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Abstract

We consider matrices with entries that are polynomials in q arising from natural
q-generalisations of two well-known formulas that count: forests on n vertices with k
components; and rooted labelled trees on n+ 1 vertices where k children of the root
are lower-numbered than the root. We give a combinatorial interpretation of the
corresponding statistic on forests and trees and show, via the construction of vari-
ous planar networks and the Lindström-Gessel-Viennot lemma, that these matrices
are coefficientwise totally positive. We also exhibit generalisations of the entries
of these matrices to polynomials in eight indeterminates, and present some conjec-
tures concerning the coefficientwise Hankel-total positivity of their row-generating
polynomials.

Mathematics Subject Classifications: 05A15 (Primary); 05A19, 05A20, 05A30,
05C05, 05C30, 15B05, 15B36, 15B48 (Secondary).
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1 Introduction

Two well-known enumerative formulas that often arise in the study of trees and forests
are1

fn := (n+ 1)n−1 (1.1)

and
tn := (n+ 1)n. (1.2)

The first formula, fn, gives the number of forests of rooted labelled trees on the vertex
set [n] := {1, 2, . . . , n} and has the refinement:

fn =
n∑
k=0

fn,k (1.3)

where each summand

fn,k :=

(
n− 1

k − 1

)
nn−k (1.4)

is the number of forests on [n] comprised of k components (that is, k rooted labelled
trees). The first few fn and fn,k are given in Table 1 (see [63, A061356/A137452 and
A000272]).

By adding a new vertex (labelled 0) and connecting it to the root of each component
in a forest, we see that fn,k is also the number of trees on vertices labelled 0, 1, . . . , n,
rooted at 0, where the root has precisely k children.

1See [14], [46, pp. 26-27], [15, p. 70], [69, pp. 25-28], [7], [65] or [3]. See also [25, 52, 60, 34, 57] and [1,
pp. 235-240] for related information.
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↓ n,→ k 0 1 2 3 4 5 6 fn
0 1 1
1 0 1 1
2 0 2 1 3
3 0 9 6 1 16
4 0 64 48 12 1 125
5 0 625 500 150 20 1 1296
6 0 7776 6480 2160 360 30 1 16807

(1.5)

Table 1: first few fn and fn,k.

The formula in (1.2), tn, gives the number of rooted labelled trees on the vertex set
[n+ 1] and has the following refinement similar to (1.3):

tn =
n∑
k=0

tn,k, (1.6)

where each summand

tn,k :=

(
n

k

)
nn−k (1.7)

is the number of rooted labelled trees on the vertex set [n+1] in which precisely k children
of the root are lower-numbered than the root (see [7, 8, 65]). The first few tn and tn,k are:

↓ n,→ k 0 1 2 3 4 5 6 tn
0 1 1
1 1 1 2
2 4 4 1 9
3 27 27 9 1 64
4 256 256 96 16 1 625
5 3125 3125 1250 250 25 1 7776
6 46656 46656 19440 4320 540 36 1 117649

(1.8)

(see [63, A071207]). We point out that this array has an alternative combinatorial inter-
pretation: in [7, 8] the authors show that rooted labelled trees on the vertex set [n + 1]
where k children of the root are lower-numbered than the root are in bijection with forests
on [n+ 1] comprised of k + 1 components in which the vertex n+ 1 is a leaf.

The main goal of this paper is to prove the total positivity of some matrices that
arise from generalisations of fn,k and tn,k. Recall that a matrix is totally positive (strictly
totally positive) if all of its minors are nonnegative (strictly positive, respectively).2 Total

2The terms “totally nonnegative” and “totally positive” have been used by previous authors (see, for
example, [26, 24, 22]) in place of what we have called here “totally positive” and “strictly totally positive”
respectively. In studying the literature it is important to clarify which sense of total positivity is being
used, since many theorems are valid only for strictly totally positive matrices.
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positivity has many applications across combinatorics, statistical physics, representation
theory, and background material on the topic can be found in [42, 26, 51, 22].

Our first result concerns the forests (of rooted labelled trees) matrix

F := (fn,k)n,k>0 =

((
n− 1

k − 1

)
nn−k

)
n,k>0

, (1.9)

(the first few rows of which appear in (1.5)) and the (rooted labelled) trees matrix

T := (tn,k)n,k>0 =

((
n

k

)
nn−k

)
n,k>0

, (1.10)

(the first few entries of which appear in (1.8)). We have:

Theorem 1.1. The matrices F and T are totally positive.

The total positivity of the forests and trees matrices has been proven very recently
in [66, 67] using different methods to the ones we employ in the present paper. Sokal
observes in [66] that F is the exponential Riordan array R[F,G] with F (t) := 1 and G(t)
the tree function [16]

G(t) :=
∞∑
n=1

nn−1
tn

n!
, (1.11)

and similarly in [67] Sokal and Chen observe that T is the exponential Riordan array
R[F,G] with

F (t) :=
∞∑
n=0

nn
tn

n!
=

1

1−G(t)
(1.12)

and G(t) as above. In [66] and [67] the author(s) exploit these intepretations of F and
T and make use of the production-matrix method to prove these matrices are totally
positive.3 The proof of Theorem 1.1 we offer below instead takes a leaf from [5, 24, 22],
making use of the Lindström-Gessel-Viennot lemma and planar networks (see Section 2.2).

The matrices F and T are closely related; by studying the entries one can, in effect,
see the woods for the trees since for n > 0

fn,k =

(
n− 1

k − 1

)
nn−k =

k

n

(
n

k

)
nn−k =

k

n
tn,k, (1.13)

that is, F and T are related via a diagonal similarity transform (see Lemma 3.5 in Sec-
tion 3.3):

F = lim
ε→0

diag((n+ ε)n>0)
−1T diag((k + ε)k>0) (1.14)

where diag(a) denotes (for the sequence a = (an)n>0) the diagonal matrix with (n, n)-
entry equal to an and all other entries 0 (note we must take a limit in the above to avoid

3We remark that in [66, 67] the author(s) prove that generalisations of F and T (that are different to
those considered here) are coefficientwise totally positive. We discuss their results further in Section 6.
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division by zero in the first column of T). Total positivity is preserved under matrix
multiplication (this follows from the Cauchy-Binet formula), so (1.14) shows that the
total positivity of T implies that of F (a diagonal matrix with nonnegative entries on the
diagonal is clearly totally positive).

In fact there are a number of identities we present in Section 3.3 that allow one to
go from T to F (and vice versa) via simple matrix multiplications that preserve total
positivity. By specialising q to q = 1 in Lemma 3.11 below we obtain the identity

T = F ·M (1.15)

where M := (mn,k)n,k>0 is the unit-lower-triangular matrix with (n, k)-entry

mn,k =
n!

k!
(1.16)

for n > k and all other entries 0. The matrix M is easily shown to be totally positive
(see Section 3.3), so it follows from (1.15) that the total positivity of F implies that of T.
In order to prove Theorem 1.1 it therefore suffices to prove that the forests matrix F is
totally positive; we do this in Section 4 by constructing a planar network with nonnegative
rational weights and showing that the corresponding path matrix is F. The total positivity
of F then follows from the Lindström-Gessel-Viennot lemma (see Section 2.1).

In this paper, however, we are chiefly concerned with q-generalisations of the forests
and trees matrices. The formula fn,k has a perfectly natural q-analogue, thus we define
the q-forests matrix F(q) := (fn,k(q))n,k>0 to be the matrix with (n, k)-entry

fn,k(q) :=


δnk if k = 0,(
n− 1

k − 1

)
q

([n]q)
n−k if n > k > 1,

0 otherwise.

(1.17)

where

[n]q :=
1− qn

1− q
=

{
1 + q + · · ·+ qn−2 + qn−1 if n > 0,

0 if n = 0,
(1.18)

(
n
k

)
q

is the q-binomial coefficient:(
n

k

)
q

:=
[n]q!

[k]q![n− k]q!
, (1.19)

in which

[n]q! :=


n∏
j=1

[j]q if n > 0,

1 if n = 0,

(1.20)
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and δnk is the Kronecker delta:

δnk :=

{
1 if n = k,

0 if n 6= k.
(1.21)

It follows easily from (1.17) that fn,k(q) is a monic self-reciprocal polynomial of degree
(n− 1)2 − (k − 1)2, and the first few rows of F(q) are:

1
0 1
0 q + 1 1
0 q4 + 2q3 + 3q2 + 2q + 1 q3 + 2q2 + 2q + 1 1
...

...
...

...
. . .

 (1.22)

The q-forests matrix counts forests on the vertex set [n] with k components with re-
spect to some statistic, which we interpret combinatorially in Section 3 (see Corollary 3.3).
Please note that in [66] Sokal considers a different generalisation of F (he introduces in-
determinates into F that count forests of rooted labelled trees in terms of proper and
improper edges), whereas our results grew from studying natural q-generalisations of the
matrix entries. In Section 6 we discuss how our generalisation gives rise to some curi-
ous conjectures concerning generalisations of well-known polynomial sequences including:
the Schläfli-Gessel-Seo polynomials; the general Abel polynomials; (p, q)-Stirling cycle
polynomials; and the reverse Bessel polynomials.

Each entry tn,k of the trees matrix has a similar natural q-analogue; we thus define
the q-trees matrix to be T(q) := (tn,k(q))n,k>0 where

tn,k(q) :=

(
n

k

)
q

([n]q)
n−k. (1.23)

Once more it is easy to see that tn,k(q) is a monic self-reciprocal polynomial of degree
n(n− 1)− k(k − 1), and the first few rows of T(q) are: 1

1 1

q2 + 2q + 1 q2 + 2q + 1 1

q6 + 3q5 + 6q4 + 7q3 + 6q2 + 3q + 1 q6 + 3q5 + 6q4 + 7q3 + 6q2 + 3q + 1 q4 + 2q3 + 3q2 + 2q + 1 1

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

 (1.24)

It follows from [7, 8] that the entries of the matrix T(q) count forests on the vertex set
[n + 1] with k + 1 components where the vertex n + 1 is a leaf with respect to some
statistic, and we give a combinatorial interpretation of q in Section 3. We note that our
q-generalisation of the tree matrix and the corresponding combinatorial interpretation
differs from the generalisation of T studied by Chen and Sokal in [67].

The entries of F(q) and T(q) are polynomials in q with integer coefficients, and there
is a natural extension of total positivity to matrices whose entries are polynomials in one
or more indeterminates x. We equip the polynomial ring R[x] with the coefficientwise
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partial order, that is, we say that P is nonnegative (and write P � 0) in case P is a
polynomial with nonnegative coefficients. We then say that a matrix with entries in R[x]
is coefficientwise totally positive (TP) if all of its minors are polynomials with nonnegative
coefficients, and if all of its minors of size 6 r are polynomials with nonnegative coefficients
we say that the matrix is totally positive of order r (TPr). Our main result is the following:

Theorem 1.2. The matrices F(q) and T(q) with entries in the polynomial ring Z[q] are
coefficientwise totally positive.

It is plain to see that the above theorem reduces to Theorem 1.1 when q is specialised
to q = 1. More generally, we say that a matrix M with polynomial entries belonging
to R[x] is pointwise totally positive on some domain D ⊆ R+ if M is totally positive for
all x ∈ D (by which we mean all the indeterminates x are specialised to values in D).
Coefficientwise total positivity of M thus implies pointwise total positivity for all x ∈ R+,
but the converse is not true.

The main goal of this paper is to prove Theorem 1.2 and the structure of our proof is
as follows: after reviewing some basic concepts in total positivity from the perspective of
planar networks in Section 2, we then provide combinatorial interpretations of the entries
of F(q) and T(q) in Section 3 and establish some identities that show the coefficientwise
total positivity of F(q) implies that of T(q). In Section 4 we construct a planar network
with weights that are rational and pointwise nonnegative functions of q, and prove that
the path matrix corresponding to this planar network agrees with F(q); thanks to the
Lindström-Gessel-Viennot lemma this proves pointwise total positivity of F(q) and T(q)
for q ∈ R+ (Theorem 1.1 is then obtained by specialising q to q = 1). In Section 5 we show
how the network from Section 4 can be transformed into a planar network with weights
that are polynomials in q, thereby proving Theorem 1.2. We conclude in Section 6 with
some further generalisations and open problems, some of which will be the subject of
future work.

2 Preliminaries

Here we review some fundamental definitions and facts regarding total positivity. Please
note that since our proofs rely on the Lindström-Gessel-Viennot lemma, many of the
results in this section are motivated by performing operations on planar networks (see [22,
24, 5, 6]), from which various matrix identites follow.

2.1 Total positivity and the Lindström-Gessel-Viennot lemma

One fundamental tool in the study of total positivity is the Lindström-Gessel-Viennot
(LGV) lemma. Suppose G is a locally finite acyclic digraph with source vertices U :=
{u0, u1, . . . , un} and sink vertices V := {v0, v1, . . . , vn}, where the weight we of an edge e
is an element of some commutative ring R. Let w(P (ui, vj)) denote the product of the
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weights of the edges of a path P (ui, vj) starting at ui and ending at vj, and define

PG(ui → vj) :=
∑

P (ui,vj)

w(P (ui, vj)) (2.1)

to be the sum over all weighted paths between ui and vj. The path matrix corresponding
to G is then the matrix

PG := (PG(ui → vj))06i,j6n. (2.2)

We say that a family of nonintersecting paths from U to V is an (n + 1)-tuple
(P0, P1, . . . , Pn) of paths in G such that:

(i) There exists a permutation σ of {0, 1, 2, . . . , n} such that for each i, Pi is a path
from ui to vσ(i).

(ii) Whenever i 6= j, paths Pi and Pj have no vertices in common (this includes end-
points).

The LGV lemma states that

det(PG) =
∑

(P0,P1,...,Pn):U→V

sgn(σ)
n∏
i=0

w(Pi), (2.3)

where sgn(σ) = (−1)inv(σ) is the signature of the permutation σ arising from Pi mapping
ui to vσ(i) (note that inv(σ) denotes the number of inversions of σ, that is, pairs (i, j)
in {0, 1, . . . , n} such that i < j and σ(i) > σ(j)). In particular, if the only permutation
giving rise to nonempty families of nonintersecting paths is the identity then det(PG)
gives the sum over all weighted families of nonintersecting paths in G that begin at U
and end at V , where the weight of each family is the product of the weights of the paths
(P0, . . . , Pn).

Suppose now the source and sink vertices of G are fully compatible, by which we mean
that for any subset of sources un1 , un2 , . . . , unr (where n1 < n2 < · · · < nr) and sinks
vk1 , vk2 , . . . , vkr (where k1 < k2 < . . . < kr), the only permutation σ ∈ Sr mapping
each source uni to the sink vkσ(i) that gives rise to nonempty families of nonintersecting
paths is the identity. The LGV lemma then implies that every minor of PG is a sum
over families of nonintersecting paths between specified subsets of U and V , where each
family has weight

∏
w(Pi). If every edge has a weight that is a positive real number then

PG is totally positive; if the weights of the network belong to the field Q(x) of rational
functions of x that are pointwise nonnegative on some domain D then PG is pointwise
totally positive on D; and if the weight of each edge is a polynomial in the indeterminates
x with nonnegative integer coefficients then PG is totally positive in Z[x] equipped with
the coefficientwise order.

Determining whether a general locally finite acyclic digraph is fully compatible is non-
trivial, however, if G is embedded in the plane and the source and sink vertices U and
V lie on the boundary of G in the order “first U in reverse order, then V in order” then
the topology of G clearly implies that U and V are fully compatible (see, for example,
Lemma 9.18 in [49]). From now on we will refer to locally finite acyclic digraphs embedded
in the plane with fully compatible sources and sinks as planar networks, in the spirit of [24].
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Figure 1: The binomial-like planar network N for vertices u0, u1, . . . , u4 and v0, v1, . . . , v4.

2.2 The binomial-like planar network

The matrices T(q) and F(q) are unit-lower-triangular, so in the sequel we will be principally
concerned with what we call the binomial-like planar network (depicted in Figure 1). This
planar network consists of vertices indexed by i (j) increasing horizontally from the right
(vertically upwards, respectively) where 0 6 i 6 j. Each source ui is the vertex with
index (i, i) while each sink vj is the vertex (0, j). Each horizontal edge directed from
vertex (i, j) to vertex (i − 1, j) has weight αi,j−i+1, while the weight of a diagonal edge
directed from vertex (i, j) to (i− 1, j − 1) has weight βi,j−i. We also assume there exists
a directed edge from u0 to v0 with weight 1.

The binomial-like planar network with weights α = {αi,l}i,l>1 and β = {βi,l}i>1,l>0

described above is denoted N . Please note that the source and sink vertices of N are
fully compatible, so it follows immediately from the LGV lemma that the path matrix PN
is automatically coefficientwise totally positive over Z[α,β] in all of these indeterminates!

This is really the beauty of the LGV lemma (in the context of total positivity): given a
lower-triangular matrix M that appears to be coefficientwise totally positive in R[x], one
can try to prove total positivity by specialising αi,l, βi,l to suitable nonnegative elements
of R[x] and showing that under such a specialisation

PN = M. (2.4)

Indeed, this is how we concoct our proof of Theorem 1.2. We first show that specialising
the weights of the binomial-like planar network to suitably chosen rational functions of
q yields a path matrix that agrees with F(q) in Section 4; since these rational functions
are all nonnegative for q ∈ R+ we conclude that F(q) is pointwise totally positive for
q ∈ R+. In Section 5 we then transform this binomial-like planar network to obtain a
different planar network with weights that are polynomials in q in order to show that F(q)
is coefficientwise totally positive.
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The planar network construction described above originally goes back to Brenti [5]
who also observed that if the binomial-like planar network N has weights α and β that
depend purely on the first index (that is, αi,l = αi,∗ and βi,l = βi,∗ for all i) then the
entries of the path matrix PN satisfy the n-dependent recurrence

PN (un → vk) = αn,∗ PN (un−1 → vk−1) + βn,∗ PN (un−1 → vk) . (2.5)

Similarly if the weights depend solely on the second index (that is, αi,l = α∗,l and βi,l = β∗,l
for all l) then the entries of the path matrix satisfy the k-dependent recurrence

PN (un → vk) = α∗,k PN (un−1 → vk−1) + β∗,k PN (un−1 → vk) . (2.6)

The most straightforward (and thus, eponymous) example that illustrates this con-
nection between matrices with entries satisfying purely n- (or k-) dependent recurrences
and binomial-like planar networks is the weighted binomial matrix,

Bx,y :=

((
n

k

)
xn−kyk

)
n,k>0

, (2.7)

the entries of which satisfy the linear recurrence

(Bx,y)n,k = x(Bx,y)n−1,k + y(Bx,y)n−1,k−1 (2.8)

for n > 0 with initial condition (Bx,y)0,k = δ0k. The corresponding planar network is the
network N with αi,l = y and βi,l = x, and it follows immediately from the LGV lemma
that

Corollary 2.1. The weighted binomial matrix Bx,y is coefficientwise totally positive in
Z[x, y].

Matrices with entries given by purely n-dependent or purely k-dependent recurrences
have relatively straightforward planar network representations, and often in these cases
it is easy to deduce a straightforward planar network by studying the recurrence.

Matrices with entries that satisfy recurrences dependent on both n and k, however,
give rise to seemingly much more complex planar networks (see, for example, [11]). For
example, the entries of the forests matrix

F = (fn,k)n,k>0 =

((
n− 1

k − 1

)
nn−k

)
n,k>0

, (2.9)

satisfy the recurrence:

fn,k =

(
n

n− 1

)n−1 [
(n− 1)fn−1,k +

1

k − 1

(
n

(
n− 1

n

)k
+ (k − n)

)
fn−1,k−1

]
(2.10)

for n > 1 with initial conditions fn,0 = δn0, and f1,1 = 1. We note that we were able to
find the correct weights for the binomial-like planar network corresponding to F in spite
of this complicated recurrence, and not because of it.
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In the sequel we will also make use of the following fact. Suppose αi,l = 1 and consider
the sum over all weighted paths from un to vk in N (denoted PN (un → vk)). By studying
the network it is relatively easy to see that PN (un → vk) can be expressed as a nested
sum

PN (un → vk) =
k+1∑
i1=1

βi1,k+1−i1

k+2∑
i2=i1+1

βi2,k+2−i2 · · ·
n∑

in−k=in−k−1+1

βin−k,n−in−k (2.11)

=
∑

16i1<···<in−k6n

βi1,k+1−i1βi2,k+2−i2 · · · βin−k,n−in−k . (2.12)

Observe that if the weights βi,l are dependent only on the first index then PN (un → vk)
can be realised as the elementary symmetric polynomial

en−k(X1, X2, . . . , Xn) :=
∑

16i1<···<in−k6n

Xi1Xi2 · · ·Xin−k (2.13)

where Xn = βn,∗. If instead the weights βi,l depend solely on the second index then (2.12)
can be realised as the complete homogeneous symmetric polynomial

hn−k(X1, X2, . . . , Xk+1) :=
∑

16i16···6in−k6k+1

Xi1Xi2 · · ·Xin−k (2.14)

where Xk = β∗,k−1 (these two observations again go back to Brenti [5]).
In this article we study total positivity primarily through the lens of planar networks;

the next section dicusses how planar networks can be intepreted algebraically as matrix
factorisations.

2.3 Matrix factorisations

The planar network approach outlined above allows us to easily write down various fac-
torisations of the path matrix PN . Before discussing these factorisations we first clarify
some notation. We use N to denote the binomial-like planar network described in the
previous subsection with the set of horizontal weights α and diagonal weights β. Con-
versely, given a matrix M , in this section we will often use NM to denote a planar network
with corresponding path matrix PNM satisfying

PNM = M. (2.15)

In this case NM is referred to as a planar network representation of the matrix M .
We will make much use of the following definition. For sequences a := (an)n>0 and

b := (bn)n>0, let L(a,b) denote the lower-bidiagonal matrix with (n, k)-entry

(L(a,b))n,k>0 =


ak if n = k,

bk if n = k + 1,

0 otherwise.

(2.16)
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The first few rows and columns of L(a,b) are:

L(a,b) =



a0
b0 a1

b1 a2
b2 a3

b3 a4
b4 a5

b5 a6
. . . . . .


. (2.17)

In case an = 1 for all n we abbreviate L(a,b) to L(b), while if bn = 0 for all n the matrix
L(a,b) is simply the diagonal matrix diag(a) with (n, n)-entry an and all other entries 0.
Lastly, if an = 1 and the sequence b is constant, that is, bn = x for all n, we abbreviate
L(b) to L(x), and if we have an = x and bn = y for all n with y 6= 1 we abbreviate L(a,b)
to L(x, y).

The lower-bidiagonal matrix L(a,b) has a planar network representation NL(a,b) in
which

PNL(a,b)
(un → vn) = an (2.18)

and
PNL(a,b)

(un → vn−1) = bn−1 (2.19)

(see the diagram on the left in Figure 2). Since we view these matrices through the lens
of planar networks we will refer to the sequences a and b as edge-sequences corresponding
to L(a,b). According to the LGV lemma we have:

Corollary 2.2 (Lower-bidiagonal matrices). The matrix L(a,b) is totally positive in
Z[a,b] equipped with the coefficientwise order.

It is straightforward to verify that

L(a,b) = E0(a0, b0)E1(a1, b1)E2(a2, b2) · · · (2.20)

where En(a, b) denotes the elementary (lower) bidiagonal matrix with (n, n)-entry a, (n+
1, n)-entry b, all other diagonal entries 1, and all other entries 0. As with bidiagonal
matrices, in case a = 1 we abbreviate En(1, b) to En(b). We now present a useful lemma
relating matrix products and concatenated planar networks:

Lemma 2.3 (Concatenating planar networks). Suppose M1 and M2 are path matrices
corresponding to two planar networks NM1 and NM2, where NM1 has source vertices

U := {u0, u1, . . . , un} (2.21)

and sink vertices
V := {v0, v1, . . . , vm}, (2.22)
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Figure 2: The planar network NL(a,b) (left), and the planar network that arises from
expressing L(a,b) as a product of elementary lower-bidiagonal transfer matrices and con-
catenating the networks NE0(a0,b0), NE1(a1,b1), . . . (right). Note that unlabelled directed
edges are assumed to have weight 1.

and NM2 has source vertices

U ′ := {u′0, u′1, . . . , u′m} (2.23)

and sink vertices
V ′ = {v′0, v′1, . . . , v′l}. (2.24)

Then the matrix product M1M2 is the path matrix corresponding to the planar network
NM3 obtained by concatenating the networks NM1 and NM2, that is, NM3 is the planar
network with source vertices U and sink vertices V ′, where each vertex vi ∈ V is identified
with u′i ∈ U ′ for all i.

Proof. Since vi is identified with u′i we can write the sum over over weighted paths from
un to v′k in NM3 as

PNM3
(un → v′k) =

m∑
s=0

PNM1
(un → vs)PNM2

(u′s → v′k) = (M1M2)n,k.

Concatenating planar networks thus corresponds to multiplying path matrices, and the
matrices M1 and M2 in the above are referred to as transfer matrices of the planar network
NM3 . The elementary bidiagonal matrices on the right-hand side of (2.20) are thus transfer
matrices of NL(a,b),4 and concatenating the planar networks for E0(a0, b0), E1(a1, b1), . . .
yields the planar network on the right in Figure 2.

4Note that the elementary bidiagonals described here are, in fact, referred to as column transfer
matrices, we will shortly also consider what we call diagonal transfer matrices.
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Figure 3: The planar network NC up to sources u0, u1, . . . , u4 and v0, v1, . . . , v4 (unlabelled
directed edges have weight 1).

We now interpret the binomial-like planar network N and its path matrix PN from
Subsection 2.2 in light of these definitions. By extending the source vertices of N to
the left so that they lie on the same vertical line we obtain a planar network NC that is
isomorphic to N (see Figure 3), in particular we have

PN (un → vk) = PNC (un → vk). (2.25)

Consider a subnetwork Ci of NC consisting of source vertices U := {(i + 1, j) : j ∈
N} and sink vertices V := {(i, j) : j ∈ N}. Let ai denote the sequence of weights of
horizontally directed edges emanating from vertex (i + 1, i + n) for increasing n, that is,
ai := (an)n>0 where

an =

{
αi+1,n if n > 0,

1 if n = 0.
(2.26)

Similarly let bi denote the sequence of weights of the diagonal edges emanating from
vertex (i + 1, i + n + 1) for increasing n, that is, bi := (βi+1,n)n>0. It is easy to see that
the path matrix corresponding to Ci is the column transfer matrix

PCi =

[
Ii 0
0 L(ai,bi)

]
(2.27)

where Ii is the identity matrix of size i, and L(ai,bi) is the lower-bidiagonal matrix with
corresponding edge sequences ai and bi. Obviously the matrix PCi is totally positive in
Z[ai,bi] equipped with the coefficientwise order.
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SinceNC is the concatenation of column transfer matrices we immediately obtain what
we refer to as a production-like factorisation of PN :

Corollary 2.4 (Production-like factorisation). The path matrix PN corresponding to the
binomial-like planar network N has the factorisation:

PN = · · ·
[
I2 0
0 L(a2,b2)

]
·
[
I1 0
0 L(a1,b1)

]
· L(a0,b0) (2.28)

where ai = (αi+1,n)n>0 (with αi+1,0 = 1) and bi = (βi+1,n)n>0.

Recall from the previous subsection that the weighted binomial matrix Bx,y is the
path matrix of the binomial-like planar network N with αi,l = y and βi,l = x. The above
corollary thus yields the following factorisation of Bx,y:

Corollary 2.5 (Production-like factorisation of the weighted binomial matrix). The
weighted binomial matrix Bx,y has the production-like factorisation

Bx,y = · · ·
[
I2 0
0 L(y, x)

]
·
[
I1 0
0 L(y, x)

]
· L(y, x) (2.29)

where L(y, x) denotes the lower-bidiagonal matrix with (0, 0)-entry 1, all other diagonal
entries y, all subdiagonal entries x, and all other entries 0.

We note that the above corollary implies that Bx,y satisfies

Bx,y =

[
1 0
0 Bx,y

]
L(y, x). (2.30)

There are other ways to factorise PN that rely on the following helpful definition.
Given a sequence a = (an)n>0 let T (a) := (a∗n,k)n,k>0 denote the lower-triangular matrix
with (n, k)-entry

a∗n,k =
n−1∏
j=k

aj (2.31)

for n > k and 0 in all other cases (we consider the empty product arising from n = k to
be 1). The first few rows and columns of T (a) are thus:

T (a) =



1
a∗1,0 1
a∗2,0 a∗2,1 1
a∗3,0 a∗3,1 a∗3,2 1
a∗4,0 a∗4,1 a∗4,2 a∗4,3 1
a∗5,0 a∗5,1 a∗5,2 a∗5,3 a∗5,4 1

...
...

...
...

...
...

. . .


. (2.32)
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Figure 4: The planar network NT (a) that has corresponding path matrix T (a).

The matrix T (a) is the path matrix corresponding to the planar network NT (a) in
which

PNT (a)
(un → vk) = a∗n,k (2.33)

(see Figure 4). Clearly T (a) is totally positive in Z[a] equipped with the coefficientwise
order, and by comparing Figure 2 with Figure 4 and (2.20) it is easy to see that

T (a) = · · ·E2(a2)E1(a1)E0(a0) = (E0(−a0)−1E1(−a1)−1E2(−a2)−1 · · · )−1, (2.34)

since En(a)−1 = En(−a). We thus obtain the following corollary:

Corollary 2.6 (Inverse lower-bidiagonal matrices). For a sequence a = (an)n>0 we have

T (a) = L(−a)−1 (2.35)

where −a = (−an)n>0.

In light of Corollary 2.6 we refer to the matrix T (a) as an inverse (lower-)bidiagonal
matrix with corresponding edge sequence a. The case where an = x for all n often arises in
the study of total positivity, and T (a) is then referred to as a Toeplitz matrix of powers of
x since each (n, k)-entry is xn−k, and we denote it T∞(x). It follows from the LGV lemma
that T∞(x) is coefficientwise totally positive in Z[x]. More generally, given a sequence
a = (an)n>0 we call the infinite lower-triangular matrix T∞(a) = (an−k)n,k>0 where al = 0
for l < 0 the (infinite) Toeplitz matrix associated to a.5

5We observe here that a sequence a = (an)n>0 of real numbers is Toeplitz-totally positive if its asso-
ciated Toeplitz matrix T∞(a) is totally positive, and such sequences are commonly referred to as Pólya
frequency sequences. A sufficient condition for Toeplitz-total positivity of a sequence a of real numbers is
given by the celebrated Aissen–Schoenberg–Whitney–Edrei theorem [42, Theorem 5.3, p. 412]. Similarly,
a sequence a of elements belonging to R[x] is coefficientwise Toeplitz-totally positive if its associated
Toeplitz matrix T∞(a) is coefficientwise totally positive in R[x]; an extension of the Aissen–Schoenberg–
Whitney–Edrei theorem to this more general setting can be found in [66, Lemmas 2.4 and 2.5].
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Figure 5: The planar network ND up to source u4 and sink v4 (unlabelled edges have
weight 1). Please note the red dashed lines are not part of the planar network, they
delineate the sources and sinks of each diagonal transfer matrix Dl.

Let us return again to the binomial-like planar network N . Observe that N is isomor-
phic to the planar network ND in Figure 5, in particular we have

PN (un → vk) = PND(un → vk) (2.36)

for all n, k > 0.
Consider a subnetwork Dl of ND contained between a pair of consecutive dashed

diagonal lines. The path matrix for each such subnetwork is the diagonal transfer matrix :

PDl =

[
Il 0
0 diag(al)T (bl)

]
(2.37)

where a0 = (1)n>0, al = (αn+1,l)n>0 for l > 0, and bl = (βn+1,l)n>0 for all l.
The concatenation of subnetworks D0, D1, . . . from left to right yields a different fac-

torisation of PN , namely its quasi-production-like factorisation:

Corollary 2.7 (Quasi-production-like factorisation). The path matrix PN has the fac-
torisation

PN = T (b0) ·
[
I1 0
0 diag(a1)T (b1)

]
·
[
I2 0
0 diag(a2)T (b2)

]
· · · (2.38)

where al = (αn+1,l)n>0, and bl = (βn,l)n>0.

The weighted binomial matrix Bx,y thus has the following quasi-production-like fac-
torisation which can also be found in [10, Lemma 2.8]:

Corollary 2.8 (Quasi-Production-like factorisation of the weighted binomial matrix).
The weighted binomial matrix Bx,y has the quasi-production-like factorisation

Bx,y = T (x) ·
[
I1 0
0 yT (x)

]
·
[
I2 0
0 yT (x)

]
· · · (2.39)
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where
yT (x) = diag(y)T (x). (2.40)

Observe that we can write the factorisation of Bx,y above as

Bx,y = T (x) diag(y) ·
[
I1 0
0 T (x) diag(y)

]
·
[
I2 0
0 T (x) diag(y)

]
· · · (2.41)

where y = (1, y, y, . . .), from which it immediately follows that

Bx,y = T (x) diag(y) ·
[

1 0
0 Bx,y

]
. (2.42)

We conclude this subsection with one final lemma relating bidiagonal and inverse
bidiagonal matrices.

Lemma 2.9. Suppose a = (an)n>0 and b = (bn)n>0 are sequences of elements belonging
to a field F . Then

(i) If an = −bn for all n then L(a)T (b) = I;

(ii) If an + bn 6= 0 for all n then

L(a)T (b) =

[
1 0
0 T (b′)

]
· L(a′) (2.43)

where a′ = (a′n)n>0 is the edge sequence in which

a′n :=

{
a0 + b0 if n = 0,
an−1(an+bn)
an−1+bn−1

if n > 0,
(2.44)

and b′ = (b′n)n>0 is the edge sequence in which

b′n =
bn(an+1 + bn+1)

an + bn
. (2.45)

Proof. (i) If an = −bn then we trivially have

L(a)T (b) = L(−b)T (b) = L(−b)L(−b)−1 = I. (2.46)

(ii) Suppose an + bn 6= 0 for all n, and let M = L(a)T (b) and

N =

[
1 0
0 T (b′)

]
· L(a′). (2.47)

Clearly Mn,n = 1 = Nn,n, while for n > k > 0 the matrix entries of Mn,k can be written
as a telescoping product

Mn,k = (an−1 + bn−1)
n−2∏
i=k

bi = (ak + bk)
n−2∏
i=k

bi(ai+1 + bi+1)

(ai + bi)
= Nn,k (2.48)

(the empty product is taken to be 1).
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Figure 6: The planar network representation of Lemma 2.9

Figure 6 is a planar network representation of Lemma 2.9. As simple as Lemma 2.9
is, it will prove to be a fundamental tool in our proof of Theorem 1.2. In applications in
this paper the field F will be the field Q(q) of rational functions of q, which is the fraction
field of the ring Z[q] of polynomials in q. The planar network we present in Section 4
arises from specialising the weights α and β of the binomial-like planar network N to
certain rational functions of q, and Lemma 2.9 allows us to transform this network into a
different network with weights that are polynomials in q.

2.4 A remark on Neville elimination

Given a totally positive matrix M there are myriad ways in which to express M as
a product of totally positive matrices, however, if the entries of M belong to R then
Gasca and Peña [30] provide an algorithm for systematically determining a “canonical”
factorisation. The process is based on the Neville-Aitken technique [28] which, in the
context of solutions of linear systems, gives rise to Neville elimination [29, 27]. Neville
elimination can be a powerful tool for studying totally positive matrices in general; here we
sketch a brief overview of it purely for unit-lower-triangular matrices. For a full treatment
please see [30].

Let M := (mn,k)06n,k6N be a unit-lower-triangular matrix of size N + 1. If M contains
any zeroes in its initial k = 0 column then form the matrix M0 := (m0

n,k)06n,k6N by
moving the offending rows of M to the bottom in such a way that the relative order
among them is preserved (if M does not contain any zeroes in its initial column then set
M0 := (mn,k)06n,k6N). The entries m0

i,0 for i > 0 are referred to as the (i, 0) pivots of M .
Suppose row n1 is the bottom-most nonzero entry in column k = 0 of M0. For i

decreasing from n1 to 1 subtract

m0
i,0

m0
i−1,0

(row (i− 1)) (2.49)

from row i (thereby reducing m0
i,0 to 0 from bottom to top as i decreases). This operation

is equivalent to left-multiplying M by a product of elementary lower-bidiagonal matrices,
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and can thus be expressed algebraically as

EN+1,1(−ρ1,0)EN+1,2(−ρ2,0) · · ·EN+1,N(−ρN,0)RN+1M =

[
1 0
0 M1

]
, (2.50)

where: EN+1,n(x) is the elementary bidiagonal matrix of size N + 1 with (n, n− 1)-entry
x, 1s on the diagonal, and 0s everywhere else; RN+1 is some matrix of size N + 1 that
encodes a permutation of rows; and

ρi,0 =

{
m0
i,0

m0
i−1,0

if m0
i,0 6= 0,

0 if m0
i,0 = 0

(2.51)

is a ratio of (i, 0) pivots of M .
The matrix M1 = (m1

n,k)06n,k6N−1 on the right-hand side of (2.50) is again unit-lower-
triangular, and the entries in the k = 0 column of M1 are the (i, 1) pivots of M . Reducing
the zeroth column of M1 to 0s everywhere except on the diagonal in the manner described
above (that is, rearranging rows and successively subtracting them from each other) yields[

1 0
0 EN,1(−ρ1,1)EN,2(−ρ2,1) · · ·EN,N−1(−ρN−1,1)RN

]
· EN+1,1(−ρ1,0)EN+1,2(−ρ2,0) · · ·EN+1,N(−ρN,0)RN+1M =

[
I2 0
0 M2

]
(2.52)

where M2 = (m2
n,k)06n,k6N−2 is a matrix of size N − 1 and

ρi,1 =

{
m1
i,0

m1
i−1,0

if m1
i,0 6= 0,

0 if m1
i,0 = 0

(2.53)

is a ratio of (i, 1) pivots of M .
Proceeding iteratively on smaller and smaller matrices we obtain, after a finite number

of steps, the identity[
IN−1 0

0 E2,1(−ρ1,N−1)

]
·
[
IN−2 0

0 E3,1(−ρ1,N−2)E3,2(−ρ2,N−2)R3

]
· · ·EN+1,1(−ρ1,0)EN+1,2(−ρ2,0) · · ·EN+1,N(−ρN,0)RN+1M = IN+1, (2.54)

equivalently,

R−1N+1EN+1,N(ρN,0) · · ·EN+1,2(ρ2,0)EN+1,1(ρ1,0) ·
[

1 0
0 R−1N EN,N−1(ρN−1,1) · · ·EN,1(ρ1,1)

]
· · ·
[
IN−2 0

0 R−13 E3,2(ρ2,N−2)E3,1(ρ1,N−2)

] [
IN−1 0

0 E2,1(ρ1,N−1)

]
= M. (2.55)
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Figure 7: The binomial-like planar network obtained using Neville elimination.

where each ρi,j is a ratio of pivots obtained at each step of the algorithm:

ρi,j =
mj
i,0

mj
i−1,0

. (2.56)

We call the factorisation of M obtained in this way the Neville factorisation of M .
Gasca and Peña showed in [30] that the matrix M is totally positive if and only if Rj =

Ij for all j (that is, Neville elimination can be applied to M without ever interchanging
rows at any stage of the algorithm), and the pivots of M are all nonnegative (the same
result can also be found in Chapter 6 of Pinkus’ book [51], although Neville elimination
is not treated explicitly there).

We can translate the Neville factorisation of M into the language of planar networks.
If M is totally positive then it follows from (2.55) that

EN+1,N(ρN,0) · · ·EN+1,2(ρ2,0)EN+1,1(ρ1,0) ·
[

1 0
0 EN,N−1(ρN−1,1) · · ·EN,1(ρ1,1)

]
· · ·
[
IN−2 0

0 E3,2(ρ2,N−2)E3,1(ρ1,N−2)

] [
IN−1 0

0 E2,1(ρ1,N−1)

]
= M, (2.57)

where every pivot ρi,j is nonnegative. We can easily construct a planar network repre-
sentation NM of this factorisation (see Figure 7); the network we obtain is simply the
standard binomial-like planar network with αn,k = 1 and βn,k = ρn,k. We call the planar
network NM obtained using Neville elimination the Neville network corresponding to M .

We have already seen how to interpret such planar networks as production-like and
quasi-production-like factorisations. By reading the network as a product of column
transfer matrices we obtain the production-like factorisation

M =

[
IN−1 0

0 L2(b
′
N−1)

]
· · ·
[

1 0
0 LN(b′1)

]
LN+1(b

′
0) (2.58)
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where LN+1−i(b
′
i) is the finite lower-bidiagonal matrix of size N+1−i with corresponding

finite edge sequence
b′i = (ρi+1,n)06n6N−1−i. (2.59)

Similarly, by reading the network as a product of diagonal transfer matrices we obtain
the quasi-production-like factorisation

M = TN+1(b0)

[
1 0
0 TN(b1)

]
· · ·
[
IN−1 0

0 T2(bN−1)

]
. (2.60)

where
bj = (ρn,j)16n6N−j . (2.61)

We note that the quasi-production-like factorisation above can be obtained directly
from the products of elementary bidiagonal matrices in (2.57), since according to (2.34)
we have[

Ij 0
0 EN−j+1,N−j(ρN−j,j) · · ·EN−j+1,1(ρ1,j)

]
=

[
Ij 0
0 TN−j+1(bj)

]
. (2.62)

The production-like factorisation, on the other hand, can be obtained from (2.57) by
commuting elementary bidiagonal matrices. We have[

Ii 0
0 EN−i+1,N−i(ρN−i,i) · · ·EN−i+1,1(ρ1,i)

]
= EN+1,N(ρN−i,i) · · ·EN+1,i+1(ρ1,i), (2.63)

and since EN,n1(x)EN,n2(x) = EN,n2(x)EN,n1(x) for n2 > n1 + 1 it follows that we can
commute elementary bidiagonal matrices in (2.57), thereby obtaining

[EN+1,N(ρN,0) · · ·EN+1,2(ρ2,0)EN+1,1(ρ1,0)] · [EN+1,N(ρN−1,1) · · ·EN+1,2(ρ1,1)] · · ·
[EN+1,N(ρ2,N−2)EN+1,N−1(ρ1,N−2)][EN+1,N(ρ1,N−1)]

= [EN+1,N(ρN,0)][(EN+1,N−1(ρN−1,0)EN+1,N(ρN−1,1)]

· · · [EN+1,1(ρ1,0)EN+1,2(ρ1,1) · · ·EN+1,N(ρ1,N−1)]. (2.64)

The right-hand side agrees with that of (2.58) since

[EN+1,i+1(ρi+1,0)EN+1,i+2(ρi+1,1) · · ·EN+1,N(ρi+1,N−i−1)] =

[
Ii 0
0 LN−i+1(b

′
i)

]
. (2.65)

Neville elimination can easily be applied to a unit-lower-triangular matrix M with
entries that belong to the polynomial ring Z[x], though the resulting factorisation may
well consist of matrices with entries that belong to the field Q(x) of rational functions
of x. The planar network N1 described in Section 4 below (see Figure 8) that we use
to prove the pointwise total positivity of the q-forests matrix is the Neville network for
the matrix F′(q) = (fn,k(q))n,k>1. By transforming this Neville network into a different
planar network with weights that are polynomials in q we eventually show in Section 5
that F(q) is coefficientwise totally positive in Z[q].
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Determining binomial-like planar networks via Neville elimination can be incredibly
useful if the set of pivots are of a “nice” form from which a general pattern is easy to
guess; however, often when attempting to construct planar networks for suspected totally
positive matrices6 one finds oneself with a set of rational expressions for the pivots that
are difficult to make any sense of at all. Luckily, in the case of the forests and the trees
matrices the pivots were of a general form that was easy to understand.

We have now established all of the fundamental concepts required to prove our main
result (Theorem 1.2). In the next section we will interpret the entries of the q-forests
matrix and the q-trees matrix combinatorially, and prove some matrix identities relating
them.

3 Combinatorial interpretations of the entries of the q-forests
and q-trees matrices, and some identites relating them

The entries of the matrices F(q) and T(q) are polynomials in q that count trees or forests
according to some statistic, and it is natural to try to interpret what that statistic might
be. We present one such interpretation in the following two subsections, before considering
some identities relating F(q) and T(q).

3.1 A combinatorial interpretation of the entries of F(q)

We begin with the q-forests matrix F(q) = (fn,k(q))n,k>0 where

fn,k(q) =


δnk if k = 0,(
n− 1

k − 1

)
q

([n]q)
n−k if 0 < k 6 n,

0 otherwise.

(3.1)

The entries of this matrix count forests on the vertex set [n] with k components with
respect to some statistic.

Let Fn,k denote the set of such forests for given n, k, and consider a forest F ∈ Fn,k
where k < n.7 The vertices of F can be partitioned into three subsets:

Vr(F ) ∪ Vs(F ) ∪ Vt(F ) (3.2)

where

Vr(F ) := {v ∈ F : v is a root of a component},
Vs(F ) := {v ∈ F : v is a lowest-numbered child of a root},
Vt(F ) := {v ∈ F : v is neither a root, nor a lowest-numbered child of a root}.

6Such as, for example, the maddeningly stubborn Eulerian triangle, which was conjectured by
Brenti [6] to be totally positive over a quarter of a century ago.

7We will shortly consider the case k = n.
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We now describe one way in which to assign weights to the vertices in Vr(F ), Vs(F ), and
Vt(F ).

For each root vertex v in Vr(F ) define

Vr(F, v) := {v′ : v′ ∈ Vs(F ) ∪ Vt(F ), v′ < v} (3.3)

to be the set of nonroot vertices in F that are lower-numbered than v. Each root v ∈ Vr(F )
is then assigned the weight

wt(v) = r|Vr(F,v)| (3.4)

and for a forest F ∈ Fn,k define8

niblings(F ) :=
∑

v∈Vr(F )

|Vr(F, v)|. (3.5)

The set Vs(F ) is a singleton (since we assumed that k < n) so we denote by vmin the
single element of Vs(F ). Consider the roots v0, v1, . . . , vk−1 ∈ Vr(F ) where

v0 < v1 < · · · < vk−1. (3.6)

The vertex vmin is a child of one of v0, . . . , vk−1, and we assign to vmin the weight

wt(vmin) = sj, (3.7)

where vj is the parent of vmin (we say that j is the smallest child index of F and denote
it scindex(F )).

The set Vt(F ) is nonempty if k < n−1, and in this case we assign each vertex v ∈ Vt(F )
the weight

wt(v) = tparent(v)−1, (3.8)

where parent(v) denotes the label of the parent of v, and define

parents(F ) :=
∑

v∈Vt(F )

parent(v). (3.9)

Putting the above together in one place we have for a vertex v in F :

wt(v) :=


r|Vr(F,v)| v ∈ Vr(F ),

sscindex(F ) v = vmin,

tparent(v)−1 v ∈ Vt(F ).

(3.10)

We now define the weight of each forest F to be the product of the weights of its vertices:

wt(F ) :=
∏
v∈F

wt(v) = sscindex(F )
∏

v∈Vr(F )

r|Vr(F )|
∏

v∈Vt(F )

tparent(v)−1. (3.11)

8The portmanteau “niblings” is a combination of nephews/nieces and siblings.
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Since |Vt(F )| = n− k − 1, it follows from (3.5) and (3.9) that

wt(F ) = rniblings(F )sscindex(F )tparents(F )−(n−k−1) (3.12)

for each forest F ∈ Fn,k where n > k. We demonstrate the weighting of forests described
above in the following small example.

Example 3.1. Consider the following forest F ∈ F5,2:

The roots are indicated by horizontal lines, so Vr(F ) = {v0, v1} where v0 has label 2
and v1 has label 5. The nonroot vertices lower-numbered than the vertex v1 are v2, v3, v4
labelled 3, 1, and 4 respectively, hence

Vr(F, v1) = {v2, v3, v4}, (3.13)

while
Vr(F, v0) = {v3}, (3.14)

so it follows that

niblings(F ) = |Vr(F, v0)|+ |Vr(F, v1)| = 4, (3.15)

and the vertices v0 and v1 have weights r and r3 respectively.
The lowest-numbered child of a root is the vertex v3 labelled 1 and since its parent is

the vertex v1 we have scindex(F ) = 1 and wt(v3) = s.
The remaining nonroot vertices are Vt(F ) = {v2, v4}. The parent of v2 has label 2,

while the parent of v4 has label 5 so

parents(F ) = parent(v2) + parent(v4) = 7, (3.16)

and we have wt(v2) = t and wt(v4) = t4. The weight of F is thus∏
v∈F

wt(v) = r4st5 = rniblings(F )sscindex(F )tparents(F )−2. (3.17)

Note that the weight function (3.11) defined above is for forests on the vertex set [n]
with k components where k < n. For k = n the set Fn,n consists of a single forest on the
vertex set [n] consisting of n components, to which we assign a weight of 1.9 The weight
of a forest F ∈ Fn,k for general n and k is therefore defined to be

wt(F ) :=

{
1 if k = n,

rniblings(F )sscindex(F )tparents(F )−(n−k−1) if k < n.
(3.18)

The following proposition gives an explicit formula for the sum over weighted forests.

9Observe that the “empty forest”, that is, the forest on 0 vertices with 0 components, also has weight
1.
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Proposition 3.2. For the set Fn,k of forests on the vertex set [n] with k components
where n > k we have∑

F∈Fn,k

wt(F ) =
∑

F∈Fn,k

rniblings(F )sscindex(F )tparents(F )−(n−k−1) =

(
n

k

)
r

[k]s([n]t)
n−k−1.

(3.19)

Our proof below is an extension of the first proof of Proposition 5.3.2 given by Stanley
in [69], and we are very grateful to Bishal Deb for pointing it out.

Proof. A forest F ∈ Fn,k consists of a root set Vr(F ), and a subforest attached to the roots
consisting of the vertices Vs(F ) ∪ Vt(F ). We construct a sequence σ1, σ2, . . . , σn−k+1 of
subforests of F (all with root set Vr(F )) in the following way: set σ1 = F . If i < n−k+ 1
and σi is defined then let σi+1 be the subforest obtained from σi by removing its largest
nonroot endpoint vi (together with the edge incident to it). Let pi be the unique vertex
of σi adjacent to vi and consider the Prüfer sequence (or Prüfer code, see [54]) of the
subforest of F that arises from removing all vertices in Vs(F ) ∪ Vt(F ) in this way,

γ(F ) := (p1, p2, . . . , pn−k). (3.20)

Note that for i < n− k, pi ∈ [n], while pn−k ∈ Vr(F ), so the number of such sequences is
knn−k−1.

Now let Fn,Vr denote the set of forests with a specified root set Vr of size k. The map
from forests to Prüfer sequences described above

γ : Fn,Vr → [n]n−k−1 × Vr (3.21)

is a bijection (see [69, Proposition 5.3.2]).10 Our aim is to understand the contribution
from the weights of the vertices in terms of these Prüfer sequences and root sets.

Each subforest on the vertices Vs(F ) ∪ Vt(F ) has a unique Prüfer sequence

(p1, p2, . . . , pn−k−1, pn−k), (3.22)

and the first n− k − 1 elements of the sequence correspond to vertices with weights

(tp1−1, tp2−1, . . . , tpn−k−1−1).

The weight of all sequences (p1, p2, . . . , pn−k−1) is thus ([n]t)
n−k−1. It is easy to see that

the element pn−k is the parent of vmin, and since vmin has weight sl for 0 6 l 6 k − 1
(according to the definition of the weight function), the weight of the set of subforests
with root set Vr is

[k]s([n]t)
n−k−1. (3.23)

What remains is to show that the weight of all possible root sets is(
n

k

)
r

. (3.24)

10Please note that here [n]n−k−1 denotes the Cartesian product of the set [n] with itself n−k−1 times.
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Given a set of k root vertices Vr chosen from [n], form the word w = w1w2 . . . wn of length
n on the alphabet {0, 1}, containing 0s at positions v1, . . . , vk ∈ Vr and 1s everywhere
else. The weight we assign to each vertex vi ∈ Vr then corresponds to the number of
1s preceding the 0 at position wvi , so counting root sets with the weighting specified
above is equivalent to counting all words w with respect to the number of inversions in
w (an inversion is a pair (i, j) such that wi = 1, wj = 0, and i < j). This well-known
interpretation of the r-binomial coefficient can be found in [2, p. 40], where r is replaced
with q.

The above proposition might invite one to consider the more general matrix

F(r, s, t) := (fn,k(r, s, t))n,k>0 (3.25)

with (n, k)-entry given by

fn,k(r, s, t) =
∑

F∈Fn,k

wt(F ) =


1 if n = k,(
n

k

)
r

[k]s([n]t)
n−k−1 if 0 6 k < n,

0 otherwise,

(3.26)

but alas, the first few rows of this matrix are:
1
0 1
0 r + 1 1
0 (r2 + r + 1) (t2 + t+ 1) (r2 + r + 1) (s+ 1) 1
...

...
...

...
. . .

 (3.27)

which is not even coefficientwise TP2 in Z[r, s, t] since

f2,1(r, s, t)f3,2(r, s, t)− f3,1(r, s, t)f2,2(r, s, t)
= (1 + r + r2)(s+ r(1 + s)− t(1 + t)) 6� 0 (3.28)

In fact it seems the only way to ensure that F(r, s, t) is coefficientwise totally positive is
to set r = s = t = q, thereby reducing F(r, s, t) to the q-forests matrix F(q). We therefore
define wtq(F ) of F ∈ Fn,k to be the the weight function (3.18) specialised to r = s = t = q:

wtq(F ) :=

{
1 if k = n,

qniblings(F )+scindex(F )+parents(F )−(n−k−1) if k < n.
(3.29)

We conclude:

Corollary 3.3. For the q-forests matrix F(q) = (fn,k(q))n,k>0 we have

fn,k(q) =
∑

F∈Fn,k

wtq(F ), (3.30)

where Fn,k denotes the set of forests on the vertex set [n] with k components.

Having established this combinatorial interpretation of the entries of F(q) we now turn
to the q-trees matrix.
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3.2 A combinatorial interpretation of the entries of T(q)

The entries of the q-trees matrix

T(q) =

((
n

k

)
q

([n]q)
n−k

)
n,k>0

(3.31)

count rooted labelled trees on the vertex set [n + 1] where k children of the root are
lower-numbered than the root (with respect to some statistic). In [7, Lemma 2], however,
the authors give a bijection between the set of all such trees and the set of forests F∗n+1,k+1

on the vertex set [n+ 1] comprised of k+ 1 components where the vertex labelled n+ 1 is
a leaf (note that a root with no children is also a leaf); we therefore interpret the entries
of T(q) as enumerating forests in F∗n+1,k+1 with respect to certain statistics.

We can can construct the set F∗n+1,k+1 in the following way: either take the set Fn,k+1

of forests on [n] with k + 1 components, and for each forest F ∈ Fn,k+1 attach the vertex
n+ 1 as a leaf to any of the vertices in F (there are n ways to do this); or take the set of
forests Fn,k on [n] with k components and to each F ∈ Fn,k attach the vertex n+ 1 as a
singleton component. It follows that

|F∗n+1,k+1| = n|Fn,k+1|+ |Fn,k| = n

(
n− 1

k

)
nn−k−1 +

(
n− 1

k − 1

)
nn−k =

(
n

k

)
nn−k.

(3.32)
If we weight the forests in F∗n+1,k+1 according to (3.11) in the previous subsection then it
is not difficult to see that for n > k∑

F∈F∗n+1,k+1

rniblings(F )sscindex(F )tparents(F )−(n−k−1) =

(
n

k + 1

)
r

[k + 1]s([n]t)
n−k−1

+ rn−k
(
n

k

)
r

[k]s([n]t)
n−k−1 (3.33)

since the weight of the set of forests where n+ 1 is a leaf, but not a component, is

[n]t
∑

F∈Fn,k+1

rniblings(F )sscindex(F )tparents(F )−(n−k−2) =

(
n

k + 1

)
r

[k + 1]s([n]t)
n−k−1 (3.34)

(we obtain a multiplicative factor of tparent(n+1)−1 each time we attach n+ 1 as a leaf to a
component, and each possible parent of n+ 1 is an element of [n] in a forest F ∈ Fn,k+1)
and the weight of the set of forests where n+ 1 is a singleton component is

rn−k
∑

F∈Fn,k

rniblings(F )sscindex(F )tparents(F )−(n−k−1) = rn−k
(
n

k

)
r

[k]s([n]t)
n−k−1 (3.35)

(since all nonroot vertices of F ∈ Fn,k are smaller than n + 1, and this corresponds to
appending a 0 to the word obtained from the root set Vr(F ) described in the proof of
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Proposition 3.2). Now let T(r, s, t) := (tn,k(r, s, t))n,k>0 where

tn,k(r, s, t) =
∑

F∈F∗n+1,k+1

wt(F ) =


1 if k = n,

([n]t)
n−k−1

(
rn−k

(
n
k

)
r
[k]s + [k + 1]s

(
n
k+1

)
r

)
if k < n,

0 otherwise.

(3.36)

Once more, one might ask whether T(r, s, t) is coefficientwise totally positive, however,
the first few rows of T(r, s, t) are:

1
1 1

(r + 1)(t + 1) r2 + r + s + 1 1(
r2 + r + 1

) (
t2 + t + 1

)2 (
r2 + r + 1

) (
t2 + t + 1

) (
r2 + s + 1

)
r3s + r2s + r3 + r2 + rs + r + s2 + s + 1 1

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.


(3.37)

which contains the 2× 2 minor

t1,0(r, s, t)t2,1(r, s, t)− t2,0(r, s, t)t1,1(r, s, t) = r2 + s− t− rt 6� 0, (3.38)

so T(r, s, t) is not even coefficientwise TP2 in Z[r, s, t]. Again, it seems the only way to
restore total positivity is to specialise r = s = t = q, in which case

tn,k(q, q, q) = ([n]q)
n−k−1

(
qn−k

(
n

k

)
q

[k]q + [k + 1]q

(
n

k + 1

)
q

)

=

(
n

k

)
q

([n]q)
n−k−1(qn−k[k]q + [n− k]q) = ([n]q)

n−k
(
n

k

)
q

= tn,k(q). (3.39)

We thus have:

Corollary 3.4. The entries of the q-trees matrix T(q) = (tn,k(q))n,k>0 satisfy

tn,k(q) =
∑

F∈F∗n+1,k+1

wtq(F ) (3.40)

where F∗n+1,k+1 denotes the set of forests on the vertex set [n+ 1] with k + 1 components,
in which the vertex n+1 is a leaf, and wtq(F ) is the specialised weight function for forests
defined in the previous subsection.

It is safe to say that the statistics defined above are quite unconventional, arising from
inserting q-weights into the Prüfer sequence for trees and forests. In [21] the authors
provide an alternative method for encoding weighted trees that is more refined than that
of Prüfer; a closer examination of this weight-preserving bijection in relation to the q-
forests and q-trees matrices will form part of future work on these matrices. For the time
being we will turn our attention to some identities relating the matrices F(q) and T(q).
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3.3 Some identities involving F(q) and T(q)

We have already seen in Section 1 that the entries of the forests matrix

F := (fn,k)n,k>0 =

((
n− 1

k − 1

)
nn−k

)
n,k>0

(3.41)

and the entries of the trees matrix

T := (tn,k)n,k>0 =

((
n

k

)
nn−k

)
n,k>0

(3.42)

satisfy

fn,k =
k

n
tn,k (3.43)

for n > 0. We therefore have:

Lemma 3.5. The matrices F and T satisfy

F = lim
ε→0

diag((n+ ε)n>0)
−1T diag((n+ ε)n>0). (3.44)

The above lemma shows that the total positivity of T implies that of F, however, by
observing that tn,0 = tn,1 for n > 0 we also obtain the following identity:

Lemma 3.6. The matrices F and T satisfy

T = lim
ε→0

diag((n+ ε)n>0)F diag((n+ ε)n>0)
−1E0(1) (3.45)

where E0(1) is the elementary bidiagonal matrix.

Proof. This follows from Lemma 3.5 and observing that right multiplying a matrix with
E0(1) corresponds to adding column 1 to column 0.

We conclude that total positivity of F implies that of T, but there are yet more
identities to uncover. By observing that

fn+1,k+1 =

(
n

k

)
(n+ 1)n−k =

(
n

k

) n−k∑
l=0

(
n− k
l

)
nn−k−l

=
n∑
l=k

(
n

l

)(
l

k

)
nn−l =

n∑
l=k

(
l

k

)
tn,l (3.46)

we obtain:

Lemma 3.7. The matrices F and T satisfy

F =

[
1 0
0 TB

]
(3.47)

where B is the weighted binomial matrix Bx,y with x = y = 1,

B :=

((
n

k

))
n,k>0

. (3.48)
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Combining Lemmas 3.5–3.7 yields the curious dual identities below:

Corollary 3.8. The matrices F and T satisfy

F =

[
1 0
0 limε→0 diag((n+ ε)n>0)F diag((n+ ε)n>0)

−1E0(1)B

]
(3.49)

and

T = lim
ε→0

diag((n+ ε)n>0)

[
1 0
0 TB

]
diag((n+ ε)n>0)

−1E0(1). (3.50)

But what of the more general matrices F(q) and T(q)? In order to understand how
the q-forests and q-trees matrices are related we first present some well-known identities
concerning q-binomial coefficients.

The q-binomial coefficient satisfies the dual recurrences:(
n

k

)
q

=

(
n

n− k

)
q

=

(
n− 1

k − 1

)
q

+ qk
(
n− 1

k

)
q

(3.51)

and (
n

k

)
q

=

(
n

n− k

)
q

= qn−k
(
n− 1

k − 1

)
q

+

(
n− 1

k

)
q

(3.52)

(see [2, equations (3.3.3) and (3.3.4)], for example). Combining (3.51) and (3.52) above
we obtain (

n− 1

k − 1

)
q

=
1− qk

1− qn

(
n

k

)
q

, (3.53)

so it follows that for the q-forest numbers

fn,k(q) =

(
n− 1

k − 1

)
q

([n]q)
n−k (3.54)

and the q-trees numbers

tn,k(q) =

((
n

k

)
q

([n]q)
n−k

)
n,k>0

(3.55)

we have

fn,k(q) =
[k]q
[n]q

tn,k(q) (3.56)

for n > 1. We therefore have a direct q-generalisation of Lemma 3.5:

Lemma 3.9. The matrices F(q) and T(q) satisfy

F(q) = lim
ε→0

diag(([n]q + ε)n>0)
−1T(q) diag(([n]q + ε)n>0) (3.57)
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By observing that tn,0(q) = tn,1(q) for n > 0 we also obtain a q-generalisation of
Lemma 3.6:

Lemma 3.10. The matrices F(q) and T(q) satisfy

T(q) = lim
ε→0

diag(([n]q + ε)n>0)F(q) diag(([n]q + ε)n>0)
−1E0(1). (3.58)

Since the entries of diag(([n]q + ε)n>0)
−1 are rational functions of q, Lemma 3.9 shows

that the pointwise total positivity of F(q) implies that of T(q), and vice versa (also, note
that Lemma 3.10 shows that the pointwise total positivity of F(q) implies that of T(q)).
It follows that to show both of these matrices are pointwise totally positive (Corollary 4.3
below) it suffices to prove that one of them is. Neither of the above lemmas, however, are
of any help when considering the coefficientwise total positivity of our matrices.

We have one more simple identity that shows the coefficientwise total positivity of F(q)
implies the coefficientwise total positivity of T(q). It turns out that T(q) can be obtained
by right-multiplying F(q) by a simple inverse lower-bidiagonal matrix with entries that
are polynomials in q.

Lemma 3.11. The matrices F(q) and T(q) satisfy

T(q) = F(q)T (a(q)), (3.59)

where T (a(q)) is the inverse bidiagonal matrix with edge sequence

a(q) = (qn[n+ 1]q)n>0. (3.60)

Proof. Since T (a(q)) is the inverse of the lower-bidiagonal matrix L(−a(q)) (Corollary 2.6
above), proving (3.59) is equivalent to showing that

F(q) = T(q)L(−a(q)), (3.61)

where L(−a(q)) is a lower-bidiagonal matrix with 1s on the diagonal, (n, n− 1)-entry

−qn[n+ 1]q (3.62)

and all other entries 0. We have

(T(q)L(−a(q)))n,k =

(
n

k

)
q

[n]n−kq − qk[k + 1]q

(
n

k + 1

)
q

[n]n−k−1q (3.63)

which clearly yields δnk for k = 0. For n > k > 0 the right-hand side of the above equation
reduces, via the dual recurrences (3.51) and (3.52), to

[n]n−kq

((
n

k

)
q

− qk
(
n− 1

k

)
q

)
=

(
n− 1

k − 1

)
q

[n]n−kq = fn,k(q), (3.64)

completing the proof.
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The matrix T (a(q)) in the above lemma is clearly coefficientwise totally positive, so it
follows from Lemma 3.11 that in order to prove that T(q) is coefficientwise totally positive
it suffices to show that F(q) is coefficientwise totally positive. We were unable to find a
similar identity that proves the coefficientwise total positivity of T(q) implies that of F(q);
this is why we focus on the matrix F(q) in the sequel.

In the next section we describe how to specialise the weights of the binomial-like planar
network to rational functions of q, and show that the corresponding path matrix agrees
with F(q). In Section 5 we show how this network can be transformed into a different
network with weights that are polynomials in q, thus proving that F(q) (and therefore
T(q)) is coefficientwise totally positive in Z[q].

4 Pointwise total positivity of the q-forests and q-trees matrices

Recall the binomial-like planar network N with edge weights α and β described in Sec-
tion 2. This section is devoted to showing how specialising the weights α and β to
pointwise nonnegative elements of the field Q(q) (that is, the fraction field of the polyno-
mial ring Z[q]) yields a path matrix that agrees with F(q), from which the pointwise total
positivity of F(q) (and thus, T(q)) trivially follows. We then present production-like and
quasi-production-like factorisations of F(q).

We begin by observing that since

F(q) =

[
1 0
0 F′(q)

]
(4.1)

where

F′(q) := (fn+1,k+1(q))n,k>0 =

(
n

k

)
q

([n+ 1]q)
n−k, (4.2)

the pointwise (and indeed, coefficientwise) total positivity of F(q) is trivially equivalent
to that of F′(q).

Now let N1 denote the binomial-like planar network N in which

αi,l = 1 (4.3)

and

βi,l = ql[i]q

(
[i+ l + 1]q

[i+ l]q

)i
(4.4)

(see Figure 8). Observe that since N1 is a binomial-like planar network in which the
horizontal edges have weight 1 it must be a Neville network for some unit-lower-triangular
matrix. We make the following proposition:

Proposition 4.1. The path matrix matrix PN1 satisfies

PN1 = F′(q). (4.5)

the electronic journal of combinatorics 28(3) (2021), #P3.54 33



Figure 8: The binomial-like planar network N1 up to u4 and v4.

Please note that by relabelling the source vertices un → un+1 and sink vertices
vk → vk+1, and inserting a new source vertex u0 at the bottom of N1 connected via
a horizontal edge of weight 1 to a new sink vertex v0, we obtain the planar network N ∗1
with corresponding path matrix

PN ∗1 =

[
1 0
0 PN1

]
. (4.6)

Since the weights of N ∗1 are nonnegative for q ∈ R+, the pointwise total positivity of F(q)
(and therefore also T(q) according to Lemma 3.11) follows from Proposition 4.1. The
author would like to point out that he is very grateful to Xi Chen and Shaoshi Chen for
discovering a proof of Proposition 4.1 with q specialised to q = 1, which inspired what
follows.

Our proof of Proposition 4.1 arises from considering directly the sum over weighted
paths in the network N1 from un to vk:

PN1(un → vk) =
∑

16i1<···<in−k6n

[i1]q

(
[k + 2]q
[k + 1]q

)i1
qk−i1+1

· · · [in−k]q
(

[n+ 1]q
[n]q

)in−k
qn−in−k (4.7)

(see (2.12), where the βi,ls have been replaced with the weights defined in (4.4)). Proving
Proposition 4.1 amounts to showing that the right-hand side of (4.7) equals(

n

k

)
q

([n+ 1]q)
n−k. (4.8)
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Since the nested sum in (4.7) is somewhat complicated, in order to make better sense of
it we first prove the following lemma:

Lemma 4.2. Given integers n,m, t with 0 6 m < n and 0 6 t < n−m we have

n−m∑
s=t+1

qn−m−s[s]q

(
[n+ 1]q
[n−m]q

)s(
n− s
m

)
q

= [n+ 1]q

(
n− t
m+ 1

)
q

(
[n+ 1]q
[n−m]q

)t
. (4.9)

Proof of Lemma 4.2. It is easy to verify (4.9) for t = n −m − 1 so suppose it holds for
t 6 n−m− 1 and consider the case t− 1. We have

n−m∑
s=t

qn−m[s]q

(
[n+ 1]q
q[n−m]q

)s(
n− s
m

)
q

= [t]qq
n−m

(
[n+ 1]q
q[n−m]q

)t(
n− t
m

)
q

+ [n+ 1]q

(
n− t
m+ 1

)
q

(
[n+ 1]q
[n−m]q

)t
, (4.10)

the right-hand side of which can be written(
[n+ 1]q
[n−m]q

)t(
[t]q

(
qn−m−t

(
n− t
m

)
q

+

(
n− t
m+ 1

)
q

)

+ qt[n− t−m]q
[n+ 1− t]q
[n− t−m]q

(
n− t
m+ 1

)
q

)
. (4.11)

The dual recurrences for q-binomial coefficients (3.51) and (3.52) then reduce (4.11) to(
[n+ 1]q
[n−m]q

)t(
n− t+ 1

m+ 1

)
q

[n−m]q, (4.12)

which agrees with the right-hand side of (4.9) when t is replaced with t− 1.

With Lemma 4.2 in hand we are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. We will show that

PN1(un → vk) =

(
n

k

)
q

([n+ 1]q)
n−k, (4.13)

where PN1(un → vk) denotes the sum over weighted directed paths in N1 starting at un
and ending at vk. According to (4.7) we have

PN1(un → vk) =
∑

16i1<···<in−k6n

[i1]q

(
[k + 2]q
[k + 1]q

)i1
qk−i1+1 · · · [in−k]q

(
[n+ 1]q

[n]q

)in−k
qn−in−k .

(4.14)
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The nested sum (4.14) can be expressed recursively. Let

Sn−k :=
n∑

in−k=in−k−1+1

[in−k]q

(
[n+ 1]q

[n]q

)in−k
qn−in−k , (4.15)

and for 1 6 m 6 n− k − 1 define

Sn−k−m :=
n−m∑

in−k−m=in−k−m−1+1

[in−k−m]q

(
[n+ 1−m]q
q[n−m]q

)in−k−m
qn−mSn−k−m+1, (4.16)

so that in particular

PN1(un → vk) = Sn−k−m|m=n−k−1,i0=0 (4.17)

(where Sn−k−m|m=n−k−1,i0=0 denotes the right-hand side of Sn−k−m in which m is replaced
with n− k − 1 and i0 = 0). We make the following claim:

Claim. For 0 6 m 6 n− k − 1 we have

Sn−k−m = ([n+ 1]q)
m+1

(
n− in−k−m−1

m+ 1

)
q

(
[n+ 1]q
[n−m]q

)in−k−m−1

. (4.18)

To prove (4.18) we first observe that since

Sn−k =
n∑

in−k=in−k−1+1

[in−k]q

(
[n+ 1]q

[n]q

)in−k
qn−in−k

(
n− in−k

0

)
q

(4.19)

(remember
(
n
0

)
q

= 1), the claim clearly holds for m = 0 by virtue of Lemma 4.2. Suppose

then (4.18) holds for m > 0 and consider the case m1 = m+ 1. Then

Sn−k−m1 =

n−m1∑
s=t+1

[s]q

(
[n+ 1−m1]q
q[n−m1]q

)s
qn−m1Sn−k−m1+1 (4.20)

= [n+ 1]m1
q

n−m1−s∑
s=t+1

qn−m1 [s]q

(
[n+ 1]q

[n−m1]q

)s(
n− s
m1

)
q

(4.21)

by the induction hypothesis (where we have replaced in−k−m−1 and in−k−m−2 with s and
t respectively). Applying Lemma 4.2 to (4.21) then proves the claim (4.18).

Substituting m = n− k− 1 and i0 = 0 in the right-hand side of (4.18)) for n > k > 0
yields

PN1(un → vk) = ([n+ 1]q)
n−k
(

n

n− k

)
q

(4.22)

=

(
n

k

)
q

([n+ 1]q)
n−k, (4.23)

completing the proof.
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The above proposition immediately implies the following corollary:

Corollary 4.3. The matrices F(q) and T(q) are pointwise totally positive for q specialised
to q ∈ R+.

Proof. According to Proposition 4.1 the matrix F′(q) is the path matrix corresponding
to a planar network with weights that are rational functions of q. Each weight in N1 is
pointwise totally positive for q ∈ R+, so according to the LGV lemma (see Subsection 2.1)
F′(q) is pointwise totally positive for q ∈ R+. Since pointwise total positivity of F(q) is
trivially equivalent to that of F′(q), the matrix F(q) is pointwise totally positive. We have
already seen in Section 3 (see Lemma 3.11, for example) that pointwise total positivity of
F(q) implies that of T(q), so T(q) and F(q) are pointwise totally positive.

Of course for q specialised to q = 1, Corollary 4.3 proves that both the trees matrix
T and the forests matrix F are totally positive (Theorem 1.1). Moreover, the planar
network in Figure 8 implies, via Proposition 4.1, a matrix factorisation of F′(q) and
hence a factorisation of F(q). Indeed, we can obtain two such factorisations depending on
whether we viewN1 as a concatenation of column transfer matrices (yielding a production-
like factorisation, see Corollary 2.4 above), or a concatenation of diagonal column transfer
matrices (yielding a quasi-production-like factorisation, see Corollary 2.7 above).

Corollary 4.4. The matrix F(q) has the production-like factorisation

F(q) = · · ·
[
I3 0
0 L(a2(q))

]
·
[
I2 0
0 L(a1(q))

]
·
[
I1 0
0 L(a0(q))

]
(4.24)

where L(ai(q)) is the lower-bidiagonal matrix with corresponding edge sequence

ai(q) =

(
qn[i+ 1]q

(
[n+ i+ 2]q
[n+ i+ 1]q

)i+1
)
n>0

. (4.25)

We will use the above matrix factorisation in our proof of Theorem 1.2, however,
we also remark that F(q) also has a quasi-production-like factorisation (thanks to Corol-
lary 2.7):

Corollary 4.5. The matrix F(q) has the quasi-production-like factorisation

F(q) =

[
1 0
0 T (a∗0(q))

]
·
[
I2 0
0 T (a∗1(q))

]
·
[
I3 0
0 T (a∗2(q))

]
· · · (4.26)

where T (a∗l (q)) is the inverse bidiagonal matrix with corresponding edge sequence

a∗l (q) :=

(
ql+1[n+ 1]q

(
[n+ l + 3]q
[n+ l + 2]q

)n+1
)
n>0

. (4.27)

Having established the pointwise total positivity of the q-forests and q-trees matrix
via the planar network N1, in the next section we will show how N1 can be transformed
into a different planar network with weights that are polynomial in q, from which the
coefficientwise total positivity of F(q) and T(q) follows.
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Figure 9: The planar network N2 up to source u6 and sink v6. Note that the dashed red
lines do not form part of the network, they simply delineate the column transfer matrices
of N2. Also note that the direction of the edges have been omitted, the reader should
assume all edges are directed from left to right.

5 Coefficientwise total positivity of the q-forests and q-trees ma-
trices

We now present a different planar network with weights that are polynomials in q and
show that its corresponding path matrix can be transformed into the production-like
factorisation of F(q) from the previous section.

Let N2 denote the planar network in Figure 9. Observe that this network does not
have the structure of the binomial-like planar network that we have considered up to
this point, nonetheless we can still apply the tools from Section 2 to understand the
corresponding path matrix. In particular we will repeatedly make use of Lemma 2.9, so
for ease of reading we recall it here:

Lemma (Lemma 2.9 above). Suppose a = (an)n>0 and b = (bn)n>0 are sequences of
elements belonging to a field F . Then

(i) If an = −bn for all n then L(a)T (b) = I;

(ii) If an + bn 6= 0 for all n then

L(a)T (b) =

[
1 0
0 T (b′)

]
· L(a′) (5.1)

where a′ = (a′n)n>0 is the edge sequence in which

a′n :=

{
a0 + b0 if n = 0,
an−1(an+bn)
an−1+bn−1

if n > 0,
(5.2)
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and b′ = (b′n)n>0 is the edge sequence in which

b′n =
bn(an+1 + bn+1)

an + bn
. (5.3)

Consider a subnetwork Ci of N2 depicted in Figure 9. The column transfer matrix
corresponding to each subnetwork is

PCi =

[
Ii+1 0

0 L(ai(q))T (bi(q))

]
(5.4)

where L(ai(q)) and T (bi(q)) are lower-bidiagonal and inverse lower-bidiagonal matrices
(respectively) with corresponding edge sequences

ai(q) = (qi+n+1[i+ 1]q)n>0 (5.5)

and
bi(q) = (qi[n+ 1]q)n>0. (5.6)

The path matrix corresponding to N2 has the factorisation

PN2 = · · ·PC2PC1PC0 (5.7)

We make the following proposition:

Proposition 5.1. The path matrix for N2 satisfies

PN2 = F(q). (5.8)

Before beginning the proof proper we first outline our approach. The factorisation of
PN2 in (5.7) is of the form

· · · (L4T4)(L3T3)(L2T2)(L1T1), (5.9)

where Li denotes a lower-bidiagonal matrix L downshifted by i:

Li =

[
Ii 0
0 L

]
, (5.10)

and similarly Ti denotes an inverse lower-bidiagonal matrix T downshifted by i:

Ti =

[
Ii 0
0 T

]
. (5.11)

Applying Lemma 2.9 to the rightmost product L1T1 we obtain

L1T1 = T ′2L
′
1, (5.12)
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where T ′2 is an inverse lower-bidiagonal matrix downshifted by 2 and L′1 a lower-bidiagonal
matrix downshifted by 1. The factorisation in (5.9) can therefore be expressed as

· · · (L4T4)(L3T3)(L2T2T
′
2)L

′
1. (5.13)

More generally, Lemma 2.9 enables us to “pull” lower-bidiagonal matrices “through”
inverse lower-bidiagonal matrices to the right (compare Figure 6 with Figure 9), so that
in particular for a given i > 0 the factorisation in (5.9) can be written in the form

· · · (Li+2Ti+2)

(
Li+1Ti+1

i∏
j=1

Ti+1,j

)
L′iL

′
i−1 · · ·L′1 (5.14)

where each Ti+1,j is an inverse bidiagonal matrix downshifted by i + 1, and each L′i is a
lower-bidiagonal matrix downshifted by i. It is clear that in the limit (as i → ∞) the
inverse lower-bidiagonal matrices vanish, and what remains is a factorisation of PN2 into
downshifted lower-bidiagonal matrices:

PN2 = · · ·L′4L′3L′2L′1. (5.15)

We will show that this resulting factorisation of PN2 agrees with the production-like
factorisation of F(q) given in Corollary 4.4 of the previous section.

Proof of Proposition 5.1. It is easy to see that the matrices agree in the first column,
since

PN2(un → v0) = δn0 = fn,0(q), (5.16)

so consider again the matrix

F′(q) := (f ′n,k(q))n,k>0 =

((
n

k

)
q

([n+ 1]q)
n−k

)
n,k>0

(5.17)

and let N ′2 denote the planar network obtained by removing from N2 vertices u0, v0 and
relabelling vertices ui → ui−1, vi → vi−1 for i > 0 (the corresponding path matrix PN ′2 is
thus obtained by deleting the first row and column of PN2).

As described above, we will prove (5.8) by repeatedly applying Lemma 2.9 to the
matrix factorisation of PN ′2 , thereby expressing PN2 as a product of lower-bidiagonal ma-
trices that agree with those given in Corollary 4.4. To this end, fix i > 0 and consider the
product

P ′Ci · · ·P
′
C1P

′
C0 =

[
Ii 0

0 L(ai(q))T (bi(q))

]
· · ·
[

1 0

0 L(a1(q))T (b1(q))

]
· L(a0(q))T (b0(q))

(5.18)

where
ai(q) = (qi+n+1[i+ 1]q)n>0 (5.19)

and
bi(q) = (qi[n+ 1]q)n>0 (5.20)
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(each matrix P ′Ci is obtained by deleting the first row and column from PCi defined in (5.4)
above).

Claim 1. We claim that

P ′Ci · · ·P ′C1P ′C0 =

[
Ii+1 0

0 Ti(q)

]
·
[
Ii 0
0 L(ci(q))

]
· · ·
[

1 0
0 L(c1(q))

]
L(c0(q)) (5.21)

where

Ti(q) =
i∏

j=0

T (bi,j(q)) (5.22)

is a product of inverse bidiagonal matrices with corresponding edge sequences

bi,j(q) :=

(
qi−j[n+ 1]q

(
[n+ i+ 3]q
[n+ i+ 2]q

)j+1
)
n>0

(5.23)

and each L(ci(q)) is the lower-bidiagonal matrix with edge sequence

ci(q) =

(
qn[i+ 1]q

(
[n+ i+ 2]q
[n+ i+ 1]q

)i+1
)
n>0

. (5.24)

Please note that the lower-bidiagonal matrices L(ci(q)) are obtained by deleting the first
row and column of the matrices found in the production-like factorisation of F(q) in
Corollary 4.4 above, so proof of the proposition follows once we have proved the claim
(since (5.21) implies that for 0 6 n 6 i + 1, each (n, k)-entry of P ′Ci · · ·P ′C1P ′C0 agrees
with that of F′(q)).

First observe that we can apply Lemma 2.9 to the product L(ai(q))T (bi(q)) in P ′Ci ,
yielding

P ′Ci =

[
Ii+1 0

0 T (b′i(q))

]
·
[
Ii 0
0 L(a′i(q))

]
(5.25)

where

a′i(q) :=

(
qi+n[i+ 1]q[n+ i+ 2]q

[n+ i+ 1]q

)
n>0

, (5.26)

and

b′i(q) :=

(
qi[n+ 1]q[n+ i+ 3]q

[n+ i+ 2]q

)
n>0

. (5.27)

Clearly T (b′i(q)) = T (bi,0(q)), moreover it is easily verified that a′0(q) = c0(q), so sup-
pose (5.21) holds for i− 1 > 0. By the induction hypothesis and (5.25) we have

P ′Ci · · ·P
′
C0 =

[
Ii+1 0

0 T (bi,0(q))

]
·
[
Ii 0

0 L(a′i(q))T
(i−1)(q)

]
·
[
Ii−1 0

0 L(ci−1(q))

]
· · ·L(c0(q)).

(5.28)

We now make the following claim:
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Claim 2. For 0 6 m 6 i− 1,

L(a′i(q))
m∏
j=0

T (bi−1,j(q)) =

[
1 0
0 T (bi,1(q)) · · ·T (bi,m+1(q))

]
· L(c′m+1(q)) (5.29)

where c′m(q) is the edge sequence

c′m(q) :=

(
qi+n−m[i+ 1]q

(
[n+ i+ 2]q
[n+ i+ 1]q

)m+1
)
n>0

. (5.30)

Claim 2 (5.29) clearly holds for m = 0 by way of Lemma 2.9:

L(a′i(q))T (bi−1,0(q)) =

[
1 0
0 T (bi,1(q))

]
· L(c′1(q)), (5.31)

and more generally we have (again by Lemma 2.9)

L(c′m(q))T (bi−1,m(q)) =

[
1 0
0 T (bi,m+1(q))

]
· L(c′m+1(q)). (5.32)

Letting m = i − 1 above proves Claim 2 (5.29), which in turn confirms Claim 1 (5.21)
since it is straightforward to check that c′i(q) = ci(q), thereby completing the proof of the
proposition.

Coefficientwise total positivity of F(q) and T(q) follows almost immediately from
Proposition 5.1:

Proof of Theorem 1.2. Since N2 is a planar network with weights that are polynomials
with nonnegative coefficients in q and we have just shown that PN2 = F(q), the matrix F(q)
is coefficientwise totally positive in Z[q] thanks to the LGV lemma. The coefficientwise
total positivity of T(q) then follows from the fact that

T(q) = F(q)T ((qn[n+ 1]q)n>0) (5.33)

(see Lemma 3.11 above), since the inverse lower-bidiagonal matrix T ((qn[n + 1]q)n>0) is
coefficientwise totally positive.

Proving Theorem 1.2 was the main goal of this paper, however, the planar network
N2 can be seen as a specialisation of a more general network that appears to satisfy some
interesting properties that we believe warrant further investigation. We discuss this more
general network in the following section.
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6 Further comments and some open problems

In this final section we turn our attention to a generalisation of the planar networkN2 that
under certain specialisations yield matrices with entries that appear to count a variety of
combinatorial objects with respect to different statistics. These matrices are automatically
coefficientwise totally positive, since they arise from planar networks with weights that
are polynomials with nonnegative coefficients. Furthermore, under certain specialisations,
sequences of row-generating polynomials related to these matrices turn out to be sequences
of polynomials that are already well-known, and in some cases are also known to be
coefficientwise Hankel-totally positive (a sequence a = (Pn(x))n>0 of polynomials in one
or more indeterminates x is coefficientwise Hankel-totally positive if its associated Hankel
matrix H∞(a) := (Pn+k(x))n,k>0 is coefficientwise totally positive in all the indeterminates
x).

We will briefly touch upon the method of production matrices (see [18, 19]), which
in recent years has become an important tool in enumerative combinatorics and has
its roots in Stieltjes’ work on continued fractions11. The theory of production matrices
with respect to total positivity is extensively studied in [64], however, since [64] is not yet
publicly available we direct the reader to Sections 2.2 and 2.3 of [66] for a fuller treatment.

For our purposes we will require the following principles: let P = (pi,j)i,j>0 be an
infinite matrix with entries in R[x] equipped with the coefficientwise order. In order that
powers of P are well defined we assume that P is either row finite (that is, has only finitely
many nonzero entries in each row) or column finite. Let us now define the infinite matrix
A := (an,k)n,k>0 where

an,k = (Pn)0,k, (6.1)

that is, row n of A is the first row of the matrix power Pn (in particular we set a0,k = δ0k).
We call P the production matrix of A, while A is referred to as the output matrix of P
and we write O(P) = A. The entries of A are, explicitly,

an,k =
∑

i1,...,in−1

p0,i1pi1,i2pi2,i3 · · · pin−2,in−1pin−1,k, (6.2)

which can be seen as the total weight of all n-step walks in N from i0 = 0 to in = k, in
which the weight of a walk is the product of the weights of its steps, and each step from i
to j has weight pi,j. An equivalent formulation is to define the entries by the recurrence

an,k =
∞∑
i=0

an−1,ipi,k (6.3)

for n > 1 with initial condition a0,k = δ0k.
Given a production matrix P, we define the augmented production matrix to be

P̃ :=

[
1 0 0 0 · · ·

P

]
, (6.4)

11See [70, 71], which were reprinted together with an English translation in [72, pp. 401–566 and
609–745]
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and it is easy to show [66, Section 2.2] that the output matrix of P has the factorisation

O(P) = · · ·

[
I3 0

0 P̃

]
·

[
I2 0

0 P̃

]
·

[
1 0

0 P̃

]
P̃. (6.5)

Clearly if P is coefficientwise totally positive then so is P̃, and hence so is O(P) (Theo-
rem 2.9 in [66]). The factorisation given above is the reason we call the factorisation in
Corollary 2.4 production-like. The quasi-production-like factorisation in Corollary 2.7 is
named after the related concept of quasi-production matrices (see [10]) that we do not
require here.

6.1 General Abel polynomials

Let us now return to the q-forests matrix F(q) and consider the matrix

F̄(q) := (f̄n,k(q))n,k>0 = F(q) diag((qk(k−1)/2)k>0), (6.6)

the row-generating polynomials of which are defined to be

F̄0(x; q) := 1 (6.7)

and

F̄n(x; q) :=
n∑
k=0

f̄n,k(q)x
k =

n∑
k=1

(
n− 1

k − 1

)
q

([n]q)
n−kxk (6.8)

for n > 0. By employing the finite sum version of the q-binomial theorem [2, Theorem 3.3]:

n∑
k=0

(
n

k

)
q

(−z)kq(
k+1
2 ) =

n−1∏
i=0

(1− zqi), (6.9)

in which z has been replaced with (−qx/[n]q), we obtain the explicit formulas

F̄0(x; q) = 1 (6.10)

and

F̄n(x; q) = x
n−1∏
i=1

(xqi + [n]q) (6.11)

for n > 0.
For q specialised to q = 1 the polynomials F̄(x; 1) reduce to the Abel polynomials

F̄n(x; 1) = x(x+ n)n−1, (6.12)

which are the row-generating polynomials of the forests matrix F. Sokal [66] has already
proven that the Abel polynomials (along with further generalisations of the row-generating
polynomials of the forests matrix) are coefficientwise Hankel-totally positive. It is natural
to ask, then, whether this property is preserved if q is left as an indeterminate in F̄n(x; q).
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The Hankel matrix associated to F̄n(x; q),

H∞((F̄n(x; q))n>0) = (πn,k)n,k>0, (6.13)

where
πn,k = F̄n+k(x; q) (6.14)

begins: 
1 x · · ·
x x(qx+ q + 1) · · ·

x(qx+ q + 1) x (q2 + qx+ q + 1) (q2x+ q2 + q + 1) · · ·
...

...
. . .

 (6.15)

which contains the 2× 2 minor

π1,0π2,1− π2,0π1,1 = 2q2x2 + 2q3x2 + q4x2− qx3 + 2q3x3 + q4x3− q2x4 + q3x4 6� 0, (6.16)

so our generalisation does not preserve coefficientwise Hankel-total positivity. By studying
the minor above, however, one might suppose that shifting q by 1 (that is, replacing q
with 1 + r) might yield a polynomial sequence (F̄n(x; 1 + r))n>0 that is coefficientwise
Hankel-totally positive; indeed, computer experiments conducted with Alan Sokal seem
to confirm this for n 6 10. We conjecture:

Conjecture 6.1 (with Alan Sokal). The polynomial sequence (F̄n(x; 1 + r))n>0 is coeffi-
cientwise Hankel-totally positive jointly in x and r.

In the following subsections we consider further generalisations of the forests matrix
to more indeterminates, and a common theme begins to emerge; in each case we have
observed that modifying these matrices in a similar way to (6.6) above and shifting the
indeterminates by 1 yields a set of matrices with row-generating polynomials that appear
to be coefficientwise Hankel-totally positive jointly in a number of indeterminates.

The polynomials F̄n(x; q) are, in fact, specialisations of a q-generalisation of the general
Abel polynomials presented in [13, 37, 38]:

a0(x; b, h, w, q) := 1 (6.17)

an(x; b, h, w, q) := (x+ b)
n−1∏
i=1

(xqi + b+ [i]qh+ [n]qw) for n > 1. (6.18)

Note that for h = 1, b = w = 0 the above formula gives a q-generalisation of the Stirling
cycle polynomials, so the polynomials an(x; b, h, w, q) interpolate between q-forest poly-
nomials and a q-generalisation of the Stirling cycle polynomials (below we will consider a
different q-generalisation of the Stirling cycle polynomials).

Johnson [38, Section 4] showed that the polynomials an(x; b, h, w, q) are of q-binomial
type, that is, they satisfy
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an(x; a+ b, h, w, q) =
n∑
k=0

(
n

k

)
q

an−k(0; a, h+ (1− q)(b+ [k]qw), w(1− (1− q)[k]q))

× ak(x; a, h, w, q) (6.19)

and

an(x+ y; a+ b, 0, w, q) =
n∑
k=0

(
n

k

)
q

an−k(yq
k; a, (1− q)(b+ [k]qw), w(1− (1− q)[k]q))

× ak(x; a, 0, w, q). (6.20)

The identities above are q-extensions of an identity that goes back to Rothe [59] in 1793
and Pfaff [50] in 1795, usually expressed as:

Rn(x+ y;h,w) =
n∑
k=0

(
n

k

)
Rk(x;h,w)Rn−k(y;h,w) (6.21)

where
R0(x;h,w) := 1 (6.22)

and

Rn(x;h,w) := x
n−1∏
i=1

(x+ ih+ nw) (6.23)

for n > 0.
In [66, Section 6] Sokal explains how these polynomials are a rewriting of the Schläfli-

Gessel-Seo polynomials:
P0(x; a, b) := 1 (6.24)

and

Pn(x; a, b) := x
n−1∏
i=1

(x+ ai+ (n− i)b) (6.25)

which were introduced by Schläfli in 1847 [61], and resurfaced much later in a 2006 paper
by Gessel and Seo [31] who showed that

Pn,k(a, b) = [xk]Pn(x; a, b) (6.26)

enumerates k-component forests on the vertex set [n] by proper and improper vertices,
and also by ascents and descents. Sokal’s paper contains a fuller discussion of these
polynomials as well as a number of interesting conjectures regarding their coefficientwise
Hankel-total positivity, and we enthusiastically encourage the reader to consult the final
section of [66] for further details.

There is, unsurprisingly, something of an overlap between this current paper and the
generalisations of the forest matrix studied by Sokal [66]. In the next subsection we will
show how our planar network N2 from Section 5 can be modified to derive some of the
results proven in [66].
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6.2 Enumerating forests by proper and improper edges

In [66] Sokal considers total positivity properties of generalisations of the forests matrix
that differ from the q-generalisations studied in this paper. We will now show how making
some simple modifications to the planar network N2 yields a path matrix that agrees with
one of the generalisations studied in [66].

Given two vertices i and j of a tree T belonging to a forest, we say that j is a descendant
of i if the unique path from the root of T to j passes through i (note that every vertex is
a descendant of itself). Let e = ij be an edge of T . We say that e is improper if there is
a descendant of j (possibly j itself) that is lower-numbered than i, otherwise we say that
e is proper (see Section 1 of [66]).

Consider the matrix
F(y, z) := (fn,k(y, z))n,k>0, (6.27)

the entries of which are given by

fn,k(y, z) :=
n−k∑
m=0

fn,k,my
mzn−k−m (6.28)

where fn,k,m is the number of forests of rooted trees on the vertex set [n] that have k
components and m improper edges. The first few rows of F(y, z) are:

1

0 1

0 y + z 1

0 3y2 + 4yz + 2z2 3y + 3z 1

0 25y2z + 15y3 + 18yz2 + 6z3 15y2 + 22yz + 11z2 6y + 6z 1
...

...
...

...
...

. . .


, (6.29)

each entry is a homogeneous polynomial of degree n − k, and under the specialisation
y = z = 1 we recover the forests matrix (that is, F(1, 1) = F). Sokal also observes (see the
remark on page 7 of [66]) that the polynomials fn,1(y, z) (which enumerate rooted trees
with respect to improper edges) are homogenised versions of the Ramanujan polynomials
(see [9, 20, 35, 36, 40, 45, 55, 62, 75] and [63, A054589]).

The matrix F(y, z) is the exponential Riordan array R[F,G′] with F (t) = 1 and

G′(t) =
1

z

[
G

((
1− z

y
+
z2

y
t

)
e−(1− zy )

)
−
(

1− z

y

)]
(6.30)

(Section 3.2 of [66]) where G(t) is the tree function (see [16] and (1.11) above). Sokal
proved that F(y, z) is coefficientwise totally positive in Z[y, z] using the production-matrix
method; the production matrix for F(y, z) is the lower-Hessenberg matrix12

P(y, z) := (pn,k(y, z))n,k>0 (6.31)

12A matrix is lower-Hessenberg if all entries above the super-diagonal are 0.
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Figure 10: The planar network N3 arising from the production-matrix approach used
in [66] (unlabelled edges have weight 1).

with entries

pn,k(y, z) =


n!

(k − 1)!

n+1−k∑
l=0

yn−lzl

l!
if 0 < k 6 n+ 1,

0 otherwise

(6.32)

(see [66, Proposition 4.7]). The first few rows of P(y, z) are:
0 1

0 y + z y

0 2y2 + 2yz + z2 2y2 + 2yz y2

0 6y2z + 6y3 + 3yz2 + z3 6y2z + 6y3 + 3yz2 3y2z + 3y3 y3

...
...

...
...

...
. . .

 , (6.33)

and P(y, z) has the factorisation [66, Proposition 4.8]

P(y, z) = Bz diag((n!)n>0)T∞(y) diag((k!)k>0)
−1∆, (6.34)

where

Bz =

((
n

k

)
zn−k

)
n,k>0

(6.35)

is the weighted binomial matrix Bx,y with x = z and y = 1 (see Subsection 2.2), T∞(y) is
the Toeplitz matrix of powers of y (see Subsection 2.3 above), and

∆ := (δn+1,k)n,k>0 (6.36)

is the lower-Hessenberg matrix with 1 on the superdiagonal and 0 elsewhere.
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Figure 11: The planar network N4 up to source and sink vertices u6 and v6.

As described above (see (6.5)), the augmented production matrix

P̃(y, z) :=

[
1 0 0 0 · · ·
P(y, z)

]
(6.37)

with P(y, z) defined previously yields the following factorisation of F(y, z):

F(y, z) = · · ·

[
I3 0

0 BzT (y∗)

]
·

[
I2 0

0 BzT (y∗)

]
·

[
1 0

0 BzT (y∗)

]
(6.38)

where y∗ = ((n + 1)y)n>0 [equivalently, T (y∗) = diag((n!)n>0)T∞(y) diag((k!)k>0))
−1]. A

diagram of the corresponding planar network N3 can be found in Figure 10.
Now let N4 denote the planar network in Figure 11, the corresponding path matrix of

which has the production-like factorisation

PN4 = · · ·

[
I3 0

0 L(3z)T (y∗)

]
·

[
I2 0

0 L(2z)T (y∗)

]
·

[
1 0

0 L(z)T (y∗)

]
(6.39)

where L(iz) denotes the lower-bidiagonal matrix with 1 on the diagonal, iz on the subdi-
agonal, and 0 everywhere else. Comparing Figure 9 in Section 5 with Figure 11 it is easy
to see that we obtain N4 from N2 by specialising q = 1 and multiplying the weights of
the blue and green edges by y and z respectively. We make the following proposition:

Proposition 6.2. The path matrix corresponding to N4 satisfies

PN4 = F(y, z). (6.40)
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Proof. Consider the factorisation of F(y, z) in (6.38) above:

F(y, z) = · · ·

[
I3 0

0 BzT (y∗)

]
·

[
I2 0

0 BzT (y∗)

]
·

[
1 0

0 BzT (y∗)

]
. (6.41)

The matrix Bz has the production-like factorisation

Bz = · · ·

[
I3 0

0 L(z)

]
·

[
I2 0

0 L(z)

]
·

[
1 0

0 L(z)

]
L(z) =

[
1 0

0 Bz

]
· L(z) (6.42)

(see Corollary 2.5 with y = 1 and x replaced with z, and also observe that the right-hand
side above implies that L(z) is the augmented production matrix of Bz). It follows that

F(y, z) = · · ·

[
I3 0

0 BzT (y∗)

]
·

[
I2 0

0 BzT (y∗)Bz

]
·

[
1 0

0 L(z)T (y∗)

]
. (6.43)

A straightforward calculation confirms that

T (y∗)Bz = DT∞(y)D−1DT∞((zn/n!)n>0)D
−1 = DT∞((zn/n!)n>0)D

−1DT∞(y)D−1

= BzT (y∗) (6.44)

where D = diag((n!)n>0), since Toeplitz matrices matrices commute:

T∞(a)T∞(b) = T∞(a ∗ b) = T∞(b)T∞(a) (6.45)

where a ∗ b is the convolution of the sequences a and b

a ∗ b =

(
n∑
k=0

akbn−k

)
n>0

. (6.46)

Furthermore, it is easily verified that

BzBz′ = Bz+z′ =

[
1 0

0 Bz+z′

]
· L(z + z′), (6.47)

hence

F(y, z) = · · ·

[
I3 0

0 BzT (y∗)B2z

]
·

[
I2 0

0 L(2z)T (y∗)

]
·

[
1 0

0 L(z)T (y∗)

]
. (6.48)

Iteratively commuting T (y∗) with Biz and writing

BzBiz =

[
1 0

0 B(i+1)z

]
L((i+ 1)z) (6.49)

for increasing i in the factorisation of F(y, z) given above completes the proof.
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Figure 12: The planar network N5, obtained by introducing q-weights into the network
N3.

The focus of this paper has been q-generalisations of the forests and trees matrices,
and note that we can easily introduce q-weights into the planar network N3. Consider
the network N5 in Figure 12, which has the corresponding path matrix

PN5 = · · ·

[
I3 0

0 Bz(q)T ((y[n+ 1]q)n>0)

]
·

[
I2 0

0 Bz(q)T ((y[n+ 1]q)n>0)

]

·

[
1 0

0 Bz(q)T ((y[n+ 1]q)n>0)

]
(6.50)

where Bz(q) is the q-binomial matrix

Bz(q) =

((
n

k

)
q

zn−k

)
n,k>0

. (6.51)

Now let
F̂(q, y, z) = (f̂n,k(q, y, z))n,k>0 = PN5 (6.52)

and observe that F̂(q, y, z) is the output matrix of the lower-Hessenberg production matrix

P′(q, y, z) = DqT∞((zn/[n]q!)n>0)T∞(y)D−1q ∆ (6.53)

where Dq = diag(([n]q!)n>0).

Define the row-generating polynomials of F̂(q, y, z) to be:

F̂n(x; q, y, z) :=
n∑
k=0

f̂n,k(q, y, z)xk. (6.54)

We have the following lemma:
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Lemma 6.3. The sequence (F̂n(x; q, y, z))n>0 of row-generating polynomials of

F̂(q, y, z) = O (P′(q, y, z)) (6.55)

is coefficientwise Hankel-totally positive jointly in q, x, y, z.

In order to prove Lemma 6.3 we first recall two easy results from [66]. The first is:

Lemma 6.4 (Lemma 2.6 in [66]). Let P = (pi,j)i,j>0 be a row-finite matrix (with entries
in a commutative ring R) with output matrix A = O(P ); and let B = (bi,j)i,j>0 be a
lower-triangular matrix with invertible (in R) diagonal entries. Then

AB = b0,0O(B−1PB). (6.56)

That is, up to a factor b0,0, the matrix AB has production matrix B−1PB.

The second is the following theorem:

Theorem 6.5 (Theorem 2.14 in [66]). Let P = (pi,j)i,j>0 be an infinite row-finite or
column-finite matrix with entries in a partially ordered commutative ring R, and define
the infinite Hankel matrix H∞(O0(P )) = ((P n+n′)0,0)n,n′>0. If P is totally positive of
order r, then so is H∞(O0(P )).

Our proof of Lemma 6.3 relies on these two useful facts, and follows along the same
lines as the argument found in the proof of Lemma 2.16 of [66] where D is replaced with
Dq, Bx is replaced with Bx(q), and

φ := (φn)n>0 =

(
n∑
l=0

zlyn−l

[l]q!

)
n>0

. (6.57)

Proof of Lemma 6.3. The row-generating polynomials of F̂(q, y, z) are the entries in the
zeroth column of the matrix

F̂∗(q, x, y, z) = F̂(q, y, z)Bx(q), (6.58)

and according to Lemma 6.4 above we have

F̂∗(q, x, y, z) = O(Bx(q)
−1P′(q, y, z)Bx(q)). (6.59)

Since P′(q, y, z) is coefficientwise totally positive it suffices (thanks to Theorem 6.5) to
show that the matrix

Bx(q)
−1P′(q, y, z)Bx(q) (6.60)

is coefficientwise totally positive. We have

Bx(q) = DqT∞((xn/[n]q!)n>0)D
−1
q , (6.61)
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Figure 13: The planar network N6.

and
P′(q, y, z) = DqT∞(φ)D−1q ∆. (6.62)

It follows that Bx(q) and DqT∞(φ)D−1q commute.
Note further that according to the recurrences for q-binomial coefficients (see (3.51)

and (3.52) in Section 3) we have

∆Bx(q) = Bx(q)(diag((qnx)n>0) + ∆). (6.63)

We therefore have

Bx(q)
−1P′(q, y, z)Bx(q) = Bx(q)

−1DqT∞(φ)D−1q ∆Bx(q)

= Bx(q)
−1DqT∞(φ)D−1q Bx(q)(diag((qnx)n>0) + ∆)

= DqT∞(φ)D−1q (diag((qnx)n>0) + ∆)

= DqT∞(φ)D−1q ∆(I + ∆T diag((qnx)n>0))

(since ∆∆T = I), yielding the identity

B−1q;xP
′(q, y, z)Bx(q) = P′(q, y, z)(I + ∆T diag((qnx)n>0)), (6.64)

so B−1q;xP
′(q, y, z)Bx(q) is coefficientwise totally positive. This completes the proof.

My experiments suggest that there is a more general principle lurking behind Lemma 6.3,
concerning production matrices of q-Riordan arrays (see [12], and also [39, 32]). This will
be rigorously addressed in future work; for now we turn our attention to a more general
planar network that yields both N2 and N4 under suitable specialisations.
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Consider now the planar network N6 in Figure 13 and observe that N4 can be obtained
from N6 by specialising q in N6 to q = 1. Alternatively, by specialising y = z = 1 in N6

and leaving q as an indeterminate we obtain the planar network N2.
The path matrix corresponding to N6 has the factorisation:

PN6 = · · ·

[
I3 0

0 L(a2(q, z))T (b2(q, y))

]
·

[
I2 0

0 L(a1(q, z))T (b1(q, y))

]

·

[
1 0

0 L(a0(q, z))T (b0(q, y))

]
(6.65)

where
ai(q, z) = (qn+1+iz[i+ 1]q)n>0 (6.66)

and
bi(q, y) = (qiy[n+ 1]q)n>0. (6.67)

Let
F̃(q, y, z) := (f̃n,k(q, y, z))n,k>0 = PN6 (6.68)

and note that F̃(q, y, z) is a generalisation of F(q) and F(y, z) in the sense that F̃(1, y, z) =
F(y, z), and F̃(q, 1, 1) = F(q).

Sokal showed in [66] that the row-generating polynomials of F(y, z):

Fn(x; y, z) :=
n∑
k=0

fn,k(y, z)x
k (6.69)

are coefficientwise Hankel-totally positive jointly in x, y, z (Theorem 1.3 of [66]). One
might wonder, then, whether the sequence (F̃n(x; q, y, z))n>0 of row-generating polynomi-
als of F̃(q, y, z) defined to be:

F̃n(x; q, y, z) :=
n∑
k=0

f̃n,k(q, y, z)xk (6.70)

is also Hankel totally-positive. Unfortunately this is not the case, for the Hankel matrix

H∞((F̃n(x; q, y, z))n>0) = (πn,k)n,k>0 (6.71)

where
πn,k = F̃n+k(x; q, y, z) (6.72)

contains the 2× 2 minor:

π1,0π2,1−π2,0π1,1 = q3x2yz+3q2x2yz+q4x2z2+q3x2z2−q2x2z2+q3x3z+2q2x3z+2qx2y2

− 2qx2yz + 2qx3y − 2qx3z − x3y 6� 0. (6.73)
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However, it appears that coefficientwise total positivity can be restored by multiplying
F̃(q, y, z) by a simple diagonal matrix. Consider the matrix

F̄(q, y, z) := (f̄n,k(q, y, z))n>0 = F̃(q, y, z) diag((qk(k−1)/2)k>0), (6.74)

the row-generating polynomials of which are

F̄n(x; q, y, z) :=
n∑
k=0

f̄n,k(q, y, z)xk =
n∑
k=0

f̃n,k(q, y, z)qk(k−1)/2xk (6.75)

for n > 0. The matrix F̄(q, y, z) is manifestly totally positive, and the sequence of row-
generating polynomials of F̄(q, y, z) appear empirically (up to 5× 5) to be coefficientwise
totally positive jointly in q, x, y, z. I conjecture:

Conjecture 6.6. The Hankel matrix H∞((F̄n(x; q, y, z))n>0) is coefficientwise totally pos-
itive jointly in q, x, y, z.

But what of a combinatorial interpretation of the entries of F̄(q, y, z)? As we have seen,
on the one hand the entries of F̄(1, y, z) count forests on n vertices with k components
with respect to proper and improper children, and on the other the entries of F̄(q, 1, 1)
count forests on n vertices with k components with respect to the statistics defined in
Section 3. I therefore pose the following problem:

Problem 6.7. Find a combinatorial interpretation of the entries of F̄(q, y, z).

6.3 A generalisation with more variables

We will now present some conjectures that have arisen from generalising the planar net-
work N6 even further. Recall first the following (p, q)-generalisation: for n > 0 define

[n]p,q :=
pn − qn

p− q
=

n−1∑
i=0

pn−1−iqi, (6.76)

where p and q are indeterminates. For n > 0, [n]p,q is a homogeneous polynomial of
degree n− 1 in p and q; moreover it is symmetric in both p and q. We have [0]p,q = 0 and
[1]p,q = 1, and if p = 1 we recover the ordinary q-number [n]q. We will also make use of
the following (p, q)-generalisation of factorial numbers: for n > 0 define

[n]p,q! :=

{∏n
i=1[i]p,q if n > 0,

1 if n = 0.
(6.77)

Consider now the planar network N7 in Figure 14. The path matrix corresponding to
N7 is

PN7
:= (fn,k(p, q, r, s, γ, µ, y, z))n,k>0 (6.78)

which has the factorisation
PN7 = · · ·PC2PC1PC0 (6.79)
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Figure 14: The planar network N7 up to source and sink vertices u6 and v6.

where

PCi :=

[
Ii+1 0

0 L(ai(p, q, γ, z))T (bi(r, s, µ, y))

]
(6.80)

in which L(ai(p, q, γ, z)) is the lower-bidiagonal matrix with edge sequences

ai(p, q, γ, z) = (γi+n+1z[i+ 1]p,q)n>0 (6.81)

and T (bi(r, s, µ, y)) the inverse lower-bidiagonal matrix with edge sequences

bi(r, s, µ, y) = (µiy[n+ 1]r,s)n>0. (6.82)

Now let
F(p, q, r, s, γ, µ, y, z) := (fn,k(p, q, r, s, γ, µ, y, z))n,k>0 = PN7 , (6.83)

and note that N7 reduces to N6 (see Figure 13) when p, r, s, γ, µ are specialised to p =
r = 1 and s = γ = µ = q, so F(p, q, r, s, γ, µ, y, z) is a generalisation of the forests matrix
to eight indeterminates.

The first few rows of F(p, q, r, s, γ, µ, y, z) are:

1

0 1

0 γz + y 1

0 γ2pyz + γ3pz2 + γ2qyz + γ3qz2 γ2pz + γ2qz + γ2z 1

+γ2yz + γµyz + µy2 + ry2 + sy2 +µy + ry + sy
...

...
...

. . .


(6.84)
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Clearly this matrix is coefficientwise totally positive jointly in p, q, r, s, γ, µ, y, z, and
the entries must count forests on the vertex set [n] with k components with respect
to eight different statistics. I present two main open problems regarding the matrix
F(p, q, r, s, γ, µ, y, z). The first is:

Problem 6.8. Find a combinatorial interpretation of the entries of F(p, q, r, s, γ, µ, y, z).

We know that specialising p = r = y = z = 1 and s = γ = µ = q yields the q-forests
matrix F(q), and the entries count forests on n vertices with k components according to
the statistics presented in Section 3. Similarly, by specialising γ = µ = p = q = r = s = 1
we obtain the matrix F(y, z), the entries of which count k-component forests on n vertices
with respect to proper and improper edges. In the following subsections we identify other
specialisations of p, q, r, s, γ, µ, y, z yielding matrices with entries that appear to count a
variety of interesting combinatorial objects including: permutations with respect to left-
right maxima, unordered forest of increasing labelled trees, 0-1 tableaux by inversions
and noninversions, and perfect matchings with respect to crossings and nestings.

Now define the row-generating polynomials of F(p, q, r, s, γ, µ, y, z) to be

Fn(x; p, q, r, s, γ, µ, y, z) :=
n∑
l=0

fn,l(p, q, r, s, γ, µ, y, z)x
l, (6.85)

and consider the Hankel matrix

H∞((Fn(x; p, q, r, s, γ, µ, y, z))n>0) := (πn,k)n,k>0 (6.86)

where
πn,k = Fn+k(x; p, q, r, s, γ, µ, y, z). (6.87)

The first few Fn(x; p, q, r, s, γ, µ, y, z) are:

n Fn(x; p, q, r, s, γ, µ, y, z)

0 1

1 x

2 x(x+ y + γz)

3 x(x2 + (µ+ r + s)xy + (µ+ r + s)y2 + γ2(1 + p+ q)xz

+γ(µ+ γ(1 + p+ q))yz + γ3(p+ q)z2)
...

...

(6.88)

so the associated Hankel matrix contains the 2× 2 minor:

π1,0π2,1 − π2,0π1,1 = γ2px2yz + γ3px2z2 + γ2px3z + γ2qx2yz + γ3qx2z2 + γ2qx3z

+ γ2x2yz − γ2x2z2 + γ2x3z + γµx2yz − 2γx2yz − 2γx3z

+ µx2y2 + µx3y + rx2y2 + rx3y + sx2y2 + sx3y − x2y2 − 2x3y 6� 0. (6.89)
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The polynomial sequence (Fn(x; p, q, r, s, γ, µ, y, z))n>0 is evidently not coefficientwise
Hankel-totally positive. However, consider instead the matrix

F̃(p, q, r, s, γ, µ, y, z) := (f̃n,k(p, q, r, s, γ, µ, y, z))n,k>0

= F(p, q, r, s, γ, µ, y, z) diag(((pqrsγµ)k(k−1)/2)k>0), (6.90)

the row-generating polynomials of which are

F̃n(x; p, q, r, s, γ, µ, y, z) :=
n∑
k=0

f̃n,k(p, q, r, s, γ, µ, y, z)x
k

=
n∑
k=0

fn,k(p, q, r, s, γ, µ, y, z)(pqrsγµ)k(k−1)/2xk (6.91)

for n > 0.
The sequence (F̃n(x; p, q, r, s, γ, µ, y, z))n>0 is not coefficientwise Hankel-totally posi-

tive, however, my computations suggest that shifting the indeterminates p, q, r, s, γ, µ by 1
yields a polynomial sequence that appears empirically to be coefficientwise Hankel-totally
positive jointly in nine indeterminates! I make the following conjecture:

Conjecture 6.9. The polynomial sequence

(F̃n(x; 1 + p′, 1 + q′, 1 + r′, 1 + s′, 1 + γ′, 1 + µ′, y, z))n>0 (6.92)

is coefficientwise Hankel-totally positive jointly in x, y, z, p′, q′, r′, s′, γ′, µ′.

I have verified the above conjecture to 5 × 5, and I do not yet understand what
these polynomials enumerate. The conjectured coefficientwise Hankel-total positivity of
the shifted row-generating polynomials of F̃(p, q, r, s, γ, µ, y, z) is in a sense stronger than
the coefficientwise total positivity of F̃(p, q, r, s, γ, µ, y, z) alone, and in light of this a
combinatorial interpretation of the entries of F̃(p, q, r, s, γ, µ, y, z) is much desired. Clearly
each (n, k)-entry enumerates k-component forests on n vertices with respect to eight
statistics; interpreting these statistics is left as an open problem:

Problem 6.10. Find a combinatorial interpretation of the entries of F̃(p, q, r, s, γ, µ, y, z).

6.4 (p, q)-Stirling polynomials

The network N7 is an interlacing of two different planar networks (one with green diagonal
edges, one with blue). By setting r = s = µ = y = 0 we effectively remove the blue edges
and are left with a binomial-like planar network we shall denoteN ′7. Specialising γ = z = 1
in N ′7 we obtain the binomial-like planar network with edge weights specialised to αi,l = 1
and

βi,l = [i− 1]p,q, (6.93)
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with corresponding path matrix

G(p, q) := (gn,k(p, q))n,k>0 = PN ′7 = F(p, q, 0, 0, 1, 0, 0, 1) (6.94)

The weights of the network N ′7 are purely i-dependent so the entries of G(p, q) satisfy the
recurrence:

gn,k(p, q) = gn−1,k−1(p, q) + [n− 1]p,qgn−1,k−1(p, q) (6.95)

for n > 1 with initial condition g0,k = δ0k. Moreover we have

gn,k(p, q) = en−k([1]p,q, [2]p,q, . . . , [n− 1]p,q) (6.96)

by way of (2.13) in Section 2. The recurrence (6.95) can be found in [17, Proposition 2.2]
and [74], and the expression in terms of elementary functions (6.96) can be found in
Proposition 2.3 (part (a)) of [17]. The entries of G(p, q) are thus a (p, q)-generalisation
of the Stirling cycle numbers (or unsigned Stirling numbers of the first kind, denoted
cp,q[n, k]) and the row-generating polynomials of G(p, q) are

c0(x; p, q) := 1 (6.97)

and for n > 0

cn(x; p, q) := x
n−1∏
i=1

(x+ [i]p,q) (6.98)

(see Proposition 2.3 part (b) of [17] where y = 1). Note that the authors of [17] have a
combinatorial interpretation of cp,q[n, k], but it has nothing to do with forests and trees!
Intead they consider 0-1 tableaux: a 0-1 tableau is a pair ψ = (λ, f) where λ = (λ1 >
λ2 > · · · > λk) is a partition of an integer m = |λ| and f = (fi,j)16j6λi a filling of of
the corresponding Ferrer’s diagram of λ with 0s and 1s such that there is exactly one 1
in each column. In [17] de Médicis and Leroux define two statistics on ψ: the inversion
number, inv(ψ), is the number of 0s below a 1 in ψ, and the noninversion number, nin(ψ),
is the number of 0s above a 1 in ψ. They then show that

cp,q[n, k] =
∑

φ∈Td(n−1,n−k)

pnin(ψ)qinv(ψ) (6.99)

where Td(k, r) denotes the set of 0-1 tableaux with k rows and columns of length at most
r, where the lengths of the columns are distinct.

Permutations, however, are perhaps arguably more natural objects to study in relation
to generalisations of the Stirling cycle numbers (the polynomial cn(x; 1, 1) is the generating
function for permutations counted with respect to cycles, after all). For p specialised to
p = 1 Zeng [74, Section 3, where sq(n, k) = qn−kc1,q[n, k]] showed that

cn(x; 1, q) =
∑
σ∈Sn

xlrm(σ)qinv(σ) (6.100)
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where lrm(σ) denotes the number of left-right maxima in a permutation σ (that is, the
number of σ(i) such σ(i) > σ(j) for all j < i), and inv(σ) the number of inversions of σ
(that is, the number of pairs i < j such that σ(i) > σ(j)), hence

gn,k(1, q) =
∑

σ∈Sn(k)

qinv(σ)−(n−k), (6.101)

where Sn(k) denotes the set of permutations on [n] with k left-right maxima.
Clearly G(p, q) is totally positive, and for p specialised to p = 1 we can express the

row-generating polynomials of G(1, q) as the S-type (or Stieltjes-type) continued fraction13

1 +
∑
n,k>1

c1,q[n, k]xktn =
1

1−
λ1t

1−
λ2t

· · ·

1−
λnt

· · ·

(6.102)

where λ2n−1 := (x+[n]q)q
n−1 and λ2n = [n]qq

n+1 for n > 1 (Lemma 3 of [74], where we have
replaced x with tq, and a with x/q). If a sequence of polynomials has an S-fraction with
nonnegative coefficients then the corresponding Hankel matrix is coefficientwise totally
positive (see [64] and [49, Section 9]), so we have:

Corollary 6.11. The polynomial sequence (cn(x; 1, q))n>0 is coefficientwise Hankel-totally
positive in x, q.

The Hankel matrix of cn(x; p, q), where p and q are indeterminates, however, begins
1 x x(x+ 1) · · ·
x x(x+ 1) x(x+ 1)(p+ q + x) · · ·

x(x+ 1) x(x+ 1)(p+ q + x) x(x+ 1)(p+ q + x) (p2 + pq + q2 + x) · · ·
...

...
...

. . .

 (6.103)

which contains the 2× 2 minor

π1,0π2,1 − π2,0π1,1 = px3 + px2 + qx3 + qx2 − x3 − x2 6� 0 (6.104)

so is not even TP2 in Z[p, q]. Again it appears, however, that right-multiplying G(p, q)
by a simple diagonal matrix yields a matrix whose row-generating polynomials appear to
be coefficientwise Hankel-totally positive when p, q, and γ are shifted by 1.

Consider the matrix

G′(p, q, γ, z) := (g′n,k(p, q, γ, z))n,k>0 = F(p, q, 0, 0, γ, 0, 0, z) diag(((pqγ)k(k−1)/2)k>0)
(6.105)

13The study of continued fractions goes back to Euler, and was reinvigorated more recently by Flajolet
in [23].
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and define its row-generating polynomials to be

G′n(x; p, q, γ, z) :=
n∑
k=0

g′n,k(p, q, γ, z)xk =
n∑
k=0

fn,k(p, q, 0, 0, γ, 0, 0, z)(pqγ)k(k−1)/2xk.

(6.106)
Clearly G′(p, q, γ, z) is coefficientwise totally positive jointly in p, q, γ, z (this follows from
Cauchy-Binet and the LGV lemma). I make the following conjecture:

Conjecture 6.12. The polynomial sequence (G′n(x; p+ 1, q+ 1, γ+ 1, z))n>0 is coefficien-
twise Hankel-totally positive jointly in p, q, γ, x, z.

I have verified this up to 7 × 7, and am yet to discover a suitable combinatorial
interpretation of these polynomials. I therefore pose the following problem:

Problem 6.13. Find a combinatorial interpretation of the polynomials G′n(x; p, q, γ, z).

6.5 Generalised Bessel polynomials

Now consider the planar network N ′′7 obtained by specialising p = q = γ = z = 0 in N7

(effectively removing all diagonal blue edges from the network), and let

M(r, s, µ, y) := (mn,k(r, s, µ, y))n,k>0 = PN ′′7 = F(0, 0, r, s, 0, µ, y, 0) (6.107)

be the corresponding path matrix. The matrix M(r, s, µ, y) has a production-like factori-
sation:

M(r, s, µ, y) = · · ·

[
I3 0

0 T (a2(r, s, µ, y))

]
·

[
I2 0

0 T (a1(r, s, µ, y))

]
·

[
1 0

0 T (a0(r, s, µ, y))

]
(6.108)

where ai(r, s, µ, y) = (µiy[n+ 1]r,s)n>0.
Each matrix T (ai(r, s, µ, y)) has (n, k)-entry:

µi(n−k)y
[n]r,s!

[k]r,s!
(6.109)

and specialising r, s, µ to r = s = µ = 1 we obtain

[
1 0

0 T (ai(1, 1, 1, y))

]
=



1

0 1

0 y 1

0 2y2 2y 1

0 6y3 6y2 3y 1

0 24y4 24y3 12y2 4y 1
...

...
...

...
...

...
. . .


(6.110)
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(this array appears in [63, A094587]). Compare the above with the production matrix
defined in Proposition 1.4 of [48]:

Pφ := (pn,k)n,k>0 (6.111)

where

pn,k =


n!

k!
φn−k+1 if 0 < k 6 n+ 1,

0 otherwise,
(6.112)

(here φ = (φn)n>0 is a sequence of indeterminates, and we set φ0 = 1). The first few rows
of Pφ are: 

0 1

0 φ1 1

0 2φ2 2φ1 1

0 6φ3 6φ2 3φ1 1

0 24φ4 24φ3 12φ2 4φ1 1
...

...
...

...
...

...
. . .


. (6.113)

It is easy to see that (6.110) is the augmented production matrix

P̃φ :=

[
1 0 0 0 · · ·

Pφ

]
, (6.114)

in which φi = yi.
The output matrix of Pφ is the generic Lah triangle:

L := (Ln,k(φ))n,k>0 =



1

0 1

0 φ1 1

0 φ2
1 + 2φ2 3φ1 1

0 φ3
1 + 8φ1φ2 + 6φ3 7φ2

1 + 8φ2 6φ1 1
...

...
...

...
...

. . .


, (6.115)

the row-generating polynomials of which are

Ln(φ, y) :=
n∑
k=0

Ln,k(φ)yk. (6.116)

The entries of L are generating polynomials for unordered forests of increasing ordered
trees on the vertex set [n] having k components, in which each vertex with i children
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is assigned a weight φi.
14 Setting φ = (1)n>0 in (6.115) we obtain the reverse Bessel

triangle:

M(1, 1, 1, 1) =



1

0 1

0 1 1

0 3 3 1

0 15 15 6 1

0 105 105 45 10 1
...

...
...

...
...

...
. . .


(6.117)

(see [63, A001497]). The row-generating polynomials of M(1, 1, 1, 1) are the reverse Bessel
polynomials (see [33])

θn(x) :=
n∑
k=0

(n+ k)!

(n− k)!k!

(
xn−k

2k

)
, (6.118)

which is an orthogonal sequence of polynomials related to the Bessel polynomials (see [44,
33]):

yn(x) :=
n∑
k=0

(n+ k)!

(n− k)!k!

(x
2

)k
(6.119)

via the identity
θn(x) = xnyn(1/x). (6.120)

It follows from [48] that the sequence of polynomials θn(x) is coefficientwise Hankel-totally
positive.

Consider now the row-generating polynomials of M(r, s, µ, y), defined to be

Mn(x; r, s, µ, y) :=
n∑
k=0

mn,k(r, s, µ, y)xk, (6.121)

and note that the polynomials Mn(x; r, s, µ, y) are generalisations of the reverse Bessel
polynomials in the sense that Mn(x; 1, 1, 1, 1) = θn(x).

It follows from [48] that the polynomial sequence (Mn(x; 1, 1, 1, y))n>0 is coefficientwise
totally positive jointly in x and y. Again, it is natural to ask whether the generalisation
where r, s, µ, y are left as indeterminates preserves coefficientwise Hankel-totally positivity.
The answer is no, since the Hankel matrix

H∞((Mn(x; r, s, µ, y))n>0) = (πn,k)n,k>0, (6.122)

14An ordered tree is a rooted tree in which the children of each vertex are linearly ordered. An unordered
forest of ordered trees is an unordered collection of ordered trees. An increasing ordered tree is an ordered
tree in which the vertices carry distinct labels from a linearly ordered set (usually some set of integers)
in such a way that the label of each child is greater than the label of its parent; otherwise put, the labels
increase along every path downwards from the root. An unordered forest of increasing ordered trees is an
unordered forest of ordered trees with the same type of labeling.
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where
πn,k = Mn+k(x; r, s, µ, y) (6.123)

contains the 2× 2 minor

π1,0π2,1−π2,0π1,1 = µx2y2+µx3y+rx2y2+rx3y+sx2y2+sx3y−x2y2−2x3y 6� 0. (6.124)

Once more, however, it appears that Hankel-total positivity could well be restored by
right-multiplying M(r, s, µ, y) by a simple diagonal matrix and shifting r, s, µ by 1.

Consider the matrix

M′(r, s, µ, y) := (m′n,k(r, s, µ, y))n,k>0 = M(r, s, µ, y) diag(((rsµ)k(k−1)/2)k>0) (6.125)

and let

M′n(x; r, s, µ, y) :=
n∑
k=0

m′n,k(r, s, µ, y)xk =
n∑
k=0

mn,k(r, s, µ, y)(rsµ)k(k−1)/2xk (6.126)

be the corresponding row-generating polynomials of M′(r, s, µ, y). I conjecture:

Conjecture 6.14. The sequence of polynomials (M′n(x; r + 1, s+ 1, µ+ 1, y))n>0 is coef-
ficientwise Hankel-totally positive jointly in r, s, µ, x, y.

I have verified this up to 5 × 5, and am yet to discover a suitable combinatorial
interpretation of the entries of M(r, s, µ, y) or indeed M′(r, s, µ, y), and therefore pose the
following problem:

Problem 6.15. Find combinatorial interpretations of M′(r, s, µ, y) and M(r, s, µ, y).

There is one final observation to make concerning perfect matchings that may help in
tackling the foregoing problem. A perfect matching M on [2n] is a partition of 1, 2, . . . , 2n
into n pairs (i, j) where i < j. We denote the set of all such perfect matchingsM2n, and
it is well-known that

|M2n| = (2n− 1)!!. (6.127)

Two pairs (ir, jr) and (is, js) belonging to M ∈ M2n form a crossing if ir < is < jr < js,
and form a nesting if ir < is < js < jr. The number of crossings in M is denoted cr(M)
and the number of nestings is denoted ne(M).

If µ and y are specialised to µ = y = 1 then the first few rows of M(r, s, 1, 1) are:

1

0 1

0 1 1

0 r + s+ 1 r + s+ 1 1

0 2r2s+ r3 + r2 + 2rs2 + 2rs 2r2s+ r3 + r2 + 2rs2 + 2rs r2 + rs+ r 1

+2r + s3 + s2 + 2s+ 1 +2r + s3 + s2 + 2s+ 1 +s2 + s+ 1
...

...
...

...
...

. . .


.

(6.128)
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For s specialised to s = 1 and 0 < n 6 20 I have verified empirically that

mn,1(r, 1, 1, 1) = (1− r)1−n
n−1∑
k=0

(−1)krk(k+1)/2 2k + 1

2n− 1

(
2n− 1

n+ k

)
. (6.129)

The formula above (where n is replaced with n+1) was found implicitly by Touchard [73],
and explicitly by Riordan [58] (see also [4, 41, 47, 53, 56]), and counts perfect matchings
with respect to crossings (or nestings):

∑
M∈M2n

rcr(M) =
∑

M∈M2n

rne(M) = (1− r)−n
n∑
k=0

(−1)krk(k+1)/2 2k + 1

2n+ 1

(
2n+ 1

n+ k + 1

)
.

(6.130)
However, more may indeed be true, since it looks like the k = 1 column of M(r, s, 1, 1)

counts perfect matchings with respect to crossings and nestings. For 0 < n 6 20 my
computations have confirmed that

mn,1(r, s, 1, 1) = [tn]S(t; r, s) (6.131)

where S(t; r, s) is the S-type continued fraction

S(t; r, s) :=
1

1−
[1]r,st

1−
[2]r,st

· · ·

1−
[n]r,st

· · ·

. (6.132)

Since S(t; r, s) is the S-fraction for perfect matchings first given by Kasraoui and Zeng
in [43, Proposition 4.4, with p, q replaced by r, s respectively] (see also [68, Theorem 4.4]
specialised to x = y = u = v = 1, p+ = p− = r, and q+ = q− = s), I make the following
conjecture:

Conjecture 6.16. For n > 1

mn,1(r, s, 1, 1) =
∑

M∈M2(n−1)

rcr(M)sne(M). (6.133)

As described above, there exists an explicit formula for counting perfect matchings
with respect to crossings or nestings given by Touchard and Riordan, however, an explicit
closed formula that counts perfect matchings with respect to crossings and nestings is yet
to be found. I therefore pose the following problem:

Problem 6.17. Find a closed form formula for mn,1(x; r, s, 1, 1).
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[21] Ö. Eǧecioǧlu and J. B. Remmel, Bijections for Cayley trees, spanning trees, and their
q-analogues, J. Combin. Theory A 42 (1986), no. 1, pp. 15 – 30.

[22] S. M. Fallat and C. R. Johnson, Totally Nonnegative Matrices, Princeton University
Press, Princeton NJ, 2011.

[23] F. Flajolet, Combinatorial aspects of continued fractions, Discrete Mathematics
(1980), pp. 125 – 161.

[24] S. Fomin and A. Zelevinsky, Total positivity: tests and parametrizations, Math. In-
telligencer 22 (2000), pp. 23 – 33.
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