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We present a unified variational treatment of the electric quadrupole (E2) matrix

elements, Einstein coefficients, and line strengths for general open-shell diatomic

molecules in the general purpose diatomic code Duo. Transformation relations be-

tween the Cartesian representation (typically used in electronic structure calcula-

tions) to the tensorial representation (required for spectroscopic applications) of the

electric quadrupole moment components are derived. The implementation has been

validated against accurate theoretical calculations and experimental measurements

of quadrupole intensities of 1H2 available in the literature. We also present accurate

electronic structure calculations of the electric quadrupole moment functions for the

X1Σ+ electronic states of CO and HF at the CCSD(T) and MRCI levels of theory,

respectively, as well for the a1∆g – b1Σ+
g quadrupole transition moment of O2 with

MRCI level of theory. Accurate infrared E2 line lists for 12C16O and 1H19F are pro-

vided. A demonstration of spectroscopic applications is presented by simulating E2

spectra for 12C16O, H19F and 16O2 (Noxon a1∆g – b1Σ+
g band).
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I. INTRODUCTION

The electric dipole approximation is often used to treat the spectra of diatomic, or small

polyatomic, molecules. For most systems, this is a valid approximation that produces good

results. For homonuclear diatomic molecules however, electric dipole (E1) selection rules

forbid pure rotational and vibrational transitions, as well as parallel electronic transitions

and electric quadrupole (E2) transitions and magnetic dipole (M1) become important.1–14

This has implications for the spectra of several important molecules. The most famous

example is the hydrogen molecule, which despite being the most abundant molecule in the

Universe has no infrared electric dipole spectrum. The three lowest lying electronic states

of another important molecule, O2, all have the same (gerade) symmetry and transitions

between them are therefore electric dipole forbidden.5,15,16 Oxygen’s significant absorption

in the visible region comes from the electric quadrupole and magnetic dipole moments.

Even when electric dipole transitions are weakly allowed through interactions with other

electronic states, E2 and M1 transitions may still be detectable, and their consideration

is necessary for an accurate description of the molecule’s spectrum,17–20 such as for the

Cameron bands (a3Π – X1Σ) and fourth positive system (A1Π – X1Σ) of CO.18,21,22

E2 and M1 transitions prove difficult to measure experimentally, owing to their weak

intensity and the long path lengths required for appreciable absorption. Electric quadrupole

transition intensities are on the order of 106−109 times smaller than electric dipole transition

intensities.19,20,23 Nevertheless, they are often present in atmospheric spectra, where suffi-

ciently long path lengths are regularly achievable, and play an important role in geophysical

and astrophysical applications.3–5,22,24,25

In spectroscopic applications, as used in e.g. the HITRAN database,26 the E2 intensities

are usually represented by expressions in terms of effective electric quadrupole moment con-

stants with the rotational line intensities modelled via Hönl-London factors.5,27 Examples

of variational methodology used for electric quadrupole intensities of open-shell diatomics

molecules include earlier works by Chiu 28 , Balasubramanian, D’Cunha, and Rao 29 , Bala-

subramanian and Narayanan 30 .

Exoplanetary atmospheric retrievals require high resolution molecular opacities across

a wide spectral range for a variety of temperatures. This has been the ongoing focus of

the ExoMol database, and to date molecular line lists have been produced for more than
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80 molecules and 190 isotopologues.31 However, several important homonuclear molecules,

including N2,32 S2 and the crucial biosignature molecule O2
33–37 have evaded rigorous treat-

ment, due to the dipole-forbidden nature of their spectra. As a result, these molecules

are currently missing from analyses of atmospheric spectra of hot exoplanets, representing

a significant obstacle to the characterisation of exoplanet atmospheres or indeed any high

temperature environments.

Here we present a formulation of the electric quadrupole line intensities for a general

(open-shell) diatomic molecule and an implementation of these E2 matrix element and

linestrength expressions in the Duo program38 - a powerful rovibronic variational program

developed as part of the ExoMol project to solve the time-independent Schrödinger equa-

tions and compute rovibronic spectra of diatomics. To the best of our knowledge, this work

represents the first general computational methodology for generating quadrupole spectra of

arbitrary diatomic systems from first-principles, which lays the foundations for future work

to produce a complete molecular line list for O2 and other homonuclear diatomics.

The structure of the paper is as follows. Section II introduces the rovibronic basis used by

the Duo program before presenting expressions for the electric quadrupole matrix elements,

linestrengths and Einstein coefficients, for a general case of an arbitrary diatomic molecule.

We also show how the matrix element components in the Cartesian representation, commonly

employed in electronic structure calculations, are related to the tensorial representation

used by Duo, and outline the approach taken to reconstruct the transformation between

the two. In section III we provide demonstrations for the Duo implementation of electric

quadrupole linestrength calculations, including a validation against accurate theoretical and

experimental linestrengths for H2. We also present accurate quantum chemistry calculations

of the electric quadrupole moment functions for CO and HF molecules, as well as infrared

transition linestrengths for CO and HF molecules calculated using Duo. These line lists

are included into the ExoMol data base www.exomol.com, which aims to provide molecular

spectroscopic data for studies of exoplanetary and other atmospheres. More challenging

nuclear motion applications of electronic E2 spectra of open-shell diatomic molecules are

underway. As an illustration of an open-shell application, an E2 spectrum for the electronic

system a1∆g – b1Σ+
g (Noxon band) of O2 is presented and compared to a experimental

spectrum from the literature. The spectroscopic model for each molecule, including ab

initio electric quadrupole moment functions Θ(r) is made available in the supplementary
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material via Duo input files. We also provide a list of calculated state energies and quantum

numbers, as well cross-sections and line positions in the form of ExoMol line lists.31

II. THEORETICAL BACKGROUND

A. Matrix Elements and Linestrengths

1. Rovibronic wavefunctions

We consider a calculation of electric quadrupole spectra for an arbitrary diatomic molecule

between some generic rovibronic states. Our aim is to implement an E2 spectra module as

part of the general diatomic code Duo.38 The original Duo program and its methodology is

detailed extensively by Yurchenko et al. 38 . For the purpose of defining the matrix elements

here, it suffices to simply introduce the definition of the quadrupole moment, the basis

functions and the final eigenstates used by the Duo program. Duo uses the Hund’s case

(a) basis set in the following form:

|ϕi〉 = |ξΛ〉 |SΣ〉 |ξv〉 |JΩM〉 (1)

where J is the total angular momentum, M is a projection of J on the laboratory Z-axis in

units of ~, S is the total electronic spin angular momentum, Σ is the projection of the spin

of electrons on molecular z-axis, ξ are indexes of the ξ-th electronic state, Λ is the projection

of the electronic angular momentum on molecular z-axis, Ω = Λ + Σ (projection of the total

angular momentum on molecule z-axis) and v is the vibrational quantum number.

The eigenfunctions corresponding to the final rovibronic eigenvalues are expressed as

linear combinations of the basis functions in Eq. (1):

|ψJMτ 〉 =
∑

ξΛSΣvΩ

CJτ (ξΛSΣvΩ) |ξ,Λ〉 |SΣ〉 |ξ, v〉 |JΩM〉 (2)

where CJτ (ξΛSΣvΩ) = CJτ (ϕ) are expansion coefficients obtained by solving a system of

coupled rovibronic Schrödinger equations variationally, and τ is the symmetry of a rovibronic

eigenstate. In case of a heteronuclear diatomic, τ is a parity τ = − (odd) or + (even),39

which reflects how |ψJMτ 〉 transforms upon inversion or, equivalently, reflection through

the molecule-fixed xz plane. For a homonuclear molecule, the symmetry τ includes the

parity with respect to the permutation of the nuclei and is traditionally represented by the

4
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combinations +/− (xz-reflection) as well as the g/u parities (molecular-fixed inversion),

where g and u stand for ‘gerade’ and ‘ungerade’. Generally the good quantum numbers

are the total angular momentum J , the symmetry τ and the g and u parities (homonuclear

molecules). It is also common to assign other quantum numbers according to the largest

coefficient CJτ (ϕ) in the basis set expansion.38

2. Electric Quadrupole Matrix Elements

The Einstein A coefficient for an E2 transition between a lower state i and an upper state

f is given in SI units, by:

Afi =
8π5ν5

fi

5ε0hc5

1

(2Jf + 1)
Sfi (3)

where νfi [s−1] is the transition frequency, ε0 [Fm−1] is the permittivity of free space, h [J s]

is Planck’s constant, c [m s−1] is the speed of light in a vaccum, and

Sfi =
∣∣∣M (E2)

fi

∣∣∣2 =
∑

α,β=x,y,z

| 〈ψf |Qαβ|ψi〉|2 (4)

is the transition linestrength with unit [C2 · m4] and the matrix elements are those of the

quadrupole operator Qαβ (α, β = x, y or z) defined relative to the nuclear centre of mass by

Qαβ = −3

2

∑
i

ei

(
ri,αri,β − δαβ

1

3
r2
i

)
, (5)

where the sum runs over the nuclei and electrons with ei being the charge of the particle

and ri its position vector in the molecule-fixed frame. We use the common convention

of Buckingham 40 , used by many quantum chemistry programs such as Werner et al. 41 .

Different sources employ definitions of the quadrupole moment with varying constant pre-

factors, such as Truhlar 42 .

The Duo rovibronic wavefunctions |ψJMτ 〉, and the transition linestrength in Eq. (4)

are defined in the laboratory-fixed frame. Meanwhile, the electric quadrupole moments in

Eq. (5) are defined in the molecule-fixed frame. For the convenience of calculating ma-

trix elements, the relationship between the molecule-fixed and laboratory-fixed components

of tensor operators is best established using the algebra of irreducible tensors. Traceless

symmetric quadrupole tensor of rank 2 can be expressed in terms of three irreducible ten-

sors Q(0), Q(1) and Q(2) with ranks zero, one and two respectively. The components Q
(k)
m

5
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with −k ≤ m ≤ k, are expressed in terms of the Cartesian Qij via the following standard

relations:23,43

Q
(0)
0 = − 1√

3
(Qxx +Qyy +Qzz) (6)

Q
(1)
0 =

i√
2

(Qxy −Qyx) (7)

Q
(1)
±1 = −1

2
[Qxz −Qzx ± i (Qzy −Qyz)] (8)

Q
(2)
0 =

1√
6

(2Qzz −Qxx −Qyy) (9)

Q
(2)
±1 =

1

2
[∓ (Qxz +Qzx)− i (Qyz +Qzy)] (10)

Q
(2)
±2 =

1

2
[(Qxx −Qyy)± i (Qxy +Qyx)] (11)

and transform under rotation between the two frames as follows:39

Q(k)
m =

∑
m′

(−1)m−m
′
Q

(k)
m′D

(k)
−m,−m′ , (12)

where D
(k)
−m,−m′ are the Wigner D-matrices. The traceless definition of the components

Qαβ (Eq. (5)) and the property of being symmetric under interchange of the indices α, β

implies that Q
(0)
0 = Q

(1)
m = 0, such that only the second rank components of the quadrupole

moment are non-zero. This allows one to write the transition linestrength using the Duo

eigenfunctions (Eq. (2)) as

Sfi = gns

∑
Mi,Mf

2∑
m=−2

∣∣〈ψJfMf τf

∣∣Q(2)
m |ψJiMiτi〉

∣∣2 , (13)

where gns is a nuclear statistical weight that accounts for the degenerate nuclear spin com-

ponents of the total nuclear-rovibronic wavefunction, see e.g. Bunker and Jensen 44 .

Long 43 provides expressions that allows one to construct laboratory frame matrix element

expressions for the electric polarisability tensor - also of rank two. Adapting the treatment,

one can write the transition quadrupole moment matrix elements as:

Sfi = gns(2Ji + 1)(2Jf + 1)

∣∣∣∣∣∣
∑
ϕf

C∗Jiτi(ϕf )
∑
ϕi

CJf τf (ϕi)
∑
m′

δSfSi
δΣfΣi

×

(−1)m
′+Ωi 〈vf | 〈ξfΛf |Q(2)

m′ |ξiΛi〉|vi〉

 Ji Jf 2

−Ωi Ωf −m′

∣∣∣∣∣∣
2

,

(14)

6
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where Eq. (12) was used to transform from the laboratory frame to the molecular frame.

Here, m and m′ index components of the irreducible representation in the laboratory and

molecular reference frames, respectively, and the following properties of the Wigner D-

matrices, D
(k)
−m,−m′ , have been used to express rotational matrix element in terms of the 3-j

symbols39

|JMΩ〉 = (−1)M−Ω

(
2J + 1

8π2

) 1
2

D
(J)
−M,−Ω, (15)

〈JMΩ| =
(

2J + 1

8π2

) 1
2

D
(J)
M,Ω, (16)

∫
DC
cc′D

A
aa′D

B
bb′ sin β dβ dα dγ = 8π2

A B C

a b c

A B C

a′ b′ c′

 (17)

with α, β, and γ the Euler angles. Additionally, the following standard property of the

3-j symbols implies the 3-j symbols containing Mi, Mf and m, which arise as a result of

Eq. (17), can be summed over Mf, Mi and m and eliminated from Eq. (13)

k∑
m=−k

J ′∑
M ′=−J ′

J ′′∑
M ′′=−J ′′

 J ′′ k J ′

M ′′ m −M ′

2

= 1. (18)

If required, e.g for use with molecular dynamics programs such as RichMol,45 Duo can

explicitly calculate the laboratory frame components of the matrix elements. Note also

that the 3-j symbols are invariant under cyclic permutations of their columns and have the

properties |A− B| ≤ C ≤ |A + B|, and a + b + c = 0. Together with the Kronecker deltas

in Eq. (14) this implies following selection rules for E2 transitions:

∆J = Jf − Ji = 0,±1,±2 (19)

and ∆S = ∆Σ = 0, such that

∆Λ = Λf − Λi = −m = 0,±1,±2 (20)

for all 〈ξfΛf |Q(2)
m |ξiΛi〉 with −2 ≤ m ≤ 2 in Eq. (14). These quantum number selection

rules should be supplemented by the symmetry selection rules:

+↔ +, − ↔ − (21)

g ↔ g, u↔ u, (22)

7
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which arise as a result of the symmetric property of the quadrupole moment under coordinate

inversion (Eq. (5)), and the requirement that the total matrix element is also symmetric

under coordinate inversion, such that the integral over spatial coordinates is non-zero.

3. Representation of Ab initio Coupling Curves

In this section we outline the procedure used by the Duo program to transform coupling

curves, specifically including the independent components of the quadrupole moment tensor,

from the Cartesian representation commonly obtained from electronic structure calculations,

to the tensorial, Λ-representation required by Duo. The (transition) quadrupole moments

in Eq. (14) are r-dependent curves (r is the vibrational coordinate) averaged over electronic

coordinates:

Q(2)
m (r; ξf , ξi) = 〈ξfΛf |Q(2)

m (r)|ξiΛi〉 , (23)

where |ξiΛi〉 and |ξfΛf〉 are the corresponding electronic wavefunctions. These curves are

often obtained empirically by fitting analytical functions to experimental measurements of

energies and linestrengths, or computed ab initio using electronic structure programs such

as those used in the present work (MOLPRO41,46 or the open-access software CFOUR47).

In electronic structure calculations the representations of the infinite symmetry groups for

diatomic molecules C∞v and D∞h are commonly represented in terms of their Abelian sub-

groups C2v and D2h in order to facilitate the computation of physically-realised energy levels.

For the practical purpose of transforming the electronic properties from the output of quan-

tum chemistry programs to the representation required for the Duo input, we also employ

the representation of C∞v and D∞h in terms of the Abelian subgroups in the following

derivation.

The irreducible Abelian representation of a matrix element of a given operator coupling

electronic states i and f , each with irreducible Abelian representations Gi and Gf respec-

tively, must be contained within the Abelian group given by the direct product Gi ×Gf .
23

Moreover, it can be shown that there exists only one independent Cartesian quadrupole com-

ponent that couples a given pair of irreducible representations within an Abelian symmetry

group. Tables III and IV establish correlations between the products of Cartesian vectors

rx, ry, rz, corresponding to components of the quadrupole moment operator in Eq. (5), and

the products of different irreducible representations, for C2v and D2h point groups, respec-

8
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TABLE I. Irreducible representations for homonuclear symmetry groups, and corresponding com-

ponents of electronic states. Appendix A gives the same table with addition of the Molpro

enumerations.

Symmetry Components

Ag Σ+
g , (∆g)xx

B1g Σ−g , (∆g)xy

B2g (Πg)x

B3g (Πg)y

Au Σ−u , (∆u)xy

B1u Σ+
u , (∆u)xx

B2u (Πu)y

B3u (Πu)x

TABLE II. Irreducible representations for heteronuclear symmetry groups, and corresponding com-

ponents of electronic states. Appendix A gives the same table with addition of the Molpro

enumerations.

Symmetry Components

A1 Σ+, ∆xx

A2 Σ−, ∆xy

B1 Πx

B2 Πy

tively.

Eq. (14) uses a tensorial representation of all electronic properties, including the electric

quadrupole moments Q
(2)
m (r). It is also convenient to represent the electronic basis functions

|ξΛ〉 corresponding to doubly degenerate Λ > 0 states in the tensorial representation with

±|Λ| as a good quantum number. These are related to the Cartesian components |α〉 and

|β〉 by38

|ξ,±|Λ|〉 =
1√
2

[
|α〉 ± i |β〉

]
, (24)

where |α〉 and |β〉 are, for example, |Πx〉 and |Πy〉 (|Λ| = 1), |∆xx〉 and |∆xy〉 (|Λ| = 2) etc.

as typically produced by electronic structure methods.

9
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TABLE III. Product table for the quadratic functions of Cartesian components and the isotropic

function s, that transform as the product of different irreducible representations for the C2v point

group.

A1 A2 B1 B2

A1 s xy xz yz

A2 xy s yz xz

B1 xz yz s xy

B2 yz xz xy s

We now consider the unitary transformation from the Cartesian (‘electronic structure’)

representation of the matrix elements 〈ξ′′γ′′|Qij(r)|ξ′γ′〉 (γ ∈ [α, β]) to their tensorial

(‘Duo’) representation 〈ξ′′Λ′′|Q(k)
m (r)|ξ′Λ′〉 in Eq. (23).

To construct this transformation and also to keep track of the relative phases of ‘elec-

tronic structure’ wavefunctions Duo makes the use of the Cartesian matrix elements of the

electronic angular momentum operator L̂z. We choose the Cartesian components |α〉 , |β〉
such that for wavefunctions with |Λ| > 0 the L̂z matrix is given (up to an arbitrary phase

factor) by:

Lz =

 〈 α|L̂z| α〉 〈 α|L̂z| β〉
〈 β|L̂z| α〉 〈 β|L̂z| β〉

 =

 0 −i~|Λ|
i~|Λ| 0

 , (25)

where Lz is the Cartesian matrix representation of L̂z with the elements 〈ξγ′′|Lz|ξγ′〉 and

the index ξ is dropped for simplicity. The wavefunctions |ξ,±|Λ|〉 in Eq. (24) can be formed

as eigenfunctions of the operator L̂z in the Cartesian representation by diagonalizing the

2×2 matrix matrix Lz with the eigenvalues ~|Λ| and −~|Λ|.38 The corresponding unitary

matrix that diagonalizes Lz,

U =

 1√
2

i√
2

1√
2
−i√

2

 (26)

provides the transformation between the Cartesian and tensorial representations for any

electronic structure property, including the electric quadrupole

Qtens. = U−1QCart.U. (27)

Together with the 3-j symbol in Eq. (14), which implies that each component Q
(2)
m′ couples

electronic states with Λf − Λi = m′, this allows for the following additional relations to be

10
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TABLE IV. Product table for the quadratic functions of Cartesian components and the isotropic

function s, that transform as the product of different irreducible representations for the D2h point

group.

Ag B1g B2g B3g Au B1u B2u B3u

Ag s xy xz yz

B1g xy s yz xz

B2g xz yz s xy

B3g yz xz xy s

Au s xy xz yz

B1u xy s yz xz

B2u xz yz s xy

B3u yz xz xy s

made

〈±|Λ||Q(2)
0 |±|Λ|〉 =

3

2
√

6

[
〈α|Qzz|α〉+ 〈β|Qzz|β〉

]
=

3√
6
〈α|Qzz|α〉 ,

(28)

〈
Σ+
∣∣Q(2)
±1

∣∣∓Π
〉

= ∓ 1√
2

[ 〈
Σ+
∣∣Qxz

∣∣Πx

〉
+
〈
Σ+
∣∣Qyz

∣∣Πy

〉 ]
= ∓
√

2
〈
Σ+
∣∣Qxz

∣∣Πx

〉
,

(29)

〈
Σ−
∣∣Q(2)
±1

∣∣∓Π
〉

= − i√
2

[ 〈
Σ−
∣∣Qxz

∣∣Πy

〉
+
〈
Σ−
∣∣Qyz

∣∣Πx

〉 ]
= −i

√
2
〈
Σ−
∣∣Qxz

∣∣Πy

〉
,

(30)

〈
Σ+
∣∣Q(2)
±2

∣∣∓∆
〉

= +
1√
2

[ 〈
Σ+
∣∣Qxx

∣∣∆xx

〉
+
〈
Σ+
∣∣Qxy

∣∣∆xy

〉 ]
= +
√

2
〈
Σ+
∣∣Qxx

∣∣∆xx

〉
,

(31)

〈
Σ−
∣∣Q(2)
±2

∣∣∓∆
〉

= ± i√
2

[ 〈
Σ−
∣∣Qxx

∣∣∆xy

〉
+
〈
Σ−
∣∣Qxy

∣∣∆xx

〉 ]
= ±i

√
2
〈
Σ−
∣∣Qxx

∣∣∆xy

〉
,

(32)

〈∓Π|Q(2)
±1|∓∆〉 = ∓1

2

[
〈Πx|Qxz|∆xx〉+ 〈Πx|Qyz|∆xy〉 − 〈Πy|Qyz|∆xx〉+ 〈Πy|Qxz|∆xy〉

]
= ∓2 〈Πx|Qxz|∆xx〉 ,

(33)
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The initial expressions in Eqs. (28-33) are obtained from Eqs. (9-11) by substituting the

symmetric components Qzx = Qxz, Qzx = Qyz, Qxy = Qyx, and Qxx = −Qyy. The second

line in each expression is obtained by setting matrix elements that do not satisfy the selection

rule in Eq. (20) (e.g 〈Σ+|Q(2)
∓1|∓Π〉, 〈Σ+|Q(2)

∓2|∓∆〉, etc.) equal to zero and rearranging to

obtain relations between different Cartesian components of the matrix elements. In the case

of D2h symmetry, the corresponding equations (28-33) are identical except for the addition

of the relevant g/u parity label.

III. DEMONSTRATIONS

In this section we provide a demonstration of the Duo electric quadrupole program for the

simple 1Σ systems of H2, CO and HF. In particular, we choose H2 as the initial proof of the

program due to the highly accurate spectroscopic data available for this molecule, which we

aim to reproduce. The demonstrations for CO and HF exemplify heteronuclear systems with

large molecular quadrupole moments in which the consideration of E2 transitions is necessary

to obtain accurate cross-sections. An application to an more complex system involving

interstate transitions with a non-Σ electronic state is illustrated by way of simulating the

Noxon electronic (E2) band a1∆g – b1Σ+
g of the O2 molecule. The spectroscopic models

detailed in this section are provided as supplementaries in the form of Duo input files, the

Duo program itself is open-source and can be obtained from the ExoMol public repository

at github.com/Exomol.

A. Molecular Hydrogen

Molecular hydrogen is the simplest diatomic molecule, containing just two electrons and

two protons. It is the most abundant molecule in the universe and plays an important

role in star formation,48–51 interstellar physics,52–54 (exo)planetary atmospheres,55–58 and

investigations of fundamental physics.59,60

Owing to its molecular symmetry, the homonuclear H2 molecule has no permanent elec-

tric dipole moment, and thus rovibrational transitions are forbidden in the electric dipole

approximation. The availability of highly accurate electronic potential energy curves (PECs)

and electric quadrupole moment curves (QMCs) makes H2 an ideal candidate for validating

12
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the implementation of E2 transitions in Duo. The simplicity of the H2 molecule makes it

an extremely tractable quantum mechanical problem - indeed, it was the model molecule

for many early calculations of molecular dynamics, on the world’s first mass-produced

computers.61–63 Even for these early calculations linestrength accuracies within a few percent

were attainable.64–66 As a result, there is a wealth of accurate spectroscopic data available

with which the Duo implementation can be validated. Most recently, Roueff et al. 12 calcu-

lated a highly accurate (order 10−6 cm−1) infrared spectrum for the H2 molecule including

several higher order correction terms.67

The calculations of Roueff et al. 12 are based on an extensive series of earlier works

by Pachucki 68 , Pachucki and Komasa 69,70,71 , in which the H2 Born-Oppernheimer PEC

was obtained with 10−15 relative numerical precision using 22,000 exponential basis func-

tions and explicit electron correlation calculations.68,72 They also compute non-adiabatic,69,71

adiabatic70 and high-order relativistic73 corrections to the Born-Oppenheimer potential en-

ergy. The quadrupole moment function employed in their calculations is obtained using

the Born-Oppenheimer wavefunction, and is in agreement with the values reported by Wol-

niewicz, Simbotin, and Dalgarno 10 , who employ a 494-term correlated basis representation

of the wavefunction to obtain the quadrupole moment function with an estimated accuracy

on the order of 0.001%.

For the validation of the Duo implementation, their original Born-Oppenheimer potential

is retrieved using the V(DR) function made available via the H2SPECTRE program.67 The

contribution of the adiabatic and non-adiabatic corrections computed by Roueff et al. 12

are in the range 5–20 cm−1 and 0.4–4.0 cm−1, respectively, increasing the total state energy.

The higher order relativistic corrections are on the order of 0.01 cm−1 or less. Since the

Born-Oppenheimer PEC provided does not include adiabatic or non-adiabatic corrections,

significant deviation is expected between the calculated state energies for high v and J states.

Typically these deviations could be corrected in Duo via an empirical fit to experimentally

accurate state energies. Such refinement is not performed in this work, as the aim here is to

illustrate the implementation of E2 transition strengths, rather than provide an accurate or

improved line list for H2. The quadrupole moment function of Wolniewicz, Simbotin, and

Dalgarno 10 is also employed, given as a grid of 253 E2 moment values between 0.2–20.0 a0,

which Duo interpolates using quintic splines.

The vibrational grid is defined by 501 equally spaced points in the range 0.38–18.90 a0.

13
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FIG. 1. Agreement between the Einstein-A coefficients (bottom-left) and state energies of H2

calculated by Duo (Aif , E), and by Roueff et al. 12 (Āif , Ē). The energy differences E − Ē in the

upper panels are plotted as functions of the level of rotational J and vibrational v excitations.

The energy and A-coefficient differences in the lower panels are plotted as functions of (upper)

state energy. The colors in each plot correspond to the (upper) vibrational quantum number of

the state.

After solving the vibrational Schrödinger using the sinc-DVR method, the first 30 vibrational

states are selected to form the contracted vibrational basis and the rovibrational Schrödinger

equation is solved for rotational states with total angular momentum quantum numbers

0 ≤ J ≤ 200 at 296 K.

Fig. 1 illustrates the results of a line-by-line comparison of the Duo results to the

14



Accepted to J. Chem. Phys. 10.1063/5.0063256

accurate line list of Roueff et al. 12 (including all corrections). As expected, significant

differences between the energies calculated by Duo (E) and the accurate energies provided

by H2SPECTRE (Ē) for high v, J states are observed. We also expect to see significant

deviation in the Einstein coefficients obtained for transitions involving these states, due to

the factor of ν5
fi present in Eq. 3 coupled with vanishingly small Einstein coefficients for

transitions to states with large v quantum number. Thus states with v ≥ 10 are excluded

from the analysis.

For the 3,027 remaining transitions between the remaining vibrational levels, 99.0% of

Einstein coefficients (Afi) lie within 1% of the values calculated by Roueff et al. 12 (Āfi).

The 99-th percentile is |1 − Afi/Āfi| = 0.0672. Note that all Einstein coefficients with

errors greater than 5% correspond to weak transitions with absorption intensities Ifi <

1× 10−35 cm molecule−1. For example, the largest discrepancy Afi/Āfi = 2.45 corresponds to

the v = 9← 0 transition with Afi = 5.27× 10−15 s−1 and Ifi = 5.45× 10−36 cm molecule−1.

Table V compares the results of the calculation to the experimentally measured intensities

and line position of Bragg, Brault, and Smith 74 (T = 296 K), and in Table VI to more recent

measurements of Campargue et al. 75 , as well as their theoretical predictions based on the

effective quadrupole moment method. The Duo calculated intensities reproduce closely the

accurate experimental measurements of Campargue et al. 75 , and match their theoretical

predicted values to within 0.1%. Agreement with the older measurements of Bragg, Brault,

and Smith 74 are less consistent but generally agree, particularly for the Q-branch transitions

of the first overtone band. In both cases the line positions differ considerably, but by

a roughly constant value across each vibrational band. This is due to the fact that no

Duo refinement procedure is performed and no adiabatic or non-adiabatic corrections are

included in the calculations. Also illustrated, in Fig. 2 are (left) direct comparisons of the

Einstein coefficients obtained via Duo to those of Roueff et al. 12 , and (right) the absorption

intensities via the Exocross program, as compared to transitions listed in the HITRAN26

database. Here and in the following we use the HITRAN intensity units cm/molecule.

B. Carbon Monoxide

Carbon monoxide is a heteronuclear diatomic molecule, and thus electric dipole transi-

tions are allowed within its ground X 1Σ+ state. However, it also possesses a strong electric
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TABLE V. Comparison of various H2 v′ ← 0 transitions (positions and intensities), measured

experimentally by Bragg, Brault, and Smith 74 , to the values predicted by Duo calculations at T

= 296 K. The line positions are in cm−1.

v′ Branch ν̃obs. − ν̃Duo
calc. Iobs./I

Duo
calc.

1 Q(3) -1.158 1.080
1 Q(2) -1.165 1.027
1 Q(1) -1.171 1.040
1 S(0) -1.181 1.158
1 S(1) -1.185 1.648
1 S(2) -1.185 1.594
1 S(3) -1.187 1.013
2 O(3) -2.121 0.852
2 O(2) -2.138 0.915
2 Q(3) -2.121 0.949
2 Q(2) -2.136 0.973
2 Q(1) -2.147 1.624
2 S(0) -2.152 0.984
2 S(1) -2.147 0.988
3 S(0) -2.923 0.816
3 S(1) -2.912 0.911
3 S(2) -2.887 1.017
3 S(3) -2.858 0.878
4 S(0) -3.480 0.606
4 S(1) -3.469 0.874
4 S(2) -3.432 0.727
4 S(3) -3.382 0.831

TABLE VI. Comparison of various H2 v
′ = 2 ← 0 overtone lines, measured experimentally and

computed via an effective quadrupole moment by Campargue et al. 75 (ν̃calc.), and the values

predicted by Duo calculations (ν̃Duo
calc. ) for T = 296 K. The line positions are in cm−1.

Branch ν̃obs. − ν̃calc. Iobs./Icalc. ν̃obs. − ν̃Duo
calc. Iobs./I

Duo
calc.

O(5) -0.0019 0.924 -2.061 0.924
O(4) -0.0040 0.931 -2.093 0.930
O(3) -0.0033 1.008 -2.115 1.007
O(2) -0.0031 1.001 -2.132 1.000
O(5) -0.0030 1.020 -2.067 1.020

quadrupole moment,77 and as a result, the electric dipole infrared spectrum is accompa-

nied by weaker electric quadrupole lines. We show that many of the E2 spectral lines at

room temperature lie higher in intensity than the minimum spectroscopic cutoff of 10−30

cm/molecule at the HITRAN reference temperature of T = 296 K, typically applied to E1

spectra. As a result, their inclusion or emission in spectroscopic databases has significant
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FIG. 2. Comparison of the Duo calculated Einstein-A coefficients with the target values predicted

by Roueff et al. 12 (left), and of the Duo calculated absorption intensities (T = 296 K) with the

intensities listed in the HITRAN database10,26,76 (right).

implications for applications where accurate cross-sections are required.

Numerous experimental and ab initio studies have been performed of the electric dipole

moment spectra for the CO molecule, including recent accurate calculations by Li et al. 78 .

Li et al. seek to resolve a long-standing uncertainty in the line intensities of CO E1 spectra,

namely significant differences observed between the intensities predicted by the calculations

of Goorvitch 79 and those of Huré and Roueff 80 . The former uses Chackerian’s81 semi-

empirical dipole moment function, obtained from a nonlinear least-squared fit to vibrational

states up to v = 38. The latter uses a purely ab initio electric dipole moment curve (DMC),

computed by Langhoff and Bauschlicher via ACPF calculations on a 5Z basis set.82 Li et

al. perform new CRDS measurements in order to produce an accurate DMC via a direct-

fit. At long bond lengths, where experimental data is not attainable, they reproduce the

calculations of Langhoff and Bauschlicher 82 but with a finer grid, and determine that the

interpolation used on the original grid was insufficient to capture the full shape of the DMC.

Their PEC of choice is the analytical MLR3 function obtained by Coxon and Hajigeorgiou 83

via a direct fit to 21559 spectroscopic lines.83

Studies of the quadrupole moment of CO are somewhat sparser. Although several exper-

imental measurements exist for the equilibrium molecular quadrupole moment, only a single

study presents a QMC across a range of geometries. The early work by Truhlar 42 presents
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FIG. 3. Electric quadrupole moments in a.u. (ea2
0) for CO obtained in this work via CCSD(T)

calculations compared to Hartree-Fock calculations by Truhlar 42 .

simple Hartree-Fock calculations of the quadrupole moment at just 6 internuclear geome-

tries. The accuracy of the vibrational matrix elements calculated is low, particularly for

weaker transitions corresponding to higher vibrational quantum numbers. In particular the

methodology struggles to accurately describe the quadrupole moment at intermediate and

long internuclear distances, which are necessary for calculating the vibrational overtones.

Coriani et al. 84 compares the results of CCSD and CC3 calculations on the CO molecule

with a variety of basis sets. The results show that the CCSD level of theory is insufficient to

correctly describe the electric properties of the CO molecule, and that consideration of triple

excitations is vital. They also study the convergence of such calculations with increasing

basis set size, and find the results converge quickly for bases larger than DZ.

In the present work, following the success of Coriani et al. 84 , the CCSD(T) method

is employed with an aug-cc-pwCVQZ basis as implemented in the CFOUR program47 to

calculate the strength of the non-zero quadrupole component Qzz for 100 nuclear geometries

in the range 1.50–3.78 a0. Divergent behaviour at large internuclear separations is attributed

to CCSD(T)’s inability to account for multireference effects. The curve is therefore truncated

at 3.0 a0. The QMC obtained from these calculations is shown in Fig. 3.

The value of the electric quadrupole moment curve at equilibrium separation Qzz =

−1.45 a.u. (a.u. = ea2
0) agrees reasonably well with the Hartree-Fock calculations of Truh-
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TABLE VII. A comparison of various electric quadrupole moment values for CO in a.u. (ea2
0 =

4.486 484(28)× 10−40 C m2 86) from the literature. All values are averaged over the vibrational

ZPE and are given in the molecular centre of mass reference frame, Q
(CM)
zz = 2Rzµ+Q

(EQC)
zz with

the displacement between the centre of mass and the electric quadrupole centre given by Rz =

−5.96 a.u. and a dipole moment µ = −0.043 159 a.u.77,84

Qzz / a.u. Method Ref.

-1.4522 CCSD(T) This work

-1.445(2) CC3 84

-1.43(3) MBERS 85

-1.440(69) EFGIB 77

-1.382(31) EFGIB 77 and 87

-1.18(22) EFGIB 77 and 88

lar 42 , which obtain Qzz = −1.33 a.u.. Note that Truhlar 42 chooses a definition of the

quadrupole moment which is a factor of two larger than the definition employed by MOL-

PRO and Duo, the value quoted here is adjusted accordingly. Importantly, we obtain

very good agreement with experimental values of the ZPE-averaged quadrupole moment

from the literature. From the CCSD(T) quadrupole moment shown in Fig. 3, Duo cal-

culates 〈v = 0|Qzz|v = 0〉 = −1.4522 a.u. which agrees closely with the accurate MBERS

measurement of Meerts, Leeuw, and Dymanus 85 , the CC3 calculations of Coriani et al. 84 ,

and EFGIB measurements from other sources. These comparisons are presented in Table

VII.

Nuclear motion calculations are performed using the semi-empirical PEC of Meshkov

et al. 89 . This accurate analytical representation of the PEC is chosen for the Duo solutions

in order to improve the quality of the wavefunctions used to calculate the linestrengths. The

Duo vibrational grid used for the calculation consists of 501 equally spaced points in the

range 1.50–3.00 a0, and the first 21 vibrational states are selected to form the contracted

basis. These excitations correspond to energies within the spectroscopically relevant region

(E/hc < 40.000 cm−1) for the room temperature applications.

After solving the Schrödinger equation for rotational quantum numbers 0 ≤ J ≤ 50, with
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FIG. 4. Vibrational bands (left) and rotational v = 0 − 1 transitions (right) of the E1 and E2

rovibrational spectra in the ground X 1Σ+ state of the 12C16O molecule. The E1 intensities are

those of Li et al. 78 , via the ExoMol database.

a vibrational transition quadrupole moment 〈ξfvf |Q(2)
0 |ξivi〉 < 1× 10−5 a.u. are discarded.

It was found by Medvedev et al. 90 numerically computed transition dipole moments of high

overtones corresponding to large changes in vibrational quanta can suffer from numerical

instabilities and lead to unphysically large intensities. In the case of electric quadrupole

transitions however, the intensity of these high overtone vibrational bands is sufficiently weak

that absorption lines with transition quadrupole moments 〈ξfvf |Q(2)
0 |ξivi〉 < 1× 10−5 a.u.

(corresponding to high overtone bands) can simply be excluded from the line list altogether.

The calculated state energies are substituted for those obtained by Li et al. 78 in a simul-

taneous direct-fit to experimentally determined energy levels. This improves the accuracy

in the line positions of the final stick spectrum, obtained via ExoCross91, but has no effect

on the quadrupole Einstein coefficients or linestrengths. The energy level data of Li et al. 78

is made available through the HITRAN or ExoMol (exomol.com) databases.31

The resultant room temperature (T = 296 K) line list for 12C16O with a cut-off intensity

of 10−35 cm molecule−1 consists of 6474 electric quadrupole transitions between rotational

states up to Jmax = 48, and vibrational states v = 7. A synthetic room temperature E2

spectrum is illustrated in Fig. 4, where it is compared to the E1 spectrum of Li et al. 78 .

The difference is approximately eight orders of magnitude. Nonetheless, many E2 lines -
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f i Afi ν̃fi

94 10 1.0587E-17 10.591935

93 9 1.1546E-17 10.696876

92 8 1.2569E-17 10.801832

91 7 1.3657E-17 10.906802

90 6 1.4815E-17 11.011786

89 5 1.6043E-17 11.116781

88 4 1.7346E-17 11.221787

87 3 1.8725E-17 11.326802

86 2 2.0183E-17 11.431825

85 1 2.1722E-17 11.536856

136 52 1.7502E-16 17.652735

TABLE VIII. Extract from the 12C16O electric quadrupole Transition file. It contains the upper

(f) and lower (i) states counting numbers, Einstein A coefficients (s−1) and transition wavenumbers

(cm−1).

particularly for the v = 0 ← 0 and v = 1 ← 0 bands - lie above the typical cutoff intensity

used in many spectroscopic databases (∼10−30 cm2 molecule−1 at T = 296 K).

The computed electric quadrupole Einstein A coefficients of 12C16O are combined with

the ExoMol E1 line list Li2015 for CO in a form of an E2 Transition file, see an extract in

Table VIII. Apart from the Einstein A E2 coefficients (s−1), the Transition file contains the

upper and lower state counting numbers of the Li2015 State file, as illustrated in Table IX,

which presents an extract from the ExoMol State file of the 12C16O line list Li2015. For

more details on the ExoMol line list structure see Tennyson et al. 31 .

C. Hydrogen Fluoride

Like the CO molecule, HF possesses a strong permanent electric dipole moment93, it also

possesses a strong permanent electric quadrupole moment.94 Numerous ab initio studies

have been performed for HF, including several which produce QMCs for the ground X 1Σ+

electronic state.95–97 Piecuch et al. 95 use the orthogonally spin-adapted linear-response
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TABLE IX. Extract from the Li2015 States file for 12C16O.

i E g J v τ

1 0.000000 1 0 0 e

2 2143.271100 1 0 1 e

3 4260.062200 1 0 2 e

4 6350.439100 1 0 3 e

5 8414.469300 1 0 4 e

6 10452.222200 1 0 5 e

7 12463.768600 1 0 6 e

8 14449.181300 1 0 7 e

9 16408.534600 1 0 8 e

10 18341.904400 1 0 9 e

11 20249.368200 1 0 10 e

i: State counting number.

Ẽ: State energy in cm−1.

gi: Total statistical weight, equal to gns(2J + 1).

J : Total angular momentum.

State: Electronic state.

v: State vibrational quantum number.

τ : Rotationless parity e/f .92

coupled-cluster (LRCC) theory with singly and doubly excited clusters (CCSD) and ob-

tain quadrupole moments at 15 internuclear geometries in the range 1.126 32–12.1296 a0

Their basis set of choice is that introduced by Sadlej for correlated calculations of molecular

electric properties,98 which they compare to standard basis sets at the TZ level. They also

provide the results of full CI calculations on a DZ basis set. Maroulis 96 presents all-electron

CCSD(T) calculations of the quadrupole moment at nine internuclear geometries in the

range 0.9328–2.5328 a0 For comparison, the quadrupole moment for the X1Σ+ state is com-

puted via the MRCI method and an aug-cc-pVQZ basis set at 501 internuclear geometries

in the range 1.32–6.99 a0 using Molpro.

The electric quadrupole moments of HF obtained via these various methods are illus-
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TABLE X. A comparison of various ab initio electric quadrupole moment values for HF in a.u.

(ea2
0). All values are given in the molecular centre of mass reference frame, and at the equilibrium

nuclear geometry.

Qzz / a.u. Method Ref.

1.706 MRCI This work

1.72 CCSD 95

1.72 CCSD(T) 96

1.66 CI 95

trated in Fig. 5. Although the four curves have the same general shape, significant variation

is apparent between the value of Qzz computed at intermediate bond lengths close to 3.8 a0.

Here the strength of the quadrupole moment is greatest, and difference of more than 0.5 a.u.

is apparent between the full CI and CCSD methods. Table X shows the differences in the

value of the quadrupole moment at the equilibrium internuclear distance for the four ab

initio methods presented. All four calculations produce similar values for Qzz(Re), but the

coupled-cluster methods systematically overestimate the strength relative to experimental

measurements. Importantly, when averaged over the vibrational ZPE, the MRCI results

obtained in the present work give good agreement with the experimental MBERS measure-

ment of de Leeuw and Dymanus 94 . They obtain 〈v = 0|Qzz(r)|v = 0〉 = 1.75(2) a.u., whilst

Duo calculates a value of 1.747 a.u., which is within the range of experimental uncertainty.

For the PEC, Coxon and Hajigeorgiou 99 provide a very accurate RKR-style analytical

expression for the potential energy and Born-Oppenheimer breakdown functions of theX1Σ+

ground electronic state of various hydrogen halide isotopologues, including 1H19F. They

devise a novel analytical form (MLR3) of the diatomic electronic potential and perform a

non-linear least squares fit to experimental energies.

Their analytical representation of the MLR3 potential has been newly implemented in

Duo and for the present calculations, the HF MLR3 parameters obtained by Coxon and

Hajigeorgiou 99 are employed, as well as their Born-Oppenheimer breakdown (BOB) function

which is obtained from the Fortran source code provided in the supplementary material of

Coxon and Hajigeorgiou 99 .
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FIG. 5. Comparison of the quadrupole moment curves in a.u. (ea2
0) for HF obtained via vari-

ous ab initio methods. The MRCI calculations presented in this work, CCSD(T) calculations of

Maroulis 96 , and CCSD and full-CI calculations of Piecuch et al. 95 .

Fig. 6, shows a comparison of the potential energy curves obtained from our MRCI

calculations, the CCSD calculations of Piecuch et al. 95 and the MLR3 potential of Coxon

and Hajigeorgiou 99 . All three methods give similar results at short and intermediate bond

lengths. The CCSD calculations overestimate the dissociation energy, relative to the em-

pirical MLR3 potential, and the MRCI results predict a slightly lower dissociation energy.

Fig. 7 illustrates the results of calculations from two spectroscopic models. In each case the

potential energies are the same; the MLR3 and BOB curves of Coxon and Hajigeorgiou 99 ;

but one model uses the MRCI quadrupole moment presented in this work, and the other

uses Piecuch’s CCSD quadrupole moment. In both cases nuclear motion calculations are

performed for rotational states 0 ≤ J ≤ 41, the vibrational grid is defined for 501 equally

spaced points in the range 0.76–4.40 a0, and the first 20 vibrational states are chosen for the

contracted basis.

For the first three vibrational bands, the absorption intensities predicted by both spec-

troscopic models are nearly identical. Higher order vibrational bands, however, exhibit

significant discrepancies. The CCSD intensities begin to plateau above 20 000 cm−1, we pro-

pose that this intensity plateau arises as a result of the same effect encountered in section

III B and detailed by Medvedev et al. 90 . Comparatively, the MRCI spectrum shows no such
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FIG. 6. Comparison of the potential energy curves for the X1Σ+ ground state of HF. The MRCI

calculations are from this work, empirically fitted MLR3 potential of Coxon and Hajigeorgiou 99 ,

and the CCSD calculations of Piecuch et al. 95 .
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FIG. 7. Comparison of the electric quadrupole absorption spectrum for H19F obtained via spec-

troscopic models using the CCSD and MRCI quadrupole moment curves illustrated in Fig. 5.

intensity plateau, indeed the MRCI quadrupole moment is obtained on a considerably finer

grid spacing, which aids in smoothing the interpolation.

A second possible cause proposed by Medvedev et al. 90 is the asymptotic behaviour

of the quadrupole moment curves at longer internuclear distances. Here the magnitude

of the coupling becomes exponentially smaller, and significant relative variations in the
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FIG. 8. Central finite difference gradients of the HF quadrupole moment obtained via MRCI and

CCSD methods with respect to internuclear distance.

gradient of Qzz are observed between the two methods. The gradient of CCSD quadrupole

moment curve at distances R > 3 a0 decays considerably slower than that obtained via MRCI

calculations. Fig. 8 shows the gradient of the two quadrupole moment functions computed

using a central finite difference scheme on the Duo integration grid.

The MRCI spectrum exhibits a local minimum in intensity for the v = 5 ← 0 band. A

similar abnormal intensity was observed by Medvedev et al. 90 for the same vibrational band

of the electric dipole spectrum. Regardless, the expected E2 absorption intensities for the

v = 5 ← 0 band is extremely weak, far weaker than typical spectroscopic cutoff intensity

( 10−30 cm/molecule at T = 296 K).

Intensities obtained using the MRCI quadrupole moment are chosen for the final 1H19F

spectroscopic model and line list. This is combined with the ExoMol E1 line list Coxon-Hajig

in the form of an E2 Transition file. Fig. 9 compares the E2 intensities obtained for room

temperature calculations to the E1 intensities of Coxon and Hajigeorgiou 99 . It consists of

2716 electric quadrupole transitions between rotational states up to J = 18 and vibrational

states up to v = 9 with a cutoff intensity of 10−35 cm molecule−1 (T = 296 K) and is included

into the supplementary material of this work.
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FIG. 9. Vibrational bands (left) and rotational v = 0− 1 transitions (right) of the E1 and E2 rovi-

brational spectra in the ground X1Σ+ state of the H19F molecule as line intensities (cm/molecule).

The E1 spectrum is that of Coxon and Hajigeorgiou 99 , via the ExoMol database.

D. Oxygen Noxon Band

Owing to its molecular symmetry, the homonuclear O2 molecule possesses no permanent

dipole moment. Additionally, the three lowest lying electronic states, X3Σ−g , a1∆g and b1Σ+
g

all have gerade symmetry. The Σ spin-orbit mixing results in electric quadrupole transitions

in the a1∆g – X3Σ−g system, which borrow strength from the direct a1∆g – b1Σ+
g transitions

of the so-called Noxon band.27,100

〈
a1∆g

∣∣Q(2)
±2

∣∣X3Σ−g
〉
∝
〈
a1∆g

∣∣Q(2)
±2

∣∣b1Σ+
g

〉
(34)

Although weak, with intensities on the order of 10−45 cm2 molecule−1, rotational lines

in both the (1 − 0) and (0 − 0) Noxon bands have been measured experimentally.101,102

This electronic band is forbidden by the magnetic dipole ∆Λ = 0,±1 selection rule, and

consequently the Noxon band is purely quadrupolar in nature. This makes the Noxon band

ideal for validations of the electric quadrupole methodology applied to open-shell molecules.

The emission spectrum of the fundamental Noxon band was measured at 313(10) K by

Fink et al. 102 with an estimated precision of 0.010–0.020 cm−1. This measurement is repli-

cated computationally with Duo calculated Einstein coefficients and the Exocross pro-

gram. The ab initio data for the Duo calculations was produced using Molpro103 with
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FIG. 10. Potential energy curves for the three lowest lying electronic states of O2, obtained via

MRCI calculations with an aug-cc-pV6Z basis set.

the MRCI program and an aug-cc-pV6Z basis set. The calculation includes PECs for the

three lowest lying electronic states X3Σ−g , a1∆g and b1Σ+
g (Fig. 10), as well as diagonal

quadrupole moment curves Q
(2)
0 (r) = 3Qzz(r)/

√
6 for the a1∆g and b1Σ+

g electronic states,

and the off-diagonal a1∆g – b1Σ+
g quadrupole Q

(2)
±2(r) =

√
2Qxx(r) (Fig. 11). Calculations

are performed on a grid of 116 internuclear distances in the range 1.5–7.5 a0. The contracted

vibrational basis set consists of the first 25 vibrational states for each electronic state, and

calculations are performed for rotational states 0 ≤ J ≤ 50.

Fig. 12 shows an overlay of the experimental spectrum by Fink et al. 102 with the cal-

culated emission cross-section for the fundamental Noxon band, obtained via Exocross

using the Duo calculated Einstein coefficients at 313 K with a Voigt line profile (HWHM

= 0.15 cm−1). The intensities have been scaled relative to the most intense Q(8) transi-

tion. There is a systematic error in the line positions calculated by Duo ∼7 cm−1, which

is attributed primarily to the fact that the calculations do not include the strongly coupled

excited C3Πg state.30 Due to the number of couplings required for a complete treatment of

the open-shell O2 molecule the full rovibronic spectrum, including such highly excited states

will be the focus of a future publication. Consequently, and for the sake of simplicity, no

empirical refinement of the PECs is performed in the present work. Nonetheless, the relative

line positions and intensities are in good agreement with those measured by Fink et al. 102 ,
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g electronic states

of O2 obtained via MRCI calculations with a aug-cc-pV6Z basis set.

and demonstrate the validity of the approach for open-shell diatomic systems and excited

electronic states.

IV. CONCLUSIONS

Generic expressions for the electric quadrupole Einstein coefficients and matrix elements

between arbitrary electronic states of (open-shell) diatomic molecules have been derived and

implemented in the Duo spectroscopic code. The implementation is general, and allows

for the creation of highly accurate ab initio and empirical spectroscopic models and line

lists for an array of astrophysically important molecules. The work has been validated

by reproducing highly accurate literature data for the homonuclear H2 molecule, as well

by comparison to the electronic emission spectrum of the O2 Noxon band, and further

demonstrated by the calculation of novel electric quadrupole spectra for the heteronuclear

CO and HF molecules. The line lists for CO and HF have been included into the ExoMol

database.

Through this calculation, we have shown that even for electric dipole-allowed systems,

electric-quadrupole line intensities can often lie above the typically cutoff intensities used in

spectroscopic databases, atmospheric retrievals and remote-sensing applications. For many
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FIG. 12. Overlay of the Duo calculated O2 Noxon emission cross-sections with the measured

spectrum from Fink et al. 102 , scaled relative to the peak intensity of the Q(8) transition. Cross-

sections are calculated at T = 313 K with a Voigt profile (HWHM = 0.15 cm−1)

homonuclear systems where rovibrational, and many electronic, transitions are forbidden

in the electric dipole approximation, calculation of the quadrupole intensities is crucial for

producing accurate rovibronic line lists. Our goal is to provide accurate E2 and M1 line lists

for electronic transitions of (open-shell) diatomic molecules such as O2, N2, S2, SO etc.

V. SUPPLEMENTARY MATERIAL

The supplementary material includes the spectroscopic models for H2, HF, CO and O2 in

the form of Duo input files; E2 line lists for H2, HF, CO and O2 using the ExoMol format;

examples of E2 room temperature spectra of these molecules with the upper and lower states

fully assigned.
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Appendix A: Correlation of Molpro enumeration to term symbols

Tables XI and XII are versions of Tables I and II with the addition of Molpro enumer-

ations for the irreducible representations. Which can be used to simplify the conversion of

Molpro output data to Duo input.

TABLE XI. Irreducible representations for homonuclear symmetry groups, the functions that trans-

form according to the irreducible representations, their Molpro enumeration, and corresponding

components of electronic states.

Symmetry Function Molpro No. Components

Ag s 1 Σ+
g , (∆g)xx

B1g xy 4 Σ−g , (∆g)xy

B2g xz 6 (Πg)x

B3g yz 7 (Πg)y

Au xyz 8 Σ−u , (∆u)xy

B1u z 5 Σ+
u , (∆u)xx

B2u y 3 (Πu)y

B3u x 2 (Πu)x

TABLE XII. Irreducible representations for heteronuclear symmetry groups, the functions that

transform according to the irreducible representations, their Molpro enumeration, and corre-

sponding components of electronic states.

Symmetry Function(s) Molpro No. Components

A1 s, z 1 Σ+, ∆xx

A2 xy 4 Σ−, ∆xy

B1 x, xz 2 Πx

B2 y, yz 3 Πy
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Phys. Rev. Research 2, 023091 (2020).

20A. Campargue, A. M. Solodov, A. A. Solodov, A. Yachmenev, and S. N. Yurchenko,

Phys. Chem. Chem. Phys. 22, 12476 (2020).

33



Accepted to J. Chem. Phys. 10.1063/5.0063256

21P. H. Krupenie, The band spectrum of carbon monoxide (U.S. Department of Commerce,

National Bureau of Standards, 1966).

22R. J. Glinski, J. A. Nuth, M. D. Reese, and M. L. Sitko, Astrophys. J. 467, L109 (1996).

23P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, Second Edition (NRC

Research Press, Ottawa, Canada, 2006).

24A. Goldman, C. P. Rinsland, B. Canova, R. Zander, and M. Dangnhu, J. Quant. Spec-

trosc. Radiat. Transf. 54, 757 (1995).
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45A. Yachmenev, L. V. Thesing, and J. Küpper, J. Chem. Phys. 151, 244118 (2019).

46H.-J. Werner, P. J. Knowles, F. R. Manby, J. A. Black, K. Doll, A. Heßelmann, D. Kats,
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