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A vast array of physical phenomena, ranging from
the propagation of waves to the location of quantum
particles, is dictated by the behavior of Laplace eigen-
functions, i.e., solutions to the Helmholtz equation

−∆φλ = λφλ.

In quantum mechanics, |φλ(x)|2 describes the prob-
ability density of finding a free quantum particle of
energy λ at the point x. It is then natural to ask

how large can φλ(x) be?

Starting in the 1950’s, Avakumovich, Levitan, and
Hörmander proved that, for a smooth compact Rie-
mannian manifold M , there is a constant C such that

max
x∈M

|φλ(x)| ≤ Cλ(n−1)/4, (∗)

where n is the dimension of M . This bound is sharp,
with the zonal harmonics on the round sphere sat-
urating it (these are eigenfunctions that have sharp
peaks near the north and south poles). However, for
most manifolds, the eigenfunctions are expected to
be much smaller than the bound in (∗). More impor-
tantly, for a fixed manifold and most points x ∈ M ,
the value φλ(x) is not expected to saturate the bound.

In this talk we will discuss how the growth of φλ(x)
responds to the long time behavior of the geodesics
that run through x.

To study this problem, we developed a framework
in which the eigenfunction φλ is decomposed as a sum
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of what we call geodesic beams near the point x. In
broad terms, a geodesic beam is a piece of the eigen-
function that has been localized to a geodesic that
runs through x. This localization is accomplished us-
ing semiclassical analysis and is done in such a way
that each geodesic beam is (locally) an approximate
solution to the Helmholtz equation.

In this talk, we present the geodesic beam tech-
niques and explain how to use them to obtain quan-
titative improvements on standard estimates such as
(∗). For example, we will see that

|φλ(x)| ≤ Cλ(n−1)/4/
√

log λ,

whenever the point x is not maximally self-conjugate
at 1/ log λ scales.

Remarkably, this framework allows for the treat-
ment of several other problems related to eigen-
function concentration, including Lp norms, averages
over submanifolds, and both pointwise and integrated
Weyl Laws. One consequence of this method is that if
M is any non-trivial product manifold with Laplace
eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ ..., then the eigen-
value counting function, N(λ) = #{j : λj ≤ λ},
satisfies the Weyl Law

N(λ) =
1

(2π)n
volRn(B)vol(M)λ

n
2 +O

(λn−1
2

log λ

)
,

as λ→∞ where B is the unit ball in Rn.
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