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Abstract

We derive an approximate but explicit formula for the Mean First Passage Time of a
random walker between a source and a target node of a directed and weighted network.
The formula does not require any matrix inversion, and it takes as only input the transi-
tion probabilities into the target node. It is derived from the calculation of the average
resolvent of a deformed ensemble of random sub-stochastic matrices H = 〈H〉 + δH ,
with 〈H〉 rank-1 and non-negative. The accuracy of the formula depends on the spectral
gap of the reduced transition matrix, and it is tested numerically on several instances of
(weighted) networks away from the high sparsity regime, with an excellent agreement.
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1 Introduction

The exploration of a complex network by a walker that hops randomly from one node to
another according to a given probabilistic rule has received much attention in recent years
[1–20], with many applications (see [21] for an excellent review), including the self-organi-

zation and generation of networks [22–24].
Among the most significant observables that can be studied analytically, the Mean First

Passage Time (MFPT) plays a pivotal role. The MFPT is the average over many realizations of
the walk of the “first-passage time" (or “first-hitting time") – defined as the number of steps
taken by the walker to reach a target node from a given source node for the first time. Appli-
cations range from biology [25,26] to finance [27], ecology [28], kinetic network models [29]
and many other fields (see [3,30] for reviews on first-passage problems on networks and other
media). More recently, the idea that the most “important" nodes should also be those that are
most rapidly reachable by others has been used to rank constituents [31–33] and to assess
heterogeneity and correlations [34] in complex networks.

The computation of the MFPT involves a cumbersome inversion of a reduced matrix of
transition probabilities. For this reason, any analytical treatment of the MFPT has in general
proven difficult, with a number of attempts made to derive exact expressions – often valid
when transition matrices have special symmetries – as well as approximate and mean field
results (see Sec. 1.1 for details). In particular, unveiling the connection between the structural
properties of the underlying network and the MFPT – as well as its scaling properties – is a
non-trivial task for the majority of network topologies [35].

In this paper, we address these issues by proposing an approximate but explicit formula
for the MFPT of a walker on directed and weighted networks. Our formula does not require
matrix inversions, it depends only on the local information about the target node, and sheds
light on the interplay between structural and spectral properties of the underlying network.

The plan of the paper is as follows. In Section 1.1 we provide the main definitions and an
overview of closely related literature, while in 1.2 we announce our main result. In section 2,
we reproduce for completeness the main steps leading to the main formula (5) starting from a
random matrix formulation of the problem, already outlined in [36,37]. In section 3, we test
our formula on different types of spectrally gapped (weighted) networks. Finally, in section 4
we offer some concluding remarks and outlook for future researches. The two Appendices are
devoted to technical calculations and examples.

1.1 Setting and related works

Consider a weighted strongly connected network with N nodes described by the (real valued,
and not necessarily symmetric) adjacency matrix A. Given a source node i and a different
target node j, the MFPT mi j satisfies the following recurrence equation [1,38–40]

mi j = 1+
N
∑

6̀= j

Ti`m` j , (1)
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where the matrix element Ti`

Ti` =
Ai`

∑

r Air
(2)

encodes the transition probability of the walker from node i to node ` (with
∑

` Ti` = 1 for all
i = 1, . . . , N by normalization). The meaning of eq. (1) is straightforward: in its first step, the
walker hops from node i to node `, which produces the +1 on the right-hand side. Then, if the
target has not been reached, we have to assign a weight to the MFPT from the “new" source
node ` to the target j, which is the probability of reaching the “new" source node ` from the
“old" source node i. This produces the second term on the right-hand side.

There are different strategies to extract meaningful information from (1). On the one
hand, one could simply iterate the equation numerically – given the network instance and the
diffusion protocol, encoded in the matrix T – until convergence is reached [40]. Alternatively,
for a given target node j, one could rewrite the equation in the vector-matrix form

m( j) = 1+ T ( j)m( j)⇒m( j) = (1− T ( j))−11 , (3)

where all quantities are (N − 1)-dimensional: 1 is the column vector of ones, 1 is the identity
matrix, and T ( j) is the transition matrix where the j-th row and column have been erased [41].
The resulting vector m( j) encodes all MFPT to the target node j starting from all other nodes in
the network. The seemingly harmless eq. (3) has however a few important drawbacks: (i) it
requires the inversion of a possibly large and ill-conditioned matrix, which makes a numerical
approach prone to inaccuracies [42], (ii) the nonlinear relation between m( j) and T ( j) makes
it difficult to infer the functional dependence of the former on network parameters (e.g. the
mean degree) from the knowledge of the latter – unless the transition matrix enjoys special
symmetries or internal structure, and (iii) it implicitly takes for granted that the full adjacency
matrix of the underlying network is known with great accuracy, which may not necessarily be
the case in practical applications.

Another exact approach – pioneered by Noh and Rieger [43] – relies on the identity
mi j =

∑

n≥0 nFi j(n), where Fi j(n) is the probability that the walker starting from i arrives
in j for the first time after n moves. Using the Markov property of the walk, and suitable
generating functions (see [21] for details) it is possible to write an expression for mi j in terms
of the series coefficients of the (discrete) Laplace transform of pi j(n) – the probability that the
walker starting in i reaches j after n moves. Although exact, the final formula can be opaque
to interpretations, unless the transition matrix has again special symmetries or structure that
make the master equation analytically tractable [44]. These cases are a rare luxury, though.

Finally, there are a number of approximate results, using e.g. a mean-field approach [45–
48]. The crudest approximation consists in noticing that – regardless of the source node – the
target node j is reached with an approximate probability of p?j in each time step, where p? is
the equilibrium probability vector of the Markov transition matrix. Therefore,

mi j ≈
∞
∑

k=1

kp?j (1− p?j )
k−1 =

1
p?j

. (4)

The estimate in (4) can be rather loose, and mi j may deviate considerably from 1/p?j . More
sophisticated mean-field approaches have been devised, which perform better in certain sit-
uations [45, 49, 50]. For discussion of scaling theory based on renormalization theory for
first-passage time and other quantities on networks, see [51, 52]. For analytical approaches
to MFPT based on spectral theory and generating functions, see [17, 53–57]. For other ap-
proaches and applications of first-passage times and return times on networks, see [58–62].

3

https://scipost.org
https://scipost.org/SciPostPhys.11.5.088


SciPost Phys. 11, 088 (2021)

1.2 Summary of main result

In this paper, we put forward a novel approximate formula for mi j , which we shall show
in the following to be

mi j ≈ 1+ (N − 1)
1− Ti j
∑

6̀= j T` j
. (5)

Our formula is valid on a generic (directed, weighted, strongly connected) network, provided
that its reduced transition matrix T ( j) – obtained by removing the j-th row and column – has a
“large" spectral gap, defined asλ1−max{|λ2|, . . . , |λN−1|}withλ1 ∈ (0, 1) the Perron-Frobenius
eigenvalue, and the {λi} being the other eigenvalues of T ( j) in the complex plane. Since the
spectral gap tends to diminish the sparser the network becomes [63–65], the formula (5) is
not suitable for “too sparse" networks.

The formula (5) is strikingly simple, and – in spite of being obtained in a large-N setting –
we find that it is very accurate also for spectrally gapped walks on relatively small networks, as
we demonstrate below. It is obtained by approximating the reduced transition matrix T ( j) as
a rank-1, sub-stochastic matrix: from each node i 6= j, the walker may either hop on j directly
(with probability Ti j), or hop on any of the other N − 1 nodes – connected to i, or not – with
the same probability (1 − Ti j)/(N − 1). Within this approximation, only the neighborhood
of the target node really matters – which reveals an interesting approximate symmetry: two
sufficiently dense networks that share the same set of transition probabilities into a given node
j, also share the full set of MFPTs from any source node into the target j, irrespective of how
“unlike" each other they are away from j. For simple diffusion on a fully connected network
(where Ti j = 1/(N − 1) for all i 6= j), our formula (5) reduces to the known (exact) result
mi j = N − 1 – which holds true also for sufficiently dense Erdős-Rényi networks [66, 67],
independently of the probability p ∼O(1) that each node pair has an edge between them. For
a detailed discussion of results on MFPT on different kinds of graphs and fractal structures,
see again [21] and references therein.

2 Sketch of the proof

In this section, we report for completeness the random matrix calculation that we outlined
elsewhere [36,37] in another context, from which the approximate formula (5) follows as an
immediate corollary.

The main idea is to replace a given (empirical) reduced transition matrix T ( j) with a ran-
dom sub-stochastic matrix (called H = (h`m) in the following), in such a way that “some"
macroscopic features of T ( j) are retained in H. More specifically, our model assumes that the
row sums are preserved (on the average), i.e. zi :=

∑

k T ( j)ik =
∑

k

¬

hik

¶

– but these sums are
spread “as evenly as possible" among the columns of H.

Consider therefore a random N ×N matrix H = (h`m) with h`m ≥ 0, which can be written
as

H = 〈H〉+δH . (6)

The deterministic rank-1 matrix 〈H〉 reads

〈H〉=





z1
N · · · z1

N
...

. . .
...

zN
N · · · zN

N



 , (7)

in terms of positive constants {z1, . . . , zN}. With this definition, the random matrix H is es-
sentially a “noise-dressed" version of the rank-1 (balanced) matrix 〈H〉, whose row sums are
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{z1, . . . , zN}. The entries – not necessarily independent – of the random perturbation δH sat-
isfy 〈δh`m〉 = 0 for all `, m. The average 〈·〉 is taken w.r.t. the joint probability density of the
entries of the matrix δH.

Clearly, 〈H〉 has a single non-zero, real and positive eigenvalue λ1 =
1
N

∑

` z` ≡ z̄, and
N − 1 zero eigenvalues – and therefore a spectral gap of ∼ O(1). Assume that the spectral
radius1 of H satisfies ρ(H)< 1.

If δH were identically zero, the vector2

m= (1−H)−11 (8)

could be computed exactly using the Sherman-Morrison formula [69] to give

m` = 1+
z`

1− z̄
, (9)

with z̄ = (1/N)
∑N

i=1 zi .
In presence of a random perturbation δH, we ask what the average value of m would be,

〈m〉= 〈(1−H)−11〉 , (10)

and in particular how small should the perturbation δH be to ensure that the Sherman-
Morrison result (9) keeps holding on average – to leading order in N – even in this “noise-
dressed" case. It turns out that δH must satisfy a certain cumulant decay law (see eq. (21)
below). The condition on the spectral radius ρ(H)< 1 ensures instead that the inverse matrix
on the r.h.s. of (10) exists.

It is instructive to see what happens in the special case of an i.i.d. Gaussian perturbation
with 〈δh2

i j〉 = σ
2
N for all i, j, for which fuller analytical considerations are possible. Let us

reverse momentarily the roles of δH and 〈H〉. We would essentially have here a real Gaussian
and non-symmetric matrix δH (hence belonging to the Ginibre ensemble [70]), which is de-
formed by a rank-1 matrix 〈H〉. This problem – albeit with the additional twist that we require
positivity of the final matrix – is relatively well-understood in Random Matrix Theory [71–74].
In the absence of the rank-1 deformation, the spectrum of δH would fill a circle in the complex
plane with radius rN =

p
NσN – this is known as Girko-Ginibre circular law. However, the ad-

dition of the rank-1 deformation 〈H〉 leaves the circular bulk of eigenvalues unperturbed, but
may lead to the appearance of an extra isolated outlier at λout = z̄ ∼O(1). Choosing “too big"
a variance σ2

N has therefore two harmful effects: (i) positivity of the matrix entries of H is no
longer guaranteed,3 and (ii) all the eigenvalues of H become of the same order, with the circu-
lar bulk swallowing up the outlier and annihilating the spectral gap. A similar clash between
the positivity constraint (leading to a Perron-Frobenius outlier) and the standard circular law
for Gaussian matrices – leading to a phase transition – was recently noted in [75].

In order to get a large spectral gap, we need to require4

rN = o(1)⇒ σN = o(1/
p

N) . (11)

In Fig. 1 we plot on the left the typical spectrum of a randomly generated matrix of
the form (6), with i.i.d. Gaussian δhi j having5 σN ∼ O(1/N), while on the right we have

1The spectral radius isρ(H) =maxi |λi |. For simplicity, we will call sub-stochastic a matrix H satisfyingρ(H)< 1
(?), instead of

∑

` hi` < 1 for all i (??), even though the implication is only in one direction, (??)⇒ (?) [68].
2We use the notation m to keep contact with the MFPT vector defined in Eq. (3). The connection between the

two objects will become clear very shortly.
3By this, we mean that the probability of drawing a negative entry would not be exponentially small.
4We use the little-o notation indicating that fN = o(gN ) if limN→∞ fN/gN = 0.
5We intentionally choose a smaller variance than strictly needed in (11) to make the gap as visible as possible

in Fig. 1.
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Figure 1: Left: Spectrum of a typical instance of a N = 500 Gaussian matrix (with
σN ∼ O(1/N)) plus a rank-1 deformation of the form (7). The red line encloses
the circle of radius rN ∼ O(1/

p
N), while an isolated outlier at λout = z̄ is clearly

visible. Right: Spectrum of a typical instance of a N = 500 Gaussian matrix (with
σN ∼ O(1/

p
N)) plus a rank-1 deformation of the form (7). The red line encloses

the circle of radius rN ∼ O(1), which swallows the would-be outlier at λout = z̄
altogether. The same constant values {z1, . . . , zN} have been used to produce the two
plots.

σN ∼ O(1/
p

N). One clearly observes that the relative fluctuation σN/〈H〉i j is too large in
the latter case to guarantee positivity and a large enough gap.6

This simple numerical experiment – consistent with the analytical estimate in (11) – shows
that a generic positive and sub-stochastic matrix (provided its spectral gap is “large") can be
interpreted as the superposition of a rank-1 matrix (fully determined by the original row sums)
and a Gaussian noise matrix with sufficiently small variance. We will show in section 3 that
such large-gap matrices appear naturally in the treatment of MFPT on weighted networks away
from the high sparsity regime.

To compute (10), one first defines the 2N × 2N Hermitian matrix

B(η) =

�

−iη1 1−HT

1−H −iη1

�

, (12)

where i is the imaginary unit, and η is a small regularizer that ensures that B−1 exists.
Using the formula for the inverse of a block matrix, it is possible to show [37] that

〈m`〉= lim
η→0

2N
∑

k=N+1

¬

[B−1(η)]`,k
¶

, `= 1, . . . , N . (13)

Next, we use the following result: given a (complex) symmetric matrix M of size N × N ,
with purely imaginary diagonal elements Mii = −imii , with mii > 0, the following formula
holds

[M−1]ab = i

∫

dx xa xb exp
�

− i
2

∑N
i, j x i Mi j x j

�

∫

dxexp
�

− i
2

∑N
i, j x i Mi j x j

� , (14)

6Such a large σN would of course violate the cumulant decay condition (21) in the special case of Gaussian
i.i.d. δhi j , which again requires σN = o(1/

p
N) (see Appendix A for details).
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where x denotes a N -dimensional vector, and the integrals run over RN [76].
Applying this formula to the 2N ×2N matrix B(η), and inserting it in Eq. (13), we get the

following integral representation of the `-th element of the vector m in (10)

〈m`〉= −i lim
η→0

lim
ω,ξ→0

¬Z1(ω,ξ, H)
Z(H)

¶

, (15)

where

Z1(ω,ξ, H) =
N
∑

m=1

∂ω`∂ξm

∫

dxdy exp

�

−
η

2

N
∑

i=1

(x2
i + y2

i )− i
N
∑

i=1

x i yi + i
N
∑

i=1

ωi x i

+i
N
∑

i=1

ξi yi + i
N
∑

i, j=1

x ih ji y j



 ,

Z(H) =

∫

dxdy exp



−
η

2

N
∑

i=1

(x2
i + y2

i )− i
N
∑

i=1

x i yi + i
N
∑

i, j

x ih ji y j



 . (16)

Using the “replica trick" [77–79]

Z1

Z
= lim

n→0
Z1Zn−1 , (17)

where the variable n is initially promoted to an integer, we get rid of the denominator and
land on

〈m`〉= −i lim
n→0

lim
η→0

lim
ω,ξ→0

N
∑

m=1

∂ω`∂ξm

∫ n
∏

a=1

dxadya× (18)

exp



−
η

2

N
∑

i=1

n
∑

a=1

(x2
ia + y2

ia)− i
∑

i,a

x ia yia + i
N
∑

i=1

ωi x i1 + i
N
∑

i=1

ξi yi1



Φ({xa}, {ya}) ,

where

Φ({xa}, {ya}) = exp

 

i
N

N
∑

i, j

z jφi j

!

ϕ
�

{φi j}
�

, (19)

with
ϕ
�

{θi j}
�

=
¬

ei
∑N

i, j δh jiθi j
¶

(20)

being the joint cumulant generating function of the entries of the matrix δH, and
φi j =

∑

a x ia y ja ∼O(1). Assuming the following cumulant decay condition

logϕ
�

{φi j}
�

= o(N) , (21)

for large N , we can neglect all higher-order terms and land on a “replicated" version of the
Sherman-Morrison formula for the matrix 〈H〉 alone, yielding eventually7

〈m`〉= 1+
z`

1− z̄
+ o(1) , (22)

7In the Gaussian case, the o(1) correction terms can be estimated more accurately as O(1/N 2), further con-
firming that the leading order term is already an excellent approximation for even a moderately small N .
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with z̄ = (1/N)
∑N

i=1 zi .
In summary, provided that the cumulants of δhi j decay sufficiently fast for large N , the

“noise-dressing" of the average, rank-1 matrix 〈H〉 is inconsequential, and the Sherman-Mor-
rison formula is universal (noise-independent) to leading order in N . Although for the most
general, arbitrarily correlated noise term δH it is difficult to establish formally that the cu-
mulant decay condition (21) is equivalent to H having a “large" spectral gap, the intuition
garnered from the Gaussian case leads us to conjecture this must be generally the case.

The formula (5) for the MFPT readily follows from the identification H ≡ T ( j), and
z` ≡ 1 − T` j . This is due to z` being the (average) sum of the `-th row of H ≡ T ( j), and
T ( j) being obtained by the row-stochastic matrix T (

∑

k T`k = 1) by erasing the j-th row and
column.

3 Network examples

In this section, we apply our formula to walks on different network instances (fully connected,
Erdős-Rényi, random regular). More precisely, we now test Eq. (5) against (i) exact evalua-
tions of formula (3) for the MFPT via direct matrix inversion, and (ii) numerical simulations of
random walks. We do not report here on (dense) scale-free topologies, whose phenomenology
is very similar to the other cases, albeit with significantly larger fluctuations: a detailed study
of this (and other) heterogeneous cases is deferred to a separate publication. We do, however,
test on a simple and exactly solvable case (the star graph with N nodes) the hypothesis that
the accuracy of our approximate formula (5) may vary (within the same instance) from node
to node, depending on how well connected the target node is to the rest of the network (see
Appendix B for details).

3.1 Fully Connected

We consider a single instance of a fully connected, directed, weighted network with N = 500.
Each link is endowed with a random weight sampled from a uniform distribution in [0, 1]. In
all cases below, we have checked that nothing changes with other edge weights (e.g. exponen-
tial). We fix a source node i and a target node j, and we consider random walks starting in i
and hitting j for the first time after mi j hops, performed according to the transition probabili-
ties in Eq. (2). In Fig. 2 we see (i) a plot of the eigenvalue spectrum in the complex plane for
a typical instance of the sub-stochastic matrix T ( j), obtained erasing the j-th row and column
from the original transition matrix T defined in eq. (2), and (ii) a scatter plot of exact MFPT
(eq. (3)) vs. our approximate formula (5) – each point in the plot refers to a randomly picked
(i, j) pair on a randomly generated instance of the graph. We observe that the points nicely
follow the straight line with slope 1.

To the best of our knowledge, at present there are no exact and explicit formulas available
for the MFPT on a weighted and directed fully connected network, in spite of the very simple
geometry of the system. Our approximate formula does an excellent job while requiring as
input only the N −1 incoming weights into the target node j – all the other information away
from j being entirely irrelevant. Indeed, given one instance T of the transition matrix, we
have constructed another synthetic instance T ′ such that – for a prescribed node j – we have
Ti j = T ′i j for all i. All the other entries in each row of T ′ are randomly reshuffled with respect to
the corresponding row of T , to preserve the row sum constraint

∑

` Ti` =
∑

` T ′i` = 1. We have
checked that the two walkers T and T ′ share the full set of MFPTs into node j, as expected.
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Figure 2: Left: eigenvalues in the complex plane for a typical instance of T ( j) for
the fully connected network described in section 3.1 with edge weights drawn from
a uniform [0,1] distribution. Right: scatter plot of exact results (obtained by matrix
inversion, see eq. (3)) vs. our approximate formula in eq. (5). Each point (100 in
total) refers to a randomly picked (i, j) pair on a randomly generated instance of the
graph. In dashed red, the straight line with slope = 1, indicating perfect agreement.

3.2 Erdős-Rényi

We now consider a single instance of a directed Erdős-Rényi (ER) network with N = 500.
Nodes are randomly connected with probability p = c/N , for different values of the mean
connectivity c. The elements of the weighted adjacency matrix are given by Ãi j = Ci jKi j ,
where the symmetric {0,1}matrix C includes information about the connectivity of the graph,
whereas the Ki j are independently sampled from a uniform distribution in [0, 1], without any
symmetry constraint. Next, we isolate the strongly connected component of Nsc ≤ N nodes8

(using a depth first search algorithm), and denote by A the restriction of Ã to the nodes in the
strongly connected component. We fix a source node i and a target node j in the strongly
connected component, and we consider random walks starting at i and hitting j for the first
time after mi j hops, performed according to the transition probabilities in eq. (2). In Fig. 3 we
see (i) for two different values of c, plots of the eigenvalue spectrum in the complex plane of
a typical instance of the sub-stochastic matrix T ( j), obtained erasing the j-th row and column
from the original transition matrix T defined in eq. (2), and (ii) a scatter plot of exact MFPT
(eq. (3)) vs. our approximate formula (5) – each point in the plot refers to a randomly picked
(i, j) pair on a randomly generated instance of the graph. We observe that (i) the spectral gap
decreases the smaller the connectivity c becomes, and – as expected – (ii) the points nicely
follow the straight line with slope 1 for higher c, whereas the accuracy deteriorates as the
network becomes sparser.

This behavior is further corroborated qualitatively in Table 1, where we report – for a spe-
cific (i, j) pair on randomly generated (single) instances of ER networks with uniform weights
and initial size N = 500 – results from the numerical average over M = 10000 walks (simula-
tions), the corresponding exact result in (3), and our approximate formula (5). The agreement
is still within a few percent of the exact result, even for a reasonably low c (c = 10), while it
deteriorates dramatically only below the connectedness threshold c ≈ log N = 6.21.

8For c > ln N , the graph is almost surely connected (Nsc ≡ N), while for c < ln N it almost surely contains
isolated nodes (Nsc < N).

9

https://scipost.org
https://scipost.org/SciPostPhys.11.5.088


SciPost Phys. 11, 088 (2021)

Table 1: Comparison between simulations, exact, and approximate value for the
MFPT on weighted ER networks of different mean connectivity c.

c Simulations Exact (3) Approximate (5)

250 539.11 542.66 542.16
190 486.09 482.57 477.87
100 500.20 502.82 508.09
50 736.03 713.37 692.51
10 499.30 495.04 474.66
4 458.37 464.61 329.45
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Figure 3: Top left: eigenvalues in the complex plane for a typical instance of T ( j)

for the Erdős-Rényi network described in section 3.2, with edge weights drawn from
a uniform [0, 1] distribution, and two values of c (c = 190 (dark blue dots) and
c = 7 (light blue dots)). Clearly the spectral gap is much narrower for the low-c
case. Middle: scatter plot of exact results (obtained by matrix inversion, see eq.
(3)) vs. our approximate formula in eq. (5). Each point (100 in total) refers to a
randomly picked (i, j) (source-target) pair, on a randomly generated instance of the
graph with N = 500 and c = 190. In dashed red, the straight line with slope = 1,
indicating perfect agreement. Top right: same scatter plot as the middle panel, but
with c = 7 instead.
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3.3 Random Regular

We now consider a single instance of a Random Regular Graph (RRG), with N = 500 nodes,
constructed using the matching algorithm described in [80] and references therein. Each
node has exactly c neighbors, and each link is endowed with a random weight sampled from
a uniform distribution in [0, 1]. In Fig. 4 we see (i) for c = 190 and c = 7, plots of the
eigenvalue spectrum in the complex plane for a single instance of the sub-stochastic matrix
T ( j), obtained erasing the j-th row and column from the original transition matrix T defined
in eq. (2), and (ii) scatter plots of exact MFPT (eq. (3)) vs. our approximate formula (5) –
each point in the plot refers to a randomly picked (i, j) pair on a randomly generated instance
of the graph. We observe again that (i) the spectral gap decreases the smaller the connectivity
c becomes [63–65], and – as expected – (ii) the points nicely collapse on the straight line with
slope 1 for higher c, whereas the accuracy deteriorates as the network becomes sparser.

This behavior is further corroborated qualitatively in Table 2, where we report – for a
specific (i, j) pair on randomly generated (single) instances of RRGs with uniform weights
and size N = 500 – results from the numerical average over M = 10000 walks (simulations),
the corresponding exact result in (3), and our approximate formula (5). The agreement is still
within ∼ 2% percent of the exact result for c as low as 50. However, the evidence provided in
Tables 1 and 2 about the relative accuracies should be taken with some caution, as the reported
numerical values are highly sensitive to the precise instance of the graph at hand, as well as
the pair of nodes chosen.

Table 2: Comparison between simulations, exact, and approximate value for the
MFPT on weighted random regular networks of different connectivity c.

c Simulations Exact (3) Approximate (5)

250 494.07 492.14 491.08
190 483.79 479.70 478.65
100 474.14 472.14 471.43
50 530.01 524.66 515.85
10 559.02 554.90 453.31
4 990.92 993.19 408.10

4 Conclusions

We have derived the approximate formula (5) for the Mean First Passage Time of a walker
between a source node i and a target node j of a (weighted and directed) strongly connected
network of N nodes. The formula does not require any (possibly costly and inaccurate) matrix
inversion, and takes it as input only the local transition weights into the target node. Its
accuracy depends on the existence of a “large" spectral gap between the Perron-Frobenius
eigenvalue and the blob of all other eigenvalues of the reduced (sub-stochastic) transition
matrix T ( j) – obtained from the full transition matrix of the walker by erasing the target node’s
row and column. We have shown that – for a variety of “not too sparse" networks – this
condition is not hard to materialize, and leads to an excellent agreement of our approximate
formula with numerical simulations as well as the exact formula (3). While our approach
continues to work for (sufficiently dense) heterogeneous networks when the target node is
well-connected to the rest of the graph, the intra-row fluctuations around the random matrix
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Figure 4: Top left: eigenvalues in the complex plane for a typical instance of T ( j)

for the Random Regular network described in section 3.3 with edge weights drawn
from a uniform [0, 1] distribution, and two values of c (c = 190 (dark green dots)
and c = 7 (light green dots)). Clearly the spectral gap is much narrower for the
low-c case. Middle: scatter plot of exact results (obtained by matrix inversion, see
eq. (3)) vs. our approximate formula in eq. (5). Each point (50 in total) refers to a
randomly picked (i, j) (source-target) pair, on a randomly generated instance of the
graph with N = 500 and c = 190. In dashed red, the straight line with slope = 1,
indicating perfect agreement. Top right: same scatter plot as the middle panel, but
with c = 7 instead.

assumption 〈hi j〉 = zi/N may be very significant there and will thus require a more careful
treatment.

To our knowledge, our formula (5) is one of the very few, general, and explicit results
available in the literature for MFPT on weighted and directed networks (i.e. when the diffu-
sion of the walker is biased by the edge weights), and reduces to known results for the fully
connected and dense Erdős-Rényi cases when the diffusion is unbiased.

The formula would be exact if T ( j) were a rank-1 matrix with [T ( j)]k` = (1− Tk j)/(N −1)
for all ` (see eq. (9)). It is also exact to leading order in N as the average value of the MFPT
over an ensemble of random matrices with prescribed average 〈T ( j)〉 and sufficiently “narrow"
fluctuations: this is the result of the random matrix calculation we first outlined in [36, 37],
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which is reported here in section 2 for completeness.
Our work leaves a few questions open that would be very interesting to tackle in future

studies:

1. How to formally prove the conjecture that a random ensemble satisfying the cumulant
decay condition (21) necessarily has a large spectral gap, without assuming Gaussianity?

2. Is it possible to characterize how the accuracy of our formula (5) depends on network
observables (e.g. average connectivity and other structural properties of the underlying
network), which in turn influence the spectral gap?

3. In [36,37] we observed that an “improved" formula (22) could be obtained by assuming
that not only the row sums of the sub-stochastic matrix A were known, but also the
column sums. It would be interesting to see what effect the inclusion of information
about the column sums of T ( j) might have on the final formula (5).

4. From the random matrix viewpoint, it would be very interesting to consider the model
(6) with the hard constraint of positivity (which of course bounds the fluctuations of
δH and precludes Gaussianity). Alternatively, one could consider a “soft" version of the
positivity constraint for a deformed Ginibre ensemble, where one bounds the probability
of having negative entries and studies in more details what constraints this poses on
the spectrum in the complex plane. The investigation of a “phase transition" whereby
the Perron-Frobenius outlier is swallowed by the spectral bulk as the variance of δHi j
increases is particularly interesting and timely (see [75]).

5. Studying more systematically how the accuracy of the main formula (5) – related to the
spectral gap of T ( j) – varies with the choice of the target node j on the same instance of
a heterogeneous graph is also an interesting question that deserves further investigation
(see Appendix B for a preliminary attempt). Along the same lines, also the impact of
degree-degree correlations on the accuracy of the formula would be interesting to study
in greater detail.

These directions will be the focus of future research.
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A Joint cumulant generating function for Gaussian δhi j

In this Appendix, we compute explicitly the joint cumulant generating function (20) for the
case of i.i.d. Gaussian entries δhi j with mean zero and variance σ2

N . We have

ϕ
�

{θi j}
�

=
¬

ei
∑N

i, j δh jiθi j
¶

=
∏

i, j

∫

dx
q

2πσ2
N

exp

�

−
x2

2σ2
N

+ ixθi j

�

= exp



−
1
2
σ2

N

∑

i, j

θi j



 . (A.1)

Assuming θi j ∼O(1), the cumulant decay condition (21) requires

N2σ2
N = o(N)⇒ σN = o(1/

p
N), (A.2)

as stated earlier.

B The accuracy of (5) and heterogeneous networks: the star
graph case

In this Appendix, we test on a simple and exactly solvable case (the star graph with N nodes)
the hypothesis that the accuracy of our approximate formula (5) may vary (within the same
instance) from node to node, depending on how well connected the target node is to the rest
of the network.

The star graph consists of a central node that is connected to all other nodes (leaves),
while each leaf is only connected to the central node (has degree 1). Since the degree of the
central node is therefore N − 1, and our formula (5) is only sensitive to the incoming weights
into the target, we may expect some discrepancy in how well (5) works between the the two
situations (i) MFPT mi1 between a leaf i and the central node (labelled by 1), and (ii) MFPT
m1 j between the central node and a leaf j. Since the heterogeneity between central node
and leaves increases with N , we expect that such discrepancy should also get larger for bigger
networks.

Considering the standard (unbiased) diffusion for simplicity, the full N×N transition matrix
T reads

T =













0 1
N−1

1
N−1 · · · 1

N−1
1
1
...
1

0













.

Clearly, mi1 = 1 identically for all i ≥ 2, which – on top of being obvious given the geometry
of the system – emerges from an exact evaluation of Eq. (3), as the reduced transition matrix
T (1) is simply the (N −1)× (N −1) null matrix in this case. For this scenario, our approximate
formula (5) provides the same (exact) result, as Ti1 = 1, which kills the second fraction in (5).

Conversely, to compute the matrix (1− T ( j))−1 exactly for j > 1 – necessary to deal with
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case (ii) – we need to use the block-matrix inversion formula that yields

(1− T ( j))−1 =













N − 1 1 1 1 · · · 1
N − 1
N − 1

...
N − 1

2 1 1 · · · 1
1 2 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2













.

This gives m1 j = 2N −3 for all j > 1. In this scenario, though, our approximate formula gives
a different result, namely m1 j ≈ 1+(N−1)(N−2). The two formulae (exact and approximate)
yield the same numerical value for low N (N = 2, 3), with the discrepancy growing with N .
This means that our approximate formula becomes less and less accurate the fewer connections
the target node has with the rest of the network. This simple example, therefore, corroborates
the intuition that the accuracy of our main formula (5) can vary from node to node within the
same instance, depending on how “well-connected" the target node is to the rest of the graph.
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