatment effect estimation for a continuous outcome have

been well researched, many of which involve fitting local linear regression models.

As an alternative to the linear models, we propose a flexible data-driven approach

for the estimation of treatment effect. In medical studies, in addition to a continuous

outcome, binary and time-to-event outcomes are also of interest. Limited research

have been carried out to develop methods for treatment effect estimation for bi-

nary and time-to-event outcomes in an RD design. We have proposed methods for

treatment effect estimation for binary and time-to-event outcomes. We have illus-

trated how these methods can be applied to real datasets using data extracted from

the THIN database to investigate the effect of statin prescription on low-density

lipoprotein (LDL) cholesterol level and the effect of metformin prescription on type

II diabetes-related complications in patients at risk of type II diabetes. Finally,

we have presented Bayesian alternatives to the proposed approaches for continuous,

binary and time-to-event outcomes. An advantage of a Bayesian approach is that

findings from similar studies, for example, a clinical trial that has investigated the

treatment of interest, can be incorporated in the treatment effect estimation process.
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Chapter 1

Introduction

Often, a main aim in medical research is to estimate the effect of a treatment (or

intervention) on an outcome of interest. The gold standard approach for treatment

effect estimation is to carry out a randomised controlled trial (Altman, 1991). Typ-

ically, this involves randomly allocating patients to one of two (or more) groups

that either receive the treatment/ intervention under investigation or not. When

randomisation is successful, it is expected that the patients assigned to each group

are exchangeable and their characteristics are balanced in terms of other variables

that are potentially related to both the outcome and the intervention. Therefore,

any difference in the outcome observed between the two groups is attributable to the

treatment and the effect of the treatment can be estimated by simply comparing the

two groups, for instance, by comparing means of the outcome. However, in many

situations, randomisation might not be possible. What we may have is simply an

observation that some subjects received the treatment and others did not, where

no-one has “intervened” and state of nature is observed. Such a scenario is referred

to as an observational study.

In an observational study, comparing the treated and untreated might not give a

reliable indication of the treatment effect. This is because the underlying relation-

ship between the treatment and outcome might be distorted by other variables that

are related to both the outcome and treatment, known as confounding variables,

because the patients in the study are not randomly allocated to receive or not to

receive treatment. As a result, treatment effect estimation in an observational study

may require different methods that account for these features.

In this thesis, we consider an approach to treatment effect estimation that falls un-

der the category of natural experiments, known as a regression discontinuity (RD)
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design. These methods use quasi-randomisation that occurs in the treatment alloca-

tion process, and as a result, can produce a treatment effect estimate that accounts

for unobserved confounders.

An RD design is an approach to treatment effect estimation in observational studies.

It is used in scenarios where there is a guideline (rule) for allocating an intervention

to subjects based on a continuous assignment variable and threshold. Generally, the

intervention is offered to a subject whose assignment variable value lies above (or

below) a specified value, known as the threshold.

For example, consider the prescription of anti-hypertensive drugs where a drug is

prescribed depending on a patient’s systolic blood pressure. The anti-hypertensive

drug is to be prescribed to patients whose systolic blood pressure is greater than

or equal to 140mmHg. Here, the assignment variable is the systolic blood pressure

while the threshold is at 140mmHg.

In an RD design, a region around the threshold, called a bandwidth, is pre-specified

to indicate assignment variable values that are considered “close” to the threshold,

such that patients whose assignment variable values lie “close” to the threshold

(above and below) can be seen as similar or exchangeable. That is, their char-

acteristics will be similar to each other and balanced with respect to confounding

variables, such as age, gender, etc., as we would have in a randomised controlled

trial. For example, if we have a group of patients whose systolic blood pressure is

just below the threshold of 140mmHg and another group of patients whose systolic

blood pressure measurements lie just above the threshold of 140mmHg, these two

groups might be considered similar in terms of important variables (such as diabetes

status, body mass index, age etc.).

Conversely, if we have a group of patients whose systolic blood pressure is high,

say around 155mmHg, and another group of patients with a low systolic blood

pressure, say around 115mmHg, these two groups of patients will be different from

each other and may differ with respect to body mass index, diabetes status etc.,

clearly, these groups may not be directly comparable. As a result, the threshold may

be seen as a randomising device that allocates treatment to patients whose systolic

blood pressure values lie above the threshold and withholds treatment for patients

18



whose systolic blood pressure values lie below the threshold, amongst patients whose

systolic blood pressure values lie close to the threshold. It is therefore important

that patients cannot manipulate the value of their assignment variable to ultimately

determine their position with respect to the pre-determined and externally defined

threshold, even when they are aware of the threshold rule, for the threshold to be a

valid randomising device.

In medical studies, the manipulation of a treatment rule might not be an issue of

concern as, in many cases, treatment rules are externally imposed and the assign-

ment variable is computed based on inherent patient characteristics over which they

do not have control. For example, in UK health care, the National Institute for

Health and Care Excellence (NICE) is the body that provides guidelines on the

treatment of diseases and conditions. NICE has recommended that statins, a class

of cholesterol lowering drugs, be prescribed to patients whose risk of developing car-

diovascular disease in 10 years is greater than or equal to 20% (NICE, 2008). The

risk score is computed using risk prediction algorithms, such as the Framingham

risk score (Wilson et al., 1998) or Q-RISK score (Hippisley-Cox et al., 2008) each

of which uses patient information such as age, sex, BMI, cholesterol level, blood

pressure etc. to compute the probability of developing cardiovascular disease in 10

years. Therefore, patients cannot manipulate their risk score even when they are

aware of the guideline for statin prescription.

Depending on how well the treatment allocation guideline is adhered to, there are

two types of RD designs. A sharp RD design occurs when treatment assignment

is a deterministic function of the assignment variable, that is, every patient whose

assignment variable value lies above the threshold will receive treatment while every

patient whose assignment variable value lies below the threshold will not receive

treatment. An example is depicted in Figure 1.1(a) where all patients with assign-

ment variable values above the threshold received treatment while all patients whose

assignment variable values lie below the threshold did not receive treatment. On the

other hand, Figure 1.1(b) depicts a scenario where some patients whose assignment

variable values lie below the threshold received treatment, while some patients whose

assignment variable values lie above the threshold did not receive treatment. Here,

there is a partial adherence to the treatment allocation guideline and the design is
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called a fuzzy RD design.

In medical studies, a fuzzy RD design is more applicable, in general, than a sharp de-

sign. In some cases, a clinician might offer treatment to a patient whose assignment

variable value lies below the threshold based on other characteristics of the patient

if the clinician thinks the patient might benefit from the treatment and, likewise,

some patients whose assignment variable values lie above the threshold might prefer

to pursue other alternatives, such as lifestyle changes, rather than receive treatment

or intervention. As a result, in this thesis, we focus on developing methods for treat-

ment effect estimation in a fuzzy RD design. In addition, the sharp RD design can

be seen as a special case of the fuzzy RD design and, as such, methods developed

for the fuzzy RD design can be applied to the sharp RD design.
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Figure 1.1: Plot representing the types of regression discontinuity designs. Threshold
indicated by the dashed line, “treated” are patients that received the intervention while
“untreated” are patients that did not receive the intervention (a) a sharp regression dis-
continuity design, (b) a fuzzy regression discontinuity design.

Consider the example on the anti-hypertensive drug introduced earlier. We might

be interested in the effect of the anti-hypertensive drug on

(1) the blood pressure of patients after a certain time, or

(2) whether or not the blood pressure of patients is less than some value, say

120mmHg, after a certain time, or

(3) how long it takes for the blood pressure of patients to be 120mmHg or lower.
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This illustrates three types of outcomes that might be of interest in medical studies:

(1), (2) and (3) are examples of continuous, binary and time-to-event outcomes,

respectively. In this thesis, we will explore new approaches to treatment effect

estimation for these types of outcomes in a fuzzy RD design.

First, we consider an estimator of the treatment effect when the outcome of inter-

est is continuous. The RD design has been widely applied and developed for this

case (Cook, 2008; Angrist et al., 1996; Bor et al., 2014; van Leeuwan et al., 2016;

Cattaneo et al., 2020b) and the local average treatment effect (LATE) has been

established as an unbiased estimator of the treatment effect at the threshold. Es-

timating the LATE involves fitting regression models with the outcome of interest

as the response variable and the assignment variable as the predictor. Typically,

linear models might be used to model the relationship between the outcome and the

assignment variable, although, the estimate from such models could be biased if the

relationship between the outcome and assignment variable is not linear. Alterna-

tively, especially in the Econometrics literature, local polynomial models (linear or

quadratic are recommended) are fitted for patients above and below the threshold

(Imbens and Lemieux, 2007; Calonico et al., 2014, 2020a; Cattaneo et al., 2020b).

These methods might also produce a biased estimate if the underlying relationship

can not be adequately modelled by the chosen degree of polynomial. We propose the

use of thin plane regression splines (TPRS) for modelling the relationship between

the outcome and the assignment variable. The TPRS approach is a completely

data-driven method of fitting flexible models that captures non-linearity where it

exists. That is, the TPRS does not require an assumption about the underlying

relationship between the outcome and the assignment variables.

We further explore methods that have been used for the estimation of treatment ef-

fect when the outcome of interest is binary in the instrumental variable (IV) frame-

work, namely, the Wald IV and multiplicative structural mean model (MSMM)

estimators (Hernán and Robins, 2006; Didelez et al., 2010; Geneletti et al., 2019).

These two methods are used for the estimation of the risk ratio and they can be ap-

plied to an RD design. It has been shown that the Wald IV estimator is not always

consistent for the risk ratio and, therefore, this estimator is not always appropriate

(Palmer et al., 2011). On the other hand, the MSMM estimator is consistent for the
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risk ratio but sometimes, the estimate could be negative which is counterintuitive

for an estimator of the risk ratio (Geneletti et al., 2019). In this work, we propose

an estimator of the risk ratio that is based on the assumptions of the RD design

alone.

Similarly, treatment effect estimation for time-to-event outcomes has not been widely

explored in an RD design. Bor et al. (2014) proposed an estimator of the hazard ratio

in a fuzzy RD design, but the estimator is only valid where the event of interest is rare

and the follow-up time is short. As such, this estimator is not always applicable. In

this thesis, we focus on the estimation of the treatment effect under the accelerated

failure time (AFT) assumption, which is an alternative to the popular proportional

hazard assumption for modelling time-to-event outcomes. One of the attractive

properties of the treatment effect estimate under AFT assumption is that it can be

interpreted directly in terms of the time-to-event outcome.

A widely used method for estimating the acceleration factor in observational studies

is the structural accelerated failure time (S-AFT) approach, which has been shown

to produce an unbiased estimate of the treatment effect (Hernán et al., 2005; Yang

et al., 2020). However, this estimation approach requires a no unobserved confound-

ing assumption which is a strong assumption that cannot be tested and could result

in misleading estimates if it is violated. The effect of unobserved confounding re-

mains a major challenge for the treatment effect estimation in most observational

studies (Rosenbaum and Rubin, 1984; Nørgaard et al., 2017). One of the advantages

of the RD design is that it does not rely on a no unobserved confounding assump-

tion. As such, a treatment effect in an RD design may be recovered in the presence

of unobserved confounding. Therefore, we propose an estimator of the acceleration

factor that relies only on the assumptions of RD design.

Finally, we provide Bayesian alternatives for the proposed methods for continuous,

binary and time-to-event outcomes. One advantage of the Bayesian approach to

inference is that it provides a straight-forward way to incorporate additional in-

formation of some parameters of interest in the model. For instance, there might

have been a similar study which might provide additional information about some

parameters in the model being fitted or knowledge from an expert that might be

useful, and such information could be adapted in the form of prior distributions.
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In the next chapter, we give a formal introduction to the RD design and its assump-

tions are clearly stated. In Chapter 3, we propose the use of the TPRS approach

for the estimation of the LATE as an alternative to the linear and local polynomial

regressions. We compare the traditional methods and the proposed approach using

simulation studies. The traditional methods and the TPRS method are then ap-

plied to a real data to estimate the effect of statin prescription on LDL cholesterol

level. Chapter 4 focuses on the estimation of a risk ratio for a binary event in a

fuzzy RD design. We describe the WALD IV and MSMM methods as the existing

approaches to estimate the risk ratio and then propose an estimator that is based

on the RD design assumptions that we term the RDD-RR estimator. These three

methods are then compared using simulation studies and they are applied to real

data on statin prescription. In Chapter 5, we present methods for estimating the

acceleration factor in an RD design: the S-AFT estimator, an existing approach

for estimating the acceleration factor in observational studies and a new estimator

for the acceleration factor in a fuzzy RD design is proposed. We compare the new

estimator and the S-AFT method using simulation studies. The two methods are

then applied to a real data to estimate the effect of metformin prescription on Type

II diabetes-related complications. Finally, in Chapter 6, we present Bayesian alter-

natives to the proposed methods presented in Chapters 3, 4 and 5. We compare the

Bayesian and frequentist approaches using simulation studies.
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Chapter 2

Regression discontinuity design and
potential outcomes framework

In this chapter, we shall formally introduce the RD design. A review of the history

of the RD design as well as the assumptions required to estimate a treatment effect

in an RD design will be discussed.

2.1 Introduction

A regression discontinuity (RD) design is a method for estimating a treatment ef-

fect in observational studies where treatment is allocated based on a pre-specified

rule. Specifically, a treatment or intervention will be prescribed to an individual

(patient) if his/her value of a continuous assignment variable is above (or below)

a pre-determined, externally-defined threshold and the treatment is not prescribed

when the value of their assignment variable lies below (or above) the threshold.

Since the threshold is external and not specific to individual patients, we might ex-

pect that patients whose assignment variable values are ‘just above’ and ‘just below’

the threshold will be balanced in terms of the distribution of potential confounders

and comparable (Oldenburg et al., 2016).

The RD design was first introduced by Thistlethwaite and Campbell (1960). Their

paper sought to determine the effect of public recognition for achievement on stu-

dents’ likelihood of receiving other scholarships and students’ future career plans.

The assignment variable was based on a student’s score on a scholarship qualify-

ing test. The scores were divided into 20 intervals and the corresponding threshold

for receiving the scholarship was set at interval 11. They noted that students with

24



scores above the threshold received more public recognition, in that their names were

published in newspapers and booklets distributed to colleges, universities and other

scholarship granting agencies. The students answered a questionnaire approximately

six months after the award that measured the outcome variables; number of students

that obtained other scholarships and information on their future career plans. They

found that public recognition for achievement increased students’ chances of obtain-

ing other scholarships but did not affect their future career plans. Following this, the

RD design has been widely used in Economics (Imbens and Kalyanaraman, 2009;

Hahn et al., 2001; Imbens and Angrist, 1994; Angrist et al., 1996; Xu, 2017) and

in Political Science (Caughey and Sekhon, 2011; Erikson et al., 2015). In medicine,

many treatments are prescribed according to externally-defined rules and, as such,

the use of RD design may seem appealing in medical research. However, the RD

design has been under-used in medical research until recently. One of the first pa-

pers to outline the use of the RD design in medicine was Linden et al. (2006), where

a guideline of how to use an RD design was given. In this research paper, it was

stated that RD design can be seen as one of the best alternatives to randomised trials

(among other similar methodologies for treatment effect in observational studies).

In recent years, more researchers have begun to investigate the use of the RD design

in medicine and epidemiology (Bor et al., 2014; Geneletti et al., 2015; O’Keeffe and

Baio, 2016; van Leeuwan et al., 2016; Smith et al., 2017). O’Keeffe et al. (2014) gave

an introduction to the RD design and its potential application in medical research.

Bor et al. (2014) looked at the effect of early initiation of anti-retro viral treatment

(ART) on the survivor experience of HIV patients. The assignment variable in the

study was the CD4 count of patients. Patients whose CD4 count was below 200

cells µL were eligible for ART. They compared patients with CD4 count close to the

threshold and found that patients just below the threshold have a lower hazard of

death than patients just above the threshold.

Geneletti et al. (2015) presented a Bayesian approach to treatment effect estimation

for a continuous, non-time-to-event, outcome. In their paper, the formal assump-

tions of the RD design were stated. Moscoe et al. (2015) presented an overview of

papers published in epidemiology that considered an RD design as an approach to

treatment effect estimation, thereby highlighting the under-utilisation of RD designs
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in medical research. Basta and Halloran (2019) have highlighted the features of the

RD design and how it can be used to evaluate the effectiveness of vaccines.

The majority of RD designs in the literature have focused on continuous outcomes

that are often assumed to be normally distributed. When the outcome is binary,

van Leeuwen et al. (2018) showed that the RD design provides valid estimates of the

treatment effect (odds ratio) when used to validate the results of three randomised

controlled trials (RCT). To mimic an RD design, age was used as an assignment

variable in two of the RCTs; one RCT looked at the effect of corticosteroids on 14-day

mortality after head injury, the second RCT compared the effect of two treatments

for acute myocardial infarction on 30-day mortality. Baseline total cholesterol was

used as assignment variable for the third RCT that aimed to estimate the effect of

provastatin on the risk of coronary disease in elderly individuals. In all cases, the

median values of the assignment variables were used as the threshold value. The

odds ratios were estimated from logistic regression models. Geneletti et al. (2019)

proposed a Bayesian approach to estimate the treatment effect (risk ratio) of statin

prescription on the probability of low-density lipoprotein cholesterol levels reaching

recommended levels. For a time-to-event outcome, Bor et al. (2014) explored the

estimation of a hazard ratio on the effect of early initiation of ART on time-to-

mortality in HIV patients for a sharp RD design.

Before further discussion of the methods of estimation, we consider the assumptions

underlying an RD design.

2.2 Notations and Assumptions

Having described the RD design, we outline the mathematical notation required in

this thesis. Consider a study with N patients, we define the outcome of interest

for patient i, i = 1, ..., N as Yi. The assignment variable on which the treatment

guideline is based is defined asXi with the externally defined threshold value denoted

by x0. In addition, we define the centred assignment variable as Xc
i = Xi−x0 which

will have a value of 0 at the threshold. Furthermore, Zi is defined as the threshold

indicator which takes value 1 if the value of the assignment variable for patient i
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is above the threshold and 0 otherwise. Ai is the treatment indicator, which takes

the value 1 if patient i receives the treatment and 0 otherwise. The set of potential

confounding variables (observed and unobserved) are defined as C = O ∪ U .

In addition, we define a bandwidth h ∈ R such that patients whose assignment

variable values fall within the range [x0 − h, x0 + h] are included in the analysis.

The RD design assumes that patients with assignment variable values close to the

threshold are similar and can be seen as exchangeable in order to be able to estimate

a treatment effect and this bandwidth defines the area around the threshold in which

patients are considered to be similar. In applications of the RD design for continuous

outcomes, several studies have looked into determining the optimal bandwidth. The

Imbens-Kalyanaraman (IK) optimal bandwidth, which was developed by Imbens and

Kalyanaraman (2009), is commonly used in the econometrics literature. Calonico

et al. (2014) noted that the confidence interval computed based on the IK optimal

bandwidth yields a poor coverage of the treatment effect and they proposed another

optimal bandwidth. Both the IK optimal bandwidth and the optimal bandwidth

proposed by Calonico et al. (2014) are based on minimising the asymptotic mean

square error of the treatment effect. Recently, Ricciardi et al. (2020) proposed

a Dirichlet process mixture model to identify patients that are similar, above and

below the threshold, such that those patients will be included in the analysis. In this

thesis, we shall carry out a sensitivity analysis to check the behaviour of estimates as

the bandwidth changes. We desire that estimates are not too sensitive to bandwidth

changes and if severe changes is observed, care should be taken in interpreting an

estimate. It has also been noted that the smaller the bandwidth, the smaller the

bias in the treatment effect estimate at the threshold (Bor et al., 2014).

We now state a set of assumptions that are necessary for the identification of a

treatment effect in an RD design (Imbens and Angrist, 1994; Hahn et al., 2001;

Imbens and Lemieux, 2007; Geneletti et al., 2015), the treatment effect of interest

here is defined as E(Yi|Ai = 1) − E(Yi|Ai = 0). The assumptions are stated using

the language of conditional independence (Dawid, 1979): if a random variable, A,

is independent of another random variable B, conditional on C that is: P(A|B,C)

= P(A|C), this is represented as A⊥⊥ B|C. On the other hand, A⊥̸⊥ B means that

random variables A and B are not independent.
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Assumption 1: The probability of receiving the treatment should be discontinuous

at the threshold:

lim
x↓x0

P(Ai = 1|Xi = x) ̸= lim
x↑x0

P(Ai = 1|Xi = x).

This assumption is fundamental in an RD design and is the basis of determining

whether or not an RD design is applicable. We expect that the probability of receiv-

ing treatment for patients whose assignment variable values lie below the threshold

should be different from the probability of receiving treatment for patients whose

assignment variable values lie above the threshold. In a sharp RD design, the proba-

bility jumps from 0 to 1 for patients whose assignment variable values are below and

above the threshold, respectively, a pictorial representation of this, using simulated

data, is presented in Figure 2.1 (a). For the fuzzy design, as depicted in Figure 2.1

(b), although the probability does not jump from 0 to 1 at the threshold, there is

still a clear discontinuity in the probability of receiving treatment at threshold.

Assumption 2: The threshold and treatment indicators are not independent.

Ai⊥̸⊥Zi.

This assesses the validity of the threshold indicator as a determinant of treatment

allocation. If Zi and Ai are independent, an RD design cannot be used because

treatment allocation occurs because of a reason other than the threshold rule. We

note that for a sharp RD design, Ai ≡ Zi, and therefore this assumption is satisfied

where the design is sharp. When the treatment allocation guideline is not strictly

adhered to, as in a fuzzy RD design, a causal effect can still be identified (Imbens

and Angrist, 1994; Angrist et al., 1996). However, we must be satisfied that Zi is

still used, at least partially, in the allocation of treatment. For a fuzzy design, we

would expect a reasonable level of correlation between Ai and Zi

Assumption 3: The expectation of the outcome variable is continuous at the

threshold conditional on the treatment.

E(Yi|Xi = x,Ai = a, Ci) is continuous at x = x0 for a = 0 and a = 1.

The causal effect in an RD design is estimated from the change observed in the
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expected outcome at the threshold. Therefore, this change should be due to the fact

that the treatment allocation is different on either side of the threshold (or at least

that the probability of receiving the treatment is discontinuous at the threshold).

However, conditional on the treatment assignment being the constant on both sides

of the threshold, we expect that no change would occur in the expected outcome.

Otherwise, the threshold indicator (or other variables apart from the treatment)

might be responsible for any observed change.

Assumption 4: The threshold indicator is independent of confounders conditional

on the assignment variable.

Zi⊥⊥ Ci|Xi.

This assumption ensures that a patient is placed above or below the threshold based

on the value of the assignment variable only. Therefore, even if patients are able

to manipulate the values of their characteristics, this does not necessarily have any

effect on determining their position with regard to the threshold. For example, in

the statin prescription example introduced in Chapter 1, although the risk score is

computed using potential confounders, the determination of whether a patient is

above or below the threshold is based solely on their 10-year risk score. That is,

once the risk score has been computed, knowledge of the potential confounders is

not required to determine treatment allocation.

Assumption 5: The threshold indicator and outcome variable are independent,

conditional on the other variables.

Y ⊥⊥ Z|(X,A, C).

This assumption indicates that the threshold indicator does not confound the rela-

tionship between the outcome and the treatment and the threshold indicator does

not have a direct effect on the outcome. This assumption is important when pa-

tients have knowledge of the treatment guideline and are able to manipulate their

outcome variables. This ensures that even with the knowledge of the treatment

guideline, patients cannot manipulate their outcome variables to ultimately change

the threshold indicator.
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Assumption 6: There is no systematic non-adherence to the treatment guideline.

This is applicable in a fuzzy RD design to ensure that non-adherence is not a de-

liberate action to defy the treatment allocation guideline. We are assuming that

the person administering the treatment does not intentionally give the treatment

to patients based on a guideline that is opposite of the recommended treatment

guideline. For example, we let Sa and Sb be the guideline that an administrator

uses to prescribe treatment to patients above and below the threshold, respectively

with Sa and Sb equal to 0 (when the treatment is not given) and equal to 1 (when

the treatment is given). We can write this assumption as:

Pr(Sa = 0, Sb = 1) = 0.

That is, no one will intentionally give the treatment to all patients below the thresh-

old and deny treatment to all patients above the threshold. This assumption, also

known as “no defiers” assumption, ensures that a local treatment effect for compliers

may be identified at the threshold.
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Figure 2.1: The probabilities of getting treated below and above the threshold in (a)
sharp design and (b) fuzzy design. The probabilities jump from 0 to 1 in a sharp design.
The black crosses are the expected probabilities calculated in bins.

The assumptions stated above are for continuous (non-time-to-event) outcomes.

Further modifications or additions to the assumptions will be provided for the esti-

mation of treatment effects for binary and time-to-event outcomes.
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2.3 Potential outcomes framework

In some RD design literature, the design is introduced in terms of potential outcomes

(Imbens and Angrist, 1994; Hahn et al., 2001) and in this section, we shall introduce

the potential outcome framework. We recall that the outcome for patient i is given

as Yi and the treatment indicator is Ai. We define Y 0
i as the outcome that would

be observed for patient i if patient i did not receive the treatment and Y 1
i is the

outcome that would be observed if patient i received the treatment. Y a
i , a ∈ {0, 1}

is known as the potential or counterfactual outcome.

Using the definition of a potential outcome, it is straightforward to define the treat-

ment effect. For instance, let θi = Y 1
i −Y 0

i , then, θi is the individual treatment effect

for patient i. That is, we compare what would happen if patient i is treated to what

would happen if patient i is not treated. In the same vein, the average treatment

effect could be stated as θ = E(Y 1
i − Y 0

i ). However, we note that, for each patient,

it is not possible to observe both potential outcomes Y 0
i and Y 1

i . That is, if patient

i receives the treatment, the observed outcome will be Yi = Y 1
i . On the other hand,

the observed outcome is Yi = Y 0
i if patient i does not receive treatment. This is

known as the consistency assumption, which links the observed outcome with the

potential outcomes (Pearl, 2010). We shall refer to the potential outcome framework

in Chapters 4 and 5 when discussing estimators of treatment effect for binary and

time-to-event outcomes.

In the next chapter, we shall discuss the local average treatment effect (LATE)

estimator, an estimator of the treatment effect in a fuzzy RD design when the

outcome of interest is continuous (non-time-to-event). We shall introduce a data-

driven flexible approach to estimate the LATE using thin plate regression splines.
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Chapter 3

Regression discontinuity design ap-
plied to a continuous outcome

In this chapter, we shall introduce an estimator of a treatment effect in an RD

design where the outcome of interest is continuous (and non-time-to-event). We shall

present traditional approaches for treatment effect estimation which involve fitting

linear or local polynomial regression models and compare these to a novel thin plate

regression spline approach. The traditional approaches require pre-specifying the

form of relationship between the outcome and the assignment variable, which could

produce misleading estimates if the true assignment variable - outcome relationship

differs from the pre-specified one. We propose an alternative approach which involves

fitting flexible, data-driven regression models called thin plate regression splines,

which do not require pre-specification of the relationship between the outcome and

assignment variable. These traditional approaches and the proposed method will

then be applied to real data on the effect of statin prescription on LDL cholesterol

level.

3.1 Introduction

The treatment effect estimate in an RD design is “local”, in that the RD design

focuses on estimating the treatment effect at the threshold. For a sharp RD design,

the treatment effect at the threshold is estimated using the average treatment effect

(ATE) (O’Keeffe and Baio, 2016). This may be estimated by fitting regression

models (often linear) above and below the threshold. The ATE is then the difference
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in means at the threshold and it is given in Equation 3.1 below:

ATE = lim
x↓x0

E(Yi|Xi = x)− lim
x↑x0

E(Yi|Xi = x). (3.1)

Typically, suitable models are fitted to data above and below the threshold and

the ATE is estimated as the difference in the expected value of the outcome at the

threshold (i.e. conditional on xci = 0).

For a sharp RD design, Equation 3.1 is equivalent to comparing treated and un-

treated patients because all patients above the threshold are treated and all patients

below the threshold are untreated. However, for a fuzzy RD design, the ATE is a

biased estimate of the treatment effect because patients above the threshold will

include untreated patients and patients below the threshold will include treated pa-

tients. In a fuzzy design, the ATE estimate is analogous to the intention to treat

estimate in a randomised trial where there is non-compliance to the treatment allo-

cation (Sheiner and Rubin, 1995). The local average treatment effect (LATE) has

been derived as an estimator of the treatment effect in a fuzzy RD design (Imbens

and Angrist, 1994; Hahn et al., 2001). The LATE, also called a complier average

causal effect, is ‘local’ because it is the average treatment effect for compliers, that

is, patients who will take the treatment if they are offered it and will not take the

treatment if it is not offered to them. The LATE is expressed as

LATE =
limx↓x0 E(Yi|Xi = x)− limx↑x0 E(Yi|Xi = x)

P(Ai = 1|Zi = 1)− P(Ai = 1|Zi = 0)
. (3.2)

In this chapter, we shall explore methods that can be used to estimate the compo-

nents of the LATE. In some applications, linear models are fitted above and below

the threshold with the outcome as a predictor for the numerator terms and the

treatment indicator as a predictor for the denominator terms (Imbens and Lemieux,

2007; Oldenburg et al., 2016; O’Keeffe and Baio, 2016). Alternatively, and what is

often found in Econometric literature, local polynomial (linear or quadratic) mod-

els can be fitted for patients above and below the threshold (Imbens and Lemieux,

2007; Calonico et al., 2014, 2020a; Cattaneo et al., 2020a). As we have noted ear-

lier, a linear model assumes that the assignment variable - outcome relationship is

linear while the local polynomial model assumes that this relationship is linear or

quadratic. These methods may produce biased estimates if the underlying relation-
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ship is not the same as that assumed one. To alleviate this issue, an approach that

can fit flexible models without pre-specifying the underlying relationship might be

appealing. As such, we propose the use of the thin plate regression spline which can

fit flexible regression models without prior assumption of the form of the underlying

relationship. Next, we discuss in detail the traditional methods and the proposed

approach.

3.2 Linear models

We begin by describing the simplest approach which entails fitting linear models to

observations above and below the threshold that fall within the bandwidth (h) to

estimate the components of the LATE (Imbens and Lemieux, 2007). Without loss

of generality, we assume that Xi ∈ [0, 1] and we define A = {i|Zi = 1 ∩ Xi ∈

[x0, x0+h]} and B = {i|Zi = 0 ∩ Xi ∈ [x0−h, x0)} to be the sets of patients whose

assignment variable values are above and below the threshold respectively that fall

within the bandwidth.

The numerator of the LATE at the threshold is the difference in the intercepts of

the two models that are presented in Equation 3.3 below.

E(Yi|Zi = 1) = β01 + β11x
c
i for i ∈ A,

E(Yi|Zi = 0) = β00 + β10x
c
i for i ∈ B.

(3.3)

The denominator of the LATE is the difference in the probabilities of receiving

treatment above and below the threshold and can be obtained as the difference of

the intercepts of the two models in Equation 3.4

E(Ai|Zi = 1) = γ01 + γ11x
c
i for i ∈ A,

E(Ai|Zi = 0) = γ00 + γ10x
c
i for i ∈ B.

(3.4)

Defining λL as the LATE estimator that is obtained from fitting linear models, the

LATE is written

λL =
βL
γ

=
β01 − β00
γ01 − γ00

.
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Alternatively, the linear model LATE can be estimated using a two-stage least

squares (TSLS) approach (Imbens and Lemieux, 2007). The estimate of the TSLS

and the λL are equivalent, but the TSLS estimate may not enjoy the distributional

assumptions used when fitting linear regression models, that might be useful for the

construction of confidence intervals.

A challenge of LATE estimation is that it is not straightforward to estimate the

variance of the LATE because it is a ratio of two random variables. O’Keeffe and

Baio (2016) proposed an approach to estimate the variance of the LATE estimator

using a Taylor approximation:

Var(λ̂L) =
σ̂2

γ̂2

(∑
i∈A

α2
i +

∑
i∈B

β2
i

)
+
β̂2
L

γ̂4

(
ϕ̂2
1

∑
i∈A

α2
i + ϕ̂2

0

∑
i∈B

β2
i

)

− 2β̂L
γ̂3

(
ρ̂1
∑
i∈A

αi + ρ̂0
∑
i∈B

βi

)
.

where x̄1 =
1

n1

∑
i∈A

xi, x̄0 =
1

n0

∑
i∈B

xi,

αi =
1

n1

+
x̄21 − x̄1xi∑
i∈A (xi − x̄1)2

,

βi =
1

n0

+
x̄20 − x̄0xi∑
i∈B (xi − x̄0)2

,

ρ̂1 =
1

n1 − 1

∑
i∈A

(yi − ŷi)(ai − âi),

ρ̂0 =
1

n0 − 1

∑
i∈B

(yi − ŷi)(ai − âi),

ϕ̂1 =
1

n1 − 2

∑
i∈A

(ai − âi)
2

ϕ̂0 =
1

n0 − 2

∑
i∈B

(ai − âi)
2

s21 =
1

n1 − 2

∑
i∈A

(yi − ŷi)
2,

s20 =
1

n0 − 2

∑
i∈B

(yi − ŷi)
2,

σ̂2 =
(n1 − 2)s21 + (n0 − 2)s20

n1 + n0 − 4
,

n1 and n0 the represents number of patients above and below the threshold respec-

tively.
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The approach we have described will be appropriate when the underlying relation-

ship between the outcome and the assignment variable is linear above and below the

threshold. We will now discuss more flexible methods that might be better where

the underlying relationship is not linear.

3.3 Robust local polynomial regression

Calonico et al. (2014) and Calonico et al. (2020a) have proposed a robust bias-

corrected approach for estimating the LATE in an RD design. This approach is a

commonly-used approach for estimating the LATE in econometric literature which

we shall now describe.

The estimate of the LATE from a local polynomial regression of degree p that is

fitted within a bandwidth of h is given as

τ̂FRD(h) =
µ̂Y 1, p(h)− µ̂Y 0, p(h)

µ̂A1, p(h)− µ̂A0, p(h)
,

where for z ∈ {0, 1}, µ̂Y z, p(h) and µ̂Az, p(h) are intercepts of the local polynomial

regression of degree p with the outcome Y and treatment A as the response variables

respectively. Typically, a local linear regression (that is, p = 1) is recommended

in an RD design (Imbens and Lemieux, 2007). In this case, for z ∈ {0, 1} and

J ∈ {A, B}, the coefficients of the local linear regression are estimated as follows

(
µ̂Y z, 1(h), µ̂

(1)
Y z, 1(h)

)⊤
= arg min

a0, a1

∑
i∈J

(Yi − a0 − a1X
c
i )

2K

(
Xc

i

h

)
,

(
µ̂Az, 1(h), µ̂

(1)
Az, 1(h)

)⊤
= arg min

b0, b1

∑
i∈J

(Ai − b0 − b1X
c
i )

2K

(
Xc

i

h

)
,

where µ̂Y z, 1(h), µ̂
(1)
Y z, 1(h), µ̂Az, 1(h) and µ̂

(1)
Az, 1(h) are the estimated values for

a0, a1, b0, and b1 respectively, and K(u) represents a kernel function. Typically,

in an RD design, the triangular kernel is recommended because of its boundary
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properties (Cattaneo et al., 2020b), and the triangular kernel defined as

K(u) =

1− |u| if |u| ≤ 1

0 otherwise.

It has been shown that estimates from a local polynomial regression are biased

(Imbens and Angrist, 1994; Hahn et al., 2001), therefore the LATE estimate τ̂FRD(h)

will also be biased. The bias of τ̂FRD(h) can be estimated as

B̂FRD(h, r) =

(
1

τ̂A, SRD(h)

µ̂
(2)
Y 1, q(r)

2
−
τ̂Y, SRD(h)

τ̂ 2A, SRD(h)

µ̂
(2)
A1, q(r)

2

)
R1,FRD(h)

−

(
1

τ̂A, SRD(h)

µ̂
(2)
Y 0, q(r)

2
−
τ̂Y, SRD(h)

τ̂ 2A, SRD(h)

µ̂
(2)
A0, q(r)

2

)
R0,FRD(h).

Where for z ∈ {0, 1}

τ̂A, SRD(h) = µ̂A1, p(h)− µ̂A0, p(h),

τ̂Y, SRD(h) = µ̂Y 1, p(h)− µ̂Y 0, p(h)

µ̂
(2)
Y z, q(r) and µ̂

(2)
Az, q(r) are the coefficients of (Xc

i )
2 in a local polynomial re-

gression of degree q ≥ 2 and q > p fitted within bandwidth r with the outcome

and treatment indicator as response variable respectively.

R0,FRD(h) andR1,FRD(h) are asymptotically bounded observed quantities given

in Calonico et al. (2014).

It is recommended that the bandwidth (r) for estimating the bias should be greater

than the bandwidth (h) for the LATE estimate (Calonico et al., 2014). Therefore,

the bias corrected estimate of the LATE is given as

τ̂bcFRD(h, r) = τ̂FRD(h)− B̂FRD(h, r).

In addition, Calonico et al. (2020a) also derived an optimal bandwidth for estimating

τ̂bcFRD(h, r) as well as a robust standard error estimate that provides an accurate cov-

erage of the confidence interval of τ̂bcFRD(h, r). The robust bias-corrected approach,

as well as the optimal bandwidth and the robust standard error, is implemented in

the rdrobust package in R (Calonico et al., 2020b).
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We shall explore the use of thin plate regression splines for estimating the LATE.

Rather than fitting local kernel regression models above and below the threshold,

where the kernel type and polynomial degree need to be specified, a thin plate regres-

sion spline may represent a more flexible model with fewer assumptions to capture

the relationship between the assignment variable and the outcome of interest.

3.4 Flexible regression models

We have described the linear and robust bias-corrected approaches of estimating the

LATE in a fuzzy RD design. The linear model is based on the assumption that the

relationship between the outcome and the assignment variable is linear above and

below the threshold. However, when the relationship is not linear, the estimator

derived from the linear models may yield a biased estimate of the treatment effect.

The robust bias-corrected approach also requires a specification of the degree of

polynomial to be fitted, if the choice of polynomial degree cannot adequately model

the relationship between the outcome and the assignment variable, it might also lead

to a biased estimate. In this section, we focus on the numerator of the LATE while

the denominator will be fitted using linear models in Equation 3.4. We propose the

use of a flexible regression spline model that is completely data driven and therefore

does not assume the form of the underlying relationship between the outcome and

assignment variable, called thin plate regression spline (TPRS). Before we describe

the TPRS, we shall first describe regression splines.

3.4.1 Regression splines

Regression splines provide a flexible method to estimate a functional relationship

between variables without specifying the form of the relationship (Hastie and Tib-

shirani, 1999). Piece-wise polynomials are fitted between internal cut-points, known

as knots. The knots are defined in ascending order within the range of values of X

as a < t1 < t2 < ... < tK < b, where a and b are the minimum and maximum values

of X respectively. The number of knots (K) in a regression spline determines how

smooth or wiggly the function will be. A regression spline of degree ν or order ν+1
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is given as

s(x) = β0 +
ν∑

j=1

βj x
j +

K∑
k=1

θk (x− tk)
ν
+, (3.5)

with x+ = max(0, x). A popular choice for ν is 3 which yields a piece-wise cubic

polynomial with continuous derivatives up to order 2 at each knot. van Leeuwan

et al. (2016) has used a cubic regression spline for the estimation of the numerator

of the LATE. A potential drawback of the standard regression spline approach is

that the number of knots and the locations at which knots are placed must be

chosen before fitting the model. As depicted in Figure 3.1, the higher the number

of knots, the more wiggly the fitted line. This is particularly relevant to our context

because different estimates of the treatment effect at the threshold may be obtained,

depending on the number and location of knots. As a result, a TPRS model (Duchon,

1977) may be a more attractive approach to flexible modelling within an RD design.
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y

Figure 3.1: Fitted lines of cubic regression splines with varying number of knots to
illustrate how the number and location of knots influences the fit of a regression
spline model. The red dots are the knot positions.

3.4.2 Thin plate regression spline

The thin plate spline is an alternative which can be used to fit a flexible regression

spline, but there is no requirement of knot location and number of knots and the

fit is completely data driven. It uses all data points as knots and the smoothness
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of the spline is penalised using a smoothing parameter (Duchon, 1977). First, we

describe the thin plate spline model in a general setting and then describe how it

will be applied to estimate the numerator of the LATE.

It should be noted that the thin plate spline can be used to model flexible relation-

ships between an outcome and more than one predictor. In a RD design, however,

we focus on fitting the thin plate spline with one predictor (the assignment variable)

and note that additional predictors can be added if it is necessary. The thin plate

spline with predictor xi and outcome variable yi is given as

yi = f(xi) + ϵi

where

f(x) =
n∑

j=1

δjη(|x− xj|) +
M∑
k=1

αkϕk(x). (3.6)

n is the number of unique values of x, M is defined to be equal to
(
m+d−1

d

)
, where d

is the number of predictors in the model and m is chosen to be the smallest integer

that satisfies 2m > d+ 1. In the RD design example we are considering, d = 1 and

m = 2, therefore, M = 2.

The basis function η(|x− xj|) is defined as

η(|x−xj|) =


(−1)m+1+d/2

22m−1πd/2(m− 1)!(m− d/2)!
|x− xj|2m−d log(|x− xj|) if d is even

Γ(d/2−m)

22mπd/2(m− 1)!
|x− xj|2m−d if d is odd.

In the case where d = 1 and m = 2, as we have in the RD design example, we have

that

η (|x− xj|) =
Γ(0.5)

12
√
π
(|x− xj|)3 .

The smooth functions ϕk(x) are defined as ϕk(x) = (ϕ1(x), ϕ2(x))
⊤ = (1, x)⊤.

The parameters δ = (δ1, . . . , δn)
⊤ and α = (α1, α2)

⊤ are coefficients of the model

that need to be estimated. Because there are more parameters (n + 2) than the

number of unique values of x (n), the estimation process is subject to an additional

identifiability constraint: G⊤δ = 0, where Gij = ϕj(xi).
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The parameters of the thin plate spline model are estimated by minimising

||y − Eδ −Gα||2 + λδ⊤Eδ (3.7)

subject to G⊤δ = 0, with respect to δ and α. Here E is an n × n matrix with

Eij = η (|xi − xj|) and λ is a smoothing parameter (with λ > 0) that controls

the trade-off between the fit of f to the set of data and the smoothness of f . A

small value of λ will lead to a more wiggly fit while a high λ results in a smooth

fit as shown in Figure 3.2. In this thesis, the smoothing parameter is estimated by

minimising the generalised cross-validation criterion which is readily available in the

mgcv package in R (Wood, 2019).

−0.5 0.0 0.5
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y

Figure 3.2: Fitted lines of three TPRS models with varying values of λ to illustrate
how the value of λ influences the smoothness of TPRS model.

Fitting of the thin plate spline by minimising the expression in Equation 3.7 could be

computationally intensive. This is because the number of parameters to be estimated

is the same as the number of unique values of x in the dataset. A way around this

is to fit what is called the thin plate regression spline (Wood, 2003, 2017). This

involves reducing the dimension of the parameters of the basis functions δ from n

to k < n.

We define E = UDU⊤ to be the eigen decomposition of E where U is the n × n

matrix whose columns represent the eigenvectors and D is the n×n diagonal matrix

of the eigenvalues. We define Uk to be the n × k matrix that consists of the first

k columns of U and Dk be the upper left k × k submatrix of D. The dimension

of δ is truncated from n to k by replacing UDU⊤ with UkDkU
⊤
k and we define
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δ = Ukδk. Here, δk is the vector of parameters of the thin plate regression spline

with dimension k. The minimisation problem in Equation 3.7 is now reduced to the

minimisation of

||y −UkDkδk −Gα||2 + λδ⊤
k Dkδk

subject to G⊤Ukδk = 0, with respect to δk and α. This constrained minimisation

problem can be changed to an unconstrained one by accounting for the identifiability

constraint G⊤Ukδk = 0 in the unconstrained minimisation problem. This can be

done by determining the orthogonal column basis Zk such thatG⊤UkZk = 0; setting

δk = Zkδ̃ results in the unconstrained problem - minimise

||y −UkDkZkδ̃ −Gα||2 + λδ̃
⊤
Z⊤

k DkZkδ̃ (3.8)

with respect to δ̃,α. The parameters of the full thin plate spline can be retrieved

using the following equation δ = UkZkδ̃k.

To estimate the numerator of the LATE, we need to determine the predicted value of

y at the threshold from the regression model. We shall now describe how to extract

the predicted value of y at a point x = x0, that is, f(x0) from Equation 3.6. The

solution for βtpr =
(
δ̃,α

)⊤
from the minimisation problem in Equation 3.8 is given

as

β̂tpr =
(
X̃⊤X̃+ S

)−1

X̃⊤y,

where

X̃ =
[
UkDkZk G

]
,

and S = λ

Z⊤
k DkZk 0

0 0

 .
From here, the estimated parameters of the full thin plate spline in Equation 3.6

are then recovered as

β̂tp = Bβ̂tpr =
(
δ̂, α̂

)⊤
,

where

B =

 UkZk 0

0 I2

 .
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and

I2 is a 2× 2 identity matrix.

To predict the value of y at a point x = x0, we define the corresponding design

matrix for x = x0 as follows

x̃0 = [η (|x0 − x1|) , . . . , η (|x0 − xn|) , 1, x0]⊤ .

Therefore, the predicted value at point x0 is given as

f̂(x0) = x̃⊤
0 β̂tp.

The TPRS model can be fitted using the gam function in the mgcv package in R and

predicted values are obtained by applying the predict function to a gam object.

3.4.3 Thin plate spline in an RD design

We will now discuss the LATE estimator where the numerator is estimated using

thin plate regression spline models described in Section 3.4.2. First, we define the

following:

The outcome of interest y = (y1, . . . , yn)
⊤ is partitioned into y = (y0,y1)

⊤ such that

y0 and y1 represent the observed outcomes for patients whose assignment variable

values lie below and above the threshold, respectively.

The treatment indicator a = (a1, . . . , an)
⊤ is partitioned as a = (a0, a1)

⊤ such that

a0 and a1 represent the treatment indicators for patients whose assignment variable

values lie below and above the threshold, respectively.

The assignment variable x = (x1, . . . , xn)
⊤ is partitioned into x = (x0,x1)

⊤ such

that x0 and x1 represents the assignment variable for patients below and above the

threshold respectively and n0 and n1 as the number of patients whose assignment

variable values lies below and above the threshold respectively. We define the design

matrix X0 = (10 x0) and X1 = (11 x1) for patients below and above the threshold
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respectively, where, for j ∈ {0, 1}, 1j is a nj× 1 matrix of 1’s.

The LATE estimator is then defined as follows

λtprs =
β

γ
=
f1(x0)− f0(x0)

γ01 − γ00
,

and for j ∈ {0, 1},

f̂j(x0) = x̃⊤
0jBjβ̂j,

γ̂0j = e⊤γ̂j,

where x̃⊤
0j and Bj are as described in Section 3.4.2 and β̂j =

(
ˆ̃δj, α̂j

)
are the pa-

rameters from the unconstrained thin plate regression splines as given in Equation

3.8. We define e = (1 x0)
⊤ and γ̂j =

(
γ̂0j, γ̂1j

)
are the parameters of the linear

regression models with treatment as the response variable and the assignment vari-

able as a predictor presented in Equation 3.4. We will now proceed to discuss the

variance of the TPRS approach to LATE estimation.

3.4.3.1 Variance of estimator

We recall that the TPRS estimator of the LATE is given as

λ̂tprs = g(β̂, γ̂) =
β̂

γ̂
,

where β̂ is estimated from fitting TPRS models whose parameters are asymptotically

normally distributed (Wood, 2003). Similarly, γ̂ is estimated from linear models in

Equation 3.4 whose parameters are also normally distributed (Seber and Lee, 2012).

Therefore, we can apply the multivariate delta method to estimate the variance of

λ̂tprs:

V (λ̂) ≈∆
(
g(β̂, γ̂)

)⊤
Σ̂γ,β ∆

(
g(β̂, γ̂)

)
=

(
1

γ̂
− β̂

γ̂2

)
Σ̂γ,β

(
1

γ̂
− β̂

γ̂2

)⊤

.
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Here Σ̂β,γ is an estimate of the variance-covariance matrix of
(
β̂ γ̂
)⊤

where

[
Σ̂β,γ

]
11

= x̃⊤
01B1Var(β̂1)B

⊤
1 x̃01 + x̃⊤

00B0Var(β̂0)B
⊤
0 x̃00;[

Σ̂β,γ

]
12

= x̃⊤
01B1

(
X̃⊤

1 X̃1 + S1

)−1

X̃⊤
1 Ĉov(Y1,A1)X1

(
X⊤

1 X1

)−1
e

+ x̃⊤
00B0

(
X̃⊤

0 X̃0 + S0

)−1

X̃⊤
0 Ĉov(Y0A0)X0

(
X⊤

0 X0

)−1
e;[

Σ̂β,γ

]
22

= e⊤ (Var (γ̂1) + Var (γ̂0)) e.

We note that, for j ∈ {0, 1} and nj being the number of patients with Zi = j

Var(β̂j) = σ̂2
j

(
X̃⊤

j X̃j + Sj

)−1

,

Ĉov(Yj,Aj) =
(yj − ŷj)

⊤(aj − âj)

nj

,

Var
(
γ̂j

)
=
(
X⊤

j Xj

)−1
X⊤

j Var(Aj)

Var(Aj) =
(aj − âj)

⊤(aj − âj)

nj − 2
.

Proof. Here, we derive the elements of the variance covariance matrix Σ̂β,γ.

1.
[
Σ̂β,γ

]
11

is the variance of β̂. It can be expressed as follows.

Var(β̂) =Var
(
x̃⊤
01B1β̂1 − x̃⊤

00B0β̂0

)
= x̃⊤

01B1Var(β̂1)B
⊤
1 x̃01 + x̃⊤

00B0Var(β̂0)B
⊤
0 x̃00.

(3.9)

The variance of parameters from the thin plate regression spline models are

given as:

Var(β̂1) =σ̂
2
1 (X̃

⊤
1 X̃1 + S1)

−1,

Var(β̂0) =σ̂
2
0 (X̃

⊤
0 X̃0 + S0)

−1,

where σ̂1 and σ̂0 are estimates of the variance of the outcomes y1 and y0

respectively.
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2.
[
Σ̂β,γ

]
22

is the variance of γ̂ and is expressed as:

Var(γ̂) = Var
(
e⊤γ̂1 − e⊤γ̂0

)
= Var

(
e⊤γ̂1

)
+Var

(
e⊤γ̂0

)
= e⊤ (Var (γ̂1) + Var (γ̂0)) e

(3.10)

The variance of the parameters from the linear model are given as:

Var (γ̂1) =
(
X⊤

1 X1

)−1
X⊤

1 Var(A1)

Var (γ̂0) =
(
X⊤

0 X0

)−1
X⊤

0 Var(A0),

where the variance of A is calculated as

Var(A1) =
(a1 − â1)

⊤ (a1 − â1)

n1 − 2

Var(A0) =
(a0 − â0)

⊤ (a0 − â0)

n0 − 2

3. Now, we proceed to estimate of the covariance of β and γ which is equal to[
Σ̂β,γ

]
12
.

Cov
(
β̂, γ̂

)
=Cov

({
x̃⊤
01B1β̂1 − x̃⊤

00B0β̂0

}
,
{
e⊤γ̂1 − e⊤γ̂0

})
=Cov

(
x̃⊤
01B1β̂1, e

⊤γ̂1

)
+ Cov

(
x̃⊤
00B0β̂0, e

⊤γ̂0

)
=E

[
x̃⊤
01B1β̂1 · γ̂⊤

1 e− E
(
x̃⊤
01B1β̂1

)
E
(
γ̂⊤
1 e
)]

+

E
[
x̃⊤
00B0β̂0 · γ̂⊤

0 e− E
(
x̃⊤
00B0β̂0

)
E
(
γ̂⊤
0 e
)]

=x̃⊤
01B1E

[
β̂1γ̂

⊤
1 − E

(
β̂1

)
E
(
γ̂⊤
1

)]
e+

x̃⊤
00B0E

[
β̂0γ̂

⊤
0 − E

(
β̂0

)
E
(
γ̂⊤
0

)]
e

=x̃⊤
01B1

(
X̃⊤

1 X̃1 + S1

)−1

X̃⊤
1 E
[
Y1A

⊤
1 − E (Y1)

(
A⊤

1

)]
(
X⊤

1 X1

)−1
X⊤

1 e+

x̃⊤
00B0

(
X̃⊤

0 X̃0 + S0

)−1

X̃⊤
0 E
[
Y0A

⊤
0 − E (Y0)

(
A⊤

0

)]
(
X⊤

0 X0

)−1
X⊤

0 e

=x̃⊤
01B1

(
X̃⊤

1 X̃1 + S1

)−1

X̃⊤
1 Cov (Y1,A1)

(
X⊤

1 X1

)−1
X⊤

1 e+

x̃⊤
00B0

(
X̃⊤

0 X̃0 + S0

)−1

X̃⊤
0 Cov (Y0,A0)

(
X⊤

0 X0

)−1
X⊤

0 e,

(3.11)
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where the covariance of Y and A is computed as follows

Cov(Ya,Ab) =
(y1 − ŷ1)

⊤(a1 − â1)

n1

,

Cov(Yb,Ab) =
(y0 − ŷ0)

⊤(a0 − â0)

n0

.

So far, we have described two traditional methods and one novel approach to LATE

estimation. In the next section, we shall compare these three methods using simu-

lation studies.

3.5 Simulation studies

We carried out simulation studies to compare the performance of the three methods

that we have described in Section 3.2, 3.3 and 3.4.2 for estimating the LATE at the

threshold. Data were simulated to represent a fuzzy RD design withN patients, with

different relationships between the outcome and assignment variable. We considered

four scenarios with varying relationships (both linear and non-linear) between the

outcome and assignment variable. Data simulation and analyses were performed

using R (R Core Team, 2018). The robust biased-corrected estimate was computed

using the rdrobust package in R (Calonico et al., 2020b) and thin plate regression

spline models were fitted using the gam function in the mgcv package in R (Wood,

2019). First, we describe the data simulation.

3.5.1 Description of simulation study

The following steps are carried out to simulate the data for N = 2500 patients

and the process was repeated M = 2000 times to create 2000 datasets with 2500

observations each.

Step 1: Simulate the assignment variable Xi, i = 1, 2, ..., N from a Uniform (0.2,

0.8) distribution. The threshold x0 is set at 0.5.
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Step 2: Compute the threshold indicator Zi = 1(Xi ≥ x0).

Step 3: The probability receiving the treatment pi is calculated from the equation

below

log

(
pi

1− pi

)
=

−0.13 + 4.66Xi if Zi = 1

−3.72 + 4.66Xi if Zi = 0

Here, the probabilities of receiving the treatment are 0.9 and 0.2 above

and below the threshold respectively.

Step 4: The treatment indicator Ai is then simulated from a Bernoulli distribution

as follows

Ai ∼ Bernoulli (pi)

Step 5: The outcome variable Yi is simulated as follows

Yi ∼

Normal(g1(Xi), 0.2) if Ai = 1

Normal(g0(Xi), 0.2) if Ai = 0

Where g0(Xi) and g1(Xi) represent the different simulation scenarios to

depict the varying relationships between the outcome and assignment vari-

able for untreated and treated patients respectively. These simulation

scenarios are defined below.

Step 6: The steps listed above are repeated 2000 times to form 2000 datasets.

In the simulation studies, we considered four scenarios with varying relationships

between the outcome and the assignment variable and they are presented below.

Figure 3.3 is a visual representation of the underlying functional forms for the four

scenarios considered. In addition, a sample of the simulated data under each scenario

is presented in Figure 3.4. In all cases, the treatment effect at the threshold is set

to −2.

Scenario 1: This scenario represents a situation where the underlying relation-

ship between the outcome and assignment variable is linear above
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and below the threshold.

g0(Xi) = 4.8 + 0.4Xi

g1(Xi) = 2.85 + 0.3Xi

Scenario 2: In this scenario, a non-linear relationship was simulated between X

and Y below the threshold and with linearity above the threshold.

g0(Xi) = 4.8 + 0.4Xi

g1(Xi) = 3.58−
(
sin{2π(Xi + 0.2)3}

)3
Scenario 3: This represents a linear relationship between Y and X below the

threshold but the underlying relationship is non-linear above the

threshold.

g0(Xi) = 3.75 + 0.5X2
i +

1.2

1 + exp{24.75− 55Xi}

g1(Xi) = 2.85 + 0.3Xi

Scenario 4: This scenario has a non-linear relationship between X and Y above

and below the threshold.

g0(Xi) = 4 + 0.8X2
i +

1

1 + exp{33.6− 70Xi}

g1(Xi) = 3.58−
(
sin{2π(Xi + 0.2)3}

)3

3.5.2 Assessment of the performance of methods

Here, we describe the measures that will be used to compare the three methods for

estimating the LATE that we have discussed earlier. First, we define the following:

• Estimate
(m)
i is the estimate of the LATE obtained when method m is applied

to the ith simulated sample.

• SE
(m)
i is the standard error (square root of the variance) of the LATE estimate

obtained when method m is applied to the ith simulated sample.

49



−0.2 −0.1 0.0 0.1 0.2

3.
0

3.
5

4.
0

4.
5

5.
0

Scenario 1

Centered assignment variable

O
ut

co
m

e 
va

ria
bl

e

−0.2 −0.1 0.0 0.1 0.2

3.
0

3.
5

4.
0

4.
5

5.
0

Scenario 2

Centered assignment variable

O
ut

co
m

e 
va

ria
bl

e

−0.2 −0.1 0.0 0.1 0.2

3.
0

3.
5

4.
0

4.
5

5.
0

Scenario 3

Centered assignment variable

O
ut

co
m

e 
va

ria
bl

e

−0.2 −0.1 0.0 0.1 0.2

3.
0

3.
5

4.
0

4.
5

5.
0

Scenario 4

Centered assignment variable

O
ut

co
m

e 
va

ria
bl

e

Figure 3.3: The functional forms of the relationship between the outcome and assignment
variable that are used in the simulation studies in Section 3.5.

The measures that will be used to compare the methods and are reported in the

tables of results are:

Estimate: We report the sample mean of the estimates obtained from the

simulated samples. This gives information on how well the methods estimate

the true value of the treatment effect on average.

Estimate(m) =
1

M

M∑
i=1

Estimate
(m)
i

Bias: The bias measures the deviation of the estimated value from the true

value of the treatment effect. We desire to have an unbiased estimate, so an

estimator with less bias is preferred.

Bias(m) = −2− Estimate(m)
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Figure 3.4: The functional forms (as well as a sample of the data) of the relationship
between the outcome and assignment variable that are used in the simulation studies in
Section 3.5.

Empirical standard error (ESE): The ESE is a measure of variation of

the estimator. It gives an estimate of the standard deviation of the sampling

distribution of the estimator.

ESE(m) =

√√√√ 1

M − 1

M∑
i=1

(
Estimate

(m)
i − Estimate(m)

)2

Average standard error (ASE): This is also an estimate of the variation of

the estimator. Ideally, we want the ASE to be close to the value of the ESE.

This is because that the ESE approximates the true sampling variation of the

estimate. Therefore, an ASE that is lower than the ESE indicates an under-

estimation of the standard error and a higher ASE means an overestimation

of the standard error.

ASE(m) =
1

M

M∑
i=1

SE
(m)
i
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95% Coverage: The coverage measures the proportion of times that the

confidence intervals cover the true value of the treatment effect. In this case, we

are constructing a 95% confidence interval, therefore, the coverage is expected

to be approximately 95%. If the coverage is lower than the nominal level

(95%), this might be as a result of a biased estimate or an underestimation of

the standard error. A coverage that is above the nominal level is an indication

of overestimation of the standard error. The 95% confidence interval and 95%

coverage are defined as follows:

95% CI
(m)
i = Estimate

(m)
i ± 1.96 SE

(m)
i

95% Cov(m) =
1

M

M∑
i=1

1

(
−2 ∈ 95% CI

(m)
i

)

3.5.3 Results of simulation study

We have conducted the simulation studies as described above and a sensitivity anal-

ysis is carried out for the bandwidths. We considered five bandwidth sizes: 0.2, 0.15,

0.1 and 0.05, as well as the optimal bandwidth of the robust bias-corrected approach

to check how the estimates vary across bandwidths. In general, an estimator that

produces stable estimates across the bandwidths is preferable (Lee and Lemieux,

2010). In the case where an estimator is sensitive to the bandwidth, care needs to

be taken to interpret the estimates.

Figure 3.5 shows a graphical representation of the estimates of the LATE for the

four scenarios in the form of box plots. The horizontal red line represents the value

of the true treatment effect. Table 3.1 is the table of the numerical summaries;

estimate, bias, empirical and average standard errors and the 95% coverage of the

LATE from the linear, robust bias-corrected and thin plate regression spline methods

for Scenarios 1 and 2. Table 3.2 is the table of numerical results summaries of the

results obtained for Scenarios 3 and 4. For the robust bias-corrected approach, we

set the degrees of polynomial of the local kernel regressions for the point estimator

and bias estimator to 2 and 3 respectively, that is, p = 2 and q = 3.
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Figure 3.5: Boxplots of the estimates of LATE from the simulation study to compare the
linear, robust bias-corrected (BC) and thin plate regression spline (TPRS) approaches.
The red dashed line denotes the true treatment effect. The central line and limit of the
boxplots represent the median and inter-quartile range of the estimates respectively.
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Table 3.1: Estimates, biases, empirical and average standard errors (ESE and ASE) and
95% Coverage of the LATE using traditional (Linear), robust bias-corrected (BC) and
Thin plate regression spline (TPRS) methods of estimation from 2000 repeated simulated
samples for Scenarios 1 and 2.

Scenario 1 Scenario 2

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth=0.2, Effect size = -2, Sample size = 2500

Linear -2.00 0.00 0.06 0.06 95.0 -1.86 -0.14 0.07 0.07 44.4

Robust BC -2.00 0.00 0.13 0.13 94.7 -2.02 0.02 0.12 0.13 95.3

TPRS -1.98 -0.02 0.10 0.10 94.5 -1.90 -0.10 0.15 0.14 87.1

Bandwidth=0.15, Effect size = -2, Sample size = 2500

Linear -2.00 0.00 0.07 0.07 95.4 -1.71 -0.29 0.08 0.08 3.0

Robust BC -2.00 0.00 0.15 0.15 95.5 -2.08 0.08 0.14 0.15 91.8

TPRS -1.99 -0.01 0.12 0.11 95.2 -1.89 -0.11 0.16 0.14 78.6

Bandwidth=0.1, Effect size = -2, Sample size = 2500

Linear -2.00 0.00 0.09 0.09 95.4 -1.82 -0.18 0.09 0.09 52.8

Robust BC -2.00 0.00 0.19 0.18 95.4 -2.01 0.01 0.18 0.18 95.2

TPRS -1.99 -0.01 0.15 0.14 94.8 -1.93 -0.07 0.16 0.16 88.3

Bandwidth=0.05, Effect size = -2, Sample size = 2500

Linear -2.00 0.00 0.13 0.13 95.6 -1.97 -0.03 0.13 0.13 96.0

Robust BC -2.00 0.00 0.27 0.26 94.8 -1.99 -0.01 0.26 0.26 95.6

TPRS -2.00 0.00 0.21 0.20 95.4 -1.98 -0.02 0.21 0.20 96.5

Optimal bandwidth, Effect size = -2, Sample size = 2500

Linear -2.00 0.00 0.08 0.08 95.6 -1.76 -0.24 0.10 0.09 25.8

Robust BC -2.00 0.00 0.16 0.15 94.2 -2.04 0.04 0.16 0.16 94.8

TPRS -1.99 -0.01 0.15 0.13 94.5 -1.92 -0.08 0.17 0.15 84.7

For Scenario 1, the underlying relationship between the outcome and assignment

variable is linear, and we observe that the linear, robust bias-corrected (BC) and thin

plate regression spline (TPRS) methods yield unbiased estimates of the treatment

effect across the bandwidths, although the standard error estimates of the robust BC

and TPRS methods are larger than that of the linear method. For the TPRS method,

this is because there is extra uncertainty in determining the relationship between
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the outcome and assignment variable. In contrast, with the linear estimator, the

form of relationship between the outcome and assignment variable has already been

pre-specified. We note that, the three methods provide adequate coverage of the

treatment effect of around 95%. As expected, the standard error estimates increase

as the bandwidth size reduces. This is as a result of a reduction in the number

of observations included in the analysis for each bandwidth size as the bandwidth

decreases.

Under Scenario 2, the relationship between the outcome and assignment variable is

linear below the threshold and non-linear above the threshold. We see that for the

larger bandwidths, the linear and TPRS methods appear to produce biased estimates

of the treatment effect, although the bias of the TPRS method is less than that of

the linear method. In addition, the TPRS method yields a better coverage of the

true treatment effect than the linear method. However, the estimates obtained from

the robust BC method are closer to the value of the treatment effect compared to

other two methods. Similarly, the coverage of the robust BC method is closer to

the nominal 95% for larger and optimal bandwidths. As observed under Scenario 1,

the robust BC and TPRS methods also have higher standard error estimates when

compared to the linear method.

Under Scenario 3, the relationship between the outcome and assignment variable is

linear below the threshold and non-linear above the threshold, and we observe that,

for bandwidth 0.2, the linear and robust BC methods produce biased estimates of

the treatment effect and poor coverage of the treatment effect. In contrast, the

TPRS method yields estimates that are close to the value of the true treatment

effect for all bandwidths considered and provides good coverage of the treatment

effect.

For Scenario 4, where the relationship between the outcome and assignment variable

is non-linear above and below the threshold, the linear method only produced an

unbiased estimator and adequate coverage of the treatment effect for bandwidth of

0.05. The estimates of the LATE from the robust BC and TPRS methods are closer

to the value of the true treatment effect as well as better coverage of the treatment

effect.
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Table 3.2: Estimates, biases, empirical and average standard errors (ESE and ASE) and
95% Coverage of the LATE using traditional (Linear), robust bias-corrected and Thin plate
regression spline (TPRS) methods of estimation from 2000 repeated simulated samples for
Scenarios 3 and 4.

Scenario 3 Scenario 4

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth=0.2, Effect size = -2, Sample size = 2500

Linear -1.76 -0.24 0.06 0.07 4.6 -1.37 -0.63 0.07 0.07 0.0

Robust BC -2.17 0.17 0.13 0.13 73.1 -2.06 0.06 0.13 0.13 91.6

TPRS -2.05 0.05 0.16 0.13 91.2 -1.88 -0.12 0.20 0.17 85.2

Bandwidth=0.15, Effect size = -2, Sample size = 2500

Linear -1.95 -0.05 0.07 0.08 91.6 -1.34 -0.66 0.08 0.08 0.0

Robust BC -2.07 0.07 0.15 0.15 92.7 -2.15 0.15 0.15 0.15 81.2

TPRS -2.05 0.05 0.17 0.15 91.7 -1.87 -0.13 0.21 0.17 81.2

Bandwidth=0.1, Effect size = -2, Sample size = 2500

Linear -2.12 0.12 0.09 0.10 81.1 -1.62 -0.38 0.09 0.09 1.5

Robust BC -1.98 -0.02 0.18 0.18 94.7 -2.08 0.08 0.18 0.18 93.1

TPRS -2.07 0.07 0.17 0.14 87.0 -1.91 -0.09 0.20 0.18 87.0

Bandwidth=0.05, Effect size = -2, Sample size = 2500

Linear -2.07 0.07 0.13 0.13 94.0 -1.97 -0.03 0.13 0.13 95.3

Robust BC -2.00 0.00 0.27 0.26 95.1 -2.01 0.01 0.26 0.26 95.2

TPRS -2.03 0.03 0.23 0.20 94.8 -2.00 0.00 0.21 0.20 95.4

Optimal bandwidth, Effect size = -2, Sample size = 2000

Linear -2.10 0.10 0.10 0.10 84.0 -1.51 -0.49 0.15 0.09 2.3

Robust BC -2.01 0.01 0.17 0.16 93.4 -2.12 0.12 0.16 0.16 89.2

TPRS -2.06 0.06 0.18 0.15 88.7 -1.90 -0.10 0.21 0.18 84.7

For Scenarios 2, 3 and 4 where there exists a non-linear relationship between the

outcome and assignment variable, the linear method is able to produce unbiased

estimates for a bandwidth of 0.05. This is expected because from Figures 3.3 and

3.4, we observe that for the smaller bandwidth the relationship between the outcome

and assignment variable becomes approximately linear and hence the relationship

can be modelled adequately by a linear model.
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It has been noted that the coverage of the TPRS model might not be accurate for

point-wise estimation compared to situations in which the coverage is calculated

for the entire curve (Marra and Wood, 2012; Wood, 2020). A reason for this is

because the estimated variance of the parameters of the TPRS model does not

take into account the uncertainty of the smoothing parameter. Wood (2020) has

provided a bootstrap approach to tackle this problem in order to improve the point-

wise coverage of the TPRS approach. This method is readily available in the mgcv

package in R and we implemented it to estimate the variance of the treatment effect

estimate when fitting TPRS models.

Overall, we see that the robust BC and TPRS approaches outperform the linear

approach in that estimates are less biased and provide better coverage of the true

treatment effect. The robust BC and TPRS approaches seem to be comparable,

except in scenario 2, in terms of producing estimates that are close to the treatment

effect. We note that for the robust BC approach, we have to specify the degrees of

polynomial of the local regressions models for the point estimator and bias estimator.

On the other hand, the TPRS approach does not require such specification as it

is data driven, removing this choice from the user, which may be attractive to

clinicians.

We have now compared three methods of estimating the LATE in simulation studies.

In the next section, we shall apply the three methods to a real dataset on the effect

of statin prescription on low density lipoprotein cholesterol level.

3.6 Example on Prescription of Statins in UK

Primary Care

The United Kingdom’s National Institute for Health and Care Excellence (NICE)

set a guideline that statins - a class of cholesterol lowering drugs - be prescribed

to adults aged under 75 years whose risk of developing a cardiovascular event is

greater than 20% (NICE, 2008) (the guideline was later revised in July 2014 from

20% to 10%). The 10-year risk score is calculated by a general practitioner (GP)

using risk prediction algorithms, such as the Framingham risk score (Wilson et al.,
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1998) or Q-RISK score (Hippisley-Cox et al., 2008). The data considered in this

example were collected between 2007 and 2014 when the NICE guideline was set at

20%, therefore, the assignment variable is the 10-year risk score and threshold is at

20%. The outcome variable is the low lipodensity (LDL) cholesterol level, sometimes

known as ‘bad cholesterol’ because a high LDL cholesterol level can increase the

chance of having heart problems or a stroke (Duncan et al., 2019; NHS, 2019a) and

the treatment is the prescription of statins.

We aim to estimate the effect statin prescription on LDL cholesterol levels using data

extracted from The Health Improvement Network (THIN) database, a large source

of UK primary care data. The database contains anonymised information of patient

records collected from over 500 British GP practices and is generally representative

of UK population (Bourke et al., 2004; Blak et al., 2011). We extracted data for

1386 male patients aged between 50 and 70 years who are non-diabetic, non-smokers

and had never experienced a cardiovascular event (stroke or myocardial infarction),

for whom a 10-year CVD risk score was calculated by a GP at some point between

January 2007 and December 2008. We obtained the following information: patient

risk of developing CVD in 10 years (X), treatment status (A), initial low density

lipoprotein (LDL) cholesterol level, at the time the risk score was calculated, and

the outcome was measured about 6 weeks after statin prescription for patients that

receive statin and 6 weeks after the first measurement of LDL cholesterol level for

untreated patients.

Of the 1386 patients, 831 (60%) patients had risk score values above the threshold

while 555 (40%) patients had risk score values below the threshold. Of those patients

with risk score values above the threshold, 605 (73%) received a statin prescription

whereas, of those patients with risk score values below the threshold, 100 (18%)

received a statin prescription.

Figure 3.6 (a) shows a plot of the probability of receiving a statin prescription against

the 10-year risk of developing a CVD event. The dashed vertical line is represents

the threshold value. This figure suggests that patients above the threshold have a

higher probability of getting a statin prescription compared to patients below the

threshold and that a discontinuity may exist in the probability of getting a statin

prescription at threshold. This indicates that the use an RD design appears to be
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suitable for this data.

Figure 3.6 (b) shows a scatter plot of the outcome (LDL cholesterol level) against the

10-year risk of developing a CVD event. The red and blue dots represent patients

that received and did not receive a statin prescription respectively. This plots shows

some discontinuity in the distribution of the blue and red dots. That is, it seems

that, on average, patients that did not receive a statin prescription have a higher

LDL cholesterol level compared to patients that received a statin prescription.
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Figure 3.6: (a) Plot of probabilities of getting treated for patients above and below the
threshold, (b) the scatter plot of the LDL cholesterol level and 10-year risk score. The
black crosses are the expected probabilities calculated in bins.

We now proceed to apply the three methods; linear, robust BC and thin plate

regression spline, to the data to estimate the effect of statin prescription on the

reduction of LDL cholesterol level. For all methods, we adjusted for the initial LDL

cholesterol level, by including it in the regression models for the three approaches:

We define Ri to be the initial LDL cholesterol level for patient i, for the linear

approach, the outcome and treatment models are given as

E(Yi|Zi = zi, Xi = xi, Ri = ri) = β0 + β1zi + β2xi + β3zixi + β4ri,

E(Ai|Zi = zi, Xi = xi, Ri = ri) = γ0 + γ1zi + γ2xi + γ3zixi + γ4ri.
(3.12)

So that the LATE is estimated as
β̂1
γ̂1
.
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For the robust BC approach, local polynomial regression models are fitted for the

outcome and treatment variables with ri included in the models similar to Equation

3.12. Details of this approach are given by Calonico et al. (2019).

For the TPRS approach, the outcome model is given as

yi = f(xi) + βzi + ei,

where, β measures the discontinuity in the expected value of the outcome at the

threshold and therefore, it represents the numerator of the LATE, xi = (xi, ri)
⊤

and

f(x) =
n∑

j=1

δjη(|x− xj|) +
M∑
k=1

αjϕj(x),

where η(.) and ϕ(.) are as defined in Section 3.4.2. For the denominator of the

LATE, we use the treatment model in Equation 3.12. A similar approach can be

used to adjust for other covariates in the models when necessary.

We calculated the treatment effect within five bandwidths; 0.05, 0.1, 0.15, 0.2 and

the optimal bandwidth for the robust BC method. We set the degrees of the poly-

nomials of the local regression models for the point estimator and bias estimator of

the robust BC approach to 2 and 3, respectively. Table 3.3 shows the estimates of

the LATE with corresponding standard errors obtained using these three methods.

From Table 3.3, it is observed that the treatment estimates obtained from the three

methods are negative. This implies that the LDL cholesterol level of the patients

that receive a statin prescription is lower than that of patients who did not receive

statins, perhaps suggesting a beneficial effect of statins in reducing LDL cholesterol

level. We observe that the estimates of the treatment effect obtained from the linear

and thin plate regression spline methods are similar to each other, perhaps, because

the relationship between the risk score and the LDL cholesterol level is linear. The

estimates from the robust BC approach are noted to be higher and very unstable

than the other two approaches across the bandwidths. More notable is the fact that

the standard error estimates of the robust BC approach are quite large, compared

to the other approaches, which makes the estimates from the robust BC approach

imprecise. The large standard error estimates from the robust BC approach are

perhaps due to a bias-variance trade-off.
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Table 3.3: Estimates and associated standard errors for the LATE at the threshold for
the THIN data example on the prescription of statins based on 10-year CVD risk score.

Bandwidth: 0.05 0.1 0.15 Optimal

N: 676 1103 1309 792

Method Estimate SE Estimate SE Estimate SE Estimate SE

Linear -0.89 0.85 -1.32 0.34 -1.44 0.25 -1.15 0.58

Robust BC -1.12 9.73 -1.67 1.83 -1.32 1.04 -2.19 11.10

TPRS -1.04 0.83 -1.30 0.34 -1.42 0.25 -1.30 0.58

We note that the treatment effect estimates vary for different bandwidths sizes.

Typically, if there is a treatment effect, we will expect that all estimates of the

treatment effect across bandwidths will be in the same direction. In this example,

all the estimates across bandwidths suggest a beneficial effect of statin prescription

in lowering LDL cholesterol level. But since it has been established that the smaller

the bandwidth, the lower the bias, we will usually prefer the estimate from the

smallest bandwidth provided the sample size for such bandwidth is not too small.

Figure 3.7 is the plot of the fitted models for the linear, TPRS and triangular regres-

sion models for the numerator of the LATE. The robust BC approach entails fitting

a triangular kernel model, then the LATE estimate from the triangular model is

bias-corrected. Figure 3.8 is the plot of the fitted models for the linear and triangu-

lar regression models for the denominator of the LATE. We used a linear model to

estimate the denominator of the TPRS approach. We observe that the fitted mod-

els for the three approaches are really similar to each other, this explains why the

linear and TPRS estimates of the treatment effect are similar. The estimate from

the robust BC approach is quite different from the other two because, although the

fitted regression lines for the three methods are similar, an additional bias correction

is carried out for the robust BC approach.
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Figure 3.7: Fitted lines for linear, TRPS and triangular regression models for esti-
mating the numerator of the LATE.
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Figure 3.8: Fitted lines for linear and triangular regression models for estimating
the denominator of the LATE.
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3.7 Conclusions

In this chapter, we have discussed three methods for estimating the local average

treatment estimate (LATE), an estimator of the treatment effect in a fuzzy RD de-

sign for a continuous outcome. We discussed a traditional approach which involves

fitting linear models to data above and below the threshold. A more sophisticated

approach, known as the robust bias-corrected (BC) approach, was also discussed.

The robust BC approach involves fitting local polynomial regression models below

and above the threshold and then corrects for the bias of the local polynomial regres-

sion models. In addition, we proposed fitting thin plate regression spline (TPRS)

models below and above the threshold as an alternative. The TPRS method is a

data-driven regression approach to fit flexible regression models that does not re-

quire any strong assumption about the underlying relationship between the response

and predictor variables.

We carried out simulation studies with varying relationships between the outcome

and assignment variable to compare the performance of the three methods. The

methods produced estimates close to the treatment effect when the underlying rela-

tionship between the outcome and the assignment variable is linear. For scenarios

where the simulated underlying relationship is not linear, the linear method pro-

duced biased estimates of the treatment effect. The thin plate regression spline

and robust BC methods yielded unbiased estimates of the treatment effect as we

would expect. For scenarios 3 and 4, where the underlying relationships between

the outcome and the assignment variable are non-linear, the robust BC and TPRS

approaches produced estimates that are closer to the value of the true treatment

effect.

The three methods were applied to a real data on the prescription of statins in UK

primary care. The estimates obtained from the methods suggest a beneficial effect

of statin prescription for reducing LDL cholesterol level.

In this chapter, we described methods for the treatment effect estimation for a

continuous outcome. However, binary outcomes are also of importance in medi-

cal studies. In the next chapter, we shall discuss methods to the treatment effect

estimation in an RD design when the outcome of interest is binary.
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Chapter 4

Regression discontinuity designs where
the outcome is binary

In Chapter 3, we discussed treatment effect estimation in a fuzzy RD design when

the outcome of interest is a continuous variable. In practice, situations often arise

where the outcome of interest is a binary variable. For instance, whether or not

death occurred after surgery, relapse of a disease after a given period of time, relief

of pain after taking a medicine are all examples of possible binary outcomes of

interest. Here, the binary outcome takes value 1 when a patient experiences an

event of interest during the study and it takes value 0 otherwise. In this chapter,

we will consider methods for an RD design where the outcome is binary and, in

particular, we will focus on risk ratio estimation. We explore methods for risk ratio

estimation in the literature, and a new approach that is based on the RD design

assumptions will be given.

4.1 Introduction

Modelling binary outcomes usually focuses on estimating the risk or odds of an

event of interest occurring. Suppose Yi is a binary outcome for patient i which is

equal to 1 if patient i experiences an event of interest and Yi = 0 if patient i did

not experience the event of interest. The risk is defined as the probability that the

event of interest will occur, that is,

Risk = P(Yi = 1).
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The odds of the event of interest is defined as a ratio of the probability of the event

occurring and the probability of the event not occurring:

Odds =
P(Yi = 1)

P(Yi = 0)
.

In studies where interest lies in estimating a treatment effect (with the treatment

indicator denoted as Ai) where the outcome if binary, the treatment effect is often

measured by the risk difference, risk ratio or odds ratio; defined as follows:

Risk difference = P(Yi = 1|Ai = 1)− P(Yi = 1|Ai = 0),

Risk ratio =
P(Yi = 1|Ai = 1)

P(Yi = 1|Ai = 0)
or

Odds ratio =
P(Yi = 1|Ai = 1)

P(Yi = 0|Ai = 1)

P(Yi = 0|Ai = 0)

P(Yi = 1|Ai = 0)

In this chapter, we focus on treatment effect estimation in an RD design where the

outcome of interest is binary. Xu (2017) looked at estimating risk differences in

a sharp RD design for a categorical outcome variable. They proposed the use of

multinomial logistic regression models for patients whose assignment variable values

lie above and below the threshold. In the case where the outcome is binary, logistic

regression models were fitted and the risk difference to compare those above and

below the threshold were estimated. The method proposed in this study is applicable

for a sharp RD design and will be analogous to an intention to treat analysis for

a fuzzy RD design. To our knowledge, the only instance where an estimator of

the treatment effect was proposed for a binary outcome in a fuzzy RD design is in

Geneletti et al. (2019). They proposed a Bayesian approach of the multiplicative

structural mean model (MSMM) to estimate the risk ratio in a fuzzy RD design.

The MSMM is a popular approach for estimating the risk ratio in the instrumental

variable framework (Didelez et al., 2010). The MSMM approach requires additional

assumptions for the identification of the treatment effect in an RD design. In the

next section, we shall discuss some estimators of the risk ratio, including the MSMM,

that can be applied in a fuzzy RD design. In addition, we will present a new approach

to estimating the risk ratio that is based on the assumptions of the RD design. In

this chapter, we focus on estimation of risk ratio, though, in many epidemiology

applications, odds ratio is more popular because it can be estimated directly from a

65



logistic regression model. However, the estimators of causal odds ratio are generally

more biased than estimators of causal risk ratios (Palmer et al., 2011; Geneletti

et al., 2019). Consequently, we stick to estimating the risk ratio.

4.2 Estimators of the risk ratio

As we have noted earlier, there is limited research on methods to estimate the risk

ratio in a fuzzy RD design. As such, we explore methods applicable in the instrumen-

tal variable framework. The instrumental variable framework provides methodology

for the estimation of treatment effect in an observational study, which relies on

the existence of variable(s) called the instrument(s) (Bowden and Turkington, 1990;

Angrist et al., 1996; Wooldridge, 2010). An instrument is a variable that is related

to the treatment but is not affected by the treatment. Formally, a variable is an

instrument if it satisfies the following conditions:

• It is not affected by the treatment but has a causal relationship with the

treatment.

• It does not have a direct effect on the outcome.

A common application of the instrumental variable literature in epidemiology is in

Mendelian randomisation, where some genetic markers are used as instruments. For

example, Larsson et al. (2020), carried out a study to understand the relationship

between alcohol consumption and cardiovascular disease using Mendelian randomi-

sation. Some genetic variants have been identified that are associated with alcohol

consumption. These genetic variants were consequently used as instruments to iden-

tify the effect of alcohol consumption on the risk of experiencing a cardiovascular

disease.

The genetic markers can have an effect on the treatment (alcohol consumption)

and not the other way around, and it is believed that the presence (or absence) of

these genetic variants does not influence the outcome (risk of experiencing a cardio-

vascular disease). Hence, the genetic markers represent example of instruments.
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Now we compare the definition of an instrument in the instrumental variable frame-

work to the threshold indicator in a fuzzy RD design. In the RD design, we stated

that the threshold indicator can be seen as a randomising device for treatment allo-

cation. This implies that the treatment is a function of the threshold indicator, also

implied by Assumptions 1 and 2 of the RD design stated on Section 2.2. Therefore,

the threshold indicator satisfies the first assumption of an instrument stated above.

Assumption 5 of the RD design states that the threshold indicator is independent of

the outcome conditional on other variables. This implies that the threshold indicator

does not have a direct casual relationship with the outcome and is in line with the

second property of an instrument stated above.

As a result, the threshold indicator in an RD design is similar to an instrument

in the instrumental variable framework (Geneletti et al., 2015). Therefore, for the

estimation of the treatment effect in an RD design, we shall consider some existing

methods from the instrumental variable framework and attempt to apply these to

an RD design.

Next, we will describe some methods that can be used for estimating the risk ratio

in a fuzzy RD design.

4.2.1 Wald estimator

The first method we will consider for the estimation of the risk ratio in an RD design

is the Wald approach, also known as the Wald IV approach. This was introduced as

an adaptation of the Wald estimator for continuous outcomes (Didelez et al., 2010;

Palmer et al., 2011). The WALD estimator of the risk ratio, on the log-scale, is

given as:

log(WALD) =
logE(Yi|Zi = 1)− logE(Yi|Zi = 0)

E(Ai|Zi = 1)− E(Ai|Zi = 0)
.

This expresses the log of risk ratio in the form of the LATE estimator. That is,

the numerator is estimated as the difference of the log of the expected value of the

outcome between the patients above and below the threshold, and the denominator

remains the difference in the probability of receiving treatment for patients above
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and below the threshold. Didelez et al. (2010) has shown that this estimator is

consistent for the risk ratio when the causal effect is small and the event is rare.

Therefore, in cases where the effect of the treatment is large or the event of interest

is common in the study population, the WALD estimator might be inappropriate.

In addition, the following modelling assumptions are required for this estimator to

identify the causal risk ratio (Didelez et al., 2010; Palmer et al., 2011):

W1 logE(Yi|Ai = a) is linear in a.

W2 E(Ai|Zi = z) is linear in z.

Owing to assumption W1 above, a log-linear model is recommended for estimating

the numerator of the log(WALD-RR) estimator. However, because Yi is a binary

variable, it might be more natural to fit a logistic regression model because this

ensures that the estimated expected values of Yi will always lie between 0 and 1.

Remark 4.2.1. For a binary treatment, the logit link in a logistic regression model

satisfies assumption W1

Proof. Assumption W1 states that

logE(Yi|Ai = a) is linear in a.

Fitting a logistic regression model implies that

logE(Yi|Ai = a)− log(1− E(Yi|Ai = a)) is linear in a.

That is,

logE(Yi|Ai = a)− log(1− E(Yi|Ai = a) = α0 + α1a.

Now, we want to show that logE(Yi|Ai = a) in the equation above can be expressed

as a linear function of a. From the equation above, we have that,

E(Yi|Ai = a) =
exp(α0 + α1a)

1 + exp(α0 + α1a)
,

=⇒ logE(Yi|Ai = a) = α0 + α1a− log(1 + exp(α0 + α1a)).
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For a ∈ {0, 1}, we have that

E(Yi|Ai = a) = α∗
0 + α∗

1a,

where α∗
0 = α0 − log(1 + exp(α0)) and α

∗
1 = α1 − log(1+exp(α0+α1)

1+exp(α0)
)

In remark 4.2.1, we show that, for a binary treatment, fitting a logistic regression

model satisfies Assumption W1. As such, to estimate the numerator of log(WALD-

RR) we fit a logistic regression model for Yi. In an RD design, since we are interested

in the treatment effect at the threshold, the Wald estimator of the risk ratio at the

threshold is given as:

log(WALD-RR) =
limx↓x0 logE(Yi|Xi = x)− limx↑x0 logE(Yi|Xi = x)

E(Ai|Zi = 1)− E(Ai|Zi = 0)
.

4.2.2 Multiplicative Structural Mean Model

Secondly, we shall discuss the multiplicative structural mean model (MSMM). The

MSMM is commonly used to estimate the risk ratio in the instrumental variables

framework (Hernán and Robins, 2006; Clarke and Windmeijer, 2010; Didelez et al.,

2010) and has been used in an RD design paper (Geneletti et al., 2019). The

MSMM is defined in terms of counterfactual outcomes. As described in Section 2.3,

counterfactual outcomes, also called potential outcomes, are a set of outcomes that

represent what would have been observed depending on the treatment that a patient

receives. In the case of a binary outcome, the counterfactual outcomes will also be

binary. We define Y 1
i and Y 0

i as the counterfactual outcomes of having been treated

and not having received the treatment, respectively, for patient i.

The multiplicative structural mean model (MSMM) compares the log of the expec-

tation of the counterfactual outcomes for the treated group and is given in Equation

4.1

logE(Y 1
i |Zi, Ai)− logE(Y 0

i |Ai = a, Zi = z) = ψ0a+ ψ1z (4.1)

Using an MSMM, the risk ratio for the treated can be estimated consistently subject

to the following additional assumptions (Hernán and Robins, 2006; Didelez et al.,
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2010; Geneletti et al., 2019):

M1 There is no interaction between the threshold indicator and treatment on the

multiplicative level (no effect modification).

M2 logE(Y 1
i |Ai = a, Zi = z)− logE(Y 0

i |Ai = a, Zi = z) is linear in a.

From Equation 4.1, exp(ψ0) represents the risk ratio for the treated (RRT) for pa-

tients below the threshold and exp(ψ0 + ψ1) is the RRT for patients above the

threshold. Assumption M1 implies that the threshold does not modify the relation-

ship between the outcome and treatment, that is the treatment effect is not different

for patients above and below the threshold. This is in line with Assumption 5 of

the RD design that the threshold indicator is independent of the outcome condi-

tional on the treatment. Therefore, under Assumption M1, ψ1 = 0 and, as such, the

treatment effect of interest, RRT, is exp(ψ0).

The relationship between the RRT and the overall risk ratio, which we will refer to

as the causal risk ratio (CRR) is given below

E(Y 1|A = 1)

E(Y 0|A = 1)
=

E(Y 1|A = 1)

E(Y 0|A = 0)

E(Y 0|A = 0)

E(Y 0|A = 1)

RRT = CRR × SB.

SB represents the selection bias, where selection bias refers to when the expectation

of the counterfactual outcome for treated patients (E(Y 0|A = 1)) is not equal to

the expectation of the observed outcome of untreated patients (E(Y 0|A = 0)). This

occurs when there is no randomisation in treatment allocation and the treatment

groups are not exchangeable.

Therefore, the risk ratio for the treated includes both the causal risk ratio and the

effect due to selection bias. If there is no selection bias, the risk ratio for the treated

and causal risk ratio are equal. In an RD design, for patients that are close to

the threshold, we expect that patients above and below the threshold are similar in

terms of potential confounders and exchangeable, in which case, we should expect

that there is no selection bias.

The analytic expression of the RRT derived from MSMM was provided by Hernán
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and Robins (2006) and is presented below:

RRT = 1− E(Yi|Zi = 1)− E(Yi|Zi = 0)

E(Yi(1− Ai)|Zi = 1)− E(Yi(1− Ai)|Zi = 0)
. (4.2)

In practice, because of Assumption M2, generalised linear models with a log link

function are generally fitted to estimate the components of Equation 4.2. However,

since the outcome is binary, using a logit link function might be a more natural

approach because it ensures that estimates of probabilities are strictly between 0 and

1. It has been shown that fitting a logistic regression model leads to an estimate

that is similar to that obtained when fitting a log-linear model (Geneletti et al.,

2019).

Remark 4.2.2. For a binary treatment, the logit link in a logistic regression model

satisfies Assumption M2.

Proof. Assumption M2 implies that

logE(Y 1
i |Ai = a, Zi = z) and logE(Y 0

i |Ai = a, Zi = z) are both linear in a.

However, by fitting a logistic regression model, we have that

logE(Y 1
i |Ai = a, Zi = z)− log(1− E(Y 1

i |Ai = a, Zi = z)) and

logE(Y 0
i |Ai = a, Zi = z)− log(1− E(Y 0

i |Ai = a, Zi = z)) are linear in a.

That is,

logE(Y 1
i |Ai = a, Zi = z))− log(1− E(Y 1

i |Ai = a, Zi = z)) = α0 + α1a, and

logE(Y 0
i |Ai = a, Zi = z))− log(1− E(Y 0

i |Ai = a, Zi = z)) = β0 + β1a.

The task here is to check that logE(Y 1
i |Ai = a, Zi = z)) and logE(Y 0

i |Ai = a, Zi = z))

in the equations above can be expressed as linear function of a. We have that

E(Y 1
i |Ai = a, Zi = z) =

exp(α0 + α1a)

1 + exp(α + α1a)
and

E(Y 0
i |Ai = a, Zi = z) =

exp(β0 + β1a)

1 + exp(β0 + β1a)
.

71



Therefore,

logE(Y 1
i |Ai = a, Zi = z)) = α0 + α1a− log(1 + exp(α0 + α1a)) and

logE(Y 0
i |Ai = a, Zi = z)) = β0 + β1a− log(1 + exp(β0 + β1a))

This expressions above are non linear in a. However, for a ∈ {0, 1}, they can be

re-written in form of a linear function of a as follows:

logE(Y 1
i |Ai = a, Zi = z)) = α∗

0 + α∗
1a and

logE(Y 0
i |Ai = a, Zi = z)) = β∗

0 + β∗
1a

Where α∗
0 = α0 − log(1 + exp(α0)), α

∗
1 = α1 − log

(
1+exp(α0+α1)

1+exp(α0)

)
,

β∗
0 = β0 − log(1 + exp(β0)) and β

∗
1 = β1 − log

(
1+exp(β0+β1)
1+exp(β0)

)
.

Therefore, owing to Remark 4.2.2, for binary treatment, the logistic model satisfies

Assumption M2 of the MSMM.

A downside of the MSMM estimator is that the estimate could be negative, which is

counter-intuitive since a risk ratio should be strictly positive. Geneletti et al. (2019)

proposed a Bayesian method of estimating RRT by specifying a Gamma distribution

as the prior of RRT. Since the support of the Gamma distribution is non-negative,

this ensures that the estimate of the RRT will be non-negative. However, this

approach cannot be replicated in the non-Bayesian setting that we consider in this

chapter.

So far we have described two existing methods that can be used to estimate the risk

ratio in an RD design. We shall now describe a new method for estimating the risk

ratio based on the RD design assumptions that we stated in Chapter 2.

4.2.3 RD design method

In this section, we shall describe a new approach to estimate the risk ratio in a fuzzy

RD design. The Wald estimator has a desirable property that its estimate of the

risk ratio is always positive. However, the Wald estimator is not consistent when

the value of the treatment effect is large or the probability of the event of interest
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occurring is not small. The MSMM estimate requires additional assumptions in

order to estimate the risk ratio. Here, we propose a new alternative for risk ratio

estimation in an RD design based on the RD design assumptions stated in Chapter

2. The treatment effect of interest is the risk ratio at the threshold and is given

below:

lim
x→x0

E(Yi|Ai = 1, Xi = x)

E(Yi|Ai = 0, Xi = x)
(4.3)

For a fuzzy RD design, the components (numerator and denominator) of the ex-

pression in Equation 4.3 cannot be estimated directly (e.g from a logistic regression

model) owing to the potential effect of unobserved confounders, which might lead

to a biased estimate of the treatment effect. Rather, we will exploit the fact that

we have information about treatment allocation, that is based on the value of an

assignment variable and a pre-determined threshold, to derive an estimator of the

risk ratio in a fuzzy RD design. Using the assumptions of an RD design, we derive

the following estimator of the risk ratio:

RDD-RR =

1− lim
x→x0

E(Yi|Zi = 1, Xi = x)− E(Yi|Zi = 0, Xi = x)

E(Yi|Zi = 1, Xi = x)E(Ai|Zi = 0)− E(Yi|Zi = 0, Xi = x)E(Ai|Zi = 1)

Proof. The bandwidth is chosen such that the subjects included in the data are

balanced and exchangeable with respect to confounders.

Based on Assumption 4; Z is independent of confounders conditional on X, we can

obtain unbiased estimates of the following (the effect of Z on Y ):

lim
x→x0

E(Yi|Zi = z,Xi = x) for z ∈ {0, 1}

These can be obtained by fitting logistic regression models for patients above and

below the threshold.

For simplicity, we drop limx→x0 and X so that we have

lim
x→x0

E(Yi|Zi = 1, Xi = x) ≡E(Yi|Zi = 1) and

lim
x→x0

E(Yi|Zi = 0, Xi = x) ≡E(Yi|Zi = 0)
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Using the law of total probability:

E(Yi|Zi = 1) =E(E(Yi|Zi = 1)|Ai)

=E(Yi|Zi = 1, Ai = 1)P(Ai = 1|Zi = 1)

+E(Yi|Zi = 1, Ai = 0)P(Ai = 0|Zi = 1)

Applying Assumption 5 - Conditional independence of Y and Z:

E(Yi|Zi = 1) = E(Yi|Ai = 1)P(Ai = 1|Zi = 1) + E(Yi|Ai = 0)P(Ai = 0|Zi = 1)

(4.4)

Also,

E(Yi|Zi = 0) = E(Yi|Ai = 1)P(Ai = 1|Zi = 0) + E(Yi|Ai = 0)P(Ai = 0|Zi = 0)

(4.5)

Solving Equations 4.4 and 4.5 simultaneously yields

E(Yi|Ai = 1) =
E(Yi|Zi = 1)P(Ai = 0|Zi = 0)− E(Yi|Zi = 0)P(Ai = 0|Zi = 1)

P(Ai = 1|Zi = 1)− P(Ai = 1|Zi = 0)
(4.6)

E(Yi|Ai = 0) =
E(Yi|Zi = 0)P(Ai = 1|Zi = 1)− E(Yi|Zi = 1)P(Ai = 1|Zi = 0)

P(Ai = 1|Zi = 1)− P(Ai = 1|Zi = 0)
(4.7)

Therefore, the estimator for the risk ratio based on the RD design assumptions is

given in Equation 4.8 as the ratio of Equations 4.6 and 4.7

RDD-RR =
E(Yi|Zi = 1)P(Ai = 0|Zi = 0)− E(Yi|Zi = 0)P(Ai = 0|Zi = 1)

E(Yi|Zi = 0)P(Ai = 1|Zi = 1)− E(Yi|Zi = 1)P(Ai = 1|Zi = 0)
(4.8)

By substituting P(Ai = 0|Zi = z) = 1−P(Ai = 1|Zi = z) and inserting limx→x0 and

X, we have

RDD-RR =

1− lim
x→x0

E(Yi|Zi = 1, Xi = x)− E(Yi|Zi = 0, Xi = x)

E(Yi|Zi = 1, Xi = x)E(Ai|Zi = 0)− E(Yi|Zi = 0, Xi = x)E(Ai|Zi = 1)

(4.9)

Equation 4.9 is the estimator for risk ratio that we derived based on RD design
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assumptions. The performance of this estimator will be compared with the Wald

and MSMM estimators. In the next section, we shall describe the bootstrapping

approach that we use to estimate the variance of the three methods described above,

when fitting models.

4.2.4 Non-parametric bootstrap

So far, we have described three methods that can be used to estimate the risk ratio

in an RD design. Two are existing methods in the instrumental variable framework

that can be adapted to the RD design and the third one is a new approach that

we have proposed. In order to compare these three methods, it is also important to

measure the variability of the estimates from each method. We use a bootstrapping

approach to estimate the variance of the three methods of estimating the risk ratio

in an RD design.

Bootstrapping is a re-sampling technique that can be used to obtain the properties of

unknown population parameters (Efron, 1981). This is similar to the use of sampling

distributions to obtain the properties of the estimators of the population parame-

ters. In theory, sampling distributions are obtained by drawing all samples from

the population and calculating the estimates of interest from the samples drawn. In

reality, we usually have only one sample from the population. Therefore, bootstrap-

ping involves taking samples with replacement from the observed sample, where the

samples from the observed sample are known as bootstrap samples. The accuracy

of this approach largely depends on the assumption that the observed sample is

representative of the population (Berrar, 2019).

Given a dataset of size N from which we have computed the estimates of the causal

risk ratio using the methods described above, the steps taken to calculate the vari-

ance of the risk ratio estimates are outlined as follows (Efron and Tibshirani, 1993):

Step 1: Take a random sample (with replacement) of size N from the original

dataset.

Step 2: Calculate the Wald-RR, RDD-RDD and MSMM estimates of the risk

ratio from the bootstrap sample generated in Step 1.
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Step 3: Repeat Steps 1 and 2 B times to obtain B estimates of the risk ratio for

each of the three methods.

Step 4: The variance of the estimator is computed as the sample variance of B

estimates for each of the methods.

In this chapter, the focus is on the estimation of the causal risk ratio. However,

another popular treatment effect measure for a binary outcome is the odds ratio.

Next, we shall briefly discuss the odds ratio and why it might not be suitable for

treatment effect estimation in the context of an RD design.

4.3 Non collapsibility of odds ratio

The odds ratio is another measure that is used to estimate treatment effect for binary

outcomes. Consider a binary outcome variable Y and a treatment indicator A. In

addition, we define B as a variable that is associated with Y but is not a confounder,

that is, B is not associated with A. Without loss of generality, we assume that B is

a binary variable. We define the marginal odds ratio to be:

ORY A =
P(Y = 1|A = 1)

P(Y = 0|A = 1)

P(Y = 0|A = 0)

P(Y = 1|A = 0)
,

and the conditional odds ratio to be:

ORY A|B =
P(Y = 1|A = 1, B = b)

P(Y = 0|A = 1, B = b)

P(Y = 0|A = 0, B = b)

P(Y = 1|A = 0, B = b)
.

A measure is said to be collapsible if the marginal measure is a weighted average

of the conditional measures, conversely, a measure is non-collapsible if the marginal

measure is not a weighted average of the conditional measures (Hernán et al., 2011;

Huitfeldt et al., 2019). It has been established that the odds ratio is a non-collapsible

measure (Burgess, 2016), and we will illustrate a consequence of non-collapsibility of

the odds ratio using an example similar to one used in Greenland et al. (1999) of an

hypothetical population depicted in Table 4.1. We observe that the probability of

receiving treatment is 0.5 for the two levels of B, that is, A and B are not associated
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with each other, therefore, B is not a confounder. From Table 4.1, we observe that

the conditional odds ratio for the two levels of B are both equal 3.86. However,

despite the conditional odds ratios being equal, the marginal odds ratio is not equal

to 3.86. This is a consequence of the non-collapsibility of the odds ratio where

the marginal odds ratio not bounded by the conditional odds ratios. Typically, we

expect that the marginal measure is bounded by the conditional measures, however,

this intuition does not apply for non-collapsible measures.

Table 4.1: Example of non-collapsibility of the odds ratio

B = 1 B = 0 Marginal

A = 1 A = 0 A = 1 A = 0 A = 1 A = 0

Y = 1 90 70 30 10 120 80

Y = 0 10 30 70 90 80 120

P(Y = 1) 0.9 0.7 0.3 0.1 0.6 0.4

Odds ratio 3.86 3.86 2.25

While collapsibility is a desirable property, this is does not mean that non-collapsible

measures should be avoided. For a non-collabsible measure, like the odds ratio, the

marginal odds ratio and conditional odds ratio are measuring different quantities,

that is the marginal odds ratio is targeting the overall treatment effect while the

conditional odds ratio is targeting the treatment effect for a subgroup of the pop-

ulation. Therefore, neither the marginal nor the conditional measure is wrong, the

choice of which one to report simply depends on the research question. However, we

note that for a non-collapsible measure, it might be difficult to distinguish between

disparity due to non-collapsibity and disparity due to confounding bias when assess-

ing the performance of estimators. Therefore, in this thesis, we stick to estimating

the risk ratio because it is a collapsible measure (Burgess, 2016).

In the next section, we shall compare the performance of the three methods for

estimating the risk ratio; Wald-RR, MSMM and RDD-RR using simulation studies.

77



4.4 Simulation study

We have discussed three approaches for estimating the causal risk ratio in an RD

design which are

• the Wald-RR method,

• the multiplicative structural mean model (MSMM) and

• the RD design approach that we have derived: RDD-RR.

In this section, we will conduct simulation studies to evaluate the performance of

the three approaches and examine how the novel RDD-RR approach compares to

the Wald IV and MSMM methods. We compare the methods by varying the level

of fuzziness in the design and we also vary the degree of unobserved confounding.

A description of the simulation scenarios considered is given below.

4.4.1 Description of simulation study

The data simulation in this section were based on the real dataset on statin pre-

scription in the UK primary care that was described in Section 3.6. As such, we

use the original values of the risk scores as assignment variable in the simulated

data. We recall that the guideline for statin prescription states that statins should

be prescribed if a patient’s risk of developing CVD in 10 years is greater or equal to

20%, therefore, the threshold is set to be 20%.

For each patient i, i = 1, ..., 1384, we describe the steps of simulating the treatment

indicator and outcome variable as well as other variables as we will expect from a

fuzzy RD design.

Step 1: The centred assignment variable (Xc
i ) and threshold indicator (Zi) are

defined as:

Xc
i = Xi − 0.2,

Zi = 1(Xc
i ≥ 0).
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Step 2: A confounding variable Ui is simulated from a uniform distribution.

Ui ∼ Uniform(0, 1)

Step 3: We calculate pi, the probability of receiving the treatment from Equation

4.10:

logit(pi) = β0 + β1Zi + β2Ui + β3X
c
i (4.10)

The parameters of the equation above are set to reflect the level of fuzzi-

ness of the design and the effect of confounding with respect to the treat-

ment. The lower the value of β1, the more fuzzy the design. β2 reflects

effect of confounding, if β2 = 0, this indicates there is no relationship

between Ai and Ui and, therefore, no confounding.

Step 4: The treatment indicator (Ai) is simulated from a Bernoulli distribution

where pi is as given above:

Ai ∼ Bernoulli(pi).

Step 5: The expectation of the binary outcome Yi (p
y
i ) is calculated from

logit(pyi ) = β4 + β5Ai + β6Ui (4.11)

β5 reflects the treatment effect, the treatment effect (risk ratio) is calcu-

lated as

RR =

∫ 1

0
expit(β4 + β5 + β6ui)fU(ui)dui∫ 1

0
expit(β4 + β6ui)fU(ui)dui

,

where expit(x) = exp(x)
1+exp(x)

. β6 reflects the effect of confounding with respect

to the outcome. If β6 = 0, this implies there is no relationship between

Yi and Ui, which means Ui is not a confounder.

Step 6: The binary outcome (Yi) is then simulated from a Bernoulli distribution.

In our example, the outcome represents whether patient i experiences at

least a 1mmol/L reduction in LDL cholesterol level or not.

Yi ∼ Bernoulli(pyi ).
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Step 7: Steps 1 to 6 above are repeated 2000 times to produce 2000 datasets.

The values of the parameters of Equations 4.10 and 4.11 are defined as follows.

i. β0 is set so that the overall probability of receiving the treatment is 0.5. This

is in line with what was observed in the real dataset that will be described in

Section 4.5, later. The value of β0 is determined as the solution of the following

non-linear equation:

1

n

n∑
i=1

expit(β0 + β1Zi + β2Ui + β3X
c
i ) = 0.5.

ii. β3 = 2 to reflect the positive relationship between the treatment indicator and

assignment variable.

iii. β4 is set so that the overall P(Yi = 1) is 0.44. Again this value is in line with

what was observed from the real dataset that we will be discussing later.

Simulation Scenarios

Here, we describe the specified values for β1 and β2 in Equation 4.10 and β6 in

Equation 4.11. This simulation approach and choice of values of the parameters is

similar to the one used by Geneletti et al. (2015). In Table 4.2, the values of the

parameters are specified and there are six scenarios in total which represent varying

levels of fuzziness and levels of confounding in the simulated data.

For each of 2000 simulated datasets, we computed the correlation coefficient between

the confounder (U) and the treatment indicator, and between U and the outcome.

The average of the estimated correlation coefficients is reported in Table 4.2 as

ρA,U and ρY,U respectively. The values of the correlation coefficient give an insight

about the level of (linear) association between the confounder and the treatment

and the confounder and the outcome. For scenarios where there are no unobserved

confounders, the estimate of the correlation coefficient between the outcome and

the confounder is close to zero. For scenarios where the effect of the confounder is

low, the values of the correlation coefficient are slightly larger than when there are

no confounders. The correlations become higher when the effect of the unobserved

confounder is high.
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Likewise, we calculated the probability of complying to the treatment guideline,

that is, P(Ai = 1|Zi = 1) − P(Ai = 1|Zi = 0) for the 2000 simulated datasets in

each scenario. The average of the probabilities is reported as P.C. in Table 4.2.

We define this based on the level of fuzziness - if there is a high compliance to the

treatment guideline, the fuzziness is weak, and if the probability of compliance is

low then fuzziness is strong. The probability of compliance for the scenarios with

weak fuzziness is between 0.8 and 0.9 and for the strong fuzziness scenarios the

probability of compliance to the treatment guideline is around 0.53.

Table 4.2: Values of parameters in Equations 4.10 and 4.11 for the simulation scenarios
with the corresponding probability of compliance (P.C.) and estimates of correlation co-
efficients between Y and U (ρY,U ) and A and U (ρA,U )

Scenario Parameters P.C. ρY,U ρA,U

Weak Fuzziness, No Confounding β1 = 6 β2 = 0 β6 = 0 0.91 0.00 0.00

Weak Fuzziness, Low Confounding β1 = 8 β2 = 6.5 β6 = 1 0.90 0.16 0.12

Weak Fuzziness, High Confounding β1 = 8 β2 = −9 β6 = 2.5 0.81 0.29 -0.24

Strong Fuzziness, No Confounding β1 = 2 β2 = 0 β6 = 0 0.53 0.00 0.00

Strong Fuzziness, Low Confounding β1 = 2 β2 = 1.5 β6 = 1 0.52 0.16 0.15

Strong Fuzziness, High Confounding β1 = 2.5 β2 = −3.5 β6 = 2 0.53 0.21 -0.31

4.4.2 Results of simulation studies

In this section, we will now apply the three methods described for the estimation of

the risk ratio in an RD design to the datasets obtained from the simulation studies.

A sensitivity analysis was carried out using different bandwidths and, as such, we

considered four bandwidth sizes; 0.2, 0.15, 0.1 and 0.05. This is to check how the

estimates vary across different bandwidth sizes.

Figures 4.1 and 4.2 show boxplots of the estimates of the risk ratio obtained from

the simulation studies under the weak and strong fuzziness scenarios respectively.

The figures include the estimates for the four bandwidth sizes considered and for

the no, low and high confounding scenarios. Tables 4.3, 4.4 and 4.5 present the

numerical summaries of the results from the simulation studies under the no, low

and high confounding scenarios, respectively. Results are summarised using the

mean of the estimates, bias, empirical and average standard errors and the 95%
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coverage. Because the risk ratio is generally skewed, the numerical summaries given

in the tables are for the log of the risk ratio estimates.

Under the no confounding and weak fuzziness scenario, as presented in the left panel

of Table 4.3, we observed that the three methods yield estimates that are close to

true treatment effect value. Where the bandwidth is 0.2, the biases are the same

for the three methods, however, we observe that only for the RDD-RR approach

does the bias reduce as the bandwidth size becomes smaller, as we should expect

in the estimates. In addition, we observe that the MSMM approach seems to have

higher variability, looking at the ESE and ASE when compared to the RDD-RR

and WALD-RR approaches. In terms of 95% coverage, the three methods provide

a good coverage of the treatment effect.

For the no confounding and strong fuzziness scenario, in the right panel of Table

4.3, we observe a similar pattern to that to under the no confounding and weak

fuzziness scenario. The estimates obtained from the three approaches are close to

the true treatment effect and the biases of the RDD-RR approach reduce as the

bandwidth size reduces. However, we observed that the variability (ESE and ASE)

is higher under the strong fuzziness scenario compared to the weak fuzziness scenario.

This is not unexpected as the RD design is based on the relationship between the

threshold indicator and the treatment. The strong fuzziness scenario indicates a

weak relationship between the threshold indicator and treatment and as a result,

this leads to an increase in uncertainty in the estimates.

Also, under the strong fuzziness scenario, especially for the smaller bandwidths, the

coverage is above the nominal level of 95%, this may be because in these scenario,

the ASE is greater than the ESE. The ESE measures the standard deviation of the

estimates which approximates the correct standard error of the sampling variation of

the estimate. As a result, the ASE targets the ESE and therefore, in this example,

where the ASE is greater than than ESE, this implies an overestimation of the

standard error which in turn leads to coverage being above the nominal level.

Table 4.4 shows numerical summaries of estimates from the simulation studies con-

ducted under the low confounding scenario. The results obtained under this sce-

nario are similar to those observed under the no confounding scenario. Therefore,

82



the points made above are applicable to this scenario also. The fact that the results

obtained under the no confounding scenario are similar to those observed under the

low confounding scenario suggests that the performance of the three methods is not

overly affected by confounding. This suggests that the RD design may be useful

as a methodology for treatment effect estimation in an observational studies in the

presence of unobserved confounding.

Under the scenario where confounding is high, as shown in Table 4.5, the RDD-RR

and Wald-RR methods continue to produce unbiased estimates with coverage close

to the nominal level and are not affected by the presence of unobserved confounding.

However, the MSMM approach yields biased estimates and it continues to have a

higher variability resulting in a high coverage that is above the nominal value.

Looking at the results across the bandwidths, as expected, the variability of esti-

mates becomes larger as the bandwidth size reduces. This is because the number

of observations that is used to estimate the treatment effect becomes smaller as the

bandwidth size decreases. In terms of bias, we see that the bias observed in the

estimates from RDD-RR approach reduces as the bandwidth reduces which would

also be expected in an RD design. However, the bias of the MSMM and Wald-

RR approaches does not seem reduce with the bandwidth. This may be because

these methods were developed under the instrumental variable framework where

bandwidths are not considered as in an RD design.

From the simulation studies carried out, we observe that the three methods are

comparable in terms of estimating the treatment effect with little to no bias under the

no and low confounding scenarios. However, we observe that the MSMMmethod has

a higher variability compared to the other two methods which results in a coverage

higher than the nominal level. Also, it is observed that, under the high confounding

scenario, the MSMM method produced biased estimates of the treatment effect at

the threshold. In addition, the computational time of the MSMM approach is about

twice that of the RDD-RR and Wald-RR approaches. This suggests that the RDD-

RR and WALD-RR approaches should be preferred over the MSMM approaches.

From the results of the simulation studies, it seems that the proposed RDD-RR

approach and the Wald-RR approach are comparable. However, it has been noted
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that the Wald-RR approach is not consistent for the causal risk ratio when the

treatment effect is large. In order to check this, we carried out additional simulation

studies where the value of the true risk ratio is set to be 4, is considered to be a

large treatment effect.

Figures 4.3 and 4.4 are the boxplots of the estimates of the risk ratio under the weak

and strong fuzziness scenarios, respectively, when the risk ratio set to 4. Tables 4.6,

4.7 and 4.8 show numerical summaries of the estimates of the risk ratio under the

no, low and high confounding scenarios, respectively, when the risk ratio is set to 4.

Under the weak fuzziness scenarios, examining Figure 4.3 and the left panels of

Tables 4.6, 4.7 and 4.8, we observe that the WALD-RR approach yields biased esti-

mates of the treatment effect. On the other hand, the RDD-RR approach continues

to yield estimates close the true treatment effect and its coverage is close to the

nominal value. This is a confirmation of the claim that the WALD-RR method

performs poorly when the treatment effect is high and we observed that estimates

obtained from the WALD-RR approach do not accurately estimate the true treat-

ment effect. On the other hand, the RDD-RR approach estimates are unbiased for

the weak scenario across the bandwidths considered.

When the level of fuzziness is strong, we observe that both the RDD-RR and WALD-

RR approaches yield biased estimates of the treatment effect. We note, however, that

the RDD-RR approach still has a lower bias, in general, and it continues to provide

better coverage of the treatment effect compared to the WALD-RR approach. As

such, the RDD-RR approach performs better than the WALD-RR approach and

should be preferred over the WALD-RR approach.

Based on the results that we have obtained from the simulation studies, the proposed

RDD-RR approach appears to be a suitable estimator of the risk ratio in an RD

design. It produces estimates close to the value of the true treatment effect under

the no, low and high confounding scenarios which is a desirable characteristic for a

method to estimate treatment effect in an observational study data may be subject

to unobserved confounding.

We have compared the three methods for estimating risk ratio in a fuzzy RD design

using simulation studies. In the next section, we shall apply the three methods to a
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real dataset on the prescription of statins in UK primary care.

Table 4.3: Estimates, biases, empirical standard errors, average standard errors and 95%
coverage for the log of the risk ratio under the no confounding scenario. The true value
of the log of the risk ratio is log(1.5) = 0.405. The sample size is 1384 in each simulated
dataset and simulations were repeated 2000 times.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405

RDD-RR 0.40 0.01 0.13 0.13 94.9 0.38 0.02 0.19 0.20 96.2

MSMM 0.41 -0.01 0.15 0.15 95.6 0.42 -0.02 0.22 0.24 97.2

Wald-RR 0.41 -0.01 0.14 0.14 94.8 0.39 0.02 0.20 0.20 95.7

Bandwidth = 0.15 , Treatment effect = 0.405

RDD-RR 0.40 0.01 0.14 0.14 95.0 0.38 0.02 0.20 0.20 95.8

MSMM 0.41 -0.01 0.15 0.16 95.9 0.42 -0.01 0.23 0.25 97.1

Wald-RR 0.41 -0.01 0.15 0.15 95.2 0.39 0.02 0.20 0.20 95.4

Bandwidth = 0.1 , Treatment effect = 0.405

RDD-RR 0.40 0.00 0.16 0.16 95.2 0.39 0.02 0.23 0.24 96.2

MSMM 0.41 -0.01 0.18 0.18 96.3 0.42 -0.02 0.26 0.30 97.6

Wald-RR 0.42 -0.01 0.17 0.17 95.0 0.40 0.01 0.23 0.24 95.5

Bandwidth = 0.05 , Treatment effect = 0.405

RDD-RR 0.41 0.00 0.22 0.22 95.5 0.40 0.01 0.31 0.34 98.2

MSMM 0.43 -0.02 0.25 0.26 97.0 0.44 -0.03 0.38 0.44 98.1

Wald-RR 0.42 -0.02 0.23 0.23 95.4 0.40 0.00 0.32 0.33 96.7
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Table 4.4: Estimates, biases, empirical standard errors, average standard errors and 95%
coverage for the log of the risk ratio under the low confounding scenario. The true value
of the log of the risk ratio is log(1.5) = 0.405. The sample size is 1384 in each simulated
dataset and simulations were repeated 2000 times.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405

RDD-RR 0.40 0.00 0.13 0.13 95.5 0.38 0.03 0.20 0.20 95.2

MSMM 0.40 0.01 0.14 0.14 95.3 0.41 -0.01 0.23 0.24 96.8

Wald-RR 0.41 -0.01 0.14 0.14 95.5 0.38 0.02 0.20 0.20 94.7

Bandwidth = 0.15 , Treatment effect = 0.405

RDD-RR 0.40 0.00 0.14 0.14 95.6 0.38 0.02 0.21 0.21 95.3

MSMM 0.40 0.01 0.14 0.15 95.7 0.41 -0.01 0.24 0.25 96.5

Wald-RR 0.41 -0.01 0.14 0.15 96.0 0.39 0.02 0.21 0.21 94.8

Bandwidth = 0.1 , Treatment effect = 0.405

RDD-RR 0.40 0.00 0.15 0.16 95.9 0.39 0.02 0.24 0.24 95.7

MSMM 0.40 0.00 0.16 0.17 96.1 0.42 -0.01 0.28 0.30 97.1

Wald-RR 0.42 -0.01 0.16 0.17 95.9 0.39 0.01 0.24 0.24 94.6

Bandwidth = 0.05 , Treatment effect = 0.405

RDD-RR 0.40 0.00 0.22 0.22 95.0 0.40 0.01 0.33 0.35 98.2

MSMM 0.41 0.00 0.23 0.24 96.3 0.44 -0.03 0.40 0.46 98.5

Wald-RR 0.42 -0.02 0.23 0.23 94.9 0.40 0.00 0.33 0.34 96.2
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Figure 4.1: Boxplots of the simulation study estimates to compare the RDD-RR,
MSMM and Wald-RR methods of estimating the risk ratio under weak fuzziness
scenario. The red dashed line denotes the true treatment effect. The central line and
limit of the boxplots represent the median and inter-quartile range of the estimates
respectively.
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Figure 4.2: Boxplots of the simulation study estimates to compare the RDD-RR,
MSMM and Wald-RR methods of estimating the risk ratio under strong fuzziness
scenario. The red dashes line denotes the true treatment effect. The central line and
limit of the boxplots represent the median and inter-quartile range of the estimates
respectively.
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Table 4.5: Estimates, biases, empirical standard errors, average standard errors and 95%
coverage for the log of the risk ratio under the high confounding scenario. The true value
of the log of the risk ratio is log(1.5) = 0.405. The sample size is 1384 in each simulated
dataset and simulations were repeated 2000 times.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405

RDD-RR 0.40 0.01 0.14 0.14 94.3 0.39 0.02 0.21 0.21 95.3

MSMM 0.45 -0.05 0.17 0.17 96.5 0.44 -0.04 0.27 0.29 97.5

Wald-RR 0.41 -0.01 0.14 0.14 94.5 0.39 0.02 0.21 0.21 94.7

Bandwidth = 0.15 , Treatment effect = 0.405

RDD-RR 0.40 0.00 0.14 0.14 94.5 0.39 0.02 0.22 0.22 96.0

MSMM 0.45 -0.05 0.18 0.18 96.7 0.44 -0.04 0.28 0.30 97.9

Wald-RR 0.41 -0.01 0.15 0.15 94.5 0.39 0.01 0.22 0.22 95.2

Bandwidth = 0.1 , Treatment effect = 0.405

RDD-RR 0.40 0.00 0.16 0.16 95.7 0.39 0.01 0.25 0.26 97.0

MSMM 0.46 -0.05 0.20 0.21 97.8 0.45 -0.04 0.31 0.36 98.3

Wald-RR 0.42 -0.01 0.17 0.17 95.8 0.40 0.01 0.25 0.26 96.0

Bandwidth = 0.05 , Treatment effect = 0.405

RDD-RR 0.41 0.00 0.22 0.22 95.6 0.41 0.00 0.35 0.38 98.6

MSMM 0.47 -0.07 0.28 0.31 97.9 0.47 -0.06 0.44 0.53 98.9

Wald-RR 0.42 -0.02 0.23 0.23 95.5 0.41 -0.01 0.35 0.36 96.2
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Figure 4.3: Boxplots the simulation study estimates to compare the RDD-RR and
Wald-RR methods of estimating the risk under weak fuzziness scenario for large
treatment effect. The red dashed line denotes the true treatment effect. The central
line and limit of the boxplots represent the median and inter-quartile range of the
estimates respectively.
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Figure 4.4: Boxplots of the simulation study estimates to compare the RDD-RR and
Wald-RR methods of estimating the risk under strong fuzziness scenario for large
treatment effect. The red dashed line denotes the true treatment effect. The central
line and limit of the boxplots represent the median and inter-quartile range of the
estimates respectively.
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Table 4.6: Estimates, biases, empirical standard errors, average standard errors and 95%
coverage for the log of the risk ratio under the no confounding scenario for large treatment
effect. The true value of the log of the risk ratio is log(4) = 1.387. The sample size is 1384
in each simulated dataset and simulations were repeated 2000 times.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth = 0.2 , Treatment effect = 1.387

RDD-RR 1.38 0.01 0.18 0.18 94.2 1.30 0.09 0.27 0.27 91.8

WALD-RR 1.50 -0.11 0.21 0.20 92.9 1.27 0.12 0.23 0.23 90.6

Bandwidth = 0.15 , Treatment effect = 1.387

RDD-RR 1.38 0.00 0.18 0.18 94.3 1.30 0.09 0.27 0.28 92.7

WALD-RR 1.50 -0.11 0.21 0.21 92.2 1.27 0.11 0.24 0.24 91.4

Bandwidth = 0.1 , Treatment effect = 1.387

RDD-RR 1.39 0.00 0.21 0.20 94.5 1.32 0.07 0.31 0.33 93.4

WALD-RR 1.51 -0.13 0.24 0.24 93.0 1.29 0.10 0.27 0.27 92.6

Bandwidth = 0.05 , Treatment effect = 1.387

RDD-RR 1.41 -0.02 0.29 0.29 95.0 1.37 0.01 0.47 0.50 94.5

WALD-RR 1.54 -0.15 0.34 0.33 94.5 1.32 0.06 0.38 0.38 94.0
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Table 4.7: Estimates, biases, empirical standard errors, average standard errors and 95%
coverage for the log of the risk ratio under the low confounding scenario for large treatment
effect. The true value of the log of the risk ratio is log(4) = 1.387. The sample size is 1384
in each simulated dataset and simulations were repeated 2000 times.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth = 0.2 , Treatment effect = 1.387

RDD-RR 1.38 0.01 0.18 0.18 94.7 1.29 0.10 0.27 0.28 91.8

WALD-RR 1.50 -0.11 0.20 0.20 93.0 1.25 0.13 0.23 0.23 89.7

Bandwidth = 0.15 , Treatment effect = 1.387

RDD-RR 1.38 0.00 0.18 0.18 94.9 1.29 0.10 0.27 0.29 92.6

WALD-RR 1.50 -0.11 0.21 0.21 93.6 1.26 0.13 0.23 0.24 90.5

Bandwidth = 0.1 , Treatment effect = 1.387

RDD-RR 1.39 0.00 0.20 0.20 95.0 1.32 0.07 0.32 0.34 94.1

WALD-RR 1.51 -0.12 0.23 0.23 93.8 1.28 0.11 0.27 0.28 93.1

Bandwidth = 0.05 , Treatment effect = 1.387

RDD-RR 1.40 -0.01 0.28 0.29 95.7 1.39 -0.01 0.51 0.52 94.2

WALD-RR 1.52 -0.14 0.32 0.33 96.0 1.32 0.06 0.39 0.39 94.0
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Table 4.8: Estimates, biases, empirical standard errors, average standard errors and
95% coverage for the log of the risk ratio under the high confounding scenario for large
treatment effect. The true value of the log of the risk ratio is log(4) = 1.387. The sample
size is 1384 in each simulated dataset and simulations were repeated 2000 times.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth = 0.2 , Treatment effect = 1.387

RDD-RR 1.38 0.01 0.18 0.18 95.4 1.33 0.06 0.29 0.32 94.1

WALD-RR 1.49 -0.10 0.20 0.21 94.2 1.28 0.11 0.24 0.25 92.6

Bandwidth = 0.15 , Treatment effect = 1.387

RDD-RR 1.38 0.01 0.18 0.18 95.8 1.33 0.05 0.30 0.32 94.3

WALD-RR 1.49 -0.11 0.20 0.21 94.3 1.28 0.11 0.25 0.25 92.6

Bandwidth = 0.1 , Treatment effect = 1.387

RDD-RR 1.38 0.00 0.21 0.21 95.1 1.36 0.02 0.36 0.39 95.2

WALD-RR 1.50 -0.11 0.24 0.24 93.9 1.30 0.09 0.29 0.29 94.0

Bandwidth = 0.05 , Treatment effect = 1.387

RDD-RR 1.39 -0.01 0.29 0.29 95.0 1.45 -0.06 0.56 0.57 94.9

WALD-RR 1.51 -0.12 0.33 0.33 95.2 1.35 0.04 0.41 0.42 95.3
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4.5 Example: Prescription of Statins in UK Pri-

mary Care

In this section, the three methods for estimating the risk ratio in a fuzzy RD design

that we have described in Sections 4.2.1, 4.2.2 and 4.2.3 are applied to the real

dataset on statin prescription that was introduced in Section 3.6.

The dataset consists of 1384 male patients who are non-diabetic and non-smokers.

From the data, information on patients’ risk of developing CVD in 10 years (X),

treatment status (A), initial low density lipoprotein (LDL) cholesterol level and

LDL cholesterol level after treatment allocation are obtained. According to the

NICE guideline, the threshold x0 is set to be 0.2. Therefore, the centred assignment

variable is calculated as Xc = X − 0.2, and the threshold indicator (Z) is computed

using the usual formula.

A 1mmol/L reduction in LDL cholesterol level has been linked to a reduction in

major cardiovascular events (Cholesterol Treatment Trialists’ (CTT) Collaborators

et al., 2012). As a result, we define a binary outcome variable as the indicator

function that takes the value 1 if the LDL cholesterol level is reduced by at least

1mmol/L and 0 if otherwise. The initial measurement of the LDL cholesterol level

was taken at the time the risk score was computed. The final LDL cholesterol level

was measured about 6 weeks after statin prescription (for treated patients) and for

untreated patients, within 6 weeks after the initial measurement was taken. We aim

to estimate the effect (risk ratio) of statin prescription in reducing LDL cholesterol

level by at least 1mmol/L.

Out of the 1384 patients, 657 (49%) patients experienced an LDL cholesterol level

reduction of at least 1mmol/L. Figure 4.5 shows a plot of the outcome against the

assignment variable and we observe that the probability of experiencing a reduc-

tion of at least 1mmol/L in the LDL cholesterol level is lower in patients below

the threshold compared to patients above the threshold which suggests a possible

beneficial effect of statin prescription.

WALD-RR, MSMM and RDD-RR methods are applied to the THIN dataset de-

scribed above to estimate the risk ratio. Table 4.9 shows the estimates of the risk
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Figure 4.5: Plot of the probability of altleast 1mmol/L reduction in LDL cholesterol
level against the risk of developing CVD in 10 years. The black crosses are the
expected probabilities calculated in bins.

ratio obtained from the three methods along with the corresponding 95% confidence

intervals. As observed in the simulation studies, the MSMM approach yields esti-

mates that have a higher variability compared to those from the other two methods.

For bandwidths 0.2, 0.15 and 0.1, the estimates of the risk ratio are greater than

one, which suggests patients that receive statins are more likely to have their LDL

cholesterol level reduced by at least 1mmol/L compared to patients that did not re-

ceive statins. However, for all bandwidths, the treatment effects are not statistically

significant (at the 5% level) as all 95% confidence intervals contain 1.

We note that for a bandwidth of 0.05, the treatment effect estimate is lower than

1. Owing to the varying values of the treatment effect across the bandwidths, we

should be cautious in interpreting the estimates. However, since for all bandwidths,

the 95% confidence intervals contain 1, this implies that there is insufficient evidence

to suggest that statin prescription reduces LDL cholesterol level by at least 1mmol/L.

In addition, we note that the outcome here is originally a continuous outcome that

was categorised, this is generally not advised because dichotomising a continuous

variable may lead to a loss of information (Altman and Royston, 2006). Therefore,
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the analyses in this section are to illustrate how WALD-RR, MSMM and RDD-RR

methods can be applied to a real dataset.

Table 4.9: Estimates of the effect of statins prescription on reduction of LDL choles-
terol level.

Method Risk ratio 95% CI

Bandwidth = 0.2; N = 1368

RDD-RR 1.43 0.91, 2.23

MSMM 2.43 0.92, 6.41

Wald-RR 1.43 0.91, 2.25

Bandwidth = 0.15; N = 1307

RDD-RR 1.26 0.79, 2.00

MSMM 1.81 0.52, 6.31

Wald-RR 1.26 0.79, 2.01

Bandwidth = 0.1; N = 1101

RDD-RR 1.17 0.65, 2.11

MSMM 1.51 0.32, 7.18

Wald-RR 1.17 0.65, 2.10

Bandwidth = 0.05; N = 676

RDD-RR 0.71 0.24, 2.08

MSMM 0.38 0.04, 3.78

Wald-RR 0.72 0.29, 1.80

Figure 4.6 is the plot of the fitted models with the outcome (experiencing an at least

1 mmol/L reduction in LDL cholesterol level) as response and assignment variable

as predictor across the four bandwidths considered. We observe that the fitted lines

reflect the results we have in Table 4.9 because for bandwidths 0.2, 0.15 and 0.1,

the probability of experiencing an at least 1mmol/L reduction in LDL cholesterol

level is higher in the patients above the threshold compared to patients below the

threshold. However, the reverse is the case for bandwidth 0.05.

97



−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth =  0.2

10−year CVD risk scoreP
ro

ba
bi

lit
y 

of
 1

m
m

ol
/L

 r
ed

uc
tio

n 
in

 L
D

L

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth =  0.15

10−year CVD risk scoreP
ro

ba
bi

lit
y 

of
 1

m
m

ol
/L

 r
ed

uc
tio

n 
in

 L
D

L

−0.10 −0.05 0.00 0.05 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth =  0.1

10−year CVD risk scoreP
ro

ba
bi

lit
y 

of
 1

m
m

ol
/L

 r
ed

uc
tio

n 
in

 L
D

L

−0.04 −0.02 0.00 0.02 0.04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth =  0.05

10−year CVD risk scoreP
ro

ba
bi

lit
y 

of
 1

m
m

ol
/L

 r
ed

uc
tio

n 
in

 L
D

L

Figure 4.6: Fitted lines for models with the outcome (experiencing an at least 1
mmol/L reduction in LDL cholesterol level) as response and assignment variable as
predictor across the bandwidths

4.6 Conclusions

In this chapter, we have explored methods for estimating the risk ratio in an RD

design where the outcome of interest is binary. First, we discussed the Wald and

MSMM approaches, which are methods originally developed in the instrumental

variable framework but can be adapted for use in an RD design. In addition, we

proposed the RDD-RR estimator for the risk ratio based on the assumptions of the

RD design.

We carried out simulation studies to compare these three methods. Under no and

low confounding scenarios, the three methods are comparable; they produce esti-

mates close to the true treatment effect and yield a good coverage of the treatment

effect. However, the estimates of MSMM approach are noted to have higher vari-

ability compared to estimates from the WALD-RR and RDD-RR approaches. When

the effect of unobserved confounding is high, the MSMM approach yields biased es-

timates of the treatment effect, however, the WALD-RR and RDD-RR approaches

continue to yield unbiased estimates of the treatment effect.
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We investigated the performance of the WALD-RR and RDD-RR approaches when

the treatment effect is large, as it has been noted in literature that the WALD-RR

approach is not consistent for the risk ratio for a large treatment effect. The results

of the simulation studies confirm this claim.

Overall, the proposed RDD-RR method seems to be preferable for estimating the

risk ratio in a fuzzy RD design compared to the other two methods.

We have explored the methods of estimating treatment effect in a fuzzy RD design

for continuous and binary outcomes. A time-to-event outcome is another outcome

that is often of interest in medical studies and, in the next chapter, we shall explore

treatment effect estimation for a time-to-event outcome in a fuzzy RD design.
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Chapter 5

Treatment effect estimation for time-
to-event data under the accelerated
failure time assumption.

In the previous chapters, we have investigated the use of RD design for cases where

the outcomes of interest are continuous (non-time-to-event) and binary. In this

chapter, we explore the use of RD design for time-to-event outcomes. We propose a

method for treatment effect estimation in a fuzzy RD design under the accelerated

failure time (AFT) assumption for a time-to-event outcome. This method will then

be compared to the structural AFT approach (Hernán et al., 2005), an approach

that has been routinely used to estimate the treatment effect in observational studies

under the AFT assumption.

5.1 Introduction

An outcome of interest is said to be a time-to-event or survival outcome if it repre-

sents the time it takes until an event of interest occurs in an individual. For example,

in a study that involves cancer patients, the outcome could be the time to death;

or, perhaps, the time until pain relief in a study of a pain-relieving medication.

The time-to-event is measured from a pre-defined time origin for all patients, for

instance, the time at which patients are enrolled into a study.

A time-to-event outcome is non-negative and usually exhibits right skewness as

depicted in the histogram (plotted from a simulated data) in Figure 5.1 (a). Another

important feature of time-to-event data is that the actual time of the event may not

be observed for some patients. It might be that some patients have not experienced
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the event of interest at the end of the study. For such patients, we may only know

that they might experience the event at a time beyond the time when study ended.

In addition, some patients may drop out of a study before they experienced the

event for various reasons. Again, for these patients, we are able to observe the

time at which a patient dropped out of the study and that the patient perhaps

experiences the event of interest at a later unknown point in time. This is known

as right censoring.

Figure 5.1 (b) depicts the observed time-to-event in a study that ends at a hypothet-

ical time point 20. Therefore, the observed time-to-event, as opposed to the actual

time-to-event, for any patient that has not experienced the event at the end of the

study will be 20. As depicted in Figure 5.1, the mean of the observed time-to-event

gives a biased estimate of the measure of location of the time-to-event, whereas, the

medians of the actual and observed outcomes are equal. As a result, for a time-to-

event outcome, distributional quantiles (such as median) may be more interpretable

and are often used for description or comparison of time-to-event outcomes. Be-

cause of these characteristics (skewness and censoring) of time-to-event outcomes,

standard statistical inference and estimation approaches are not usually appropri-

ate. Non-parametric, semi-parametric and parametric methods have been developed

to handle the characteristics of time-to-event data (Kalbfleisch and Prentice, 2002;

Collett, 2003).
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Figure 5.1: Histogram for (a) Actual time-to-event and (b) Observed time-to-event
where there is administrative censoring after time point 20.
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Suppose we have a population of N patients, we define Ti as the actual time that

patient i, (i = 1, . . . , N), experienced the event of interest. If patient i is right

censored, the right censoring time is represented by Ci. Since right censoring implies

that the event of interest has not yet occurred and might occur at a later time, that

is, Ci < Ti, the observed time-to-event is defined as T ∗
i = min{Ti, Ci} which will be

equal to Ti if patient i experiences the event and Ci if patient i is right censored.

Finally, we define δi = 1(Ti < Ci) as the event indicator which takes value 1 if

patient i experienced the event and 0 if patient i is right censored.

The outcome (time-to-event) is a random variable, and so, it has an associated

probability density function f(t) and cumulative distribution function F (t) = P(T <

t) =
∫ t

0
f(u)du. Similarly, the following functions of the time-to-event outcome can

be defined

• Survivor function S(t) = P(T ≥ t) = 1−F (t), is the probability that a patient

will experience the event after some time t.

• The hazard rate is the instantaneous rate of experiencing the event of interest

and is defined as h(t) = limδt↓0
1
δt
P(t ≤ T < t+ δt|T ≥ t).

• The cumulative hazard is defined as H(t) =
∫ t

0
h(u)du.

The following relationships exist between these functions and are useful in estima-

tion:

• S(t) = exp(−H(t))

• h(t) = − d
dt
logS(t)

• H(t) = −log(S(t))

• f(t) = h(t)S(t).

In this chapter, we focus on treatment effect estimation where the outcome of in-

terest is time-to-event and the treatment assignment can be linked to the value of a

continuous assignment variable and a pre-defined threshold value as we have in an

RD design.
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For a sharp RD design, treatment effect estimation can be fairly straightforward and

is usually done by comparing the outcomes between groups above and below the

threshold. The comparison can be based on a hazard ratio or acceleration factor (or

other appropriate measures) that are estimated from parametric or semi-parametric

survival models (Collett, 2003). However, where there is only partial adherence to

the rule, as we have in a fuzzy RD design, it becomes more complicated to estimate

the treatment effect as method under a sharp design results will give an estimate

that is analogous to the intention to treat estimate in a randomised controlled trial

with non-compliance, which may be biased for the true treatment effect.

Treatment effect estimation in an RD design when the outcome is a time-to-event

has not been widely examined in the literature. The first instance where we see

this is in Bor et al. (2014), where the authors investigated the effect of anti-retro

viral treatment (ART) on the survivor experience of HIV patients. Patients with

CD4 count below 200µL are eligible for ART, therefore, in their study, CD4 count

is the assignment variable with the threshold set to 200µL. They fitted a Cox pro-

portional hazard model to compare patients just below the threshold and patients

just above the threshold. The result of the analysis showed that patients just below

the threshold have a lower hazard of death compared to patients just above the

threshold. The hazard ratio estimate described above would be the treatment effect

in a sharp RD design. Bor et al. (2014) provided an extension on how to estimate

the hazard ratio for a fuzzy design, but the extension relies on the assumption that

the event of interest is rare. Therefore, this method will not be applicable in all

cases. Cho et al. (2019) proposed an approach to a estimate treatment effect in

a fuzzy RD design for right censored data. In their work, censoring was handled

using the censoring unbiased transformation approach which is not readily available

in standard statistical software, and this makes the method difficult to implement

in many clinical settings.

In this chapter, the aim is to develop a methodology for treatment effect estima-

tion in a fuzzy RD design where the outcome is time-to-event under the accelerated

failure time (AFT) assumption that can be implemented in standard statistical

software. We propose a modification of the LATE estimator that is used to esti-

mate the treatment effect for a continuous outcome (Imbens and Lemieux, 2007;
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O’Keeffe and Baio, 2016) in a fuzzy RD design. In addition, we compare the pro-

posed methodology to the structural models framework in survival analysis, which is

a well established method for estimating a treatment effect in observational studies

(Hernán and Robins, 2006; Didelez et al., 2010; Clarke and Windmeijer, 2010).

5.2 Assumptions

As mentioned in Chapter 2, when the outcome is a time-to-event, additional as-

sumptions are necessary for the identification of a treatment effect in an RD design.

Assumptions 1, 2, 4, 5 and 6 as stated in Section 2.2 are required with no modifica-

tion. In addition to these five assumptions, we present these two assumptions.

T1 We present a modification of Assumption 3:

f(t|X = x, Z,A = a) is continuous at x = x0 for a = 0, 1.

This modification of Assumption 3 is necessary because the interest here is

no longer only the expectation of the outcome at the threshold, rather other

properties of the time-to-event, such as hazard, median survival time etc are

also of interest.

T2 Censoring is non-informative. We assume the reason for censoring is unrelated

to the event of interest.

5.3 Accelerated failure time assumption

Below, we describe two common models that can be used for modelling a time-to-

event outcome and explain why we take we take an accelerated failure time approach

for the modelling of time-to-event outcomes in RD design.

Proportional hazards (PH) model: This is the most commonly used model for a time-

to-event outcome. The PH model assumes that the hazard rate of the treated group

is proportional to the hazard rate of the untreated group: h(t|A = 1) = θ h(t|A = 0),
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where θ is the treatment effect known as the hazard ratio. The effect of the treatment

is modelled through the hazard ratio, therefore, the proportional hazards model can

be written as h(t) = exp(Aα)h0(t), where θ = exp(α)

Accelerated failure time (AFT) model: This model assumes that the time-to-event

in the treated group is accelerated (or decelerated) by a constant compared to the

time-to-event in the untreated group, that is,

S(t|A = 1) = S(ϕ−1t|A = 0),

with ϕ being the treatment effect and it is known as an acceleration factor. If the

acceleration factor is greater than 1, it implies a beneficial effect of the treatment,

that is the time-to-event in the treated group is higher than the time-to-event in the

untreated group. Likewise, an acceleration factor value less than 1 implies that the

time-to-event in the treated group is lower compared to the untreated group. The

assumption of the AFT model can be rewritten as

P(T > t|A = 1) = P(ϕT > t|A = 0).

As such, the AFT assumption implies that T1 and ϕT0 have the same distribu-

tion, where Ta, a ∈ {0, 1} represents the time-to-event for a patient that receives

treatment a. Therefore, the times-to-event in the two groups can be expressed as

T1 = ϕT0. As a result, a log-linear model can be fitted for the survival time,

T = exp(Aβ)T0,

and β expresses the effect of the treatment on the log of the survival time and the

acceleration factor is ϕ = exp(β).

It has been shown that the hazard ratio is a non-collapsible measure (Sjölander et al.,

2016). We recall that a measure is non-collapsible if the marginal measure is not a

weighted average of the conditional measures, which implies that conditioning on a

covariate related to the outcome, even if it is unrelated to the treatment, changes the

size of the hazard ratio. This can make it difficult to assess the performance of an

estimator of the causal hazard ratio. However, the acceleration factor is a collapsible

measure (see Remark 5.3.1 below) and as a result, we focus on the estimation of the
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acceleration factor in a fuzzy RD design.

Remark 5.3.1. The acceleration factor is a collapsible measure.

Proof. We define a variable B that is associated with the outcome only, that is, B

is not a confounder. The log linear model with A (the treatment indicator) and B

as the covariates is given as

log(Ti) = β1Ai + β2Bi + ϵ, i = 1, . . . n.

From the Equation above, exp(β1) is the effect of A (the acceleration factor) on the

outcome conditional B.

We now derive the marginal effect of A by marginalising over B. Without loss of

generality, we assume B is a continuous random variable.

Ti = exp(β1Ai + β2Bi + ϵ)

E(Ti|Ai, Bi) = exp(β1Ai + β2Bi)E(exp(ϵi))

E(Ti|Ai) =

∫
b

exp(β1Ai + β2Bi)E(exp(ϵi))fB(bi)dbi

= exp(β1Ai)E(exp(ϵi))
∫
b

exp(β2Bi)fB(bi)dbi

= exp(β1Ai)E(exp(ϵ∗i )),

where ϵ∗i = β2Bi+ ϵi and because Ai⊥⊥ ϵ∗i , exp(β1) is the marginal effect of A on the

outcome. Since we have shown that the marginal and conditional effects coincide,

this implies that the acceleration factor is a collapsible measure.

We focus on the estimation of the acceleration factor in an RD design and, we

shall consider a Weibull parametric AFT model. In practice, other distributions

such as a log-normal or log-logistic distribution could be fitted and an optimality

criterion based on the model residuals, such as the R2, might be used to select the

distribution that best fits an observed set of data (Chan et al., 2018). Alternatively,

semi parametric AFT models have been developed (Wei, 1992; Buckley and James,

1979) and these could be considered.
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The AFT assumption can be represented using a log linear model as follows

log(Ti) = xT
i β + ϵi. (5.1)

Here, ϵi represents the log of the event time for patients with xi = 0, where xi is a

vector of covariates. The model defined in Equation 5.1 is generally used in semi-

parametric estimation because, when the distribution of ϵi is not specified, only β

can be estimated.

However, in parametric estimation, when the distribution of ϵi is specified, ϵi can

be rewritten in terms of its location and scale parameters and as a linear function

of another variable Wi; ϵi = µ + σWi. Here, µ and σ are the location and scale

parameters of ϵi respectively. Therefore, Equation 5.1 can be re-written to include

an intercept term, as presented in Equation 5.2 below:

log(Ti) = µ+ xT
i β + σWi (5.2)

Estimation is usually done using a maximum likelihood approach and the likelihood

function is given by

L(β, σ, µ|t, δ) =
∏
i

f(ti)
δiS(ti)

1−δi .

This can be expressed in terms of the density and survivor function of W as

L(β, σ, µ|t, δ) =
∏
i

(σti)
−δifW (wi)

δiSW (wi)
1−δi , (5.3)

where wi = {log(ti)− µ− xT
i β}/σ.

We will now describe how the likelihood function for the Weibull AFT model is

derived.

5.3.1 Weibull Parametric AFT model

In this thesis, we consider the use of a parametric AFT Weibull model. As such,

we re-parameterize the Weibull distribution so that the form of the model shown in

Equation 5.2 may be applied.
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The baseline hazard function for a time-to-event variable that follows a Weibull

distribution with scale parameter λ and shape parameter k (T ∼ Weibull(λ, k)) is

given as: h0(t) = λktk−1. Using this, we can derive expressions for the corresponding

cumulative hazard, survivor and density functions as follows

H0(t) = λtk;

S0(t) = exp (−λtk);

f0(t) = λktk−1 exp (−λtk).

Now, we let ϵ = log(t0), where t0 represents the time-to-event for patients with

x = 0, as defined in Equation 5.1, ϵ has a Gumbel distribution with density function,

expectation and variance given as:

fϵ(ϵ) = λk exp{−λ(eϵk − ϵk)}, −∞ < ϵ <∞

E(ϵ) = − log(λ)

k
− γ

k
,

where γ =

∫ ∞

0

log(t) exp(−t)dt is the Euler-Mascheroni constant,

Var(ϵ) =
π2

6k2
.

Comparing the expressions for expectation and variance of ϵ from the equations

above with the expectation and variance of the error term in Equation 5.1, we

obtain:

E(ϵ) = µ+ σ E(W ),

Var(ϵ) = σ2 Var(W ).

We can express the parameters of Equation 5.2 in terms of the parameters of the

Weibull distribution as:

µ = − log(λ)

k
; σ = k−1.

W also has a Gumbel distribution with density and survivor functions as given

below:

fW (w) = exp{−(ew − w)}, −∞ < w <∞; E(W ) = −γ, Var(W ) =
π2

6
,

SW (w) = exp{−ew}.
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The likelihood function for the Weibull AFT model is then

L(β, σ, µ) =
∏
i

(σti)
−δi exp{−ewi + δiwi}. (5.4)

5.4 Estimators of Acceleration Factor in an RD

design

We will now discuss methods to estimate the treatment effect under the AFT as-

sumption in a fuzzy RD design. We shall use the assumptions of the RD design to

derive an estimator of the acceleration factor.

5.4.1 RDD-AFT approach

In this section, we present the proposed method for the estimation of the acceleration

factor in a fuzzy RD design. As we have discussed in Chapter 3, the local average

treatment effect (LATE) is an estimator of the treatment effect in a fuzzy RD design

when the outcome of interest is continuous (Angrist et al., 1996; O’Keeffe and Baio,

2016). It involves fitting regression models to data above and below the threshold,

and estimating the difference in the expected values of the outcome for patients

above and below the threshold observed at the threshold. The LATE is derived by

scaling the estimate at the threshold by the difference in probability of receiving

treatment above and below the threshold.

With the log linear representation of the AFT given in Equation 5.5 below, we can

estimate the discontinuity at the threshold on the log scale of the outcome. That

is, the difference in the expected values of the log of the outcome for patients above

and below the threshold that is observed at the threshold.

log(Ti) = α0 + α1Zi + α2X
c
i + α3X

c
iZi + σwi. (5.5)

α3 can be set to zero if we believe the slopes above and below the threshold are

equal. α1 measures the difference in E{log(Ti)} between patients above and below

109



the threshold that is observed at the threshold. If the distribution ofWi is specified,

the parameters of the model in Equation 5.5 are estimated parametrically, otherwise

semi parametric estimation can be carried out. In this thesis, a Weibull distribution

is assumed for exp(Wi) and estimation is carried out by maximising the likelihood

given in Equation 5.4.

Assuming the model is correct, and Assumptions 4 (threshold indicator is inde-

pendent of confounders conditional on assignment variable) and T2 (censoring is

uninformative) are satisfied, α1 will be an unbiased estimator of the treatment ef-

fect in a sharp RD design. However, in a fuzzy RD design, this estimate needs to be

adjusted, just like in the standard LATE estimate, in order to produce an unbiased

estimator of the treatment effect as presented below.

βRDD =
α1

π1 − π0
. (5.6)

Where πz is the probability of being assigned treatment when Z = z. Therefore,

the acceleration factor that is reported is corresponding to exp (βRDD).

Proof. Consider the model:

log(Ti) = βAi + ϵi. (5.7)

β is the treatment effect of interest. Here, the expectation of ϵ is not necessarily

zero as it represents the expected value of log(Ti) when treatment is not received.

Fitting the marginal model in Equation 5.7 might lead to a biased estimate of the

treatment effect due to the potential effect of confounding variables. Therefore, we

estimate treatment effect by exploiting the fact that we have partial information on

how the treatment is allocated.

We can represent

lim
x↓x0

E{log(Ti)|Xi = x} = lim
x↓x0

E{log(Ti)|Xi = x, Zi = 1} and

lim
x↑x0

E{log(Ti)|Xi = x} = lim
x↑x0

E{log(Ti)|Xi = x, Zi = 0}

For simplicity, we will drop the limits in subsequent derivations: E{log(Ti)|Zi = 1}

will appear instead of limx↓x0 E{log(Ti)|Xi = x)} and
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E{log(Ti)|Zi = 0} instead of limx↑x0 E{log(Ti)|Xi = x}.

From Equation 5.7, it follows that

E{log(Ti)|Zi = 1} − E{log(Ti)|Zi = 0}

= E{βAi + ϵi|Zi = 1} − E{βAi + ϵi|Zi = 0}

= β[E{Ai|Zi = 1} − E{Ai|Zi = 0}]− [E{ϵi|Zi = 1} − E{ϵi|Zi = 0}]

Putting ϵi = E{log(Ti)|Ai = 0)} gives

= β[E{Ai|Zi = 1} − E{Ai|Zi = 0}]

− [E{log(Ti)|Ai = 0, Zi = 1} − E{log(Ti)|Ai = 0, Zi = 0}]

Under the modified version of Assumption 3, that is, Assumption T1, we have that

E{log(Ti)|Ai = 0, Zi = 1} − E{log(Ti)|Ai = 0, Zi = 0} = 0

Therefore,

E{log(Ti)|Zi = 1} − E{log(Ti)|Zi = 0} = β[E{Ai|Zi = 1} − E{Ai|Zi = 0}]

By rearranging the equation above and adding the limits, we have

β =
limx↓x0 E{log(Ti)|Xi = x} − limx↑x0 E{log(Ti)|Xi = x}

E{Ai|Zi = 1} − E{Ai|Zi = 0}
.

The numerator term is equivalent to the estimate of α1 in Equation 5.5 while the

denominator term is the probability of compliance as presented in Equation 5.6.

In the next section, we discuss how the variance of the proposed estimator of the

acceleration factor in a fuzzy RD design is estimated.

5.4.1.1 Variance Estimation

We have derived an estimator of the acceleration factor in an RD design, and we

will now describe how the variance of the estimator may be estimated. To do this,

we shall begin by deriving the variance of the log of the acceleration factor:

βRDD =
α1

γ1
.
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The numerator is estimated from Equation 5.5 while the denominator represents

the difference in the probability of receiving treatment for patients above and below

the threshold, that is γ1 = π1 − π0. The denominator can be estimated from the

regression model in the equation given below

Ai = γ0 + γ1Zi + ei, ei ∼ N (0, σe) (5.8)

α = (α0, α1, α2, α3)
⊤ and γ = (γ0, γ1)

⊤ are estimated by maximising the like-

lihoods of their corresponding models. Therefore, they are maximum likelihood

estimators and they are asymptotically unbiased and normally distributed (Newey

and McFadden, 1994). That is,

 α̂

γ̂

 ∼ N


 α

γ

 ,

 Σα Σα,γ

Σα,γ Σγ


 ,

where Σα and Σγ are the variance-covariance matrices of α̂ and γ̂ respectively

and they are also estimated using the maximum likelihood approach. Σα,γ is the

covariance matrix of α̂ and γ̂, which will be estimated using a copula approach that

will be described below.

To estimate the variance of β̂, we apply the multivariate delta method. We are in-

terested in estimating the variance of the ratio of two normally distributed variables:

β̂RDD = g(α1, γ1) =
α̂1

γ̂1
.

By applying the multivariate delta method, the variance of β̂ is approximated as:

Var(β̂RDD) ≈ ∆(g (α̂1, γ̂1))
⊤ Σ̂α1, γ1 ∆(g (α̂1, γ̂1))

=


1
γ̂1

− α̂1

γ̂2
1


⊤ σ2

α σα,γ

σα,γ σ2
γ




1
γ̂1

− α̂1

γ̂2
1

 (5.9)

Where σ2
α = Σα[2,2], σ

2
γ = Σγ[2,2] and σα,γ = Σα,γ[1,2].

Now, we discuss the copula approach that we used to estimate Σα,γ. A copula is
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defined as a cumulative distribution function whose marginals are uniformly dis-

tributed on [0, 1]. That is, given n random variables U1, . . . Un that are uniformly

distributed; Ui ∼ Uniform(0, 1), then a copula C̃ is defined as:

C̃ = P(U1 ≤ ui . . . Un ≤ un).

Below, we state the Sklar’s theorem that has been attributed to copulas being widely

used to model the dependence structure between two or more variables (Sklar, 1959;

Nelsen, 2006).

Sklar’s theorem: Let H be a two-dimensional distribution function with marginal

distribution functions F and G. Then there exists a copula C̃ such that H(x, y) =

C̃(F (x), G(y)). Conversely, for any distribution functions F and G and any copula

C̃, the function H defined above is a two-dimensional distribution function with

marginals F and G. Furthermore, if F and G are continuous, C̃ is unique.

According to the Sklar’s theorem, the joint cumulative distribution function of a set

of random variables can be expressed in terms of the marginal distribution functions

and a copula C̃ (Nelsen, 2006). For example, in the case we are considering in this

chapter, the joint cumulative function of Ti and Ai (F (ti, ai)) can be expressed as

F (ti, ai) = C̃(F1(ti), F2(ai)),

where F1(ti) and F2(ai) are the marginal distribution functions of Ti and Ai respec-

tively. The marginals can be modelled separately via F1(ti) and F2(ai) while the

information on the dependence of Ti and Ai is contained in the copula C̃.

In survival analysis, rather than using the cumulative function, modelling is generally

done using the survivor function. Sklar’s theorem can also be extended to the

survivor function, that is, the joint survivor function can be expressed in terms of

the marginal survivor functions and a copula C (Marra and Radice, 2020):

S(ti, ai) = C (S1(ti), S2(ai)) ,

where S(ti, ai) is the joint survivor function of Ti and Ai, S1(ti) = 1 − F1(ti) and

S2(ai) = 1− F2(ai) are the marginal survivor functions of Ti and Ai respectively.
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In this thesis, we use the Gaussian copula function because it is a commonly used

copula and it is easily constructed (Meyer, 2013). The Gaussian copula is given as:

C (S1(ti), S2(ai)) = ΦR

(
Φ−1(u1i)Φ

−1(u2i)
)
,

where u1i = S1(ti), u2i = S2(ai), Φ
−1 is the inverse cumulative distribution function

of a standard normal distribution and ΦR is the joint cumulative distribution func-

tion of a bivariate normal distribution with mean vector equal to zero and covariance

matrix equal to the correlation matrix R and

R =

 1 ρ

ρ 1

 .

We will proceed to discuss how the likelihood function is derived, the joint density

function of the time-to-event outcome and the treatment indicator is given as:

f(ti, ai) =
∂2F (ti, ai)

∂ti∂ai

For an uncensored patient,

F (ti, ai) ∝ P(Ti ≤ ti, Ai ≤ ai)

=

∫ ti

0

∫ ai

0

f(xi, yi)dxidyi

=

∫ ti

0

[∫ ∞

0

f(xi, yi)dyi −
∫ ∞

ai

f(xi, yi)dyi

]
dxi

=

∫ ti

0

[
f1(xi)−

∫ ∞

ai

f(xi, yi)dyi

]
dxi

=

∫ ti

0

f1(xi)dxi −
[∫ ∞

0

∫ ∞

ai

f(xi, yi)dyidxi −
∫ ∞

ti

∫ ∞

ai

f(xi, yi)dyidxi

]
= 1−

∫ ∞

ti

f1(xi)dxi −
∫ ∞

ai

f(yi)dyi +

∫ ∞

ti

∫ ∞

ai

f(xi, yi)dyidxi

= 1− S1(ti)− S2(a1) + S(ai, ti)

= 1− S1(ti)− S2(ai) + C (S1(ti), S2(ai)) .

Therefore, the joint density function for an uncensored patient is

f(ti, ai) ∝
∂2C (S1(ti), S2(ai))

∂ti∂ai
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For a censored patient, we let g(ci) represent the density function of the censoring

time, then,

F (ti, ai) ∝ P(Ci ≤ ti, Ai ≤ ai, Ti ≥ Ci)

=

∫ ti

0

∫ ai

0

∫ ∞

ci

f(xi, yi)g(ci)dxidyidci

=

∫ ti

0

[∫ ∞

0

∫ ∞

ci

f(xi, yi)dxidyi −
∫ ∞

ai

∫ ∞

ci

f(xi, yi)dxidyi

]
g(ci)dci

=

∫ ti

0

[∫ ∞

ci

f(xi)dxi −
∫ ∞

ai

∫ ∞

ci

f(xi, yi)dxidyi

]
g(ci)dci

=

∫ ti

0

[
S1(ci)− (S(ci, ai)

]
g(ci)dci

=

∫ ti

0

[
S1(ci)− C (S1(ci), S2(ai))

]
g(ci)dci.

Therefore, the joint density function for a censored patient is

f(ti, ai) ∝ −∂C (S1(ti), S2(ai)) g(ti)

∂ai

As such, the log likelihood function is derived based on the contributions to the

likelihood of the censored and uncensored patients, and it is given as

ℓ =
n∑

i=1

{
δi log

[
∂2C(u1i, u2i)

∂ti∂ai

]
+ (1− δi) log

[
−∂C(u1i, u2i)

∂ai

]}
=

n∑
i=1

{
δi log

[
∂2C(u1i, u2i)
∂u1i∂u2i

f1(ti)f2(a1)

]
+ (1− δi) log

[
∂C(u1i, u2i)

∂u2i
f2(ai)

]}
(5.10)

where u1i = S1(ti) and u2i = S2(ai).
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The components of the log likelihood function in Equation 5.10 are given below:

∂2C(u1i, u2i)
∂u1i∂u2i

=
1√

1− ρ2
exp

{
−
(
ρΦ−1(u1i)

)2
+
(
ρΦ−1(u2i)

)2 − 2ρΦ−1(u1i)Φ
−1(u2i)

2(1− ρ2)

}
,

∂C(u1i, u2i)
∂u2i

= Φ

(
Φ−1(u1i)− ρΦ−1(u2i)√

1− ρ2

)
,

f1(ti) =
1

σti
exp{− exp{wi}+ wi},

f2(ai) =
1√
2πσ2

e

exp

{
−e

2
i

2

}
,

u1i = S1(ti) = exp{− exp{wi}},

u2i = S2(ai) = Φ(−ei),

wi =
log(ti)− α0 − α1zi − α2xi − α3xizi

σ
,

ei =
ai − γ0 − γ1zi

σe
,

where Φ(.) is the cumulative function of the standard normal distribution and Φ−1(.)

is the inverse of the cumulative function of the standard normal distribution.

The parameters to be estimated are α = (α0, α1, α2, α3)
⊤ , σ, γ = (γ0, γ1)

⊤ , σe

and ρ. We estimate α = (α0, α1, α2, α3)
⊤ and σ from the marginal model in

Equation 5.5 and γ = (γ0, γ1)
⊤ and σe are estimated from the marginal model

in Equation 5.8 then their estimated values are substituted into the log likelihood

function in Equation 5.10, which is maximised in order to estimate ρ.

The variance covariance matrix can be approximated from the Hessian matrix which

is equal to the negative observed information (H = −I). The expression for the

Hessian is presented below. The Hessian is calculated using the estimated values of

the parameters.
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H =



∂2ℓ
∂α2

∂2ℓ
∂α∂σ

∂2ℓ
∂α∂γ

∂2ℓ
∂ασe

∂2ℓ
∂α∂ρ

∂2ℓ
∂σ∂α

∂2ℓ
∂σ2

∂2ℓ
∂σ∂γ

∂2ℓ
∂σ∂σe

∂2ℓ
∂σ∂ρ

∂2ℓ
∂γ∂α

∂2ℓ
∂γ∂σ

∂2ℓ
∂γ2

∂2ℓ
∂γ∂σe

∂2ℓ
∂γ∂ρ

∂2ℓ
∂σe∂α

∂2ℓ
∂σe∂σ

∂2ℓ
∂σe∂γ

∂2ℓ
∂σ2

e

∂2ℓ
∂σe∂ρ

∂2ℓ
∂ρ∂α

∂2ℓ
∂ρ∂σ

∂2ℓ
∂ρ∂γ

∂2ℓ
∂ρ∂σe

∂2ℓ
∂ρ2


The variance covariance matrix can be approximated as (Collett, 2003):

Σ = Cov(α̂, σ̂, γ̂, σ̂e, ρ̂) = −H−1.

From the estimated variance-covariance matrix, we can extract the required covari-

ance of α1 and γ1 as required to estimate the variance of the estimator of the treat-

ment effect as given in Equation 5.9. Alternatively, the variance of RDD-AFT can

be estimated using a bootstrap approach. However, the copula approach described

above is not as time consuming as a bootstrap approach.

We have described the proposed estimator for the acceleration factor, based on the

assumptions of the RD design. In the next section, the structural AFT estimator

will be discussed. This method was developed to estimate a treatment effect (accel-

eration factor) in observational studies. It is not an RD design approach so it does

not depend on the assumptions of an RD design, we shall describe the assumptions

of this method separately.

5.4.2 Structural AFT model

Structural models have been well established in causal effect estimation when treat-

ment is not randomly assigned (Hernán and Robins, 2006; Didelez et al., 2010;

Clarke and Windmeijer, 2010). They have been applied to causal effect estimation

with continuous (Hernán and Robins, 2006), binary (Clarke and Windmeijer, 2010;

Geneletti et al., 2019) and time-to-event outcomes (Hernán et al., 2005; Martinussen
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et al., 2017). We recall the definition of counterfactual outcomes and how they are

used to form structural models. The observed time-to-event for patient i is given as

Ti, then we define T a
i as the potential outcome that would be observed for patient i

if treatment a is received. Therefore, T 1
i and T 0

i represent the potential/ counterfac-

tual outcomes for patient i when he/she receives the treatment and when treatment

is not received respectively.

Under the AFT assumption, relationship between the counterfactual outcomes can

be expressed as:

T 1
i = exp(β)T 0

i . (5.11)

Models that are defined in terms of the counterfactual outcomes are called structural

models. Therefore, Equation 5.11 is referred to as a structural AFT (S-AFT) model.

The ratio between the counterfactual outcomes, exp(β), is the treatment effect (that

is, the acceleration factor).

In order to obtain a valid estimate of the treatment effect, the following assumptions

must be satisfied.

S1 There are no unobserved confounders or treatment allocation is strongly ig-

norable conditional on observed variables:

T 1
i , T

0
i ⊥⊥Ai | Oi.

This assumption implies that the potential time-to-event outcome for patient

i does not depend on the treatment they actually receive conditional on the

observed variables.

S2 The probability of receiving treatment is greater than 0 conditional on observed

variables, that is,

P(Ai = 1|Oi) > 0 for all i.

The S-AFT model is not strictly an RD design approach. Instead, this method com-

pares the treated and untreated groups while correcting for the effect of confounding

using the observed confounders and relying on the assumptions presented above. In

contrast, the RDD-AFT method estimates treatment at the threshold by comparing
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the patients above and below the threshold and adjusting the result of this com-

parison with the probability of compliance to the treatment guideline. The S-AFT

model would be applicable for an RD design, if there is no unmeasured confounding

in the region around the threshold or, alternatively, if any confounding variables

present in a region around the threshold were accounted-for in the S-AFT model.

Where the assumptions mentioned above are satisfied, β can be estimated using G-

estimation or inverse probability treatment weighting (IPTW) (Hernán et al., 2005).

The two methods will be discussed below.

G-estimation: First, we consider estimation of β through G-estimation when there

is no censoring. The counterfactual outcome of not receiving the treatment is esti-

mated from the relation in Equation 5.11 as

T 0
i = exp(−β)T 1

i .

Under the consistency assumption, that is, T 1
i = Ti if patient i is treated and T 0

i = Ti

if patient i is untreated, we can rewrite the equation above as

T 0
i = exp(−βAi)Ti.

This ensures that T 0
i = Ti if a patient is untreated and T 0

i = exp(−β)Ti for treated

patients. We consider T 0 as a function of β and we write it as T 0(β).

A logistic regression model with the treatment indicator as response and observed

confounders and the estimated counterfactual outcome as predictors is given by:

logit{P(Ai = 1|Oi, T
0
i (β

∗))} = θ0 + θ1Oi + θ2T
0
i (β

∗).

When Assumption S1 holds, T 0(β) is independent of treatment conditional on O,

then θ2 = 0. Therefore, the value of β∗ that leads to the failure to reject the null

hypothesis that θ2 = 0 is the g-estimate of β. The g-estimate can be obtained

by minimising the score test statistic for θ2 = 0 which is equivalent to finding the

solution to the estimating equation below (Hernán et al., 2005):

U(β∗) = 0,
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where

U(β∗) =
∑
i

T 0
i (β

∗){Ai − P(Ai = 1|Oi)} (5.12)

Hence the value of β∗ that solves the estimating equation above is reported as the

g-estimate of β. Below, we describe the algorithm for obtaining the g-estimate of β.

1. Fit a logistic regression model for the treatment, conditional on the observed

confounders:

logit{P(Ai = 1|Oi)} = θ0 + θ1Oi.

2. Obtain the predicted probabilities (P(Ai = 1|Oi)) from the fitted logistic re-

gression above.

3. Solve the estimating equation below the obtain the g-estimate of β.

U(β∗) = 0,

where U(β∗) is as given in Equation 5.12. The uniroot function in R (R Core

Team, 2018) can be used to solve the estimating equation.

Inverse Probability weighting: The AFT model assumes that the time-to-event

in the treated group is accelerated (or decelerated) compared to the time-to-event in

the untreated group by a constant: T (1) = ϕT (0), where T (a) is the survival time

of the group that receives treatment a. Under this assumption, a log-linear model

can be fitted for the survival time. The log-linear model is generally of the form:

logTi = βAi + ϵi (5.13)

ϵi is the log of the event time for patients with Ai = 0 and β is the coefficient of A

and ϕ = exp(β).

The idea behind inverse probability weighting is to create a pseudo population that

represents a population where treatment is randomly allocated as we would have

in a randomised trial. In order to do this, subjects are weighted according to their

probability of getting treated. The weight is defined as:
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W I
i =

[P(Ai = 1|Oi)]
−1 for patients who received treatment

[P(Ai = 0|Oi)]
−1 for patients who did not receive treatment

These weights are then used to fit a weighted log-linear regression model presented

in Equation 5.13. This is achieved by including the weights (W I
i ) in the likelihood

function in Equation 5.3:

L(β, σ, µ) =
∏

W I(σt)−δfW (w)δSW (w)1−δ.

In this thesis, we will estimate treatment effect using g-estimation approach owing

to the fact for some simulation samples, the weighted log-linear model for the inverse

probability weighting approach run in R did not converge.

Accommodating censoring in the estimation methods

Censoring of a time-to-event outcome may introduce bias when estimating a treat-

ment effect because censored observations provide incomplete information about the

actual time-to-event. Standard analysis of time-to-event outcomes has been used to

handle censoring through the likelihood (or partial likelihood) as seen the Section

5.3. However, for the g-estimation procedure, the approach described earlier has

not accounted for censoring. To handle censoring using g-estimation, we need to

specify the type of censoring; whether the patient dropped out during the study or

the patient did not experience the event by the end of the study (administrative

censoring).

When censoring occurs because of drop out, inverse probability weighting for cen-

soring is employed. The purpose is to create a pseudo population that represents a

situation where no drop out is observed. Patients that dropped out will be assigned

a weight of zero while patients who remain in the study are weighted based on their

similarities to patients who dropped out. We define an indicator variable Di that

takes value 0 if patient i drops out and 1 if otherwise. The inverse probability weight

for censoring is calculated as

WD
i =

Di

P(Di = 1|Xi, Ai)
.
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This weight is then included in the score function in Equation 5.12.

For administrative censoring, T 0
i (β

∗) in Equation 5.12 is replaced with an indicator

variable ∆i(β
∗), a function of T 0

i (β
∗). The idea is to assign a score of zero to patients

that are administratively censored and those that would have been administratively

censored. As a result, some patients who experienced the event would also have a

score of zero. The intuition for this is explained further in Hernán et al. (2005).

Let K specify the end of the study such that any patient with T a
i ≥ K would be

administratively censored. Define K(β∗), the maximum observable time-to-event to

event as

K(β∗) =

K if β∗ ≤ 0

K exp(−β∗) if β∗ > 0

Therefore, ∆i(β
∗) = 1(T 0

i (β
∗) ≥ K(β∗)).

We will report β∗ that solves the estimating equation

U(β∗) = 0,

where

U(β∗) =
∑
i

WD
i ∆i(β

∗){Ai − P(Ai = 1|Oi)}. (5.14)

As such, the estimating equation in Step 3 of the algorithm for obtaining the g-

estimate of β is replaced by Equation 5.14.

We have described the proposed RDD-AFT approach and S-AFT approach as meth-

ods for estimating the acceleration factor in a fuzzy RD design. In the next session,

we shall carry out simulation studies to evaluate these methods.

5.5 Simulation Studies

Simulation studies were conducted to compare the performance of S-AFT and the

RDD-AFT approaches. Data were simulated to represent fuzzy RD designs with

varying levels of confounding and different levels of fuzziness. Details of the simula-

tion process and results obtained are provided below.
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5.5.1 Description of simulation study

Below, we describe the steps used in the simulation of the data sets to compare the

RDD-AFT and S-AFT approaches for estimating the acceleration factor in an RD

design. For each simulated dataset, a sample size of 2000 subjects was simulated

and a total of 1000 datasets were created for each scenario.

Step 1: For each subject, an assignment variable, Xi, is simulated from a continuous

uniform distribution.

Xi ∼ Uniform(0, 1) i = 1, ..., 2000.

Step 2: We set the threshold to be equal to 0.5 and define the centred assignment

variable, XC
i , and threshold indicators, Zi, as

XC
i = Xi − 0.5;

Zi = 1{Xc
i ≥ 0}.

Step 3: A confounding variable, Ui, is simulated from a standard normal distribution

Ui ∼ N (0, 1).

Step 4: The probability that the ith subject receives treatment is given by

log

(
pi

1− pi

)
= β0 + β1Zi + β2X

C
i + β3Ui. (5.15)

The parameters of this model are specified to reflect the level of fuzziness of

the design and the level of confounding with regard to treatment allocation.

The lower the value of β1, the more fuzzy the design, β3 reflects the correlation

between the treatment indicator and the confounder, if β3 = 0, this indicates

there is no relationship between the treatment and the confounding variable.

Step 5: The treatment indicator, Ai, is simulated as follows

Ai ∼ Bernoulli(pi).
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Step 6: The ‘true’ time-to-event is simulated as

log Ti = β4Ai + β5Ui + ϵi. (5.16)

Here, β4 defines the treatment effect (on the log-scale), β5 reflects the corre-

lation between the time-to-event outcome and the confounder Ui and ϵi is the

logarithm of the true time-to-event when Ai = 0 and Ui = 0.

Step 7: To incorporate right censoring, we specify a probability of drop-out, pc, and

an ‘end-of-study’ time K. For UC
i ∼ Uniform(0, 1), the censoring time (Ci) is

defined as follows

Ci =

K if UC
i > pc

∼ Uniform(0, K) if UC
i ≤ pc.

Step 8: The observed time-to-event and event indicators are defined as follows

T ∗
i = min(Ti, Ci),

δi = 1{Ti < Ci}.

Step 9: Steps 1–8 are repeated N = 2000 times, to create a dataset with 2000 subjects.

Step 10: Steps 1–9 are repeated M = 1000 times and M = 1000 datasets, each with

N = 2000 subjects, are obtained.

The values of some of the parameters in the simulation steps above are explained

here. We set β0 = −2, which makes the probability of receiving treatment at the

threshold for patients below the threshold equal to 0.2 for Ui = 0 and β2 = 2,

which establishes a (positive) relationship between the assignment variable and the

treatment indicator. We set β4 = log(1.5) so that the acceleration factor is 1.5

and the median survival time was chosen to be 7 years for untreated patients when

Ui = 0, as such, we set

exp(ϵi) ∼ Weibull

(
log(2)

72
, 2

)
.

Details of the remaining parameters that reflects the level of fuzziness and effects of

124



confounding are given below.

Simulation Scenarios

As we had under the binary outcome, the probability of compliance and level of

confounding were varied by specifying the values of β1 and β3 in Equation 5.15

and β5 in Equation 5.16. Table 5.1 gives the values of these parameters for the six

scenarios considered.

For each of 1000 simulated datasets, we computed the correlation coefficient between

the confounder (U) and the treatment indicator and between U and the observed

time-to-event. The averages of the estimated correlation coefficients are reported in

Table 5.1 as ρA,U and ρT,U respectively. The values of the correlation coefficients

provide an insight into the level of (linear) association between the confounder and

the treatment and the confounder and the outcome. For scenarios where there are

no unobserved confounders, the estimate of the correlation coefficient between the

outcome and the confounder is zero. For scenarios where the effect of the confounder

is low, the values of the correlation coefficient are slightly larger than when there are

no confounders. The correlations become higher when the effect of the unobserved

confounder is high.

Likewise, we calculated the probability of compliance for the 1000 simulated datasets

in each scenario. The average of these probabilities is reported as P.C. in Table 5.1.

The level of fuzziness of the design is defined based on the probability of compliance,

if there is a high compliance to the treatment guideline, the fuzziness is weak and

fuzziness is strong where the probability of compliance is low. The probability of

compliance for the scenarios with weak fuzziness is between 80% and 90%. For the

strong fuzziness scenarios, the probability of compliance to the treatment guideline

is between 54% and 57%.

5.5.2 Results of simulation studies

The RDD-AFT and S-AFT approaches were applied to the data simulated to esti-

mate the treatment effect under varying levels of confounding and fuzziness. Addi-

tionally, since the RDD-AFT method exploits “exchangeability” of subjects close to
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Table 5.1: Values of parameters in Equations 5.15 and 5.16 for the simulation sce-
narios with the corresponding probability of compliance (P.C.) and estimates of
correlation coefficients between T ∗ and U (ρT,U) and A and U (ρA,U).

Scenario Parameters P.C. ρT,U ρA,U

Weak fuzziness, No Confounding β1=10 β3=0 β5=0 0.90 0.00 0.00

Weak fuzziness, Low Confounding β1=10 β3=-1 β5=0.3 0.87 0.16 -0.10

Weak fuzziness, High Confounding β1=10 β3=2 β5=0.7 0.79 0.40 0.22

Strong fuzziness, No Confounding β1=2.5 β3=0 β5=0 0.57 0.00 0.00

Strong fuzziness, Low Confounding β1=2.5 β3=-0.5 β5=0.3 0.55 0.16 -0.16

Strong fuzziness, High Confounding β1=2.5 β3=0.7 β5=0.7 0.54 0.41 0.22

the threshold, the closeness to the threshold is measured based on the bandwidth

h. Patients whose assignment variable falls in the range [Xc − h,Xc + h], where

Xc = X − x0 is the centered assignment variable, are included in the analysis. The

bandwidth was varied to check the sensitivity of estimates to different bandwidth

sizes.

For the S-AFT estimator, the data were considered to be from an observational study

where we observe the time-to-event (T ), event indicator (δ), treatment indicator (A)

and assignment variable (X) and X was considered as the only observed confounder.

We note that the S-AFT estimator is not an RD design approach, hence it does

not rely on the information about the treatment guideline. As such one of its

assumptions is that confounders are observed. In the simulation scenarios where

effect of confounding is present, since the confounding variable is known, we have

included an additional estimator called S-AFT adj. This is an S-AFT estimator but

the confounding variable treated as an observed variable. This may give further give

insight into how much the presence of unobserved confounders affects the S-AFT

estimator.

In all cases, the probability of being censored because of drop out is set to 15% and

we assume that the study ended after 10 years. Therefore, patients with a time-to-

event greater than 10 years are also censored. Overall, the proportion of censorship

is about 55% owing to drop out and loss to follow-up. The acceleration factor for

all the scenarios is set to be 1.50.

Tables 5.2, 5.3 and 5.4 show numerical summaries of the logarithm of the acceleration
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factor obtained from the simulation studies under the no, low and high confounding

scenarios, respectively. Each table contains results under weak and strong fuzziness.

Visual representations of the estimates of the acceleration factor from the simulation

studies are also provided. Figures 5.2 and 5.3 show boxplots of the estimates of the

acceleration factor for the weak and strong fuzziness scenarios, respectively.

As seen in Table 5.2, where there are no unobserved confounders, both the RDD-

AFT and S-AFT approaches produce unbiased estimates of the treatment effect for

both the weak and strong fuzziness cases and the coverage for the two methods

is close to the nominal level of 95% in each case. We observe that the ESE and

ASE are mostly similar to each other, which implies that the ASE is not over or

under-estimating the variability of the estimators. We also observe that as the level

of fuzziness increases, the uncertainty in the estimate of the RDD-AFT approach

increases. This is expected because the RDD-AFT estimator is sensitive to the level

of compliance to the treatment assignment rule.

When the effect of the unobserved confounding is low, as shown in Table 5.3, some

bias is noticed in the estimate of the S-AFT approach. The bias observed in the

S-AFT approach has translated in it having coverage that is quite low compared to

the nominal level of 95%. This implies that, under this scenario, the 95% confidence

interval of the S-AFT approach does not adequately cover the value of the true

treatment effect.

On the other hand, the RDD-AFT produces estimates that are close to the value

of the true treatment effect under both the weak and strong fuzziness scenarios. In

terms of coverage, the RDD-AFT approach is able to consistently produce confi-

dence intervals that cover the treatment effect under the weak fuzziness and strong

fuzziness scenarios as its coverage is close to the 95% nominal value. As we have

observed when there are no unobserved confounders, the RDD-AFT approach is

more accurate under the weak fuzziness than the strong fuzziness scenario and the

ESE and ASE are smaller under the weak fuzziness scenario.

The bias observed in the S-AFT estimator becomes even larger when the effect of

confounding is high, shown in Table 5.4, as a result, the coverages of the value of the

treatment effect by the associated confidence intervals are quite low. In contrast, the
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RDD-AFT approach continues to produce estimates that are close to the treatment

effect and yields coverage levels that are close to 95%. In all the scenarios considered,

we observe that the variance of the RDD-AFT estimator increases when the level of

fuzziness is strong. This expected because it reflects the uncertainty of the estimate

of the treatment effect when the treatment allocation is not strongly associated with

the threshold indicator.

In the simulation above, we observe that the S-AFT approach produces biased es-

timates in the low and high confounding scenarios. This is not unexpected because

an important assumption of the S-AFT approach is that confounders are observed.

In the simulation study, since the confounder is known, we can adjust for the con-

founder in the S-AFT model. In Tables 5.3 and 5.4, an additional estimator called

S-AFT adj. is included which is the S-AFT estimator but with the confounder

adjusted for. As expected, this estimator does not suffer from the bias that was

observed with the unadjusted S-AFT estimator.

Overall, when there are no unobserved confounders, both the S-AFT and RDD-

AFT estimators produce unbiased estimates and they both have good coverage of

the value of the true treatment effect. However, the S-AFT approach becomes biased

and its coverage level is low as the effect of confounding increases. The RDD-AFT

approach also exhibits some bias as the effect of confounding increases and level of

fuzziness increases, but the bias in the RDD-AFT approach is lower than that of

the S-AFT approach. In addition, the coverage of the RDD-AFT approach in most

cases is around 95%.

Hence, we conclude that the RDD-AFT approach may be more desirable than the

S-AFT estimator and that the RDD-AFT approach should be preferred when we

have (partial) information about how the treatment assigned.

We have proposed a method for estimating the treatment effect when the outcome of

interest is time-to-effect for an RD design. In addition, the structural AFT method

was discussed as the popular approach of estimating treatment effect in observational

studies when the outcome of interest is time-to-event under the AFT assumption.

These two methods were compared using simulation studies under varying levels of

compliance to the treatment guideline and confounding. Next, we shall apply the
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two methods to real dataset on the effect of metformin prescription on all-cause

mortality and time to a cardiovascular event in patients at risk of type II diabetes.
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Figure 5.2: Boxplots of the results from the simulation study to compare the RDD-
AFT and S-AFT methods under weak fuzziness scenario. The red dash line is the
true treatment effect. The central line and limit of the boxplots represent the median
and inter-quartile range of the estimates respectively.
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Figure 5.3: Boxplots of the results from the simulation study to compare the RDD-
AFT and S-AFT methods under strong fuzziness scenario. The red dash line is
the true treatment effect. The central line and limit of the boxplots represent the
median and inter-quartile range of the estimates respectively.
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Table 5.2: Estimates, biases, empirical standard errors (ESE) , average standard errors
(ASE) and 95% Coverage of the log of the acceleration factor under the no confounding
scenario. The true value of the log of the acceleration factor is log(1.5) = 0.405. The
sample size was 2000 in each simulated dataset and simulations were repeated 1000 times.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.40 0.01 0.11 0.11 94.3 0.35 0.05 0.17 0.17 93.6

S-AFT 0.41 -0.01 0.19 0.15 94.9 0.40 0.00 0.14 0.11 94.4

Bandwidth = 0.15 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.40 0.01 0.13 0.13 96.1 0.36 0.04 0.20 0.20 94.7

S-AFT 0.42 -0.01 0.19 0.16 95.9 0.41 0.00 0.16 0.13 94.5

Bandwidth = 0.1 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.40 0.01 0.16 0.16 95.6 0.37 0.04 0.25 0.26 94.8

S-AFT 0.42 -0.01 0.23 0.19 95.4 0.41 -0.01 0.19 0.15 93.6

Bandwidth = 0.05 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.40 0.01 0.23 0.23 96.3 0.40 0.01 0.39 0.39 95.0

S-AFT 0.42 -0.01 0.31 0.26 96.0 0.42 -0.02 0.25 0.19 94.6
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Table 5.3: Estimates, biases, empirical standard errors (ESE) , average standard errors
(ASE) and 95% Coverage of the log of the acceleration factor under the low confounding
scenario. The true value of the log of the acceleration factor is log(1.5) = 0.405. The
sample size was 2000 in each simulated dataset and simulations were repeated 1000 times.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.03 0.12 0.12 94.0 0.34 0.07 0.18 0.19 94.5

S-AFT 0.23 0.17 0.18 0.15 71.8 0.27 0.13 0.15 0.11 75.0

S-AFT adj. 0.40 0.01 0.18 0.15 94.9 0.40 0.00 0.15 0.11 94.4

Bandwidth = 0.15 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.03 0.14 0.14 95.3 0.35 0.06 0.22 0.22 94.3

S-AFT 0.23 0.17 0.20 0.16 74.3 0.27 0.13 0.16 0.13 78.9

S-AFT adj. 0.40 0.01 0.21 0.16 95.6 0.40 0.00 0.16 0.13 94.3

Bandwidth = 0.1 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.03 0.18 0.18 95.7 0.37 0.04 0.28 0.28 95.2

S-AFT 0.23 0.17 0.24 0.19 80.6 0.27 0.13 0.19 0.15 83.5

S-AFT adj. 0.40 0.01 0.25 0.19 95.0 0.40 0.00 0.19 0.15 94.9

Bandwidth = 0.05 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.02 0.26 0.25 94.9 0.38 0.02 0.42 0.42 96.0

S-AFT 0.24 0.16 0.32 0.25 85.9 0.27 0.13 0.25 0.20 87.9

S-AFT adj. 0.41 0.00 0.32 0.25 94.1 0.41 0.00 0.25 0.19 95.2
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Table 5.4: Estimates, biases, empirical standard errors (ESE) , average standard errors
(ASE) and 95% Coverage of the log of the acceleration factor under the high confounding
scenario. The true value of the log of the acceleration factor is log(1.5) = 0.405. The
sample size was 2000 in each simulated dataset and simulations were repeated 1000 times.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE Coverage Estimate Bias ESE ASE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.02 0.18 0.18 95.3 0.34 0.06 0.28 0.28 94.6

S-AFT 1.01 -0.60 0.19 0.16 6.3 0.97 -0.56 0.18 0.15 6.9

S-AFT adj. 0.22 0.18 0.18 0.15 74.0 0.42 -0.02 0.17 0.13 93.0

Bandwidth = 0.15 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.02 0.21 0.21 94.8 0.35 0.05 0.34 0.34 94.7

S-AFT 1.01 -0.60 0.22 0.18 9.7 0.97 -0.56 0.20 0.16 11.0

S-AFT adj. 0.23 0.18 0.21 0.17 78.2 0.42 -0.02 0.19 0.15 92.0

Bandwidth = 0.1 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.03 0.26 0.26 95.2 0.37 0.04 0.45 0.43 94.3

S-AFT 1.00 -0.60 0.26 0.21 18.0 0.97 -0.56 0.22 0.19 16.7

S-AFT adj. 0.23 0.17 0.24 0.20 82.7 0.42 -0.01 0.21 0.17 93.4

Bandwidth = 0.05 , Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.02 0.38 0.37 95.0 0.38 0.02 0.67 0.64 95.2

S-AFT 1.02 -0.61 0.32 0.28 37.8 0.98 -0.57 0.30 0.25 31.8

S-AFT adj. 0.24 0.16 0.30 0.25 87.9 0.43 -0.02 0.29 0.23 92.4
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5.6 Example: Prescription of metformin in pa-

tients at risk of Type II Diabetes

In this section, we apply the RDD-AFT and S-AFT approaches to a real dataset

on metformin prescription in patients at risk of type II diabetes. The aim of the

analysis is to investigate the effect of a metformin prescription on time to all-cause

mortality and time to a cardiovascular event in patients who are at risk of type II

diabetes. Metformin is a drug prescribed to reduce blood glucose level in patients

with type II diabetes and those at risk of developing type II diabetes (NHS, 2019b).

For the diagnosis of type II diabetes in UK primary care, glycated haemoglobin

level (HbA1c), a measure of the average blood glucose level in the body over a

duration of 3 months, is used. The National Institute for Health and Care Excellence

(NICE)’s guideline on metformin prescription states that standard release metformin

should be prescribed to patients whose HbA1c level is greater than or equal to

48mmol/mol (NICE, 2015). The data used in this section was extracted from The

Health Improvement Network (THIN) database.

In this example, the HbA1c level is the continuous assignment variable and the

threshold is set to be 48mmol/mol. The outcomes of interest are time to all-cause

mortality and time to a cardiovascular event, with the time origin defined to be the

time of first HbA1c measurement. We extracted data for 4532 male patients aged

between 40 and 80 years who had their first HbA1c measurement in 2010, who had

not been diagnosed with diabetes previously and whose body mass index (BMI) was

less than 30kg/m2.

Of these 4532 patients, 643 patients had HbA1c values above the threshold and

3889 patients had HbA1c values below the threshold. Of those patients with HbA1c

values above the threshold, 453 (70%) were prescribed metformin whereas, of those

patients with HbA1c values below the threshold, 27 (1%) were prescribed metformin.

This indicates that the use of an RD design may be suitable for this data as the

probability of receiving the treatment appears to differ substantially for patients

above and below the threshold.

We compare the distribution of potential confounders for patients above and below

the threshold. This is necessary to check that the distributions of confounders
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are similar within the bandwidths considered. The potential confounders that are

compared are age, body mass index, LDL and HDL cholesterol levels, and these

confounders are chosen based on our discussions with epidemiologists. Table 5.5

shows the mean and standard deviation of these variables for patients above and

below the threshold. We see that the BMI, LDL and HDL cholesterol levels are

similar for patients above and below the threshold within bandwidths considered.

However, for all bandwidths, we observe that patients above the threshold are older

than those below the threshold. Based on this, we included age in the models for

estimating the treatment effect to control the potential bias that could be introduced

because of the possible imbalance in the distribution of age.

Table 5.5: Sample means and standard deviations for potential confounding vari-
ables above (Z = 1) and below (Z = 0) the threshold, for various HbA1c bandwidths
(h).

Factors h = 10 h = 8 h = 6 h = 5

Mean SD Mean SD Mean SD Mean SD

Age at origin (years) Z = 0 60.47 10.27 61.10 10.22 61.46 10.19 61.70 10.22

Z = 1 62.75 9.80 63.04 9.63 62.90 9.85 63.41 9.83

BMI (kg/m2) Z = 0 25.98 2.66 26.14 2.63 26.23 2.59 26.29 2.62

Z = 1 26.50 2.42 26.50 2.46 26.44 2.56 26.47 2.60

LDL Cholesterol (mmol/L) Z = 0 3.20 0.93 3.18 0.94 3.14 0.92 3.15 0.92

Z = 1 3.15 0.87 3.17 0.85 3.19 0.85 3.19 0.86

HDL Cholesterol (mmol/L) Z = 0 1.30 0.37 1.27 0.35 1.25 0.36 1.24 0.36

Z = 1 1.20 0.37 1.20 0.37 1.19 0.35 1.20 0.36

The probabilities of dying and experiencing a CVD event as well as the median

time-to-event for patients who died and patients who experienced a CVD event are

given Table 5.6. The probability of dying is similar in patients above and below the

threshold across the bandwidths. The median times to death are broadly similar

but slightly higher for subjects below the threshold, especially as the bandwidth

increases.

For CVD event, the probability of a CVD event appears to be higher in patients

below the threshold compared to those above the threshold. The median time-to-

event is also higher for patients below the threshold across all bandwidths. This
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would suggest that CVD event rates and times may be different for patients above

and below the threshold.

Table 5.6: Empirical probabilities of death and a CVD event, together with sample
median time-to-event (in years) for a variety of bandwidths.

Bandwidth: h=10 h=8 h= 6 h= 5

Z 0 1 0 1 0 1 0 1

N 1956 202 1172 184 860 155 626 133

Death Probability 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.09

Median time-to-event (years) 2.97 2.31 2.92 2.31 2.99 2.31 2.72 2.31

CVD Event Probability 0.07 0.04 0.08 0.04 0.07 0.03 0.07 0.03

Median time-to-event (years) 2.58 1.34 2.71 1.18 2.38 1.34 2.38 1.62

Finally, the RDD-AFT and S-AFT approaches are applied to the data described

above. Four bandwidths (h =10, 8, 6 and 5) were considered to check the sensitivity

of the estimates to changes in bandwidth. Since age appears to be imbalanced for

patients above and below the threshold, age was included as a covariate in the mod-

els for both approaches. Table 5.7 shows the results obtained from the analysis of the

data and presents the estimated acceleration factor and the corresponding 95% con-

fidence intervals. The standard error that is used to compute the confidence interval

for the RDD-AFT approach was estimated using the variance estimation method

described in Section 5.4.1.1 while a bootstrapping approach is used to estimate the

standard error for the S-AFT approach.

The effect of metformin prescription on time to all-cause mortality and time to a

cardiovascular event is the interest in this example. The point estimates for both the

RDD-AFT and S-AFT models, across the bandwidths, are above 1. This may - at

first sight - suggest that the median survival times to mortality and cardiovascular

event for patients that receive a metformin prescription are higher than for patients

that do not receive a metformin prescription. However, in all cases, the confidence

intervals include 1, implying that the treatment effect estimates are not statistically

significant and we do not have sufficient evidence to suggest a beneficial effect of

metformin prescription (at the 5% level). The confidence intervals are generally

wide, this may be because of a reduced sample size when the data are sub-sampled
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so that only patients whose HbA1c values lie close to the threshold are included in

the RD design analysis.

Table 5.7: Estimates and 95% confidence intervals of the acceleration factor for
RDD-AFT and S-AFT approaches across varying bandwidths.

Bandwidth: 10 8 6 5

Outcome: Time to all cause mortality

Method Estimate (95% C.I.) Estimate (95% C.I.) Estimate (95% C.I.) Estimate (95% C.I.)

RDD-AFT 2.37 (0.75, 7.45) 2.09 (0.53, 8.19) 1.32 (0.37, 4.70) 1.21 (0.26, 5.65)

S-AFT 1.11 (0.16, 7.93) 1.22 (0.20, 7.40) 2.59 (0.43, 15.44) 2.59 (0.41, 16.17)

Outcome: Time to a cardiovascular event

Method Estimate (95% C.I.) Estimate (95% C.I.) Estimate (95% C.I.) Estimate (95% C.I.)

RDD-AFT 2.47 (0.57, 10.59) 1.25 (0.25, 6.25) 1.12 ( 0.13, 9.61) 1.22 (0.09, 15.92)

S-AFT 2.51 (0.34, 18.72) 2.69 (0.34, 21.16) 6.53 (0.92, 46.25) 3.51 (1.25, 9.88)

5.7 Conclusions

In this chapter, we have explored methods for estimating the acceleration factor

in a fuzzy RD design for a time-to-event outcome. We proposed the RDD-AFT

approach to estimate the acceleration factor based on the RD design assumptions,

and we compared this to an S-AFT approach, a popular approach for estimating

the acceleration factor in observational studies using simulation studies. When there

is no unobserved confounding, the two methods yielded unbiased estimates of the

treatment effect. However, for low and high confounding scenarios, the estimates

from the S-AFT approach were biased for the treatment effect. The RDD-AFT

approach continued to yield estimates close to the true treatment effect, even in the

presence of unobserved confounding.

The two methods were applied to a real dataset to estimate the effect of a metformin

prescription on time to death and time to a cardiovascular event. The results sug-

gest a beneficial effect of metformin prescription, however, the estimates are not

statistically significant.

In the next chapter, we present Bayesian alternatives to the methods that we have

proposed for continuous, binary and time-to-event outcomes.
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Chapter 6

Bayesian alternatives to proposed
methods

In this chapter, we shall consider Bayesian alternatives to the proposed methods

outlined in Chapters 3, 4 and 5 for treatment effect estimation in the RD design

for continuous, binary and time-to-event outcomes. The Bayesian approach can

provide a straightforward way to incorporate prior information about the parameter

of interest.

6.1 Introduction

Given observed data x, we assume that we are interested in estimating a parameter

of interest, say θ. In the frequentist approach, the parameter is usually estimated

using the information contained in the data only. Using a Bayesian approach, we

combine prior information about the parameter, such as expert opinion or results

from a different study, with the information from the data to obtain an updated

information about the parameter. In an RD design, the Bayesian approach might

be useful because we can obtain prior information about the parameter of interest

from similar studies or clinical knowledge.

Typically, a prior distribution is defined to capture the prior information about the

parameter, p(θ), the information from the data is defined in terms of the likelihood,

f(x|θ)). The likelihood and prior are combined using Bayes theorem to obtain the

posterior distribution of the parameter, p(θ|x)):

p(θ|x) ∝ f(x|θ)p(θ).
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Once the posterior distribution has been obtained, the parameter of interest can then

be described in terms of summary measures, such as expected value and variance,

of the posterior distribution. In some cases, the posterior distribution has a closed

form, therefore, we can easily derive such summaries from the posterior distribution.

In most cases, however, it might be difficult to derive the posterior distribution,

in which case, Markov chain Monte Carlo (MCMC) approaches can be used to

obtain samples from the posterior distribution (Hastings, 1970; Gelman and Rubin,

1992). The samples obtained from the posterior distribution can be used to estimate

measures such as the expected value and variance of the parameter. In this thesis,

Gibbs sampling, an MCMC approach, will be used to obtain samples from the

posterior distributions that we require (Geman and Geman, 1984; Lunn et al., 2012).

Below, we describe the typical algorithm to obtain samples from the posterior dis-

tribution.

1. Choose an initial value for the parameter of interest.

2. Use an MCMC approach to obtain M +N samples from the posterior distri-

bution, in this thesis, we use Gibbs sampling.

3. Discard the first M samples (iterations) as burn-in. Typically M is decided

after it appears that the chain has converged. For instance, in Figure 6.1 (a),

M is chosen to be 150 as we see that it appears the iterations have converged

at the 150th iteration.

4. Repeat steps 1 to 3 above p times, with different initial values of the parameter

of interest. p represents the number of chains and, it is recommended to run

more than one chain, as it serves as a useful check for convergence because it

is important that all the chains converge to the same area irrespective of the

starting value. This is depicted in Figure 6.1 (b) where the two chains have

different starting values, Chain 1 appears to have converged before Chain 2

but M is chosen at the iteration where both chains have converged.

5. The remaining N × p samples from the posterior distribution are summarised

and presented.

An advantage of the Bayesian approach over the frequentist approach is that using
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Figure 6.1: Trace plot to illustrate how convergence is checked when (a) one chain is run
and (b) two chains are run. The dotted lines represents potential burn-in point.

the Bayesian approach provides full information on the distribution of the parameter

of interest. As such, all properties of the parameter that are required can be easily

computed. For instance, in the frequentist approach, bootstrapping was employed

to estimate the variance of the estimator. With a Bayesian approach, the variability

in the parameter of interest is easily estimated from samples obtained from the

posterior distribution of the parameter of interest.

We shall now proceed to discuss the Bayesian alternatives to the RD design esti-

mation methods discussed earlier in the thesis. In the next section, we present a

Bayesian approach to the thin plate regression spline method for estimating the local

average treatment effect (LATE) discussed in Section 3.6.

6.2 Continuous outcome: Bayesian Thin Plate Re-

gression Spline

In Chapter 3, the LATE was discussed as an estimator of the treatment effect for

a continuous outcome in a fuzzy RD design. Furthermore, the use of the thin plate

regression spline as a flexible approach for the estimation of the numerator of the

LATE was proposed. Here, we present a Bayesian alternative for LATE estimation

using thin plate regression spline.
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We recall that the thin plate regression spline estimator of the LATE is given as:

λ̂tprs =
f̂1(x0)− f̂0(x0)

expit(π̂01)− expit(π̂00)
,

where for j ∈ {0, 1}, the numerator terms are estimated from thin plate spline

models given below:

yi = f(xi) + ϵi, ϵi ∼ N (0, σ2
ϵ ), and

f̂j(x0) = η⊤
j δ̂j + α̂1j + α̂2jx0,

and the denominator terms are estimated from logistic regression models given be-

low:

logit(P(Ai = 1|Xc
i = xci)) = π01 + π11x

c
i i ∈ A,

logit(P(Ai = 1|Xc
i = xci)) = π00 + π10x

c
i i ∈ B.

The corresponding Bayesian TPRS estimator of the LATE is denoted by λbtprs and

we specify a normal prior distribution for λbtprs:

λbtprs ∼ Normal(µλ, σ
2
λ).

The prior information about the treatment effect can then be incorporated via the

prior mean (µλ) and prior variance (σ2
λ).

We recall that the minimisation problem of the thin plate regression spline is a

penalised regression problem. One of the ways to fit a penalised regression model is

to define the regression model in the form of a mixed regression model (Crainiceanu

et al., 2005; Wood, 2017). Therefore, we define the mixed regression model as

yj = Ẽjδ
∗
j +Gjαj + ϵj, Cov(ϵj, δ

∗
j) =

 σ2
ϵjI 0

0 σ2
δjI

 . (6.1)

where Ẽj = UkjDkZkj

(
Z⊤

kjDkjZkj

)− 1
2 , δ̂j = UkjZkj

(
Z⊤

kjDkjZkj

)− 1
2 δ̂

∗
j , Gj is the

matrix of smooth functions as described in Section 3.4.2 and δ∗
j and αj = (α1j, α2j)

⊤

are the parameters to be estimated. The distributions for model fitting are specified
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as follows:

Yi ∼ Normal(µi1, σ
2
ϵ1), µi1 = Ẽi1δ

∗
1 +Gi1α1 for i ∈ A,

Yi ∼ Normal(µi0, σ
2
ϵ0), µi0 = Ẽi0δ

∗
0 +Gi0α0 for i ∈ B,

Ai ∼ Binomial(1, pi1), logit(pi1) = π01 + π11x
c
i for i ∈ A,

Ai ∼ Binomial(1, pi0), logit(pi0) = π00 + π10x
c
i for i ∈ B.

(6.2)

Where Ẽij and Gij are the ith row of Ẽj and Gj respectively. Since we have placed a

prior distribution on λbtprs, we will express α11 as a function of the other parameters:

α11 = λbtprs[expit(π01)− expit(π00)] + f0(x0)− η1δ1 − α21x0.

The prior distributions of the remaining parameters are given below:

δ∗
j ∼ Normal(0, σ2

δj),

α0 ∼ Normal(0, σ2
α0),

α21 ∼ Normal(0, σ2
α1),

σ−2
ϵj ∼ Gamma(aϵj, bϵj),

σ−2
δj ∼ Gamma(aδj, bδj),

π00 ∼ Normal(−2, 1),

π01 ∼ Normal(2, 1),

π10 ∼ Normal(0, σ2
π1),

π11 ∼ Normal(0, σ2
π0).

The values of the parameters of the prior distributions will incorporate prior infor-

mation about the parameters. The models stated in Equation 6.2 may be run using

the R2jags package in R (Plummer, 2019), which uses Gibbs sampling to obtain

samples from the posterior distributions of the parameters of interest. The poste-

rior mean and the corresponding standard deviation of λbtprs are then reported as

the LATE estimate and its standard error.

We carried out simulation studies to compare the performance of the Bayesian TPRS

estimator of the LATE to the non-Bayesian version. Datasets that were simulated

in Section 3.5 are used for this purpose. For the simulation studies, the prior distri-
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bution of the treatment effect is λbtprs ∼ Normal(−2, 0.2). The prior distributions

of the remaining parameters are:

δ∗
z ∼ Normal(0, σ2

δz), π00 ∼ Normal(−2, 1),

α0 ∼ Normal(0, 10), π01 ∼ Normal(2, 1),

α21 ∼ Normal(0, 10), π10 ∼ Normal(0, 10),

σ−2
ϵz ∼ Gamma(1, 1), π11 ∼ Normal(0, 10),

σ−2
δz ∼ Gamma(0.1, 0.1).

We ran 2 chains with 3000 iterations each, the first 1000 iterations were discarded as

burn-in. Overall, there were 4000 samples from the posterior distribution in total,

2000 from each chain.

We recall that four scenarios with varying relationships between the outcome and

assignment variables were considered. Figure 6.2 shows boxplots for the posterior

mean of the LATE obtained from the simulation studies for Scenarios 1, 2, 3 and

4. Table 6.1 contains the numerical results from the simulation studies to compare

the frequentist and Bayesian TPRS approaches for Scenarios 1 and 2, while Table

6.2 contains numerical summaries for Scenarios 3 and 4.

For Scenario 1, both the frequentist and Bayesian approaches produce unbiased esti-

mates of the true treatment effect. We note that for the Bayesian approach, coverage

is quite high, which suggests that the Bayesian approach might be over-estimating

the standard error. For both frequentist and Bayesian approaches, the 95% confi-

dence interval (equal tail credible interval for the Bayesian approach) contains the

treatment effect.

Under Scenario 2, we observe that the estimates from the Bayesian approach are

close to the value of the true treatment effect across bandwidths, and we note that

biases of estimates from the frequentist approach are larger. Similarly, in this sce-

nario, we observe that the coverage for the Bayesian approach is higher than the

nominal value which might imply that the Bayesian approach is over-estimating the

standard error estimate.

For Scenarios 3 and 4, we observe that biases of the estimates from the Bayesian
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approach are smaller compared to those from the frequentist approach. Similarly,

the coverage of the credible intervals of the Bayesian approach is above the nominal

level.

Overall, it seems that by specifying the prior distribution, the Bayesian approach

produces estimates that are closer to the true value of the treatment effect compared

to the frequentist approach that is only based on the information from the observed

data. However, the Bayesian approach seem to over-estimate the standard error, as

such, coverage of the credible intervals of the Bayesian approach are quite high.

Table 6.1: Estimates, biases, empirical standard errors and the 95% coverage of the LATE
to compare the Bayesian and frequentist approaches for estimating the LATE using the
thin plate spline for Scenarios 1 and 2.

Scenario 1 Scenario 2

Method Estimate Bias ESE Coverage Estimate Bias ESE Coverage

Bandwidth = 0.2 , Treatment effect = -2, Sample size = 2000

Freq TPRS -1.98 -0.02 0.10 94.3 -1.90 -0.10 0.15 86.2

Bayes TPRS -2.01 0.01 0.17 99.3 -1.96 -0.04 0.18 99.2

Bandwidth = 0.15 , Treatment effect = -2, Sample size = 2000

Freq TPRS -1.99 -0.01 0.12 94.8 -1.89 -0.11 0.16 77.9

Bayes TPRS -2.01 0.01 0.17 99.7 -1.96 -0.04 0.17 99.9

Bandwidth = 0.1 , Treatment effect = -2, Sample size = 2000

Freq TPRS -1.99 -0.01 0.15 94.3 -1.93 -0.07 0.16 87.8

Bayes TPRS -2.01 0.01 0.16 100.0 -2.00 0.00 0.16 100.0

Bandwidth = 0.05 , Treatment effect = -2, Sample size = 2000

Freq TPRS -2.00 0.00 0.21 95.1 -1.98 -0.02 0.21 96.0

Bayes TPRS -2.01 0.01 0.15 100.0 -2.01 0.01 0.14 100.0
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Figure 6.2: Boxplots of the estimate of the LATE to compare the frequentist and
Bayesian thin plate regression spline methods for estimating the LATE. The central
line and limit of the boxplots represent the median and inter-quartile range of the
estimates respectively.
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Table 6.2: Estimates, biases, empirical standard errors and the 95% coverage of the LATE
to compare the Bayesian and frequentist approaches for estimating the LATE using the
thin plate spline for Scenarios 3 and 4.

Scenario 3 Scenario 4

Method Estimate Bias ESE Coverage Estimate Bias ESE Coverage

Bandwidth = 0.2 , Treatment effect = -2, Sample size = 2000

Freq TPRS -2.05 0.05 0.16 90.3 -1.88 -0.12 0.20 84.6

Bayes TPRS -2.03 0.03 0.18 98.7 -1.91 -0.09 0.18 97.7

Bandwidth = 0.15 , Treatment effect = -2, Sample size = 2000

Freq TPRS -2.05 0.05 0.17 90.6 -1.87 -0.13 0.21 80.0

Bayes TPRS -2.04 0.04 0.18 99.2 -1.92 -0.08 0.18 98.9

Bandwidth = 0.1 , Treatment effect = -2, Sample size = 2000

Freq TPRS -2.07 0.07 0.17 86.1 -1.91 -0.09 0.20 86.4

Bayes TPRS -2.04 0.04 0.18 99.8 -1.99 -0.01 0.17 99.9

Bandwidth = 0.05 , Treatment effect = -2, Sample size = 2000

Freq TPRS -2.03 0.03 0.23 94.2 -2.00 0.00 0.21 94.8

Bayes TPRS -2.01 0.01 0.15 100.0 -2.01 0.01 0.15 100.0

146



6.2.1 Example on Statin Prescription in UK Primary Care

In this section, we shall apply the Bayesian approach described above to the data

described in Section 3.6. We recall that the aim of the analysis is to estimate the

effect of statin prescription on LDL cholesterol level. The relevant variables from

the data are defined as follows:

• Yi is the outcome, the LDL cholesterol level (mmol/L).

• Xi is the assignment variable, the risk of developing a cardiovascular disease

in 10 years.

• x0 = 0.2 is the threshold for the treatment guideline: patients are to receive a

statin prescription if the value of their assignment variable is greater or equal

to x0.

• Ai is the treatment indicator that takes value 1 if patient i receives a statin

prescription, 0 otherwise.

Baigent et al. (2005) carried out a meta-analysis of 14 randomised trials on the safety

and efficacy of statin prescription where it was noted that the average reduction in

LDL cholesterol level is -1.09, with the values ranging from 0.35 to 1.77. This

informed our choice of prior distribution for the treatment effect of interest in the

example we are considering:

λbtprs ∼ Normal(−1, 1).

The prior distributions of the remaining parameters are given below

β = λbtprs (π01 − π00) , π00 ∼ Normal(−2, 1),

δ∗ ∼ Normal(0, σ2
δ ), π01 ∼ Normal(2, 1),

α ∼ Normal(0, 10), π10 ∼ Normal(0, 10),

σ−2
ϵ ∼ Gamma(1, 1), π11 ∼ Normal(0, 10),

σ−2
δ ∼ Gamma(0.1, 0.1).

We carried out the Bayesian analysis in R using the r2jags package (Plummer, 2019).
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We ran 4 chains with 5500 iterations each, the first 2000 iterations of each chain were

discarded as burn-in, so that for each chain, 2500 iterations were saved. We checked

the trace plots of the samples from the posterior distribution of the treatment effect

to confirm that the chains converged. The traceplots for the four bandwidths are

presented in Figure 6.3, we observe that the there is sufficient mixture of the chains

which also suggests that the chains have converged. As such, we present the results

using the properties of the posterior distribution of the parameter of interest.

Results obtained from the Bayesian analysis are presented in Table 6.3, we also

show the results from the frequentist method here. The results of the Bayesian TPRS

indicate that statin prescription is associated with a reduction in the LDL cholesterol

level. This is in agreement with results from frequentist approach and also is inline

with the purpose of statin prescription. The standard error estimates of the Bayesian

approach are larger than the standard error estimates of the frequentist approach,

this is similar to what we observed in the simulation studies where the Bayesian

approach over-estimates the standard error estimate. Next, we shall present the

Bayesian alternative of the RDD-RR estimator that was developed for estimating

the risk ratio in an RD design presented in Chapter 4.
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Figure 6.3: Trace plots of λbtprs for the four bandwidths considered.

Table 6.3: The posterior mean (estimates) and associated standard deviation (SE) of the
Bayesian approach of estimating the LATE for the THIN data example on the prescription
of statins based on 10-year CVD risk score. Results from the frequentist approach are also
included.

Bandwidth: 0.05 0.1 0.15 0.2

Method Estimate SD Estimate SD Estimate SD Estimate SD

Freq TPRS -1.04 0.83 -1.30 0.34 -1.42 0.25 -1.48 0.22

Bayes TPRS -1.01 0.84 -1.57 0.59 -1.87 0.52 -1.95 0.49

LATE: Local average treatment effect;
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6.3 Bayesian methods for binary outcomes

In Chapter 4, the RDD-RR estimator was proposed for estimating the risk ratio in

an RD design. Simulation studies indicated that this approach is preferable to the

WALD-RR and MSMM approaches that can be used to estimate the risk ratio in

an RD design. Here, we propose a Bayesian approach to estimate the RDD-RR.

The RDD-RR estimator is given as

RDDRR = 1− lim
x→x0

E(Y |Z = 1, X = x)− E(Y |Z = 0, X = x)

E(Y |Z = 1, X = x)E(A|Z = 0)− E(Y |Z = 0, X = x)E(A|Z = 1)

We denote the Bayesian RDD-RR as λRR and we specify the prior distribution of

λRR as follows:

λRR ∼ Log-normal(µRR, σ
2
RR).

We specify a log-normal distribution for the prior distribution of λRR to ensure

that the estimate of λRR will be non-negative. Prior information about λRR can be

incorporated in the values of µRR and σ2
RR. The distributions for model fitting are

specified as follows:

Yi ∼ Binomial(1, µi1) logit(µi1) = γ01 + γ11x
c
i for i ∈ A,

Yi ∼ Binomial(1, µi0) logit(µi0) = γ00 + γ10x
c
i for i ∈ B,

Ai ∼ Binomial(1, πa) for i ∈ A,

Ai ∼ Binomial(1, πb) for i ∈ B.

(6.3)

Similar to what we have done in Section 6.2, since we have specified a prior distri-

bution for λRR, we will express γ01 as a function of the other parameters:

expit(γ01) =
expit (γ00) (π1 − π1λRR − 1)

π0 − π0λRR − 1
,

where expit(x) = exp(x)
1+exp(x)

. The prior distributions for the remaining parameters are
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given below:

γ00 ∼ Normal(0, σ2
00),

γ10 ∼ Normal(0, σ2
10),

γ11 ∼ Normal(0, σ2
11),

logit(π1) ∼ Normal(2, 1),

logit(π0) ∼ Normal(−2, 1).

The Bayesian estimator of RDD-RR is calculated as the posterior mean of the sam-

ples obtained from the posterior distribution of λRR.

We carried out simulation studies using the datasets that were simulated in Section

4.4 to compare the Bayesian and frequentist approaches of estimating the RDD-

RR. For the Bayesian approach, the prior distribution of the treatment effect is

specified as: λRR ∼ Log-normal(log(1.5), 0.5), the values specified for the parameters

of the prior distributions for the remaining parameters are σ2
00 = σ2

10 = σ2
11 = 10. As

before, six simulation scenarios were considered varying the levels of confounding

and fuzziness.

Figures 6.4 and 6.5 show boxplots of the posterior means of the treatment effect ob-

tained from Bayesian approach and estimates obtained using frequentist approach

from the simulation studies under the weak and strong fuzziness scenarios, respec-

tively. Tables 6.4, 6.5 and 6.6 show the numerical summaries of the estimates of the

simulation studies under the no, low and high confounding scenarios respectively.

As we observed under the frequentist approach, results presented in these tables are

for the log of the risk ratio.

Comparing the boxplots in Figures 6.4 and 6.5 and the estimates in Tables 6.4, 6.5

and 6.6, we observe that the results from the frequentist and Bayesian approaches

are very similar to each other. Therefore, the performances of the two approaches

are comparable in terms of bias and standard error estimates. An advantage of the

Bayesian approach, however, is that rather than estimating the standard error of

RDD-RR estimate with the bootstrapping approach as we did for the frequentist

approach, the standard error of the estimate from the Bayesian approach is obtained

directly from the samples obtained from the posterior distribution of the treatment
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effect.

Under the weak fuzziness scenario, we see that the two methods of estimating RDD-

RR produced very little or no bias across the bandwidths considered. In addition,

the performance of the estimators does not seem to be affected by the level of

confounding, as the estimates under the no, low and high confounding scenarios

are similar. This conforms with the advantage of using an RD design, that is, the

RD design can identify a treatment effect in observational data in the presence of

unobserved confounding. In terms of standard errors, the ESE and ASE are equal,

which indicates the standard errors of the estimates for the two approaches are

correctly estimated.

Under the strong fuzziness scenario, as shown in Figure 6.5 and the right panels

of Tables 6.4, 6.5 and 6.6, we see that estimates from the frequentist and Bayesian

approaches are similar and we observe that estimates from both approaches are

biased where the bandwidth size is large. However, as the bandwidth reduces the

bias also reduces, but, owing to the fact that for a small bandwidth, the number

of observations is also small, estimates tend to be more variable. Furthermore, as

we observed under the weak fuzziness scenario, the performance of the estimators is

not affected by the level of confounding in the design.

152



Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

h =  0.2

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

h =  0.15

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

h =  0.1

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
5

2.
0

h =  0.05

No confounding

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

h =  0.2

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

h =  0.15

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

h =  0.1

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
5

2.
0

h =  0.05

Low confounding

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

h =  0.2

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

h =  0.15

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

h =  0.1

Freq.
 RDD−RR

Bayes.
 RDD−RR

1.
0

1.
5

2.
0

h =  0.05

High confounding

Figure 6.4: Boxplots of the estimates from simulation studies to compare the
Bayesian and frequentist approaches for estimating the RDD-RR under the weak
fuzziness scenario. The central line and limit of the boxplots represent the median
and inter-quartile range of the estimates respectively.
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Figure 6.5: Boxplots of the estimates from simulation studies to compare the
Bayesian and frequentist approaches for estimating the RDD-RR under the strong
fuzziness scenario. The central line and limit of the boxplots represent the median
and inter-quartile range of the estimates respectively.
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Table 6.4: Estimates, biases, empirical standard errors and the 95% coverage of RDD-RR
from simulation studies to compare the Bayesian and frequentist approaches under the no
confounding scenario.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE Coverage Estimate Bias ESE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.01 0.13 94.9 0.38 0.02 0.19 96.2

Bayes RDD-RR 0.40 0.01 0.13 94.9 0.38 0.02 0.18 95.2

Bandwidth = 0.15 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.01 0.14 95.0 0.38 0.02 0.20 95.8

Bayes RDD-RR 0.40 0.01 0.13 94.6 0.38 0.03 0.19 95.2

Bandwidth = 0.1 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.00 0.16 95.2 0.39 0.02 0.23 96.2

Bayes RDD-RR 0.40 0.01 0.16 94.3 0.38 0.02 0.21 95.6

Bandwidth = 0.05 , Treatment effect = 0.405

Freq RDD-RR 0.41 0.00 0.22 95.4 0.40 0.01 0.31 97.7

Bayes RDD-RR 0.40 0.01 0.21 94.6 0.38 0.02 0.27 97.0

Table 6.5: Estimates, biases, empirical standard errors and the 95% coverage of RDD-RR
from simulation studies to compare the Bayesian and frequentist approaches under the low
confounding scenario.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE Coverage Estimate Bias ESE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.00 0.13 95.6 0.38 0.03 0.20 95.2

Bayes RDD-RR 0.40 0.01 0.13 95.6 0.38 0.03 0.19 94.9

Bandwidth = 0.15 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.00 0.14 95.6 0.38 0.02 0.21 95.3

Bayes RDD-RR 0.40 0.01 0.13 95.7 0.38 0.03 0.20 95.0

Bandwidth = 0.1 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.00 0.15 95.9 0.39 0.02 0.24 95.6

Bayes RDD-RR 0.40 0.01 0.15 95.4 0.38 0.02 0.22 94.9

Bandwidth = 0.05 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.00 0.22 95.0 0.40 0.01 0.33 97.6

Bayes RDD-RR 0.39 0.01 0.20 95.0 0.38 0.02 0.28 96.4
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Table 6.6: Estimates, biases, empirical standard errors and the 95% coverage of RDD-
RR from simulation studies to compare the Bayesian and frequentist approaches under
the high confounding scenario.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE Coverage Estimate Bias ESE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.01 0.14 94.3 0.39 0.02 0.21 95.2

Bayes RDD-RR 0.40 0.01 0.14 94.4 0.38 0.02 0.20 94.7

Bandwidth = 0.15 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.00 0.14 94.6 0.39 0.02 0.22 96.0

Bayes RDD-RR 0.40 0.01 0.14 93.3 0.38 0.02 0.20 94.8

Bandwidth = 0.1 , Treatment effect = 0.405

Freq RDD-RR 0.40 0.00 0.16 95.7 0.39 0.01 0.25 97.0

Bayes RDD-RR 0.40 0.01 0.16 94.7 0.39 0.02 0.23 95.7

Bandwidth = 0.05 , Treatment effect = 0.405

Freq RDD-RR 0.41 0.00 0.22 95.6 0.41 0.00 0.35 98.1

Bayes RDD-RR 0.40 0.01 0.20 94.8 0.39 0.01 0.29 97.2
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6.3.1 Example on Statin Prescription in UK Primary Care

We applied the Bayesian approach to estimating the RDD-RR to the real data on

statin prescription, described in Section 4.5. We recall the variables from the dataset

are defined as:

• The outcome: Yi equals 1 if the LDL cholesterol level of patient i is reduced

by at least 1mmol/L and 0 otherwise.

• Treatment indicator: Ai equals 1 if patient i receives a statin prescription and

0 otherwise.

• The assignment variable: Xi is the risk that patient i develops a cardiovascular

disease in 10 years.

• The threshold: x0 = 0.2, the treatment guideline states that patients with

value of assignment variable greater or equal to x0 should receive a statin

prescription and vice versa.

• The threshold indicator: Zi equals 1 if the value of patient i’s assignment

variable is greater or equal to x0 and 0 otherwise.

We place a vaguely informative prior on the treatment effect of interest -

λRR ∼ Lognormal(log(1.5), 2). The values specified for the parameters of the prior

distributions for the remaining parameters are σ2
00 = σ2

10 = σ2
11 = 10.

For the Bayesian analysis, we ran 4 MCMC chains with 5500 iterations each. The

first 2000 iterations from each chain was discarded as burn-in so that 2500 iterations

was saved per chain. To check for convergence, the trace plots of the parameter

of interest are provided in Figure 6.6 for the four bandwidths considered. The

trace plots show that the four chains have converged across the four bandwidths

considered and we present a summary of the samples from the posterior distribution

of the parameter of interest.

Table 6.7 presents estimates obtained from the RDD-RR method for the frequentist

and Bayesian approaches for bandwidths 0.05, 0.1, 0.15 and 0.2 as well as the

95% confidence intervals for the frequentist approach and 95% equal tail credible
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intervals for the Bayesian approach. As we have observed from the results from the

simulation studies, the estimates from the Bayesian approach are similar to those

from the frequentist approach.

The estimates from the Bayesian and frequentist approach suggest that there may

be a beneficial effect of statin prescription in reducing LDL cholesterol level for

bandwidths 0.1, 0.15 or 0.2. However, for bandwidth of 0.05, estimates indicate

that patients who receive a statin prescription are less likely to have their LDL

cholesterol level reduced by at least 1mmol/L compared to patients that did not

receive a statin prescription. But, since the credible and confidence intervals contain

1, we do not have sufficient, significant, evidence about the potential benefit of statin

prescription.

In the next section, we shall describe the Bayesian alternative to the RDD-AFT

estimator that is used to estimate the acceleration factor in an RD design that was

proposed in Chapter 5.
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Figure 6.6: Trace plots of the Bayesian RDD-RR for the four bandwidths considered.

Table 6.7: Estimates and 95% credible (and confidence) intervals of RDD-RR estimate
of the effect of statin prescription on reducing LDL cholesterol level.

Bandwidth: 0.05 0.1 0.15 0.2

Method Estimate 95% C.I. Estimate 95% C.I. Estimate 95% C.I. Estimate 95% C.I.

Freq RDD-RR 0.71 (0.24, 2.08) 1.17 (0.65, 2.11) 1.26 (0.79, 2.01) 1.43 (0.91, 2.23)

Bayes RDD-RR 0.78 (0.23, 1.72) 1.21 (0.64, 2.12) 1.27 (0.77, 2.03) 1.45 (0.93, 2.30)
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6.4 Bayesian methods for time-to-event outcomes

In this section, we present a Bayesian alternative to the estimator of the acceleration

factor in an RD design that was proposed in Chapter 5. We recall that the logarithm

of the RDD-AFT estimator that has been derived is

log(RDD-AFT) =
α1

π1 − π0
, (6.4)

where α1 is obtained from the AFT model

log(Ti) = α1Zi + α2Xi + α3XiZi + ϵi, (6.5)

and the elements of the denominator πz represents the probability of receiving treat-

ment when Z = z , z ∈ {0, 1}, that is, below and above the threshold.

In this thesis, we focused on the Weibull parametric model, however, as mentioned in

Chapter 5, other parametric distributions can be considered. To fit a Weibull AFT

model, it may be more straightforward to write the model using the generalised

gamma distribution. In the jags manual (Plummer, 2017), the probability density

function of a random variable T that has a generalised gamma distribution is given

as

f(t) =
bλbr−1 exp{−(λt)b}

Γ(r)
, b, λ, r > 0.

If r = 1, the generalised gamma distribution is a Weibull distribution with proba-

bility density function:

f(t) = bλb−1 exp{−(λt)b} b, λ, r > 0.

The survivor function of this parameterisation of the Weibull distribution is

P(T ≥ t) = exp{−(λt)b}.

Here, λ represents the factor by which the time-to-event t is accelerated. Therefore,

under the AFT assumption, the relationship between the covariates and the outcome

is modelled through λ.
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We denote the Bayesian RDD-AFT estimator as λAFT and its prior distribution can

be specified as:

λAFT ∼ Lognormal(µAFT, σ
2
AFT).

Here, we have specified a log-normal distribution as the prior distribution of λAFT

to ensure that the estimate of the acceleration factor will be non-negative. Next,

we describe the distributions for modelling the outcome variable and treatment

indicator.

Ti ∼ Generalised Gamma(1, λi, b),

log(λi) = α0 + α1Zi + α2Xi + α3XiZi,

Ai ∼ Binomial(1, π1) for i ∈ A,

Ai ∼ Binomial(1, π0) for i ∈ B.

Since we have placed a prior on λAFT, we will express α1 as a function of the

remaining parameters:

α1 = λAFT(π1 − π0).

The prior distributions for the remaining parameters are given as:

α0 ∼ Normal(0, σ2
α0)

α2 ∼ Normal(0, σ2
α2)

α3 ∼ Normal(0, σ2
α3),

b ∼ Gamma(cb, db),

logit(π1) ∼ Normal(2, 1),

logit(π0) ∼ Normal(−2, 1).

The models specified above can be run using the rjags package (Plummer, 2019) in

R (R Core Team, 2018) and the samples from the posterior distribution of the pa-

rameter of interest (λAFT) saved after convergence has been achieved. The treatment

effect estimate can be obtained by computing the posterior mean and the standard

error of the estimate is the posterior standard deviation.

Simulation studies were carried out to check the performance of the Bayesian ap-

proach to RDD-AFT estimation that has been described above and compare this
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to the non-Bayesian RDD-AFT approach seen in Chapter 5. The prior distribu-

tion for the treatment effect is specified as λAFT ∼ Lognormal(log(1.5), 0.5). De-

tails of the parameters of the prior distributions for the remaining parameters are:

σ2
α0 = σ2

α2 = σ2
α3 = 10, cb = db = 10−2. The datasets used for the simulation studies

are those that were used in the simulation studies under the frequentist approach

that were described in Section 5.5. As with the binary outcome, six simulation

scenarios were considered by varying the probabilities of compliance with the treat-

ment guideline (level of fuzziness) and the level of confounding. Figures 6.7 and

6.8 show boxplots of the estimates obtained from the simulation studies under the

weak and strong fuzziness scenarios, respectively. Tables 6.8, 6.9 and 6.10 present

numerical summaries of the estimates of log(RDD-AFT) under the no, low and high

confounding scenarios, respectively.

Under the weak fuzziness scenario, as shown in Figure 6.7 and the left panels of

Tables 6.8, 6.9 and 6.10, we observe that the frequentist and Bayesian approaches

of estimating the RDD-AFT yield little to no bias when there is no confounding

across the bandwidths. As the level of confounding increases, some bias is observed

for larger bandwidths, however, the bias reduces as the bandwidth reduces. Over-

all, the estimates and standard errors obtained from the frequentist and Bayesian

approaches are similar to one another.

For the strong fuzziness scenario, as shown in Figure 6.8 and the right panels of

Tables 6.8, 6.9 and 6.10, we observe that, for larger bandwidths, estimates from the

Bayesian and frequentist approaches are biased. However, the bias reduces as the

bandwidth size reduces. In addition, we observe that the standard error estimates

under this scenario are larger than those under the weak fuzziness scenario. The

probability of compliance with the treatment guideline is smaller under the strong

fuzziness scenario, which causes a higher uncertainty about the estimate, thereby

resulting in a larger standard error estimate under this scenario. Notably, we observe

that the standard error estimates of the Bayesian approach are smaller compared

to the frequentist approach and this might in turn lead to the width of the credible

intervals of estimates from the Bayesian approach to be narrower than the width of

the confidence intervals of estimates from the frequentist approach.
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Figure 6.7: Boxplots of the estimates from simulation studies to compare the
Bayesian and frequentist approaches for estimating the RDD-AFT under the weak
scenario. The central line and limit of the boxplots represent the median and inter-
quartile range of the estimates respectively.
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Figure 6.8: Boxplots of the estimates from simulation studies to compare the
Bayesian and frequentist approaches for estimating the RDD-AFT under the strong
scenario. The central line and limit of the boxplots represent the median and inter-
quartile range of the estimates respectively.
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Table 6.8: Estimates, biases, empirical standard errors and the 95% coverage of RDD-
AFT from simulation studies to compare the Bayesian and frequentist approaches under
the no confounding scenario.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE Coverage Estimate Bias ESE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.40 0.01 0.11 94.6 0.36 0.05 0.17 94.2

Bayes RDD-AFT 0.41 0.00 0.11 94.0 0.36 0.04 0.16 94.3

Bandwidth = 0.15 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.39 0.01 0.12 95.9 0.37 0.04 0.20 94.8

Bayes RDD-AFT 0.41 0.00 0.13 95.7 0.37 0.03 0.19 95.2

Bandwidth = 0.1 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.40 0.01 0.15 95.3 0.37 0.04 0.25 95.2

Bayes RDD-AFT 0.41 -0.01 0.16 95.9 0.38 0.03 0.22 95.3

Bandwidth = 0.05 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.40 0.01 0.22 96.8 0.39 0.01 0.38 95.0

Bayes RDD-AFT 0.42 -0.02 0.21 96.0 0.41 0.00 0.30 96.7

Table 6.9: Estimates, biases, empirical standard errors and the 95% coverage of RDD-
AFT from simulation studies to compare the Bayesian and frequentist approaches under
the low confounding scenario.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE Coverage Estimate Bias ESE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.37 0.03 0.12 94.3 0.34 0.07 0.18 94.3

Bayes RDD-AFT 0.38 0.02 0.12 94.5 0.35 0.06 0.17 93.9

Bandwidth = 0.15 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.37 0.03 0.14 94.6 0.35 0.06 0.22 94.4

Bayes RDD-AFT 0.39 0.02 0.14 95.4 0.36 0.05 0.20 95.1

Bandwidth = 0.1 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.38 0.03 0.17 95.9 0.36 0.04 0.28 95.2

Bayes RDD-AFT 0.40 0.01 0.17 95.9 0.38 0.03 0.24 95.6

Bandwidth = 0.05 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.38 0.02 0.25 95.4 0.38 0.03 0.42 96.4

Bayes RDD-AFT 0.41 0.00 0.24 95.4 0.40 0.01 0.31 97.6
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Table 6.10: Estimates, biases, empirical standard errors and the 95% coverage of RDD-
AFT from simulation studies to compare the Bayesian and frequentist approaches under
the high confounding scenario.

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE Coverage Estimate Bias ESE Coverage

Bandwidth = 0.2 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.38 0.03 0.18 95.5 0.34 0.06 0.28 95.1

Bayes RDD-AFT 0.39 0.01 0.17 94.8 0.36 0.05 0.25 95.5

Bandwidth = 0.15 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.38 0.02 0.21 95.1 0.35 0.05 0.34 94.8

Bayes RDD-AFT 0.39 0.01 0.20 95.7 0.37 0.04 0.27 95.4

Bandwidth = 0.1 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.38 0.03 0.26 95.6 0.36 0.04 0.44 94.4

Bayes RDD-AFT 0.40 0.01 0.24 95.9 0.38 0.02 0.33 97.0

Bandwidth = 0.05 , Treatment effect = 0.405, Sample size = 2000

Freq RDD-AFT 0.38 0.02 0.38 94.3 0.38 0.02 0.67 94.9

Bayes RDD-AFT 0.41 0.00 0.30 96.5 0.40 0.00 0.36 98.1
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6.4.1 Example on Metformin Prescription in UK Primary
Care

We applied the Bayesian approach to RDD-AFT estimation to the data on effect of

metformin prescription on type II diabetes related complications: all-cause mortality

and cardiovascular disease. In the dataset, we defined two outcome variables of

interest, the time to all-cause mortality and the time to a cardiovascular disease

event. The remaining variables in the data are defined as

• The treatment indicator: Ai equals 1 if patient i receives a metfomin prescrip-

tion and 0 otherwise.

• The assignment variable: Xi is the HbA1c value of patient i

• The threshold: x0 = 48mmol/mol, patients are to receive a metformin pre-

scription if their HbA1c value is greater or equal to x0.

• The threshold indicator: Zi equals 1 if patient’s i HbA1c value is greater or

equal to x0 and 0 otherwise.

Here, we are interested in the estimating the effect (acceleration factor) of metformin

prescription on time to all-cause-mortality and time to a CVD event. To specify

the prior distribution of the treatment effect, we looked at the results from Han

et al. (2019), a meta-analysis of 40 studies that looked at the effect of metformin

prescription on all-cause-mortality and CVD event. They reported the hazard ratio

for all-cause-mortality and CVD event as 0.67 and 0.83 respectively. Since accel-

eration factor and hazard ratio are inversely related, that is, a beneficial effect of

as treatment would result in a hazard ratio less than 1 and an acceleration factor

greater than 1, we specify the following prior distribution that for the acceleration

factors of interest for both outcomes.

λAFT ∼ Lognormal(0.2, 0.1).

Figure 6.9 is the density of the prior distribution of the treatment effect of inter-

est. The parameters of prior distributions of the other parameters are specified as:

σ2
α0 = σ2

α2 = σ2
α3 = 10, cb = db = 10−2.
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Figure 6.9: Density of the prior distribution of λAFT

We estimated RDD-AFT using the Bayesian approach that has been described for

the two outcomes of interest. As we have done for the continuous and binary out-

comes earlier, we ran 4 MCMC chains for each outcome of interest. The first 2000

iterations from each chain were discarded as burn-in and the remaining 2500 it-

erations were saved. To check for convergence, the trace plots of log(RDD-AFT)

for the two outcomes of interest are provided in Figures 6.10 and 6.11 for the four

bandwidths considered. The trace plots show that the four chains have converged

across the four bandwidths considered and so, we present a summary of the samples

from the posterior distribution of the log(RDD-AFT).

We present estimates and 95% credible intervals of the RDD-AFT for the effect of

a metformin prescription on time to all-cause mortality and time to a cardiovascu-

lar disease event for patients at risk of type II diabetes in Table 6.11. We observe

that the estimated values of the effect of metformin prescription from the Bayesian

approach appear to be stable across bandwidths when compared to estimates from
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Figure 6.10: Trace plots of log(RDD-AFT) for the four bandwidths considered when
event of interest is all-cause mortality.

the frequentist approach. However, estimates from both methods suggest that the

median time to all-cause mortality and the median time to a cardiovascular disease

event are higher in patients that receive a metformin prescription compared to pa-

tients that do not receive a prescription. This implies a potential benefit of receiving

a prescription of metformin. However, we note that the credible (and confidence)

intervals contain 1, which implies there is insufficient evidence to suggest a beneficial

effect of metformin prescription. We observe that the estimates from the Bayesian

approach are more precise as the 95% credible intervals are narrower compared to

the 95% confidence intervals of the frequentist approach.
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Figure 6.11: Trace plots of log(RDD-AFT) for the four bandwidths considered when
event of interest is a cardiovascular event.

Table 6.11: Estimates and 95% credible (and confidence) intervals of RDD-AFT estimate
of the effect of metformin prescription on type II diabetes complications.

Bandwidth: 10 8 6 5

Outcome: Time to all cause mortality

Method Estimate (95% C.I.) Estimate (95% C.I.) Estimate (95% C.I.) Estimate (95% C.I.)

Freq RDD-AFT 2.37 (0.75, 7.45) 2.09 (0.53, 8.19) 1.32 (0.37, 4.70) 1.21 (0.26, 5.65)

Bayes RDD-AFT 1.48 (0.85, 2.47) 1.41 (0.77, 2.42) 1.29 (0.70, 2.17) 1.25 (0.68, 2.14)

Outcome: Time to a cardiovascular event

Method Estimate (95% C.I.) Estimate (95% C.I.) Estimate (95% C.I.) Estimate (95% C.I.)

Freq RDD-AFT 2.47 (0.57, 10.59) 1.25 (0.25, 6.25) 1.12 (0.13, 9.61) 1.22 (0.09, 15.92)

Bayes RDD-AFT 1.44 (0.79, 2.38) 1.30 (0.70, 2.26) 1.29 (0.69, 2.28) 1.27 (0.65, 2.24)
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6.5 Conclusions

In this chapter, we presented Bayesian alternatives to the proposed methods for

treatment effect estimation in Chapters 3, 4 and 5.

For continuous outcomes, a Bayesian alternative to the TPRS approach to LATE es-

timation was presented and we carried out simulation studies using the datasets that

were simulated in Chapter 3 to compare the frequentist and Bayesian approaches

to LATE estimation. Results from the simulation studies show that under the sce-

nario where the underlying relationship between the outcome and the assignment

variable is linear, both the frequentist and Bayesian methods yield estimates close

to the value of the true treatment effect. For other scenarios, the relationships be-

tween the outcome and assignment variable are non-linear, the frequentist approach

produces biased estimates for larger bandwidths. The Bayesian approach, however,

produced estimates close to the value of the treatment effect for all bandwidths con-

sidered. We proceeded to apply the Bayesian approach to the real dataset on statin

prescription. The estimates from the Bayesian and frequentist approaches suggest

a beneficial effect of statin prescription on reducing LDL cholesterol level.

For binary outcomes, we presented a Bayesian alternative to RDD-RR estimation.

Simulation studies, with varying levels of confounding and fuzziness, to compare

the Bayesian and frequentist approaches to RDD-RR estimation were carried out

and the estimates from the Bayesian and frequentist approaches are similar. We

also observed that the two approaches produced similar estimates when they were

applied to the real data on statin prescription.

For a time-to-event outcome, we presented a Bayesian alternative to RDD-AFT esti-

mation and we carried out simulation studies, with varying levels of confounding and

fuzziness, to compare Bayesian and frequentist methods. Under the weak fuzziness

scenario, estimates and standard errors obtained from the Bayesian and frequentist

approaches were similar. However, under the strong fuzziness scenario, estimates

from the Bayesian approach were more precise than those from the frequentist ap-

proach as the standard errors from the Bayesian approach were smaller. The two

approaches were applied to real data on metformin prescription to investigate the

effect of metformin prescription on time to death and time to a CVD event. The
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estimates from the Bayesian and frequentist approaches suggest a beneficial effect

of metformin prescription. However, we note that, in general, estimates from the

Bayesian approach were more precise because the 95% credible intervals from the

Bayesian approach are narrower than the 95% confidence interval intervals from

the frequentist approach, and this could have resulted from the prior distribution

specified for the treatment effect.

In all cases, we have illustrated how to incorporate findings from other studies, in

the form of prior distributions, in the implementation of the Bayesian alternatives

of the frequentist methods.
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Chapter 7

Final Discussion

This thesis focused on methods for treatment effect estimation from observational

data using regression discontinuity designs, when the outcome of interest is contin-

uous, binary or a time-to-event. Treatment effect estimation in an RD design when

the outcome is continuous has been widely researched and the LATE is an estab-

lished estimator of treatment effect. In contrast, treatment effect estimation in an

RD design has not been widely explored for cases where the outcome of interest is

either binary or a time-to-event, despite the extensive use of such outcomes in med-

ical studies. We introduced new approaches for estimating treatment effects in an

RD design for binary and time-to-event outcomes. We shall give a summary of the

work that has been presented in this thesis and explore possible future extensions

and directions.

7.1 Summary of work done

In Chapter 2, we provided a formal introduction to the RD design and presented

the assumptions required to identify a treatment effect using an RD design. These

assumptions were used for deriving the estimators that we proposed.

In Chapter 3, we introduced the treatment effect estimator when the outcome is

continuous, known as the local average treatment effect (LATE) estimator. We

described the linear and robust bias-corrected (BC) approaches of estimating the

LATE. These two methods require the prior assumption/ specification of the un-

derlying relationship between the outcome and the assignment variable. As such,

the accuracy of the estimates from these methods might depend on whether or not

the underlying relationship between the outcome and the assignment variable is cor-
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rectly specified. We proposed an alternative approach to LATE estimation using

thin plate regression spline (TPRS) that can model flexible, non-linear relationships

where such relationships exist.

We carried out simulation studies to compare the three methods with varying rela-

tionships between the outcome and the assignment variable. The TPRS approach

was able to yield estimates close to the value of the treatment effect for all scenarios.

Overall, the TPRS approach can serve as a useful check to other methods, especially

where it is suspected that the relationship between the outcome and the assignment

variable is not linear.

The three methods were applied to a real dataset to estimate the effect of statin

prescription on LDL cholesterol level. Results for the linear and TPRS models were

similar and suggest a beneficial effect of statin prescription. The results from the

robust BC approach also indicate a beneficial effect of statin prescription, but the

estimates are imprecise as the standard error estimates are quite large.

In Chapter 4, we explored methods for treatment effect estimation when the outcome

of interest is a binary variable with a focus on estimating the risk ratio. We discussed

the Wald-RR and multiplicative structural mean model (MSMM) methods, which

are existing methods that can be used for risk ratio estimation in an RD design. We

proposed an estimator of the risk ratio based on the assumptions of the RD design

that we termed RDD-RR.

Simulation studies were carried out to compare the performance of these methods

for estimating the risk ratio with varying levels of confounding and fuzziness. The

results from the simulation studies suggest that the three methods performed sim-

ilarly for scenarios with no or low effect of confounding. However, it was observed

that MSMM approach has a higher variability as its standard error estimates are

consistently larger than the standard error estimates of the WALD-RR and RDD-

RR methods. The MSMM approach also seemed to be affected by confounding as

the estimates obtained from this approach under the high confounding scenario were

biased.

Further simulation studies were carried out to check the performance of the WALD-

RR approach when the treatment effect is large. The results confirm that theWALD-
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RR approach yields biased estimates of the treatment effect. As such, the proposed

RDD-RR approach appears to be a preferable method of estimating the risk ratio

in a fuzzy RD design.

Additionally, the three methods discussed for estimating the risk ratio were applied

to a real data on statin prescription. The outcome was whether or not the reduction

in LDL cholesterol level is at least 1mmol/L. The estimates from the three methods

suggest that patients that receive statins prescription are more likely to have their

LDL cholesterol level reduced by at least 1mmol/L. However, for all methods, the

risk ratio estimates were not statistically significant at the 5% level.

In Chapter 5, we proceeded to explore methods for treatment effect estimation

when the outcome is a time-to-event. We focused on estimating the acceleration

factor because it can be interpreted directly in terms of the outcome. We discussed

the structural AFT approach, a method that has been used for the estimation of

the acceleration factor in observational studies. Under the RD design framework, no

estimator has been developed for the estimation of the acceleration factor. Therefore,

we derived the RDD-AFT estimator for the acceleration factor based on the RD

design assumptions.

To compare the performance of the S-AFT and RDD-AFT approaches under varying

levels of confounding and fuzziness, simulation studies were carried out. The RDD-

AFT yielded estimates that are close to the value of the true treatment effect for

all scenarios considered. However, for scenarios where there is confounding, the S-

AFT approach yields biased estimates of the treatment effect. The results from the

simulation studies are not surprising because one of the assumptions of the S-AFT

approach is that there are no unobserved confounders. As a result, we expect that

the S-AFT approach will yield unbiased estimates of the treatment effect when there

is no confounding but will yield biased estimates when the unobserved confounding

is ignored.

This implies that for S-AFT approach to produce an unbiased estimate, the as-

sumption of no unobserved confounders must be satisfied. On the other hand, the

proposed RDD-AFT approach is able to yield estimates that are close to the value of

the true treatment effect and a good coverage of the treatment effect in the presence
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of unobserved confounding.

We proceeded to apply the two methods to the real data on metformin prescription

with the outcomes time to all-cause-mortality and time to a CVD event in patients

at risk of type II diabetes. Although the estimates from the methods are imprecise,

as the 95% confidence intervals include 1, the point estimates of the acceleration

factor suggest that the median times to all-cause-mortality and a CVD event in

patients that receive metformin prescription are higher than in patients that did not

receive metformin prescription.

In Chapter 6, we provided Bayesian alternatives to the methods we have proposed

for treatment effect estimation in Chapters 3, 4 and 5 for the continuous, binary and

time-to-event outcomes, respectively. Bayesian analysis provides a straightforward

way of incorporating results from similar studies about the parameters of interest.

In this thesis, we focus on treatment effect estimation from observational data,

therefore, it is often the case that there have been previous studies that have looked

at the effect of the treatment being investigated. As such, in the Bayesian analysis,

we might incorporate the results from such previous studies via the prior distribution

specification.

With the increasing availability of large databases in medicine, and the fact that

many treatments are prescribed according to pre-specified, government guidelines,

the use of RD designs for treatment effect estimation is appealing. The treatment

effect estimation approaches we have proposed in this thesis can be estimated using

standard statistical software, they are easily accessible and applicable to a wide

variety of problems in medicine.

7.2 Future directions and extensions

In Chapter 3, we have explored the use of a flexible modelling approach using thin

plate regression spline models that is completely data driven, and we have shown

that this approach performs reasonably well. As such, it might be worth extending

the flexible modelling approach to the estimators we have developed for binary and

time-to-event outcomes.
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For the binary outcome, it might be straightforward to fit a data-driven flexible

model because the mgcv package (Wood, 2019) in R provides a generalised linear

model option. As such, TPRS models can be fitted using logit links to estimate the

components of the RDD-RR. For the time-to-event outcome, in addition to mod-

elling the relationship between the outcome and covariates flexibly, the underlying

hazard function could also be modelled flexibly as well. Marra et al. (2021) have

proposed a flexible modelling approach for a time-to-event outcome under propor-

tional hazards and proportional odds assumptions. It might be useful to extend the

idea to the accelerated failure time assumption.

Typically, in clinical databases, patients are followed over a period of time, resulting

in large longitudinal datasets. As a result, we may have some data in which the

assignment variable (and other covariates) have multiple measurements over time.

The treatment could also vary with time, which may yield a dynamic treatment

strategy. Another extension to the work that has been presented in this thesis is

to explore methods where threshold is measured at multiple points over time and

model the assignment variable as a time-varying covariate to explore how changes

in the values of the assignment variable over time may change a treatment effect

estimate.

This extension might be particularly appealing for time-to-event outcomes because

the structural AFT approach, which the RDD-AFT approach was compared with,

has been extended to handle cases of dynamic treatment strategies and time varying

confounders (Hernán et al., 2005). As we have established in the simulation studies,

when there are unobserved confounders the S-AFT approach fails to produce reliable

estimates of the treatment effect. The proposed RDD-AFT approach, however,

provides a reasonable estimate and coverage of the treatment effect. Therefore,

it may be useful to extend the RDD-AFT approach to handle dynamic treatment

strategies and multiple measurements of the assignment variable, in both Bayesian

and frequentist settings.
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Appendix A

Derivation of the LATE estimator

The local average treatment effect estimator has been developed as an estimator

of the treatment effect in a fuzzy RD design. We shall derive the LATE estimator

below.

We define the variables in an RD design within a pre-defined bandwidth h:

• Assignment variable X,

• Threshold indicator Z,

• Treatment indicator A,

• Continuous outcome of interest Y .

Based on Assumption 4 that Z is independent of confounders conditional on X, we

can obtain unbiased estimate of effect of Z on Y at the threshold:

lim
x→x0

E(Yi|Zi = 1, Xi = x)− lim
x→x0

E(Yi|Zi = 0, Xi = x).

For simplicity, we drop limx→x0 and X in the equation above so that

lim
x→x0

E(Yi|Zi = 1, Xi = x) ≡ E(Yi|Zi = 1), and

lim
x→x0

E(Yi|Zi = 0, Xi = x) ≡ E(Yi|Zi = 0).

Using the law of total probability, we have that

E(Yi|Zi = 1)− E(Yi|Zi = 0) =

E(Yi|Zi = 1, Ai = 1)P(Ai = 1|Zi = 1) + E(Yi|Zi = 1, Ai = 0)P(Ai = 0|Zi = 1)−

{E(Yi|Zi = 0, Ai = 1)P(Ai = 1|Zi = 0) + E(Yi|Zi = 0, Ai = 0)P(Ai = 0|Zi = 0)} .
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Applying Assumption 5 - conditional independence of Yi and Zi:

E(Yi|Zi = 1)− E(Yi|Zi = 0)

= E(Yi|Ai = 1)P(Ai = 1|Zi = 1) + E(Yi|Ai = 0)P(Ai = 0|Zi = 1)

− {E(Yi|Ai = 1)P(Ai = 1|Zi = 0) + E(Yi|Ai = 0)P(Ai = 0|Zi = 0)}

= E(Yi|Ai = 1)P(Ai = 1|Zi = 1) + E(Yi|Ai = 0){1− P(Ai = 1|Zi = 1)}

− {E(Yi|Ai = 1)P(Ai = 1|Zi = 0) + E(Yi|Ai = 0){1− P(Ai = 0|Zi = 0)}}

= E(Yi|Ai = 1){P(Ai = 1|Zi = 1)− P(Ai = 1|Zi = 0)}

− E(Yi|Ai = 0){P(Ai = 1|Zi = 1)− P(Ai = 1|Zi = 0)}

= {E(Yi|Ai = 1)− E(Yi|Ai = 0)}{P(Ai = 1|Zi = 1)− P(Ai = 1|Zi = 0)}.

By rearranging, we have

E(Yi|Ai = 1)− E(Yi|Ai = 0) =
E(Yi|Zi = 1)− E(Yi|Zi = 0)

P(Ai = 1|Zi = 1)− P(Ai = 1|Zi = 0)
.

By inserting limx→x0 and Xi back into the equation, we have

lim
x→x0

E(Yi|Ai = 1, Xi = x)− lim
x→x0

E(Yi|Ai = 0, Xi = x)

= lim
x→x0

E(Yi|Zi = 1, Xi = x)− limx→x0 E(Yi|Zi = 0, Xi = x)

P(Ai = 1|Zi = 1)− P(Ai = 1|Zi = 0)
.

Hence, the LATE is recovered.
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Appendix B

Probability of compliance

In this part, we explain why the denominator of the LATE is referred to as the

probability of compliance. The probability of compliance can be defined as the

probability that

P(A = 1|Z = 1)− P(A = 1|Z = 0) = 1.

That is, the probability of compliance is

P{P(A = 1|Z = 1)− P(A = 1|Z = 0) = 1}

=E{P(A = 1|Z = 1)− P(A = 1|Z = 0)

=P(A = 1|Z = 1)− P(A = 1|Z = 0)

Therefore, the probability of compliance can be expressed as P(A = 1|Z = 1) −

P(A = 1|Z = 0).
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